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Abstract

We analyze the effect of handicaps on turnout. A handicap is a difference in the vote tally between
alternatives that strategic voters take as predetermined when they decide whether to turn out for
voting. Handicaps are implicit in many existing democratic procedures. Within a costly voting
framework with private values, we show that turnout incentives diminish considerably across the
board if handicaps are large, while low handicaps yield more mixed predictions. The results extend
beyond the baseline model - e.g. by including uncertainty and behavioral motivations - and can be
applied to the optimal design of Assessment Voting. This is a new voting procedure where (i) some
randomly-selected citizens vote for one of two alternatives, and the results are published; (ii) the
remaining citizens vote or abstain, and (iii) the final outcome is obtained by applying the majority
rule to all votes combined. If the size of the first voting group is appropriate, large electorates will
choose the majority's preferred alternative with high probability and average participation costs will
be moderate or low.
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Zürichbergstrasse 18

8092 Zurich, Switzerland
hgersbach@ethz.ch

Akaki Mamageishvili
CER-ETH – Center of Economic

Research at ETH Zurich
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Abstract

We analyze the effect of handicaps on turnout. A handicap is a dif-
ference in the vote tally between alternatives that strategic voters take as
predetermined when they decide whether to turn out for voting. Handi-
caps are implicit in many existing democratic procedures. Within a costly
voting framework with private values, we show that turnout incentives di-
minish considerably across the board if handicaps are large, while low hand-
icaps yield more mixed predictions. The results extend beyond the baseline
model—e.g. by including uncertainty and behavioral motivations—and can
be applied to the optimal design of Assessment Voting. This is a new vot-
ing procedure where (i) some randomly-selected citizens vote for one of two
alternatives, and the results are published; (ii) the remaining citizens vote
or abstain, and (iii) the final outcome is obtained by applying the majority
rule to all votes combined. If the size of the first voting group is appropriate,
large electorates will choose the majority’s preferred alternative with high
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1 Introduction

Motivation and background: The (manifold) incentives to turn out

Do standard democratic voting procedures map the preferences of the electorate into outcomes

representatively (and efficiently)? Turnout in elections where participation is voluntary tends

to be significantly lower than the size of the electorate, so it is unclear whether those citizens

who vote represent the distribution of preferences in the entire population. In the 2016 US

presidential elections, for instance, the voting rate over the total population was 56%, and the

figure varied substantially across sex, age, and origins.1 In Switzerland, a direct democracy, the

average participation rate in federal votes has dropped below 50% in recent years, with many

young individuals participating only if the decision at stake is easy to understand.2 As has been

widely argued in the literature, some citizens may not exercise their right to vote when doing so

is costly, and these costs will potentially affect election outcomes (Palfrey and Rosenthal, 1983;

Ledyard, 1984; Palfrey and Rosenthal, 1985). There are many reasons why voting may be costly

for an individual: going to the polling station requires time and effort, understanding the voting

process is sometimes a far from trivial task, the fear of being among the losers of a vote can be

a psychological burden, rain on the election day can make things inconvenient (Gomez et al.,

2007), or there may be bureaucratic hurdles or troubles, to name but a few.3

When voting is costly and voluntary, a rational individual will compare such costs with the

expected benefit of casting his/her vote, which is proportional to the (endogenous) probability

of being pivotal. Focusing on this motivation to vote, three stylized facts are predicted by a

significant strand of the literature on costly voting with private values and two alternatives (see

e.g. Campbell, 1999; Börgers, 2004; Krasa and Polborn, 2009; Taylor and Yildirim, 2010a,b;

Myatt, 2015). These stylized facts set out our baseline model and are the starting point for our

analysis. First, if citizens vote at all, they will do so for their preferred alternative, and hence

the only decision voters take is whether or not to turn out. Second, individual turnout rates

decrease with the size of the electorate; this is called the size effect. It captures the intuitive

idea that pivotal probabilities are lower, the larger the number of citizens who turn out to vote.

Third, ceteris paribus, supporters of the minority alternative display higher relative turnout than

supporters of the majority alternative; this is called the underdog effect. Since voting for one’s

preferred alternative is a public good for all of its supporters, the free-riding incentives are larger

for the majority than for the minority.

The (perceived) probability of being pivotal is mediated by a number of factors we consider

1See https://www.census.gov/data/tables/time-series/demo/voting-and-registration/voting-

historical-time-series.html, retrieved 20 November 2018. Using 2004 US presidential election data, Kawai
et al. (2015) claim that minority, low-income and less-educated voters were underrepresented and that the result
in eight states would have been different had all voters turned out.

2See https://www.swissinfo.ch/eng/democratic-duty_should-we-worry-about-low-voter-

turnouts-in-switzerland-/44248880, retrieved 29 November 2018.
3In the 2019 Spanish general elections, the turnout rate among the citizens living abroad was 6%, while

the overall turnout rate was 76 %, see https://www.publico.es/politica/elecciones-generales-6-16-

espanoles-extranjero-logrado-votar.html, retrieved 14 May 2019. The administrative burden is higher—
and the hurdles to vote are more numerous—for those who live abroad, see https://magnet.xataka.com/en-

diez-minutos/como-votan-los-espanoles-en-el-extranjero, retrieved 14 May 2019.
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in our analysis. They include voting cost advantage, aggregate and/or individual uncertainty,

and poll manipulations, as well as the use of heuristics and behavioral rules such as a pivotality

overestimation, sense of civic duty, or the will to conform to voting for the alternative leading

in the polls. These elements mitigate or aggravate the extent of the underdog effect. They

account for some of the most relevant factors affecting turnout incentives and thus determining

how elections and referenda map preferences into outcomes. A citizen with lower voting costs, for

instance, typically displays higher relative turnout all else being equal; this will be called the cost

effect (Campbell, 1999; Taylor and Yildirim, 2010b). Considering voting motivations that differ

from a calculus based on pivotality will largely expand the scope of our analysis and results.

