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1 Introduction

It is common in macroeconomics to collect stylized facts about the dynamic transmission of certain

structural shocks using (small scale) vector autoregressive (VAR) models and then build (larger scale)

dynamic stochastic general equilibrium (DSGE) models to explain the patterns found in the data

(see e.g. Gaĺı [1999]; Iacoviello [2005], Basu and Bundick [2017] among many others).

Several authors, including Ravenna [2007], Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and

Watson [2007], Giacomini [2013], have emphasized that the matching exercise is imperfect as the

linear solution of a DSGE model has a vector autoregressive-moving average (VARMA) format.

To reduce the mismatch, the VAR should feature a large number of lags; but even a generous lag

length may be insufficient in relevant cases. When long lags can not be used due to short data, the

invertibility problem is typically taken care by i) simulating data from the linear decision rules of

the same length as the actual data, ii) running the same VAR on both actual and simulated data,

and iii) comparing the dynamics of the endogenous variables in the two systems after shocks are

conventionally identified (see Chari, Kehoe, and McGrattan [2005]).

This paper studies a different mismatch problem, largely disregarded in the literature, which

could be more important than invertibility for deciding which theory is consistent with the data. We

call it deformation. It occurs when the data process generating (DGP) features q disturbances, but

less than q variables enter in the empirical model. Will the innovations of such an empirical system

provide information about ”classes” of disturbances? Will they give information about a particular

disturbance? In general, the answer is negative.

Deformation distortions make identified shocks mongrels with little economic interpretation for

two reasons. The recoverable shocks are unlikely to combine structural disturbances of the same type,

making it difficult to relate, say, an identified technology shocks to TFP or other supply disturbances

present in a structural model. Furthermore, identification of individual disturbances require stringent

conditions, which limit the type of disturbances one can analyze in such a system. Perhaps more

importantly, recoverable shocks are, in general, linear combinations of current and past structural

disturbances. Thus, unless the empirical model is carefully selected, identified shocks will display

stronger propagation than the corresponding disturbances in the DGP.

The first problem (we named it cross sectional deformation) emerges when the DGP is such that

several structural disturbances contemporaneously affect the variables entering the empirical model.

The second problem (we named it time deformation) instead occurs whenever the empirical model is

specified without paying sufficient attention to the theory used to explain the data and is exacerbated

when the small scale empirical model i) does not respect the relationship between the endogenous

variables and the states or ii) alters the law of motion of the states. Cross sectional deformation

makes sound theoretical restrictions insufficient to obtain meaningful structural disturbances. Time

deformation alters the information flow of the structural disturbances.
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After an illustrative example to enhance intuition in section 2, section 3 derives formal results

assuming a linear state space model for the DGP. We provide sufficient conditions for the identification

of ”classes” of disturbances and of a particular disturbance. Although we focus attention on general

equilibrium models, deformation problems have identical implications in partial equilibrium settings,

since the linear solution of such models also has a state space representation. In section 4 we use a

standard New Keynesian model to show how to match a larger scale DGP to a small scale empirical

model; the problems occurring when the empirical model is too small; and how time deformation

can be reduced by more explicitly linking the theory and the empirical model. The reader should

take away three main points from this section. First, if a SVAR is too small, identified shocks may

not be interpretable. Second, when the DGP features more disturbances than the empirical model,

the theory should be reduced to the same observables present in the empirical model prior to the

computation of the decision rules. Third, the theory used to interpret the data and the disturbances

it features must guide the choice of observables and the dimension of the empirical model. Thus,

when deformation is present, dynamic facts can not be theory-free.

Section 5 provides suggestions to users who want to avoid the deformation trap. In section 6

we take a version of Iacoviello [2005]’s model with seven disturbances (the four originally used plus

disturbances to the borrowing constraints and the wealth constraint of households) and use the same

four variable VAR originally employed to construct responses to house price shocks. We show that the

recovered house price shocks heavily reflect monetary policy and borrowing constraint disturbances,

rather than the preference disturbances Iacoviello emphasizes, making the match with the data is

weaker than previously thought. Section 7 extends the analysis to DGPs displaying higher order

terms (such as those generated by higher order perturbed solutions of equilibrium models), shows

that the results we derived hold unchanged, that deformation biases are likely to be more severe, and

use Basu and Bundick [2017]’s model to highlight them.

Our analysis abstracts from invertibility issues (recently studied in, e.g. Beaudry, Feve, Guay,

and Portier [2016], Forni, Gambetti, and Sala [2016], Plagborg Moller [2018], Pagan and Robinson

[2018], Chahrour and Jurado [2018]) due to anticipatory disturbances or news. Both deformation

and invertibility produce time deformation problems. However, invertibility does not create cross

sectional deformation. Thus, the interpretation problems we consider are distinct, and matter even

when invertibility is not an issue. Also, while one reason for choosing an empirical model with

a limited number of variables is that certain theoretical quantities may be latent, cross sectional

deformation is relevant even when all theoretical quantities are observables but short samples or

identification convenience make applied researchers prefer small scale empirical models.

The current literature is silent about the issue we analyze. Apart from Canova and Hamidi Sahneh

[2018], who analyze the effects of cross sectional deformation on the properties of Granger causality

tests, and Miranda Agrippino and Ricco [2019], who examine the conditions for shock identification
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in SVAR-IV settings under partial identificability, we are aware only of early work by Blanchard and

Quah [1989], Hansen and Sargent [1991], Marcet [1991], Lutkepohl [1984], Braun and Mittnik [1991]

and Faust and Leeper [1988] discussing similar issues but in different settings. Some of results we

present have similar flavor to Wolf [2018]. However, they are due by deformation distortions rather

than insufficient identification restrictions.

2 Some intuition

To gain intuition into the problem, consider a simple consumption-saving model with TFP (Zt), price

of investment (Vt), and preferences (Bt) disturbances 1. The representative agent maximizes:

max
Ct

∞∑
t=1

βtBtU(Ct) (1)

subject to the constraints

Ct + It = ZtK
α
t (2)

Kt+1 = (1− δ)Kt + VtIt (3)

We assume that 0 < α < 1, 0 < β < 1 and that (Zt, Vt, Bt) are iid with unitary means and standard

deviation σi, i = Z, V,B. When U(Ct) = logCt and δ = 1, the solution is

logKt+1 = log(αβ) + α logKt + log Vt + logZt (4)

logCt = log(1− αβ) + α logKt + logBt + logZt (5)

log Yt = α logKt + logZt (6)

The model has three endogenous variables and three disturbances (two supply (Zt, Vt) and one de-

mand Bt). When the empirical model contains the three variables, the disturbances are recursively

identifiable from the innovations in yt = log Yt, ct = logCt, kt+1 = logKt+1. Note that the three

variable system is invertible (α < 1).

Suppose that a researcher employs an empirical model with two observables. Would she be able

to identify a demand and a supply disturbance? Would she be able to trace out the dynamics induced

by the preference disturbance? The answer depends on the variables used.

The empirical model corresponding to the solution of the (kt+1, ct) system is obtained integrating

out yt, a control, from the problem:

kt+1 = log(αβ) + αkt + u1t (7)

ct = log(1− αβ) + αkt + u2t (8)

1We are grateful to Thomas Drechsel for suggesting a version of this example.
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where u1t = log Vt + logZt, u2t = logBt + logZt. In this system recursivity is lost. Furthermore,

u2t’s mixes demand and supply disturbances. Thus, theoretically motivated restrictions will fail to

identify either ”classes” or a particular disturbance and the dynamics they induce.

The empirical model corresponding to the solution of the (yt, ct) system is obtained integrating

out kt, a state, from the problem:

ct = bc + αct−1 + u1t (9)

yt = by + αyt−1 + u2t (10)

where u1t = logZt + logBt−α logBt−1 +α log Vt−1, u2t = logZt +α log Vt−1, and bc, by are constant.

This system omits kt, but introduces two new states ct−1, yt−1. The innovation u1t mixes demand and

supply disturbances but now with different timing. Thus, this system displays cross sectional and

time deformations. The (recursive) cross correlation between ujt and current and lagged values of

any of the structural disturbances does not go to one even when the number of lags goes to infinity.

Thus, the recoverability condition of Chahrour and Jurado [2018] fails, and theoretical motivated

restrictions will not identify any of the structural disturbances.

Is there a two variable system which allows the identification of a supply and a demand distur-

bance? If the two great ratios, (log kt+1 − log yt) and (log ct − log yt) are used as observables, one

can recover log Vt, logBt. This happens because each disturbance affects the decision rule of only one

variable.

In sum, when there is a dimensionality mismatch between the empirical model and the distur-

bances of the DGP, the variables entering the empirical system determine the informational content

of the reduced form innovations; and eliminating states is, in general, more problematic than elim-

inating controls. Moreover, strict conditions are needed to recover either a ”class” or a particular

disturbance. The next section formalizes this intuition.