The effect of handicaps on turnout: A new voting procedure

In the present paper, we adopt (as a baseline set-up) a costly voting framework with private

values and investigate the supplementary effect of handicaps on turnout incentives. A handicap

is a difference in the vote tally between alternatives that strategic citizens take as predetermined

when they decide whether to turn out. Handicaps arise in one-round voluntary voting when some

assumptions of the standard model are perturbed, e.g., when some votes are manipulated, some

citizens can publicly commit their vote ahead of voting day, or information about the ongoing

voting outcome is released. In either case, the perceived difference in the vote count between

alternatives before voting starts takes the form of a (possibly stochastic) handicap. Handicaps

are also explicitly at work in sequential voting, in voting procedures where a qualified majority

is required, as well as in the signature gathering procedures that regulate popular initiatives.

Although our analysis applies to all the above cases, we will focus on a new voting procedure,

which we call Assessment Voting (AV).4 There are two reasons for considering AV—which is

merely one example where handicaps are relevant—the default focus of our analysis and appli-

cation of our results. First, AV will feature handicaps in the simplest way. This will make our

analysis and results transparent. Second, in AV, the equilibrium effect of handicaps can be ad-

justed by design, thereby offering a potential way of resolving the underdog effect and the cost

effect, as well as other turnout distortions that occur in standard voting procedures. AV specifies

the following course of events:

1. A number of citizens are randomly selected from the entire population; these constitute

the Assessment Group (AG).

2. All members of AG cast their vote (simultaneously) for one of the alternatives at hand or

abstain.

3. The number of votes cast for either of the alternatives in the first round is made public.

4. All citizens who do not belong to AG decide (simultaneously) whether to abstain or to vote

for one of the alternatives, and thus the second voting round takes place.

5. The alternative with the most votes in the two rounds combined is implemented. Ties are

broken by the toss of a fair coin.

4For a verbal description, see Gersbach (2015).
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Main results about Assessment Voting: The case of high handicaps

We show that for large electorates, if the size of AG is chosen appropriately and no member of

this group abstains, AV has the following properties in the case of two alternatives: First, the

alternative preferred by the majority of the population will be chosen with a probability arbi-

trarily close to one. Second, expected average participation costs will be similar in extent to the

average participation costs in the one-round voluntary voting procedure. Although participation

costs are private, they can also be included in the societal calculus: from a utilitarian viewpoint,

correct decisions should be taken at the lowest possible average cost of participating in the voting

procedure—see Section 5 for a rationale on this approach. From this perspective, AV is superior

within our framework to one-round voluntary voting, since it yields better decisions at a compara-

ble average participation cost. At the same time, AV is superior to compulsory one-round voting,

where the alternative favored by the majority is also chosen with high probability—in fact, with

probability one ex post—but at the highest possible participation cost. It will transpire that AV

is an efficient mixture of voluntary and compulsory one-round voting schemes. The latter are

natural benchmarks. In fact, AV will implement the socially optimal solution asymptotically as

the (expected) size of the electorate goes to infinity.

Because AV is compatible with the basic democratic principle that every citizen be granted ex-

actly one vote, our results put forward the possibility to experiment with this new procedure for

(electronic) voting by the entire citizenry. This is particularly pertinent in the case of binary

decisions and in contexts where frequent voting might place a strain on the correct functioning of

democracy by generating inefficiencies linked to the existence of participation costs. In Switzer-

land, for instance, citizens were called four times in 2018 alone to decide on a total of ten public

initiatives at the federal level.5 One possibility that could have made voting less demanding for

the Swiss citizens, while enabling them to retain a right to vote on all initiatives, would have been

the following: split the Swiss population into ten representative subpopulations, and recognize

exactly one of them as the first voting group when adopting AV to vote upon the initiatives.6

Baseline set-up

To assess the properties of AV, and hence of handicaps, we consider a society composed of risk-

neutral citizens called upon to choose one of two alternatives, say A and B. These alternatives

can be the two options at stake in a referendum—say, a proposal, on the one hand, and the status

quo or a counter-proposal, on the other—or two candidates in a runoff election. Each citizen’s

preferred alternative is private and independently drawn from a common Bernoulli distribution.

We assume that ex ante it is more likely for a citizen to prefer A to B than B to A. This means

that from an ex-ante utilitarian perspective A is the desirable alternative. For each citizen, there

5See https://en.wikipedia.org/wiki/2018_Swiss_referendums, retrieved 31 December 2018.
6Given the unequal power granted to members of the two voting groups, any real-world implementation of

AV should guarantee that the identity of both groups cannot be manipulated or biased—we refer to Section 7.1.
This concern also applies to Random Sample Voting (RSV, Chaum, 2016), where only a randomly selected group
of citizens has a right to vote. Although RSV (critically) fails to grant every citizen one vote as AV does, we
will show that both procedures yield the same outcome in equilibrium—provided that voting is compulsory in
RSV and in the first round of AV. This provides further justification for experimenting with AV in real-world
environments, by drawing upon the features of, and knowledge about, RSV (see e.g. Amar, 1984; Fishkin, 2018).
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is also a common cost c > 0 that materializes if and only if s/he votes. The probabilities of

preferring A to B and vice versa, as well as the cost parameter c, are common knowledge. Since

we are considering large societies, it will be convenient to assume that the number of citizens

follows a Poisson distribution, meaning that our political game will be a Poisson game (Myerson,

1998, 2000). The difference in the vote tally in favor of alternative A obtained in the first voting

round of AV (i.e. total votes for A minus total votes for B) is what we will call the handicap.

Equilibrium and welfare results

Characterizing the equilibria of the sequential game underlying AV is a complex task, even if

we focus on the customary type-symmetric, totally mixed strategy equilibria. This complexity

derives from the fact that the strategies of second-round citizens have to take the outcome of

the first round—i.e., the handicap—into account. The first-round voters for their part face two

sources of uncertainty: within-round uncertainty (How will the other members of AG vote, if

at all?), and across-round uncertainty (How will the second-round citizens vote—if at all—in

response to the handicap and to the predicted votes of all other members of the second group?).

For general handicaps, the above features may yield a multiplicity of equilibria, which we shall

describe and (partially) characterize. The most relevant result for the implementation of AV,

however, is that if the size of AG is sufficiently large and we assume that voting for its members

is compulsory—or incentivized through subsidies—, with an arbitrarily high probability only

one equilibrium exists for the game starting after the publication of the first-round vote tally:

no citizen will cast a vote in the second voting round (referred to hereafter as the no-show

equilibrium).7 This is a fairly general result since it will hold even if there is aggregate and/or

individual uncertainty—and asymmetry of information, in particular—, polls are manipulated,

reckoning of pivotal probabilities is biased, or some minority voters conform to voting for the

alternative leading in the polls, among other extensions of our baseline model.

Under the no-show equilibrium, the outcome (i.e., the alternative chosen and the costs of voting

incurred by all citizens) is thus fully determined in the first voting round. Since the composition of

AG is adequately representative of the entire citizenry, socially optimal alternatives will typically

be chosen at low societal cost without depriving citizens of their right to vote: the low level of

turnout in the second voting round will simply arise as the result of a cost-benefit analysis made

by the citizens participating in this voting round.

As a consequence, in the case of AV, the two components of utilitarian welfare—viz., average

participation costs and average utility from the alternative implemented—will also be determined

entirely by the outcome of the first voting round. On the one hand, the alternative will be

resolved by the (random) composition of AG, and hence as a result of the law of large numbers

the probability that the socially desirable alternative A will be chosen goes to one with the size

of such group. In fact, the probability distribution of the first-round handicap shifts to the right

with the size of AG. Increasing AG size, in turn, will reduce the number of cases where any

fixed group of B-supporters can change the final outcome by voting in the second round, thereby

7Voting is sincere for AG members, and this will be compatible with equilibrium behavior. That is, given
that everybody votes for their preferred alternative, in (our) equilibrium, no citizen will have any incentives to
deviate.
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cutting down the individual incentives for them to vote in that round. These incentives actually

disappear as soon as the handicap exceeds a threshold, whose absolute magnitude depends only

on the extent of the participation costs. Specifically, the threshold is of the order of 1/c2. As

they are already in the lead, A-supporters neither have incentives to turn out.

On the other hand, there will be no other costs associated with voting except the costs (or the

subsidies) necessary to make all members of AG vote. If the citizenry is large enough, it is

possible to set the size of AG such that alternative A is chosen with high probability and the

average voting costs remain comparatively low. This property holds because the threshold for

handicaps discouraging participation in the second round does not change as the size of the entire

electorate increases. From a purely positive perspective, this result about welfare sheds light on

the optimal size of a representative electorate when the following two objectives are pursued:

on the one hand, maximizing the probability of choosing the socially optimal alternative; on

the other, minimizing the participation costs. The size (of AG) yielded by our results could

then be used as benchmark, for comparison with (inefficient) turnout levels in real elections and

referenda.

Further results about low handicaps

Besides the insights just described, we also provide further findings on the equilibrium structure

of the second-round voting when the handicap yielded by the first round has not reached the

threshold above which only the no-show equilibrium exists. Analyzing this case helps us to

understand the complications that may arise under AV if the size of AG is not appropriate for a

given scenario, and is thus particularly relevant for the performance of AV in (small) committees.

Such an analysis is also insightful for an array of democratic procedures that (implicitly) feature

handicaps—see Section 7.2. First, we prove that partially mixed and totally mixed equilibria

will typically exist when the handicap is below such vote threshold. These equilibria yield

different outcomes, which means that mixed predictions cannot be avoided for low handicap

values. Second, we show that in addition to well-known turnout distortions such as the underdog

effect, a further equilibrium effect occurs in the second round of AV if there has not been a

tie in the first one; we call this the handicap effect. To be specific, all else being equal, the

marginal value of voting will be larger for the supporters of the handicapped alternative, i.e., the

alternative that comes second in the vote-count from the first round. When A has obtained more

votes than B in the first round, in particular, both the underdog effect and the handicap effect

will reduce the marginal value of a vote for all A-supporters. In some equilibria these two effects

combined can be strong enough to make alternative B more likely to win than alternative A.