3 Analytical results

We assume that the DGP is of the form:

xt = A(θ)xt−1 +B(θ)et (11)

yt = C(θ)xt−1 +D(θ)et (12)

where xt is a k × 1 vector of endogenous and exogenous states, yt is a m × 1 vector of endogenous

controls, et ∼ (0,Σ(θ)) is a q × 1 vector of disturbances, Σ(θ) a diagonal matrix and θ a vector of

structural parameters; A(θ) is k×k, B(θ) is k× q, C(θ) is m×k, D(θ) is m× q. For convenience, we

let the eigenvalues of A(θ) to be all less than one in absolute value. Thus, if there are disturbances

with permanent effects, (11)-(12) represent a properly scaled version of the process generating the
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data. Predictable disturbances or news about future disturbances are not considered to leave non-

invertibility issues aside. While (11)-(12) is general, in our applications it is produced by the (log-

)linear solution of the optimality conditions of a structural macroeconomic model.

In general, m ≥ q and some of the endogenous variables may be latent. Hence, the variables

entering the empirical model are zt = S[xt, yt]
′, where S is a selection matrix. Fernández-Villaverde

et al. [2007] assume S = [0, I] (which implies that m = q), while Ravenna [2007] and Pagan and

Robinson [2018] assume that either S=I (so that m+ k = q), or S = [0, I]. In general, S is chosen so

that the dimension of the empirical model matches the number of structural disturbances.

The reduced form (innovation representation) corresponding to (11)-(12) is

xt = A(θ)xt−1 +Kx(θ)ut (13)

yt = C(θ)xt−1 +Ky(θ)ut (14)

where ut = zt − Et[zt|Ωt−1] is a q × 1 vector of innovations, Ωt−1 includes (at least) lags of zt, Kx(θ)

and Ky(θ) are steady state Kalman gain matrices, and for those xt and yt belonging to zt, Ki(θ) has

a row with zeros except in one position.

Given (13)-(14), identification of the structural disturbances requires the mapping from ut into

et. When the empirical model is a VAR, Sims and Zha [2006],Plagborg Moller [2018] developed

sufficient conditions to obtain et from current and past zt; Chahrour and Jurado [2018] discuss

sufficient conditions to recover et from current, past and future zt. In the current setup, when S = I,

one needs to invert

(
B(θ)
D(θ)

)
et = ut; when S = [0, I], one needs to invert D(θ)et = ut. In both

cases, standard order and rank conditions apply, see Rubio Ramirez, Waggoner, and Zha [2010].

In the identification exercise two assumptions are implicitly made. First, there is no misspecifica-

tion in (11)-(12), at least, as far as sources of disturbances are concerned, so that dim(zt) = dim(et).

If disturbances are left out, the identification exercises becomes problematic, even when excluded

disturbances are orthogonal to included ones, and included disturbances account for a large portion

of the variability of zt. Second, when zt = yt, Ωt−1 it is typically specified to include long lags of

zt to take care of omitted states. When disturbances are left out, having a rich Ωt−1 is generally

insufficient to make the identification problem well behaved.

In our analysis dim(zt) < dim(et), i.e. we focus on the situation when a small scale empirical

system, say, a two variable VAR is used but the DGP features more than two disturbances. A

researcher who wants to interpret the dynamics of the small scale empirical system may employ a

theoretical model that is less complex than the DGP and may specify only enough disturbances to

match the number of empirical variables. We show that the dynamics produced by such model are

not relevant for the comparison and omitted disturbances play a crucial role. Let zit ≡ Si[xt, yt]
′

where Si is a qi × q, and dim(zit) = qi < dim(et) = q,∀i. We will consider three Si matrices.

• Case 1: S1 = [I, S12]. This choice generates an observable system which retains the states but

6



integrates out part of the controls. The DGP in terms of z1t = [xt, y1t]
′, y1t ≡ S12yt is:

xt = A(θ)xt−1 +B(θ)et (15)

y1t = C1(θ)xt−1 +D1(θ)et (16)

or z1t = F1(θ)z1t−1 +G1(θ)et, where F1(θ) =

(
A(θ) 0
C1(θ) 0

)
and G1(θ) =

(
B(θ)
D1(θ)

)
.

• Case 2: S2 = [S21, S22]. This choice generates an observable system which integrate out part of

the states and part of the controls. Let xt = (x1t, x2t), yt = (y1t, y2t), where (x1t, y1t) are the variables

excluded from the empirical system. The DGP in terms of z2t = [x2t, y2t],x2t ≡ S21xt, y2t ≡ S22yt, is

x2t = A2(θ)x2t−1 +B2(θ)et + w1t−1 (17)

y2t = C2(θ)x2t−1 +D2(θ)et + w2t−1 (18)

or z2t = F2(θ)z2t−1 + G2(θ)et + wt−1, where F2(θ) =

(
A2(θ) 0
C2(θ) 0

)
and G2(θ) =

(
B2(θ)
D2(θ)

)
, where

w1t−1 = A21(θ)x1t−1;w2t−1 = C21(θ)x1t−1. Alternatively, using (11) to separate observable and non-

observable states, and integrating x1t out, the DGP for z2t is

x2t = Ã21(θ)x2t−1 + Ã22(θ)x2t−2 + B̃20(θ)et + B̃21(θ)et−1 (19)

y2t = C̃21(θ)x2t−1 + C̃22(θ)x2t−2 + D̃20(θ)et + D̃21(θ)et−1 (20)

(17)-(18) point out the misspecification present using a first order empirical model for z2t. (19)-(20)

shows that DGP for the observables is a VARMA(2,1).

• Case 3: S3 = [S31, 0]. This choice generates an empirical system which repackages the states

and eliminates the controls. The DGP in terms of z3t = x3t = S31xt is

x3t = A3(θ)x3t−1 +B3(θ)et + w3t−1 (21)

where w3t−1 is a function of the repackaged states. Analogously with case 2, one may write (21) as

z3t = Ā31(θ)z3t−1 + Ā32(θ)z3t−2 + B̄30(θ)et + B̄31e3t−1 (22)

The processes for zit, i = 1, 2, 3 are obtained substituting optimality conditions into others, prior to

the computation of the decision rules. The matrices of these solutions generally differ from those

obtained solving the original model and crossing out the rows corresponding to the variables absent

from zit, because not all the original states are necessarily used in the computation of the decision

rules. Section 4 provides examples of smaller scale empirical systems which produce (15)-(16), (19)-

(20), and (22) for a specific DGP.

The innovation representation of (11)-(12) when zit are observables is

xt = A(θ)xt−1 + K̂ix(θ)uit (23)

yt = C(θ)xt−1 + K̂iy(θ)uit (24)

where uit = zit−Et[zit|Ωit−1] is a qi×1 vector of innovations, K̂ix(θ), K̂iy(θ) are steady state Kalman

gain matrices featuring some rows with zeros except in one position.
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3.1 Obtaining structural disturbances

Given that not all disturbances can be identifies, we ask whether a researcher can identify ”classes”

of disturbances or a particular disturbance appearing in the DGP.

The empirical system eliminates only theoretical controls We analyze the relationship be-

tween u1t and et, when E[z1t|Ω1t−1] = F̃1z1t−1 and thus

u1t = z1t − F̃1z1t−1 (25)

Proposition 1 i) If F̃1 = S1F (θ) ≡ F1(θ), then u1t = λ1(θ)et, where λ1(θ) is a q1 × q matrix. A

block diagonal G1(θ) is sufficient to identify classes of disturbances.If G1(θ) has at most one non-zero

element in some row k, one can obtain ejt, for some k and j.

ii)If F̃1 6= S1F (θ), u1t = λ1(θ, L)et, where λ1(θ, L) is a q1 × q matrix for every L and, in general, an

infinite dimensional function of L.

The proof of the proposition is obtained matching (25) with (15)-(16). The first part considers the

case F̃1 = S1F (θ). Here the innovations u1t respect the timing protocol of the structural disturbances

et, but cross sectionally deform them because q1 < q. Because G1(θ) is rectangular, one may ask when

u1t carries enough information to recover some ejt. It turns out that uk1t compresses certain classes

structural of disturbances only if G1(θ) has a block structure. Furthermore, uk1t carries information

about one ejt if G1(θ) has at most one non-zero element in row k. Both restrictions are strong and

unlikely to be satisfied in a large class of general equilibrium models. They require that the theory

features many ”conveniently” placed delay restrictions.

When F̃1 6= S1F (θ), time deformations also occurs and u1t becomes a one-sided infinite moving

average of the structural disturbances, u1t = λ1(θ, L)et ≡ (F̃1 − S1F (θ))(I − S1F (θ))−1G1(θ)et−1 +

G1(θ)et. In this situation, even if G1(θ) has at most one non-zero element in row k, the information

in uk1t is not enough to obtain some of the current ejt.

Proposition 1 determines the properties of u1t, given et. Thus, u1t will be a mean zero process

and its autocovariance function will be restricted by

E(u1tu
′
1t−s) = E(λ1(θ, L)ete

′
t−sλ1(θ, L)′), s ≥ 0 (26)

When et are iid, the variance of u1t and et differ and the magnitude of the amplification depends on the

properties of λ1(θ, L). Thus, a ejt disturbance with a small variance or small initial loadings λ1j(θ, L =

0) ≡ λ1j0(θ) will be hard to identify from the u1t. Similarly, the serial correlation properties of u1t

depend on the structure and magnitude of the λ1(θ, L) polynomial and its row dimension. However,

even when λ1j0(θ) = G1(θ), cross sectional distortions may make the autocovariance function of u1t

insufficient to recover the autocovariance of some ejt.
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The states in the empirical and the theoretical models differ We analyze the relationship

between uit, i = 2, 3 and et when E[zit|Ωit−1] = F̃izit−1, i = 2, 3 so that

uit = zit − F̃izit−1 (27)

Proposition 2 i) uit = λi(θ, L)et, where λi is qi × q for each L, ı = 2, 3.

ii) uit = ψi(θ, L)u1t, i = 2, 3.

To prove part i), we first match (25) and (17)-(18). Then u2t = (S2F (θ)−F̃2)(I−S2F (θ)L)−1(G2(θ)et−1+

H2(θ)x1t−2)+G2(θ)et+H2(θ)x1t−1. Because x1t has a VARMA(2,1) format: M(θ, L)x1t = N(θ, L)et,

where M(θ, L) is invertible, we have u2t = λ2(θ, L)et, where λ2(θ, L) = G2(θ) + (S2F (θ) − F̃2)(I −
S2F (θ)L)−1(G2(θ) +H2(θ)M(θ, L)−1N(θ, L)L+H2(θ)M(θ, L)−1N(θ, L)L2. Matching (27) with (21)

one similarly obtains that u3t = λ3(θ, L)et. Thus, an empirical system including only the states of

the DGP does not solve time deformation problems since their law of motion may be altered. Note

that S2F (θ) = F̃2, or S31A(θ) = F̃3 is insufficient to avoid time distortions and that uit, i = 2, 3 will

cross sectionally and time deform the structural disturbances.

In general, uit 6= u1t, i = 2, 3 and the timing of information they contain differs even when

SiF (θ) = F̃i(θ),∀i. Letting λ1(θ, L)+ be the generalized inverse of λ1(θ, L), one can write

uit = λi(θ, L)λ1(θ, L)+u1t ≡ ψi(θ, L)u1t (28)

By construction ψi0(θ) = I. Thus, an impulse in u1t and uit, i = 2, 3 has identical effects on the

variables present in both z1t and zit but will last longer when zit are the observables - persistence will

be altered. Therefore, the dynamics induced by identified shocks in small scale empirical systems of

the same dimension but featuring different variables will differ.

(27) is misspecified when states are omitted or repackaged. What happens when the innovations

uit are constructed using a larger information set, e.g., uit = zit − F̃i(L)zit−1 L = 1, 2, . . .? Because

both z2t and z3t are VARMA processes, standard non-invertibility and truncation issues discussed in

the literature apply. In principle, F̃i(L) must be non-zero for L→∞ for time deformation biases to

disappear. Still, even when L→∞, cross sectional deformations will remain.

Proposition 1 is related to the aggregation results of Faust and Leeper [1988]. Because of their

DGP is a VAR, they can not analyze the consequences of omitting states or altering their law of

motion. Proposition 2 has the same flavor as the result in Fernández-Villaverde et al. [2007]. The

main difference is that here uit, i = 2, 3 are reduced ranked moving averages of et and the reason is

time deformation rather than non-invertibility.

The two propositions highlight that the variables entering in the empirical model determine

the quality of the approximation of identified shocks to the structural disturbances. Eliminating

theoretical controls creates innovations that cross sectionally combine the structural disturbances,

but eliminating states or repackaging their law of motion may create both cross sectional and time
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distortions. Failure to include all the theoretical states makes the innovations computed from a finite

order empirical system serially correlated. However, an empirical model with all the theoretical states

may not be enough for proper inference. Section 4 discusses how careful choices may reduce time

deformation when the empirical model omits or repackages some of the states.

3.2 Dynamic responses

Consider the computation of zit responses to an impulse in the shocks. In the DGP they are:

zit = Si

(
B(θ)
D(θ)

)
et

zit+h = Si

(
A(θ)hB(θ)

C(θ)A(θ)h−1B(θ)

)
et i = 1, 2, 3;h = 1, 2, . . . (29)

In the empirical system with z1t as observables, they are:

z1t = u1t

z1t+h = F̃1(θ)
hu1t (30)

The impact effect differs because ut = G1(θ)et and G1(θ) is not a square matrix. Thus, having the

correct B(θ), D(θ) matrices may be insufficient to recover some ejt via Σu = G1(θ)Σ(θ)G1(θ)
′, unless

G1(θ) only has one non-zero element in the j-th row. Clearly, since q1 < q, not all impact responses

to et disturbances can be obtained. However, if F̃1 =

(
A(θ)

S12C(θ)

)
responses at longer horizons to a

properly identified shock are proportional to those of the DGP. Thus, qualitatively, (30) provides a

good approximation to (29), if some ekt can be recovered from u1t.

The responses computed in systems with zit, i = 2, 3 as observables are instead:

zit = uit

zit+h = νijuit + F̃i(θ)
huit (31)

Here, both the instantaneous and the dynamic responses of zit will be distorted; and their pattern may

have nothing to do with those produced in the DGP. We summarize the discussion in a proposition.

Proposition 3 i) Identified impulse responses constructed in a z1t system could match those of the

structural model if F̃1(θ) =

(
A(θ)

S12C(θ)

)
and G1(θ) has at most one non-zero element in one row.

ii) Even if the condition in i) holds, the dynamic responses obtained from properly identified shocks

in a zit system, i = 2, 3, differ from those of the DGP.

(30)-(31) provide an analytic approach to compute the deformation biases in impulse responses.

Braun and Mittnik [1991] derived an expression of these biases when the empirical model and the

DGP are both VARs.
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4 An example

To show how to match a larger DGP to a small scale empirical model; the problems occurring when

the empirical model is too small; and how to reduce time deformation problems we use a standard

New Keynesian models featuring five structural disturbances: a permanent at and a transitory ζt

TFP shock, a preference χt shock, a cost push µt shock and a monetary policy εt shock (see Canova

and Ferroni [2011] for details). The optimality conditions are (conditional expectations are omitted):

χt = χt+1 −
1

1− h
gt+1 +

h

1− h
gt + rt − πt+1 (32)

πt = πt+1 β + kp

(
h

1− h
gt + (1 + σn) nt

)
+ kp (µt − χt) (33)

ot = ζt + (1− α) nt (34)

rt = ρrrt−1 + (1− ρr) (φy gt + φp πt) + εt (35)

gt = at + ot − ot−1 (36)

(32) is the Euler equation, (33) is the Phillips curve, (34) is the production function, (35) is the

Taylor rule, and(36) is the definition of output growth. ot is output and gt its growth rate, nt is hours

worked, πt is the inflation rate, rt the nominal interest rate and ct consumption. h is the coefficient

of (external) consumption habit, β the discount factor, σn the inverse of the Frish elasticity of labor

supply, κp the slope of the Phillips curve, α the labor share in production, φy, φπ the coefficients of

the Taylor rule. The disturbances evolve as:

ζt = ρz ζt−1 + ezt (37)

at = ρa at−1 + eat (38)

χt = ρχ χt−1 + eχt (39)

µt = ρµ µt−1 + eµt (40)

εt = empt (41)

where 0 < ρj < 1, j = z, a, χ, µ. The minimal state vector is xt−1 = [ot−1, rt−1, ζt−1, at−1, µt−1, χt−1]
′,

and the control vector is yt = [gt, ot, πt, nt, rt]
′. We solve the model using a first order perturbation

setting α = 0.33; β = 0.99;σn = 1.5;h = 0.9; kp = 0.05;φy = 0.1;φp = 1.5; ρr = 0.8; ρz = 0.5; ρa =

0.2; ρχ = 0.5; ρµ = 0.0. We obtain decision rules of the form (11)-(12), where A(θ) is 6 × 6, B(θ) is

6× 5, C(θ) is 5× 6 and D(θ) is 5× 5.

We consider alternative empirical systems with 4,3,or 2 variables. In the first zt = (ot, πt, nt, rt);

it is obtained using (36) in (32)-(35):

11



χt = χt+1 −
1

1− h
(at+1 + ot+1 − ot) +

h

1− h
(at + ot − ot−1) + rt − πt+1 (42)

πt = πt+1 β + kp

(
h

1− h
(at + ot − ot−1) + (1 + σn) nt

)
+ kp (µt − χt) (43)

ot = ζt + (1− α) nt (44)

rt = ρr rt−1 + (1− ρr) (φy (at + ot − ot−1) + φpπt ) + εmpt (45)

The state vector is still xt−1 = [ot−1, rt−1, ζt−1, at−1, µt−1, χt−1]
′ and A(θ), B(θ) are unaltered. Since

a control is integrated out, this system corresponds to case 1 of section 3. By proposition 1, no time

distortions is present, but the innovations cross sectionally combine the structural disturbances.