By contrast, if alternative B has attracted more votes in the first round, both effects work in

opposite directions, and each may be dominant at different times.

Model extensions

We also analyze the robustness of our results about AV, as well as those about one-round volun-

tary voting as benchmark, by extending the baseline set-up in four main directions. First, as a

rather technical exercise, we relax the assumption that equilibria of the second voting round have

to be type-symmetric. Second, we allow some citizens to incur no voting costs (say, because they
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are partisan) or even like to vote (say, because of some sense of moral duty). We distinguish two

polar cases, depending on whether or not partisanship is correlated with preferences. Third, we

allow voting costs to differ across supporters of the different alternatives. This generates what

has been called the cost effect. Fourth, we consider the case of three or more alternatives. All

these extensions not only enhance the relevance of the results about AV, but they also expand

(theoretical) knowledge about standard elections and referenda—as well as other democratic

procedures—by extending the boundaries of the costly voting paradigm. In particular, we will

argue that there is not necessarily a contradiction between having (a share of) the citizens vote

rationally and observing a high turnout. This is paramount to the appeal of AV as an actual

voting procedure, since its main (theoretical) strength is that if designed properly, it can provide

the citizenry with the right incentives to turn out. Since AV can guarantee that AG represents

the entire society, a low level of turnout could be more acceptable for citizens in the case of AV

compared to one-round voluntary voting, all else being equal.

Organization of the paper

The paper is organized as follows: In Section 2 we discuss our contribution to several strands of

the literature. In Section 3 the model is introduced. In Section 4 we analyze the voting equilibria

under AV. In Section 5 we explore if AV improves welfare compared to one-round voting, whether

compulsory or voluntary. In Section 6 we analyze some extensions of our baseline model—the

proofs are in Appendix B. In Section 7 we do two things. First, we discuss the real-world

implementation of AV, with an emphasis on some protocols developed in computer science.

Second, we reinterpret our results in the framework of existing democratic procedures. Section 8

concludes. The proofs pertaining to the main body of the paper are in Appendix A.

2 More Related Literature

To examine the performance of AV, in our baseline model we consider a society populated by

rational individuals who decide whether to turn out by comparing voting costs with the benefits

linked to pivotality. Explaining why citizens vote is central to the study of democracy, and a

number of theories have been proposed. The case for rational theories of turnout that build

on pivotality—such as the one that assumes that voting is costly—can be made in at least

two ways. First, such theories (including ours) can explain some of the observed phenomena

underlying elections and referenda, which can be—and have been—decisive in the margin (see

e.g. the examples in Campbell, 1999; Taylor and Yildirim, 2010a).8 As a recent example of the

importance of turnout incentives, PSOE’s main concern in the 2019 Spanish elections was that its

electoral base would not turn out in sufficiently great numbers, as the party was clearly leading in

the polls. During the political campaign, party leaders focused greatly on mobilizing these votes

8Also worthy of mention are other theories of rational turnout that aim at replicating empirical observations.
Feddersen and Sandroni (2006) (see also Coate and Conlin, 2004) consider ethical voters who derive additional
utility by complying with some self-determined social norm. Within a framework of incomplete information,
Matsusaka (1995) argues that voters who are very confident that they have voted for the right candidate derive
higher utility. DellaVigna et al. (2016) argue that if lying is costly, people vote to be able to tell others.
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by triggering the fear that PSOE would not obtain enough votes to form a government.9 Beyond

democracies, voting also takes place in (private) environments. The use of new technologies

has made voting much more accessible, and there are manifold examples in recent times where

some form of electronic voting has been adopted as a policy-making procedure with substantial

money at stake.10 These voting instances exhibit some of the phenomena featured in elections

and referenda that can be explained within the costly voting paradigm. Second, the hypothesis

that there is often a strategic component to voting based on pivotality has been substantiated to

some extent in some (small-scale) laboratory experiments (see Levine and Palfrey, 2007; Palfrey,

2009), though there is also evidence against some of these predictions (see e.g. Duffy and Tavits,

2008; Faravelli et al., 2017; Agranov et al., 2018). The former experiments show that the size

effect, the underdog effect, and the competition effect (according to which turnout is higher when

polls are tight) are all consistent with the observed data.11

Proceeding against the background provided by the existing literature, we show that the main

appeal of AV is that in a cost-efficient way it corrects a handful of turnout distortions, and very

particularly the underdog effect. These distortions rationalize the frequent randomness observed

in voting outcomes or, more generally, in set-ups where participation is costly (Osborne et al.,

2000).12 While with a common voting cost both alternatives are expected to win with equal

probability in one-round voluntary voting due to the underdog effect, the extent of such effect

generally depends on the cost distributions and the electorate size, and it is typically weaker