The second system uses zt = (ot, πt, nt). It is obtained using (45) into the other equations:

(1 + ρr)χt − ρrχt−1 = χt+1 −
1

1− h
(at+1 + ot+1 − ot) + (

h+ ρr
1− h

+ (1− ρr)φy) (at + ot − ot−1)

− (
hρr

1− h
) (at−1 + ot−1 − ot−2) + (ρr + (1− ρr)φp) πt + empt − πt+1 (46)

πt = πt+1 β + kp

(
h

1− h
(at + ot − ot−1) + (1 + σn) nt

)
+ kp (µt − χt) (47)

ot = ζt + (1− α)nt (48)

Here an endogenous state, rt−1 is integrated out and this makes the Euler equation (46) a second

order difference equation. Thus, we loose one state, rt−1, but acquire another one, ot−2. Because

both states and controls are eliminated, this system corresponds to case 2 of section 3. Proposition 2

then tells us that the innovations will mix cross sectionally and over time et−s, s ≥ 0. By proposition

3, we expect identified responses to be more distorted than in the four variables system.

Distortions emerge for two reasons. First, notice that (46) is a dynamic aggregate demand equa-

tion in output and inflation while (47)-(48) define a dynamic aggregate supply equation in the same

variables and that both are instantaneously moved by TFP and preference disturbances. Thus, it

will be impossible to separate these disturbances in such a system. Second, (46) depends on at−1, ζt−1

and, because ot−2 enter the equation, also on ζt−2. Hence, the aggregate demand equation evolves

more persistently in response to disturbances than in the original model.

The third system uses zt = (πt, nt, rt). It is obtained using (44) in the other equations:

χt = χt+1 −
1

1− h
(at+1 + ζt+1 − ζt + (1− α) (nt+1 − nt))

+
h

1− h
(at + ζt − ζt−1 + (1− α) (nt − nt−1)) + rt − πt+1 (49)

πt = πt+1 β + kp

(
h

1− h
(at + ζt − ζt−1 + (1− α) (nt − nt−1)) + (1 + σn) nt

)
+ kp (µt − χt)(50)

rt = ρr rt−1 + (1− ρr) (φy (at + ζt − ζt−1 + (1− α) (nt − nt−1)) + φp πt) + εmpt (51)
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In this system a state variable, ot−1, is integrated out. However, the optimality conditions remain a

set of first order difference equations. The reason is that nt−1 becomes a state variable and, given the

production function, it closely proxy for ot−1. Because the states are repackaged and controls omitted,

biases will be present. However, because given ζt−1, nt−1 closely proxy for ot−1, time deformations

will be small. Thus, we expect the relationship between ut and et and the impulse responses to be

less distorted here then in the (ot, πt, nt) system.

Time deformation To confirm the presence of time deformation distortions, we analytically com-

pute the autocorrelation function of the innovations in the three systems (see figures A.1-A.3 in the

appendix). The innovations of the (ot, πt, nt, rt) system are, as expected, white noise; those of the

(ot, πt, nt) system display serial correlation and numerous lags are significant. The innovations of the

(πt, nt, rt) system are, instead, serially uncorrelated.

To see what causes time deformation, we analytically compute the cross correlation function

between the innovations and the structural disturbances. We report the value obtained and an 95%

asymptotic tunnel for the hypothesis that the cross correlation at each horizon is zero. Without

time deformation, only contemporaneous correlations should be significantly different from zero. In

the four variable system, ut and et are only contemporaneously linked, see figure 1. This is not the

case in the (ot, πt, nt) system: ut significantly correlates with several lags of the monetary policy

disturbance and of the stationary TFP disturbances, see figure 2. The innovations of the (nt, πt, rt)

system instead show weak evidence of time aggregation, see figure 3.

Figure 1: Cross correlation function, innovations in the (ot, πt, nt, rt) system and structural shocks.
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Figure 2: Cross correlation function, innovations in the (ot, πt, nt) system and structural shocks.
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Figure 3: Cross correlation function, innovations in the (πt, nt, rt) system and structural shocks.
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Cross sectional deformation To examine the extent of cross sectional deformation, we present

the λ(θ, L) polynomial (for the (ot, πt, nt, rt) and (πt, nt, rt) systems only λ0(θ) is relevant).

Cross sectional deformation is important in all systems (see table 1). With four observables,

transitory TFP and monetary policy disturbances receive the largest weights in the innovation and

cost push disturbance the smallest. Thus, identification of cost push disturbances is difficult, even
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when the correct restrictions are used; their variability has to be of an order of magnitude larger for

innovations to carry information about them. In addition, while the four variable system preserves

the sign of the contemporaneous responses to monetary policy disturbances (an increases interest

rates and a fall in output, inflation, and hours), positive stationary TFP and negative preference

disturbances will be confused, when sign restrictions are used for identification, as they both produce

an instantaneous fall in (ot, πt, nt, rt).

Table 1: Entries of the λ(L) matrix

Structural shocks
at ζt χt µt εt

Innovations in (yt, πt, nt, rt) system
λ0(θ)

u1t 0.018 -0.722 0.087 -0.005 -0.303
u2t -0.158 -0.306 0.042 0.042 -0.716
u3t -1.464 -1.078 0.131 -0.007 -0.452
u4t -0.047 -0.086 0.014 0.012 0.778

Innovations in (πt, nt, rt) system
λ0(θ)

u1t -0.158 -0.306 0.042 0.042 -0.716
u2t -1.464 -1.078 0.131 -0.007 -0.452
u3t -0.047 -0.086 0.014 0.012 0.778

Innovations in (yt, πt, nt) system
λ0(θ)

u1t -0.05 0.71 0.11 0.03 -0.29
u2t -0.19 -0.30 0.05 0.05 -0.70
u3t -1.57 -1.06 -0.17 0.05 -0.43

λ1(θ)
u1t -0.07 -0.92 0.12 0.04 -0.41
u2t -0.01 -0.28 0.03 0.01 -0.52
u3t -0.25 -1.37 0.18 0.06 -0.61

λ2(θ)
u1t -0.05 -0.90 0.11 0.04 -0.46
u2t -0.01 0.28 0.03 -0.01 -0.52
u3t -0.09 -1.35 0.16 -0.07 -0.69

In the (ot, πt, nt) system, structural disturbances enter the innovations for a number of time periods

(λ0(θ), λ1(θ) and λ2(θ) are reported for illustration). Sign restrictions can not now separate TFP,

preference, and monetary policy disturbances. Positive TFP, negative preference and contractionary

policy disturbances all have negative effects on (ot, πt, nt).
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In the (πt, nt, rt) system, the sign and the magnitude of the loadings of structural disturbances

are the same as in the four variable system. As compared with the (ot, πt, nt, rt) system, we loose the

possibility to distinguish stationary TFP, permanent TFP and preference shocks. However, there is

no change in the ability to recover monetary policy disturbances.

Cholesky factors Table 2 displays the Cholesky factors of the covariance matrix of the innova-

tions of original model (assuming disturbances have unit variance and with the rows and columns

corresponding to the variables solved out eliminated) and of the three smaller systems. While the en-

tries of λ0(θ) are such that standard zero restrictions are unlikely to identify structural disturbances,

applying the same recursive restrictions to the innovations of the original and of the reduced systems

makes the comparison meaningful.

Table 2: Cholesky factors

Observables Original system Reduced system

(ot, πt, nt, rt) 0.75 0.78
0.68 0.26 0.55 0.57
1.06 1.14 0.95 1.14 0.44 1.14
-0.42 -0.13 0.16 0.07 -0.22 -0.70 0.26 0.07

(πt, nt, rt) 0.26 0.79
1.14 0.95 1.11 1.50
-0.13 0.16 0.07 -0.65 0.36 0.23

(ot, πt, nt) 0.75 9.55
0.68 0.26 5.16 1.50
1.06 1.14 0.95 15.36 -0.02 1.52

The Cholesky factor of the (ot, πt, nt, rt) system retains the signs of the Cholesky factor of the

original model, but magnitudes are altered, sometimes substantially (see the (3,2) or (4,2) elements).

A similar picture emerges in the (π, nt, rt) system. Thus, responses to orthogonal shocks in these two

systems should mimic those of the original model but display magnitude distortions.

For the innovations of the (ot, πt, nt) system the story is different: the signs are affected and

magnitude differences are large. For example, while in the original system an orthogonal unitary

shock to nt implies a roughly similar instantaneous effect on ot and πt, the same shocks in the

(ot, πt, nt) system has a 15 times larger effect on ot and a negative effect on πt. As we will see, these

distortions remain at longer horizons.

Impulse responses We measure dynamic deformation distortions when we identify disturbances

via sign restrictions. By proposition 3, different systems will display different properties.
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Figure 4: Responses to identified monetary policy shocks, (πt, nt, rt) system
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Note: The dashed regions report 68 % interval obtained accounting for rotation uncertainty. The solid line reports

the responses in the DGP.

Figure 4 presents the responses to a monetary policy shock in the (πt, nt, rt) systems when policy

disturbances are identified assuming that an increase in rt leads to a contemporaneous fall in the

other variables. Figure A.4 in the appendix has the responses to a monetary shock in the (ot, πt, nt, rt)

system. Dotted lines represent 68% credible sets across rotations satisfying the restrictions. Superim-

posed as continuous lines are the responses of the original 5 variable model. Even the three variable

system encodes enough information to recover monetary policy disturbances. Thus, omitting out-

put and its growth rate does not affect our ability to interpret the responses to identified monetary

shocks, provided hours enter the empirical system.

The conclusion is different when cost push disturbances ae of interest. In agreement with Canova

and Paustian [2011], figure 5 shows that the dynamics produced by sign-identified cost push shocks

poorly approximate the dynamics induced by cost push disturbances in the original model, even when

the restrictions employed are sound.

Recall that the entries of λ0(θ) imply that positive stationary TFP and negative preference dis-

turbances have the same sign implications on the four observables. Thus, imposing theoretically

sound sign restrictions only identifies a linear combination of these two disturbances, a reminiscent

of the masquerading effect discussed in Wolf [2018]. Figure 6, which plots responses to sign-identified

preference shocks and to preferences disturbances, shows that the size of estimated impact responses

is off by a large amount; and that dynamic responses are more persistent in the smaller system.

An empirical model with only the theoretical states Omission of the theoretical states or

failure to proxy for them generates time deformation problems. However, an empirical system with
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Figure 5: Responses to identified cost push shocks, (ot, πt, nt, rt) system
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Figure 6: Responses to identified preference shocks, (ot, πt, nt, rt) system
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only the states (and none of the controls) will not necessarily produce interpretable identified shocks.

Starting from the (ot, πt, nt, rt) system and using the production function and the Phillips curve
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into the remaining two equations, the optimality conditions for zt = (ot, rt) are:

χt = (1 + β)χt+1 − βχt+2 −
1

1− h
(at+1 + ot+1 − ot) +

β

1− h
(at+2 + ot+2 − ot+1)

+ (
h

1− h
) (at + ot − ot−1)− (

hβ

1− h
) (at+1 + ot+1 − ot) + rt − βrt+1

− kp

(
h

1− h
(at+1 + ot+1 − ot) + (1 + σn)

1

1− α
(ot+1 − ζt+1)

)
− kp (µt+1 − χt+1) (52)

rt = βrt+1 + ρrrt−1 − βρrrt + (1− ρr)φy((at + ot − ot−1)− β(at+1 + ot+1 − ot))

+ (1− ρr)φπ
(
kp

(
h

1− h
(at + ot − ot−1) + (1 + σn)

1

1− α
(ot − ζt)

)
+ kp (µt − χt)

)
+ εmpt − βεmpt+1 (53)

Here xt−1 is unchanged. However, inspection of (52)-(53) reveals that the optimization problem is

different and, for example, ot+2 and rt+1 now appear in the equilibrium conditions. Since (Ā(θ), B̄(θ))

differs from the original (A(θ), B(θ)) matrices, this system will also feature timing distortions. Figure

7, which reports the cross correlation of the innovations with the five structural disturbances, indicates

that ut are serially correlated and load on a number of lags of the monetary policy disturbance.

Figure 7: Cross correlation function, innovations in (ot, rt) system and structural shocks.
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Note: Parallel lines describe the 95 % asymptotic tunnel for the hypothesis of zero cross correlations.

Cross sectional deformation is also important. With zt = (ot, rt), technology, monetary policy and

cost push shocks are not separately sign-identifiable (they all have the same instantaneous effects on

zt). As Figure 8 shows, the monetary policy shocks identified with contemporaneous sign restrictions

(rt up and ot down) are now a weighted average of the three underlying disturbances.
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Figure 8: Responses to identified monetary policy shocks, (ot, rt) system.
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Note: The dashed regions report 68 % interval obtained accounting for rotation uncertainty. The solid line reports

the responses in the DGP.

Permanent technology shocks and hours worked In the literature it is common to use an

empirical model with output growth (or labor productivity) and hours to identify permanent TFP

shocks. The dynamics are then compared with the dynamics permanent TFP disturbances produce

in standard RBC or new Keynesian models, see e.g. Gaĺı [1999]. While the comparison is meaningful

when the DGP features only two disturbances (say, a permanent TFP and a demand shock), it

may be inappropriate when the model of this section has generated the observed data. Because

five disturbances are compressed into two identified shocks and the states of the original model are

repackaged and their law of motion altered, there is no insurance that the identified technology shocks

in the data mimic only permanent technology disturbances. To show this, we reduce the optimality

conditions to contain zt = (gt, nt)
2

(1 + ρr)χt = ρrχt−1 + χt+1 +
1

1− h
gt+1 + (

ρr + h

1− h
+ (1− ρr)φy)gt

− hρr
1− h

gt−1 + εmpt + κp(
h

1− h
gt + (1 + σn)nt) + κp(µt − χt) (54)

gt = at + ζt + (1− α)nt − ζt−1 − (1− α)nt−1 (55)

Note that lagged output growth and lagged hours are now endogenous states. Figure 9, which relates

the innovations of the gt, nt system to the structural disturbances, shows that both innovations

are moving averages of the five disturbances. In particular, lags of the stationary TFP and of the

monetary policy disturbances enter the second innovation; lags and leads of the permanent TFP

disturbance and lags of the preference disturbance load significantly on the first innovation.

2To obtain these equations we assume that β−1 = (1− ρr)φππ + ρr.
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Figure 9: Cross correlation function, innovations in (gt, nt) system and structural shocks.
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Figure 10: Responses to identified permanent TFP shocks, (gt, nt) system.
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We identify a permanent TFP shock using long run restrictions. Figure 10 shows that if the DGP

only has a permanent TFP and monetary policy disturbance, the responses obtained identifying a

permanent shock in a VAR with zt = (gt, nt) capture well the original dynamics. Instead, when the

model of this section has generated the data, magnitude and the persistence distortions are present.

In other words, the model we consider can not be reduced to a bivariate system with output growth

and hours and meaningful innovations: identified permanent technology shocks combine current and

lagged values of permanent TFP as well as other stationary demand disturbances.

21



5 Implications for practice

Small scale empirical models are easy to estimate and to identify but problematic for interpretation

and inference. Cross sectional deformation makes shock identification hard, because ”classes” of

disturbances need not be properly compressed into the identified shocks. This means that sound

identification restrictions are generally insufficient to obtain structural disturbances. Time defor-

mation dramatically complicates the identification process because the timing of identified shocks

and structural disturbances differ. While it is tempting to associate cross sectional deformation

with the elimination of theoretical controls and time deformation with the elimination of theoretical

states, such an association is imperfect. Time distortions emerges also when the empirical system

contains all the endogenous states. Conversely, integrating out controls may induce both biases, if

the relationship between the remaining controls and the states is altered.

If we exclude Canova and Hamidi Sahneh [2018], the problems we discuss have been ignored

in the recent literature. Time deformation problems have been studied in the past by Hansen and

Sargent [1991], Marcet [1991], Fernández-Villaverde et al. [2007]. To the best of our knowledge, we

are the first to show that their extent may depend on the dimensionality and the variables entering

the empirical system and that a researcher can limit, to some extent, the magnitude of certain biases.

Dimensionality reductions and non-invertibility generate similar time distortions, but a solution of the

latter problem is insufficient to eliminate deformation. To be clear, assuming away all the standard

pile up, cancellation and identification problems, the estimation of a VARMA model can go a long

way to reduce the gap between a DGP and the empirical model due to non-invertibility. However,

estimating a small scale VARMA model will not solve deformation problems if the DGP features a

larger number of disturbances than the empirical model.

Our analysis has important implications for practice. If deformation problems are to be avoided,

the empirical system needs to be sufficiently large. While is possible to estimate larger scale empirical

models, even with relatively short datasets, their identification is still an issue. Thus, small scale

empirical models are likely to be preferred by macroeconomists for some time in the future. In that

case, to make the matching exercise meaningful two conditions are required. First, the size of an

empirical system should be tailored to the disturbances of interest. As seen in section 4, a monetary

shock can be recovered from a trivariate system with (πt, nt, rt) using meaningful restrictions, but a

cost push shock can not, even in four variables system. Without guidance from theory, an identified

shocks may pick up the dynamics of structural disturbances which have distinct implications when a

larger set of variables enter the empirical model. We have provided a way to systematically explore

dimensionality reductions: in section 4 we started from a five variable structural model and analyzed

whether interesting disturbances could be identified and the dynamics they produce well characterized

when a smaller scale empirical system is employed. We recommend applied researchers to do the

same as routine practice, prior to the estimation of the empirical system. Second, shrewdly choosing
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the variables entering the empirical system, can limit the magnitude of the deformation distortions.