(see Taylor and Yildirim, 2010b, for the case of different costs). That is, although supporters

of alternative B all turn out individually more than supporters of alternative A, the majority

alternative is expected to win more often than the minority. This is the case if the support of

the (common) continuous cost distribution comprises the zero cost (Herrera et al., 2014).13

Within this latter framework, Krishna and Morgan (2015) have subsequently shown that in fact,

the majority alternative will be chosen with probability one in the limit as the expected number

of citizens goes to infinity. This is possible because, unlike in our baseline set-up, expected total

turnout also grows unboundedly with the size of the electorate. Though some technicalities are

different in our model, the logic underlying our main result about high handicaps enables us

to obtain the same efficiency result when we extend our model to include partisan voters—i.e.,

voters who have zero voting costs—and when we assume that the existence and proportion of

these voters are uncorrelated with preferences. For this extension of our baseline set-up, expected

9See https://elpais.com/politica/2019/03/30/actualidad/1553970287_749277.html, retrieved 22
May 2019. PSOE stands for Partido Socialista Obrero Español.

10See e.g. https://vote.makerdao.com/polling, https://www.etherchain.org/charts/progpow, or
https://eosauthority.com/producers_chart, retrieved 11 July 2019.

11The idea that, conditional on turnout, citizens will vote for the strategy they prefer most has empirical
support (see e.g. Bhattacharya et al., 2014), although it may not hold with three or more alternatives if voting
costs are heterogeneous across citizens (Xefteris, 2019). Regarding the question whether tied outcomes are mainly
driven by tied polls, there is both negative (Gerber et al., 2017) and positive (Bursztyn et al., 2017) evidence.

12With preferences being gauged by pre-election polls, the standard costly voting theory predicts that narrow
victory margins are very likely. In fact, (unexpected) tied outcomes in real elections and referenda are not rare.
Examples are the 2000 U.S. presidential election, the vote on Brexit held in 2016 in the UK, or the independence
referendum held in Quebec in 1995. See https://en.wikipedia.org/wiki/List_of_close_election_results,
retrieved on 11 November 2018, for a comprehensive list of tied elections.

13The underdog effect is completely offset when there is full aggregate uncertainty about the true preferences
of the electorate (Taylor and Yildirim, 2010a) or citizens are very risk-averse (Grillo, 2017).
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total turnout is not bounded and the underdog effect has no implication for outcomes in the limit

as the expected size of the electorate goes to infinity, in which case the majority rule implements

the utilitarian optimal solution.14 As a consequence, AV does not improve on the majority rule

under these circumstances. From this perspective, our contribution is to identify one fundamental

mechanism—namely, handicaps created by partisan voters—how the non-partisan voters’ turnout

incentives vanish, and to study scenarios that differ from the limit case where partisan voters

come in arbitrarily large numbers.

If, in contrast to the above case, partisanship is correlated with preferences so that the difference

in votes cast for either of the two alternatives is distributed symmetrically around zero, one-

round voluntary voting will still yield divided decisions (e.g., each alternative will be chosen with

probability 1/2 if costs are equal across voting types). AV will thus remains attractive in this

second extension of the baseline model including partisan voters. Assuming a correlation between

partisanship and preferences offers one non-trivial way to circumvent the paradox of voting in

the presence of participation costs: Expected total turnout can be made arbitrarily high and

this is compatible with citizens casting votes on the basis of a cost-benefit analysis. Moreover,

this does not require that these citizens must have arbitrarily small voting costs. It suffices for

any non-partisan voter to have voting costs that are in extent never higher than the (perceived)

probability of partisan voters’ net effect yielding either a tie or one vote fewer for his/her preferred

alternative. The correlation between preferences and voting costs may be plausible in real-world

scenarios and we discuss possible micro-foundations involving contest functions and political

disaffection in Section 6.2. As it happens, one contribution of our results on partisan voters is

highlighting the potential importance of the (lack of) correlation between preferences and voting

costs in explaining (lack of) randomness in decisions for standard elections and referenda. This

link has not received much scholarly attention until now.

Another strand of the literature on costly voting has analyzed sequential procedures with a focus

on information aggregation about a public-value component of citizen utility (see e.g. Dekel

and Piccione, 2000; Battaglini, 2005). These papers assume that the entire citizenry is divided

into groups that queue up to vote. Taking this perspective, our result that turnout incentives

disappear as soon as the handicap reaches a certain threshold suggests an optimal stopping rule

for sequential voting procedures. On the other hand, our twist is to consider private values. This

enables us to expand knowledge about the role of sequentiality in the context of costly voting by

showing how a particular two-round voting mechanism can lead to efficient decisions.15

The costly voting literature has also shown that Poisson games characterize the limit scenario

where the non-stochastic number of citizens goes to infinity (see e.g. Taylor and Yildirim, 2010b).

Considering a Poisson game simplifies the analysis greatly, but does not come at a price of loss

generality in the case of large electorates. Recent papers that study Poisson voting models are

McMurray (2012), Hughes (2016), and Arzumanyan and Polborn (2017). Also very recently,

Meroni and Pimienta (2017) have analyzed the structure and number of Nash equilibria in Pois-

14Numerous papers argue that democracies based on the majority rule yield (Pareto) efficient outcomes (see
e.g. Wittman, 1989). Unlike here, these papers tend to focus on principal-agent and informational problems.