But for this to happen, empirical models can not be too small: a two variable system is likely

to produce uninterpretable shocks and convoluted dynamics. In addition, one needs to be upfront

about the structural model used to interpret the data. Canova and Paustian [2011] showed that shock

identification is better anchored when business cycle measurement is tied up with robust identification

restrictions. The connection with theory is even more important if deformation is present. If two

researchers use two models with the same (New Keynesian) features but with different number or

type of disturbances to interpret the data, they ought to use different empirical models to identify

shocks and trace out their dynamics, even if they care about the same impulses.

While it is common to sweep deformation problems under the rug, misspecification may be perva-

sive. For example, Central Banks use structural models with dozens of disturbances to interpret the

data and academic researchers often twist standard models in estimation so that structural parame-

ters become exogenous disturbances (e.g an elasticity of substitution becomes a markup disturbance)

to improve their fit. Unfortunately, we do not have much to say about the disturbances which are

present in the DGP. The argument that one should include in the theory used to interpret the data

disturbances which are important for business cycle fluctuations is, unfortunately, a catch-22 propo-

sition, because their relevance depends on the choice and the number of disturbances one considers.

In general, the practice of comparing small scale empirical models and larger scale DSGE responses

should be considerably refined. Showing that the qualitative pattern of responses to interesting

impulses is similar is insufficient for a structural model to be considered successful if deformation is

present. To make the gap smaller one should compare responses obtained from identified shocks in

the small scale empirical system with the responses obtained in the theory, once it is reduced to the

same variables as the empirical system.

It is popular to use small scale SVARs to cross off theories inconsistent with the data. For example,

the responses of hours to technology shocks and of output to government spending shocks are used

to limit attention to certain classes of models (see e.g. Gaĺı [1999], Leeper, Traum, and Walker

[2017]). While the qualitative features of the responses are, at times, unchanged by deformation,

magnitude and persistence are generally affected. Thus, it is dangerous to exclude theories using,

say, the magnitude of multipliers. To evaluate theories, one needs statistics insensitive to deformation:

identified VAR shocks and the dynamics they produce do not generally fall in this class.

It is also popular to estimate the parameters of a theoretical model by matching response to certain

disturbances in the data and in the theory. For the exercise to be meaningful, three conditions need

to be met. First, to avoid cross sectional deformation the theory should be reduced to the same

observables used in the empirical model, prior to the estimation exercise. Second, to avoid time

deformation, data responses should be computed in empirical models featuring either generous lag

length or carefully selected variables. Third, the disturbances of interest should be identifiable in the
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small scale empirical system. When any of these conditions is not satisfied, parameter estimates and

dynamic responses are non-interpretable.

It has become common recently to use IV approaches to identify certain shocks and local projection

techniques to compute dynamic responses (see e.g. Rossi [2019] for a survey). Would such methods

reduce the deformation gap? Local projection techniques and IV estimation could be of use, but

a number of conditions need to be met. Take for example case 2 of section 3, where the states

are eliminated from the empirical model. The DGP for the observables is a VARMA(2,1) which,

in a companion from, can be written as Wt = QWt−1 + Rvt where Wt = [yt, yt−1]
′ vt = [et, et−1]

′,

Q =

(
F21 F22

I 0

)
and R =

(
G20 G21

0 0

)
. Projecting Wt+h, h = 1, 2, . . . on t-1 information:

Wt+h = Qh+1Wt−1 +QhRvjt + ut+h (56)

where vjt is the disturbance of interest, ut+t = QhRv−jt +Qh−1Rvt+1 + . . .+ Rvt+h, and v−jt are all

the disturbances at t except the j−th one. Because local projections do not employ the residuals of a

VAR in the exercise, they are less prone to cross sectional deformation. However, for local projections

to be successful in capturing QhR the regressors of the projection equation should be Wt−1 and vjt.

When vjt is not observable, we need proxies that capture the effect of both ejt and ejt−1. If only ejt

is used in the projection equation, the right hand side variables are correlated with the error term,

making OLS invalid. Similarly, if an IV approach is used after normalization, the instruments have

to be strictly exogenous and capture only the variations in Wjt which are due to vjt. Predetermined

instruments are insufficient, unless the conditioning set of the projection equation includes an infinite

number of lags of Wt.

One may also be able to reduce time deformation with FAVARs, where factors are constructed

using the omitted states. Still, also in this case, we need a model defining what the relevant states

are. In addition, FAVARs do not necessarily eliminate cross sectional distortions: statistical principal

components are unlikely to properly combine classes of structural disturbances and to make the

mapping between innovations and structural disturbances better behaved.

To sum up, alternatives to SVARs could work in making the match with the theory tighter.

However, to the best of our knowledge, they have not yet come into the mainstream of stylized fact

production. Furthermore, they have to be appropriately rigged to deliver correct conclusions.

6 The effect of house price disturbances

The dynamics of output and inflation following house price disturbances are of primary policy impor-

tance following the 2008 financial crisis. Starting with Iacoviello [2005] many authors have tried to

understand whether the responses obtained in the data can be rationalized with a structural model

featuring housing, leveraged agents, and standard macroeconomic frictions. Since house price distur-

bances are not necessarily the major source of fluctuations in macroeconomic variables, at least in
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normal times, the theoretical models employed to interpret the data typically contain several other

disturbances, see e.g. Rabanal [2018], Linde’ [2018] for recent examples. However, apart from obvious

core choices, it is not clear what one should include and, depending on the focus of the investiga-

tion, alternative disturbances may be considered. For example, for monetary policy the interaction

between house price and other demand disturbances is important; for financial stability house price

and leverage disturbances are at the center of attention.

Figure 11: Impulse responses theory

Iacoviello [2005] selects the minimum number of disturbances needed to map the empirical evi-

dence into a structural model. He uses a four variable VAR to construct the dynamic responses to

identified house price shocks and a model with preferences, monetary policy, technology and cost push

disturbances to estimate the structural parameters and interprets the dynamics in the data using

preference disturbances. Here we work with the same model but, for illustration, add disturbances to

the borrowing constraints of entrepreneurs and impatient consumers and a wealth disturbance to the

budget constraint of impatient consumers. These disturbances have been used in many exercises and

by including them, we try to evaluate whether identified house price shocks may also be capturing

the effect of other disturbances.

The optimality conditions and the law of motion of the disturbances are in the Appendix.

The model features 8 endogenous states (lagged house holdings of impatient consumers and of en-

trepreneurs, lagged bond holdings of patients and impatient consumers, lagged capital shock, lagged

output, lagged nominal interest rate, and lagged inflation) and 15 endogenous controls. The theo-

retical responses of the nominal rate, inflation, house prices, output, consumption, investment, the

stock of housing of constrained consumers to the 7 disturbances are in figure 11. Positive preference
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disturbances increase all variables - the nominal rate and inflation only after a few quarters (see

the first row). Qualitatively, the dynamics produced by preferences disturbances need not be con-

fused with those of other disturbances, once we restrict attention to the four endogenous variables

used by Iacoviello (nominal rate, inflation, house price and output). Nevertheless, since the seven

disturbances are compressed into four innovations, cross sectional deformation is present. What

do identified house price shocks capture? Preference or a combination of several disturbances? In

addition, since a number of states are excluded from the VAR, time deformation is present.

We take data for real GDP, the nominal interest rate, inflation, and real house prices from the

FRED data base for the period 1975:1-2018:3 and identify house price shocks using the same lag

setting, the same data transformation, and the same identification scheme of Iacoviello [2005] 3.

The first row of figure 12, which plots the posterior 68% response intervals to an identified house

price shock in the data and the responses to preference disturbances in the theory with four distur-

bances, reproduces Iacoviello’s main results. After a temporary house price increase, output, inflation

and the nominal interest rate persistently rise; and the same pattern is generated by preference dis-

turbances, even though in the data, the maximum response of output is delayed by 4-5 quarters.

Thus, the theory seems to do well in accounting for the data. Unfortunately, the first row of figure

12 is misleading: it displays theoretical dynamics when all states are used to calculate responses; and

disregards that there are only four recoverable shocks in the VAR.

To appreciate the effects of deformation we solve equations out and reduce the first order con-

ditions to have same four endogenous variables used in the VAR as unknown. The second row of

figure 12 still plots the posterior 68% response intervals to an identified house price shock in the data

but now reports the posterior 68% response intervals to an identified house price shock using data

simulated from this reduced system, using the original parameterization and the same identification

restrictions 4. The sign and the persistence of the responses are now altered: output and the nom-

inal interest rate now respond negatively; and inflation is insignificant after a few quarters. Thus,

deformation matters: a four variable VAR is too small to produce identified house price shocks with

the same interpretation as preference disturbances when the theory features six other disturbances.

What is it the cause of the drastic change in the dynamic responses? The third row of figure

12 evaluates the contribution of time deformation to the changes. We use the decision rules of the

extended model with seven disturbances, simulate data for the four relevant endogenous variables,

and identify house price shocks as in the first two rows. Because the innovations contain information

about all model states, only cross sectional deformation is present.