15For other sequential voting procedures with purely private values, see Hummel (2011) and Bognar et al.
(2015), who take a mechanism-design approach to minimizing the costs of voting.
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son games under different voting schemes. Our paper adds to this strand of the literature by

(partially) characterizing the equilibrium set of a particular voting game and by finding an inter-

esting property of Poisson games and pivotal probabilities in general: large handicaps diminish

these probabilities drastically.

For our exercise on welfare, we compare AV with one-round voting procedures. A justification

for this is offered by Kartal (2014), who undertakes a comparative welfare analysis of one-round

voting schemes in a model with endogenous turnout. If all voters incur the same cost, all voting

schemes that satisfy some minimal regularity properties (including one-round voluntary voting

with the majority rule) yield the same level of welfare and thus establish a natural benchmark.

In the case of (small) committees where voting is costly, Grüner and Tröger (2019) have recently

characterized the (second-best) utilitarian optimal voting rules among those that prescribe vol-

untary participation. Our paper complements their results by implying that the first-best utili-

tarian optimal solution can be attained asymptotically for large electorates, provided that voting

is made compulsory for a small share of the population.

Finally, to ensure that AV yields in general the socially optimal alternative—albeit with higher

voting costs than in the utilitarian optimal solution—, we assume that voting is compulsory

(or subsidized) in the first round but voluntary in the second. There is a rich literature on the

advantages and drawbacks of compulsory voting (see e.g. Birch, 2016). On the one hand, it

increases turnout, reduces inequalities, and solves free-riding problems. On the other hand, it

may also increase support for leftist policies in referenda (Bechtel et al., 2016), have a negative

impact on the level of civic participation (Lundell, 2012), pose ethical concerns (Lever, 2010),

or be ineffective due to habit formation (Bechtel et al., 2018). Our results suggest that making

voting compulsory for everybody may not be necessary in general to implement the alternative

preferred by the majority, and they also identify the parameter constellations for which requiring

voting to be compulsory instead of voluntary would be beneficial for society. These insights

add particularly to the costly voting literature that has compared voluntary and compulsory

one-round voting (see e.g. Börgers, 2004; Krasa and Polborn, 2009; Krishna and Morgan, 2012).

3 Baseline Model

3.1 Set-up

We consider a society whose citizens have a right to vote for one of two alternatives (or candi-

dates), say A and B. Citizens are risk-neutral and are indexed by i or j (i, j ∈ N). There is

a number p, with 1/2 < p < 1, such that citizen i’s preferred alternative is A with probability

p =: pA and B with probability 1 − p =: pB. Individual preferences are stochastically indepen-

dent and private, whereas the value of p is common knowledge. If citizen i’s preferred alternative

is chosen, s/he derives utility 1; s/he derives utility 0 if the other alternative is chosen. This

normalization is standard and has no bearing on equilibrium outcomes from a qualitative per-

spective. As for welfare, this normalization implies that we disregard intensities of preferences.

On occasion, we may also say that citizen i’s type is ti = A (ti = B) if his/her preferred alter-
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native is A (B). Additionally, if i exercises his/her right to vote, s/he incurs a cost c, which is

subtracted from his/her utility. We consider that16

0 < c < 1/2. (1)

We summarize the citizen utility profile in Table 1.

i’s preferred alternative is chosen i’s preferred alternative is not chosen

i votes 1− c −c
i does not vote 1 0

Table 1: Voter Utilities.

3.2 A new two-round voting procedure

Under Assessment Voting (AV), there are two voting rounds. In the first round, some citizens

are chosen to participate by fair randomization.17 All of them together constitute the so-called

Assessment Group (AG). We use N1, a positive integer, to denote the size of AG. In principle,

all members of AG could decide (simultaneously) whether to exercise their right to vote or not,

and if so, which alternative to vote for. However, we shall assume that all members of AG will

vote. One possibility is to make voting compulsory. Alternatively, all members of AG could

be given a subsidy slightly above c, their cost of voting, so that participating in the first round

involves no cost for them. Whether members of the first round exercise their right to vote or not,

they cannot vote in the second round. In the second round, only citizens who are not members

of AG have a right to vote. Before the voting in the second round takes place, the number of

votes that each alternative received in the first voting round is disclosed and becomes common

knowledge. Henceforth, we use d to denote the vote difference between alternatives A and B in

the first round, which we refer as the handicap. In particular, if d > 0, alternative A received d

more votes than alternative B from the members of AG. Thus we say that B is handicapped with

respect to A. The alternative that receives more votes within the two voting rounds combined

is implemented, with ties being broken by fair randomization.

We assume that the total number of citizens with a right to vote is N = N1 + N2, where N2

follows a Poisson distribution with parameter n2 ∈ R+.18 Then, we use n = N1 + n2 to denote

the expected number of citizens. Following Myerson (2000), the number of citizens of type t

16If c > 1/2, no citizen has incentives to vote at all. Assuming a degenerate distribution for voting costs is a
simplification but is not critical since we are considering large populations, in which case the incentives to vote
are very small for those citizens with costs higher than the lowest (Taylor and Yildirim, 2010b). Assuming that c
is common across types of citizens will enable us to focus on the differential effect of AV with respect to standard
one-round voting procedures. Similar results nonetheless obtain in the case where the two types of citizens incur
different voting costs—see Section 6.3.

17That is, each citizen has the same likelihood of being a member of AG. Citizen preferences do not change
across rounds and they are independent of whether they are selected for AG or not.

18This assumption on the census is made for convenience, but it does not qualitatively affect our results. It
guarantees that there are enough citizens to make up for the members of AG.
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(t ∈ {A,B}) in the second round follows a Poisson distribution with parameter n2 · pt. The

properties of the Poisson distribution together with the stochastic independence of individual

types ensure that from the perspective of a voter of type t, the number of voters of his/her same

type also follows a Poisson distribution with parameter n2 · pt. This will simplify the analysis

greatly. Finally, we use Ω1 (Ω2) to denote the set of citizens of the first (second) voting round.

3.3 Equilibrium concept and information

We study the existence and multiplicity of type-symmetric perfect Nash equilibria in our voting

game. By type-symmetric we mean that within each round all citizens of the same type use

the same strategy. Moreover, we assume that if they do turn out, they will vote sincerely, i.e.,

we assume that they will either vote in favor of their preferred alternative or abstain. In the

second round, sincere voting arises endogenously as in the one-round voting procedures already

analyzed in the literature (see e.g. Taylor and Yildirim, 2010b). This follows from the fact that

once the results of the first round become common knowledge, voting for the alternative that is

not the preferred one is a weakly-dominated strategy for any citizen. With regard to the first

round, we impose sincere voting as an assumption of our model but it will still turn out to be

compatible with equilibrium behavior. In combination with the subsidies given to members of

AG, this means that the first-round outcome, and hence handicap d, follows mechanically from

the size of AG and the value of p. The reason is that every member of AG will vote, and they will

choose the alternative they prefer. Accordingly, let citizen i be a member of AG and consider

the following random variable:

Xi =

+1 if ti = A,

−1 if ti = B.
=

+1 with probability pA,

−1 with probability pB.
(2)

Then handicap d is the outcome of the random variable D defined by

D :=
∑
i∈Ω1

Xi. (3)

As far as the citizens’ strategic choices are concerned, we can thus focus on the game starting

after the first voting round and after the value of d has been made public, which we denote by

G2(d). We assume that the citizens who vote in the second round can only condition their vote

on their type and the observed value of d, since nothing else is payoff-relevant. Accordingly, for

each d ∈ {−N1, . . . , 0, . . . , N1}, a strategy for citizen i is a mapping

αi : {A,B} × {d} → [0, 1].

That is, αi(t, d) indicates the probability of citizen i voting for his/her preferred alternative if

s/he is of type t and the vote difference between the two alternatives in the first round (i.e., the

handicap) is d. As is standard, we assume that for each d ∈ {−N1, . . . , 0, . . . , N1}, there are

numbers αA(d) ∈ [0, 1] and αB(d) ∈ [0, 1] such that αi(A, d) = αA(d) if ti = A and αi(B, d) =
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αB(d) if ti = B. That is, citizens of the same type vote with the same probability. A strategy

profile is denoted by α = (αA, αB). Finally, we define dA = d and dB = −d.

4 Analysis of Assessment Voting

We start by analyzing the second round of AV described by G2(d), and then focus on the analysis

of the entire voting procedure.19

4.1 Second voting round

In the second voting round of AV, citizen i’s vote will make a difference in the final outcome only

if the votes of the remaining citizens that have a right to vote in this round are such that:

• in the second round, i’s preferred alternative obtains dti + 1 fewer votes than the other

alternative, or

• in the second round, i’s preferred alternative obtains dti fewer votes than the other alter-

native.

In the first case, i’s vote in favor of the preferred alternative ti will turn a defeat of ti into a tie,

while in the second case, i’s vote in favor of ti will turn a tie into a win for ti. In both cases,

utility derived from the alternative that is eventually implemented increases by 1/2 if citizen i

turns out and votes in favor of the preferred alternative.

In the following, we prove a series of results that describe and (partially) characterize the set

of equilibria of game G2(d). This characterization will prepare the ground for an extensive

description of AV’s performance, which will take place in Section 4.2. The results shown in

this section have nonetheless value in their own right since they can be applied to a variety of

existing democratic procedures in which there may be a difference a priori between the votes

for the different alternatives—we have called this the handicap. These applications have been

spelled out in the Introduction and are discussed in Section 7.2 in more detail, and they enable

a reinterpretation of our insights from a purely positive perspective—the (default) application of

our results to AV is also normative in nature.

It will be convenient to use xA := n2pAαA and xB := n2pBαB to denote the expected number of

votes for each alternative given strategy profile α. Note that determining the pair (αA(d), αB(d))

is equivalent to determining the pair (xA, xB) = (xA(d), xB(d)). We focus initially on totally

19We do not consider the proposal-making process. Without aggregate uncertainty, a benevolent social
planner—say, a benevolent parliament—could always implement the alternative preferred by the majority. While
our results on AV hold even if there is aggregate uncertainty—in which case the social planner may not be suf-
ficiently informed about what the optimal decision should be—, it is worth noting that in democracy, voting is
often needed to ratify some decisions regardless of whether there is aggregate uncertainty or not. This is the case
in Switzerland, where many decisions have to be supported by a popular vote no matter whether pre-referendum
polls are very precise or not. As mentioned, one-round voluntary voting outcomes are prone to suffer from a range
of turnout distortions, which AV aims at correcting.
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mixed (strategy) equilibria of G2(d), i.e. we assume that 0 < αi(d) < 1 for i ∈ {A,B}. This

type of equilibrium is of central importance in the costly voting literature (see e.g. Taylor and

Yildirim, 2010b). Accordingly, we next derive the conditions that make both types of citizen

indifferent between abstaining and voting in favor of their preferred alternative, thereby incurring

cost c. These conditions pin down all the possible totally mixed equilibria of game G2(d).