3Iacoviello HP filters real GDP and house prices prior to their use in the VAR. While this choice has impor-
tant implication for the timing of house price shocks and for the responses it generates, we decided to stick to this
transformation since the purpose of the exercise is to show the effects of deformation, rather than those of filtering.

4The three new disturbances have persistence equal 0.75 and standard deviation 1.0, 1.0, 0.25, respectively. Since
we normalize the impulse to unity, the magnitude of the standard deviations is irrelevant for the comparison.

26



Figure 12: Data and models, qt innovations
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Note: The first row reports the response to preference shocks in Iacoviello (2005) model and the 68% highest posterior

interval in the data; the second row responses of the extended Iacoviello model with 7 shocks compressed to four

observables and the 68% highest posterior interval in the data; the third row the responses of the extended Iacoviello

model, when data is generated with the right states and the 68% highest posterior interval in the data.

The responses in rows 2 and 3 have similar sign and, quantitatively, differences are small sug-

gesting that time deformation is relative unimportant. Truncation problems are also minor: the lag

length of the estimated VAR produced by the theory does not matter for the conclusions. Hence, the

responses in rows 1 and 2 differ due to cross sectional deformation; the sign of output and interest

rate responses changes because seven structural disturbances are compressed into four VAR innova-

tions. To understand what house price shocks capture, we compute the matrix of loadings of the four

innovations on the seven structural disturbances. Without deformation, the qt row should display ze-

ros everywhere, except in the position corresponding to the preference disturbance ej. Interestingly,

there is no deformation when characterizing monetary policy disturbances: there is a one-to-one

mapping between identified monetary policy shocks and theory-based monetary policy disturbances

(contemporaneous cross correlation is 0.99). However, house price innovations are strongly contam-

inated: house price innovations heavily load on monetary policy disturbances (-1.83), on borrowing

constraint disturbance of the impatient household (-1.27), and on the cost push disturbance (0.80)

while the weight on the preference disturbance is small (0.05). Hence, if the model correctly repre-

sents the DGP, identified house price shocks are a mixture of monetary policy, borrowing constraints,

and cost push disturbances with preference disturbances play a minor role.
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Table 3: Loading of innovations in (R, π, q, Y ) on structural disturbances

eR ej eu ea ehas ei1 ei2
Rt 1.0 0 0 0 0 0 0
πt -0.53 -0.003 1.43 -0.11 -0.13 0.18 0.24
qt -1.83 0.05 -0.80 0.13 0.33 -1.27 -0.51
yt -3.92 0.03 -1.14 -0.02 -0.09 2.46 0.92

The sixth row of figure 11 shows that positive borrowing constraint disturbances increase output

and of the nominal rate. Thus, the negative output and interest rate responses observed in rows 2

and 3 of figure 12 are produced by the large negative loading that borrowing constraint disturbances

have on identified house price shocks.

To support the conclusion, we compute the contemporaneous cross-correlation between identified

house price shocks and preference disturbance in the model with four disturbances and in the extended

model with seven disturbances. In the former the point estimate is 0.92 (95% confidence range across

simulations (0.88, 0.96)); in the second 0.67 (95% confidence range (0.60,0.72)). Furthermore, in

the latter system the contemporaneous cross-correlation between identified house price shocks and

borrowing constraints disturbances is -0.63 (95% confidence range (-0.67,-0.59)).

In conclusion, if the DGP features LTV disturbances, a VAR with four endogenous variables is

too small to make the comparison between preference disturbances and identified house price shocks

meaningful because a number of theoretical disturbances load on identified house price shocks. To

make responses to identified theoretical house price shocks look like those of preference disturbances

we need a VAR with at least seven variables. If one sticks to a four variable VAR, she can compare

the theory and the data only for undeformed disturbances. Monetary policy disturbances have this

property; preference disturbances do not have it.

7 An extension

The process in (11)-(12) may be restrictive in certain situations. For example, when analyzing

uncertainty disturbances (see e.g. Basu and Bundick [2017]), the model used for comparison is

solved using higher order methods. Hence, a non-linear DGP specification is needed. This section

analyzes how the conclusions of section 3 change in this case.

As Andreasan, Fernandez Villaverde, and Rubio Ramirez [2018] have shown, the pruned solu-

tion of a nonlinear state space model approximated with higher order perturbations has a linear

representation of the form:

Xt = µx(θ) + ν1(θ)Xt−1 + ν2(θ)Et (57)

Yt = µy(θ) + ν3(θ)Xt (58)
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where, for example in the case of a second order approximation, Xt = ((xft )
′, (xst)

′, (xft ⊗x
f
t )
′)′, and xft

are the states of the first order system, xst are the states of the second order system; Et = (e′t, (et⊗et−
vec(Ine))

′, (et⊗xft−1)′(x
f
t−1⊗et)′)′, where et are the structural disturbances and Ine the identify matrix

of dimension ne; Yt are the controls of the problem and the matrices µx(θ), µy(θ), ν1(θ), ν2(θ), ν3(θ)

are given in the appendix A of Andreasan et al. [2018]. Comparing (57)− (58) and (11)− (12) one

can immediately see that a higher order DGP features a larger number of states and of structural

disturbances. Thus, if the empirical system is specified to be linear and features Z̃t = S̃[Xt, Yt] as

observables, where S̃ = [S̃1, S̃2], the conclusions derived in propositions 1-3 still hold. However, the

reduction to Z̃t observables is potentially more damaging because the dimension of Et is likely to

be larger than the dimension of Z̃t, and a larger number of states is eliminated (all those involving

higher order and cross terms), making cross section and time deformations more severe.

To highlight the effects of deformation when the DGP features higher order terms, we take the

model of Basu and Bundick [2017], which features a disturbance to the volatility of a preference, and

two first moment disturbances: to the level of technology and to the level of preferences. The model

is solved with a third order perturbation so that Et = [E ′1t, E
′
2t]
′ where

E1t = (e′t, (et ⊗ et − vec(Ine))
′, (et ⊗ xft−1)′(x

f
t−1 ⊗ et)′(et ⊗ xst−1)′)′ (59)

E2t = ((et ⊗ xft−1 ⊗ x
f
t−1)

′(xft−1 ⊗ x
f
t−1 ⊗ et)′(x

f
t−1 ⊗ et ⊗ xst−1)′(x

f
t−1 ⊗ et ⊗ et)′(et ⊗ x

f
t−1 ⊗ et)′

(et ⊗ et ⊗ xft−1)′((et ⊗ et ⊗ et)− E(et ⊗ et ⊗ et)))′ (60)

Since et is a 3×1 vector, and xft a 9×1 vector including lagged values of consumption, capital, hours,

output, the nominal rate, of expected utility and of the three disturbances, Xt is a 432 × 1 vector

and Et is a 1112× 1 vector. They use an eight variables VAR to trace out the effects of uncertainty

shocks, which are identified with a Cholesky decomposition having the VXO index ordered first.

The VAR variables include four of the endogenous states (output, consumption, hours and nominal

rate), a proxy for the capital state (investment), two controls (inflation, and a volatility measure)

and money supply variable, which is not present in the model.

The first row of figure 13 presents the point estimate and the 95% response intervals of output,

consumption, investment, hours and VXO to an uncertainty shock in the data. The second row has

the responses to an uncertainty shocks in Basu and Bundick [2017]’s original setup and parameter-

ization: the dashed line reports theoretical responses, and the solid lines the estimated 95% SVAR

response intervals in simulated data, identifying the uncertainty shock as in the first row. The match

between the theory and the data appears to be good. Furthermore, the theoretical responses and the

SVAR responses to an uncertainty shock in the simulated data are similar

Two features of the authors’ specification are, however, questionable. Despite the fact that the

nominal interest rate is used in the VAR of the actual data, the model has little to say about

interest rates because it posits a deterministic Taylor rule with no persistence (see equation (7),
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Figure 13: Data and Models, V XO innovations
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dashed line the conditional response in the theory.

page 945). Second, it is not obvious why changes in uncertainty of the economy are only demand

driven. In principle, second moment shocks to technology could generate similar dynamics in real

aggregate variables via a precautionary saving channel. Thus, the DGP potentially features more

disturbances than those used in the model and the restrictions used to identify uncertainty shocks

may be insufficient, making deformation important. For illustration, we add a monetary policy

disturbance to the model, keeping the structure and the parameterization unchanged. As row 3

of figure 13 shows the theoretical response and the estimated response intervals differ significantly.

Moreover, VAR responses in the data and in the theory do not line up.

Rows 2 and 3 differ because monetary policy and uncertainty disturbances get mixed up - they

both increase the nominal rate and make all other variables fall. While the theoretical responses are

constructed conditional on the monetary policy disturbances being zero, in the VAR with simulated

data, the monetary policy disturbance can be both positive and negative. Hence, the sign of the

responses of output, consumption, investment and hours to uncertainty shocks could be both positive

or negative depending on the relative importance of uncertainty and monetary disturbances and the

sign of monetary policy disturbance at each t. Because VAR responses are insignificant, identified

uncertainty shocks pick up positive uncertainty and negative monetary policy disturbances 5.

To support the argument, we compute the contemporaneous cross-correlation between identified

5When the class of models suggested by Arouba, Boccola, and Schorfeide [2017] is used in place of a linear VAR,
some of the deformation problems discussed here are eased.
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volatility shocks with volatility disturbance in the original model and in the extended model with

monetary policy disturbances. In the former, the point estimate is 0.77 (95% confidence range across

simulations (0.68, 0.86)); in the second it is 0.62 (95% confidence range (0.50,0.74)). Furthermore,

in the latter system, the contemporaneous cross-correlation between identified volatility shocks and

monetary policy disturbances is -0.46 (95% confidence range (-0.50,-0.41)).

8 Conclusions

It is common in macroeconomics to collect stylized facts about the transmission of certain structural

shocks using small scale SVAR models and then build DSGE models to interpret the dynamics found

in the data. However, the DGP may feature more shocks than a SVAR. This paper argues that this

dimensionality gap may create important inferential distortions.

Cross sectional deformation emerges when several structural disturbances contemporaneously

affect the variables of the empirical model. Time deformation occurs whenever the empirical model

is specified without paying sufficient attention to the theory used to explain the data. Cross sectional

distortions may make sound theoretical restrictions insufficient to obtain meaningful disturbances.

Time distortions make identified shocks distributed lags of the structural disturbances.

We use a standard New Keynesian model to show the problems that occur when the empirical

model is too small, and describe how to reduce time distortions explicitly linking the theory and the

empirical model. We argue that the theory used to interpret the data and the disturbances of interest

must guide both the choice of observables and the minimal dimension of the empirical model. Thus,

the empirical model used to derive dynamic facts is not theory-free, when deformation matters.

We provide suggestions on how to avoid the deformation trap when one insists in matching the

dynamics produced by identified shocks in small scale empirical models and in a potentially larger

scale DSGE. We revisit Iacoviello [2005]’s evidence about the transmission of house price shocks when

the DGP includes LTV disturbances. We extend the analysis to consider particular non-linear DGPs

and revisit Basu and Bundick [2017]’s evidence about uncertainty shocks when a monetary policy

disturbance is added to the DGP. In both cases, the gap between the theory and the data may be

larger than previously thought.

Because there is no guidance in choosing the number and the type of disturbances present in

a DGP and because the interaction of different sets of disturbances may be crucial to understand

the data, it should be clear that the problems we study in this paper are pervasive in applied

macroeconomics. Furthermore, since small scale VAR models will remain the basic empirical tool to

examine shock transmission for a while, researchers ought to be aware of the problems they face in

practice and of ways to minimize the impact of deformation on the results they present.
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Figure A.1: Autocorrelation function, innovations in (ot, πt, nt, rt) system.
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Figure A.2: Autocorrelation function, innovations in (ot, πt, nt) system.
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Figure A.3: Autocorrelation function, innovations in (πt, nt, rt) system.
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Figure A.4:Responses to monetary policy shocks, (yt, πt, nt, rt) system.
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The (linearized) equations of Iacoviello [2005]’s model

rrt = rt − pit+1 (61)

yt = cyct + (1− cy − ciiy − iy)cit + ciiyciit + iyit (62)

cit = cit+1 − rrt (63)

it − kt−1 = γ(it+1 − kt) +
(1− γ(1− δ)

ψ
(yt+1 − xt+1 − kt) + (

1

ψ
(ct − ct+1) (64)

qt = γEqt+1 + (1− γE)(yt+1 − xt+1 − ht)−mβ rrt − i1,t − (1−mβ)(ct+1 − ct)

− φE(ht − ht−1 − γ(ht+1 − ht)) (65)

qt = γHqt+1 + (1− γH)(jt − hiit)−miiβ rr − i2,t + (1−miiβ)(ciit − ωciit+1)

− φH(hiit − hiit−1 − βii(hiit+1 − hiit) (66)

qt = βqt+1 + (1− β)jt + ιht + ιiihiit + cit − betacit+1 +
phiH
hi

(h(ht − ht−1)

+ hii(hiit − hiit−1)− βh(ht+1 − ht)− βhii(hiit+1 − hiit)) (67)

bt = qt+1 + ht − rrt + i1,t (68)

biit = qt+1 + hiit − rrt + i2,t (69)

yt =
η

η − (1− ν − µ)
(at + νht−1 + µkt−1)−

1− ν − µ
η − (1− ν − µ)

(xt + αcit + (1− α)ciit) (70)

πt = βπt+1 − κxt + ut (71)

kt = δit + (1− δ)kt−1 (72)

bybt = cyct + qhy(ht − ht−1) + iyit +
by
β

(rt−1 + bt−1 − πt)− (1− si− sii)(yt − xt) (73)

biiybiit = ciiyciit + qhiiy(hiit − hiit−1) +
biiy
β

(biit−1 + rt−1 − πt)− sii(yt − xt) + wt (74)

rt = (1− ρR)(1 + ρπ)πt−1 + ρy(1− ρR)yt−1 + ρRrt−1 + eR (75)

jt = ρjjt−1 + ej (76)

ut = ρuut−1 + eu (77)

at = ρaat−1 + ea (78)

i1,t = ρ1i1,t−1 + ebc1 (79)

i2,t = ρ2i2,t−1 + ebc2 (80)

wt = ρwwt−1 + ehas (81)

tct = cyct + (1− cy − ciiy − iy)cit + ciiyciit (82)

tht = ht + hiit (83)
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The equations of extended Basu and Bundick [2017]’s model

yt + fixedcostt = productionconstant ∗ (zt ∗ n)t)(1− α) ∗ (ut ∗ kt−1))(α) (84)

ct + leverageratio ∗ kt/rrt = wt ∗ nt + det + leverageratio ∗ kt−1 (85)

wt = ((1− η)/η) ∗ ct/(1− nt) (86)

vf = (utilityconstant ∗ at ∗ (c
(
tη) ∗ (1− nt)(1− η))((1− σ)/thetavf)

+ β ∗ expvf1sigma
(
t1/thetavf))(thetavf/(1− σ)) (87)

expvf1sigmat = vf
(
t+11− σ) (88)

wt ∗ nt = (1− α) ∗ (yt + fixedcost)/mut (89)

rrkt ∗ ut ∗ kt−1 = α ∗ (yt + fixedcost)/mut (90)

qt ∗ deltauprimet ∗ ut ∗ kt−1 = α ∗ (yt + fixedcost)/mut (91)

kt = ((1− deltaut)− (φk/2) ∗ (invt/kt−1 − delta0)(2)) ∗ kt−1 + invt (92)

deltaut = delta0 + delta1 ∗ (ut − 1) + (δ2/2) ∗ (ut − 1)2 (93)

deltauprimet = delta1 + delta2 ∗ (ut − 1) (94)

sdft = β ∗ (at/at−1) ∗ ((c
(
tη) ∗ (1− nt)(1− η))/(c

(
t−1η) ∗ (1− nt−1)(1− η)))(

1− σ
thetavf

)

∗ (ct−1/ct) ∗ (vf
(
t 1− σ)/expvf1sigmat−1)

(1− 1/thetavf) (95)

1 = rrt ∗ sdft+1 (96)

1 = rt ∗ sdft+1 ∗ (piet+1)
( − 1) (97)

1 = sdft+1 ∗ (ut+1 ∗ rrkt+1 + qt+1 ∗ ((1− deltaut+1)− (φk/2) ∗ (invt+1/kt − δ0)2

+ φk ∗ (invt+1/kt − δ0) ∗ (invt+1/kt)))/qt (98)

1 = sdft+1 ∗ (det+1 + pet+1)/pet (99)

log rt = (1− ρr) ∗ (log(rss) + ρpie ∗ log(piet/piess) + ρy ∗ log(yt/yt−1))

+ ρr ∗ log(rt−1) + e (100)

det = yt − wt ∗ nt − invt − (φp/2) ∗ (piet/piess− 1)2 ∗ yt
− leverageratio ∗ (kt−1 − kt/rrt) (101)

q−1t = 1− φk ∗ (invt/kt−1 − δ0) (102)

φp ∗ (piet/piess− 1) ∗ (piet/piess) = (1− thetamu) + (thetamu)/mut + sdft+1 ∗ φp ∗ (piet+1/piess− 1)

∗ (yt+1/yt) ∗ (piet+1/piess) (103)

profitt = (µt − 1) ∗ yt − fixedcost (104)

expret = (det+1 + pet+1)/pet (105)

expre2t = (det+1 + pet+1)
2/pe2t (106)

varexpret = expre2t − expre2t (107)

at = (1− ρa) ∗ ass+ ρa ∗ at−1 + volat−1 ∗ eat (108)

volat = (1− ρvola) ∗ volass+ ρvola ∗ volat−1 + volvola ∗ evolat (109)

zt = (1− ρz) ∗ zss+ ρz ∗ zt−1 + volz ∗ ezt (110)

et = (1− ρe) ∗ ess+ ρb ∗ et−1 + voless ∗ eet (111)
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