First, we assume that d = 0 and use nA (nB) to denote the votes in favor of A (B) in the second

round of AV. Then we obtain the following two equilibrium conditions:

c =
1

2
(P [nA = nB] + P [nA = nB − 1]) =

1

2

∞∑
k=0

xkA
exAk!

xkB
exBk!

+
1

2

∞∑
k=0

xkA
exAk!

xk+1
B

exB(k + 1)!
, (4)

c =
1

2
(P [nA = nB] + P [nA = nB + 1]) =

1

2

∞∑
k=0

xkA
exAk!

xkB
exBk!

+
1

2

∞∑
k=0

xk+1
A

exA(k + 1)!

xkB
exBk!

. (5)

The first equation corresponds to the indifference condition for any voter i of type ti = A, the

second is the indifference condition for any voter i of type ti = B. One can directly observe that

no solution (xA, xB) of the above system of equations depends on n2, the expected number of

citizens in the second voting round. As a consequence, the expected level of absolute turnout

in that round, which is equal to xA + xB, does not depend on n2 either; only the probabilities

according to which each citizen votes—namely, αA and αB—actually do depend on n2. This is a

property of the Poisson probability distribution. As we said in Section 2, by increasing the size

of a finite population where each voter’s type is drawn independently according to a Bernoulli

distribution, we obtain in the limit a variable-size Poisson distribution for both voter types.20

Mathematically, the case where d = 0 corresponds to the case of one-round voluntary voting.21

By simple algebraic manipulations, we obtain xA = xB = x, where

x ·
∞∑
k=0

x2k

k!(k + 1)!
= 2ce2x −

∞∑
k=0

x2k

k!k!
. (6)

The above equation has a unique solution in the unknown x (see Lemma 1 in Arzumanyan

and Polborn, 2017). Given that xA = xB, it then follows from pA > pB that αA < αB, i.e.,

members of the majority (viz. A-supporters) will each turn out with a lower probability than

members of the minority (viz. B-supporters). The reason is that the marginal value of casting

a vote is lower for the former than for the latter: if A-supporters turned out with the same

probability as B-supporters, the former (latter) would expect to be pivotal in fewer (more) cases,

but this contradicts equilibrium behavior since all citizens have the same voting costs. In fact,

by symmetry it follows that the probability that each alternative will be chosen by AV is 1/2

if d = 0 after the first round, regardless of the exact values of pA and pB (provided that voting

costs are equal across types). This is the manifestation of the well-known (full) underdog effect,

20With our focus on large electorates, the property that absolute turnout does not depend on the size of the
electorate, of technical nature, does not come at the price of loss generality. As we do in Section 6.2, one can
always assume that beyond the citizens performing a cost-benefit analysis for turnout, there are other citizens
with zero voting costs that always vote. When these latter voters are present, absolute turnout can depend on
the electorate size and even grow unboundedly with the latter.

21When voting is compulsory, the theoretical analysis is trivial: all citizens vote for their preferred alternative
and they incur the cost of voting.
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a bedrock feature in most models of one-round costly voting, as we noted in the Introduction

and in Section 2.

Second, we assume that d ≥ 1.22 Recall that nA (nB) denotes the votes in favor of A (B) in the

second round of AV. Then, to pin down all the potential totally mixed equilibria of game G2(d),

we obtain the following system of equations:23

c =
1

2
(P [nA = nB − d] + P [nA = nB − 1− d])

=
1

2

∞∑
k=0

xkA
exAk!

xk+d
B

exB(k + d)!
+

1

2

∞∑
k=0

xkA
exAk!

xk+d+1
B

exB(k + d+ 1)!
, (7)

c =
1

2
(P [nA = nB − d] + P [nA = nB + 1− d])

=
1

2

∞∑
k=0

xkA
exAk!

xk+d
B

exB(k + d)!
+

1

2

∞∑
k=0

xkA
exAk!

xk+d−1
B

exB(k + d− 1)!
. (8)

As with d = 0, no solution (xA, xB) of the above system of equations depends on n2. There is

a new feature, however. If the first round of AV has not yielded a tie, then, ceteris paribus, the

electoral support in the second round for the alternative that obtained fewer votes in the first

round will be expected to be higher than the electoral support for the other alternative. This is

shown in the following proposition:

Proposition 1. Assume d > 0. Then, if (xA, xB) is a solution of the system of equations defined

by (7) and (8), it must be that xA < xB.

The above result implies that provided that a totally mixed strategy equilibrium of G2(d) exists,

if A needs fewer votes than B in the second round of AV to be eventually chosen (i.e., d > 0),

then A-supporters will vote with a lower probability than B-supporters (i.e., αA < αB). This

follows from the fact that
αA
αB

=
xA
xB
· pB
pA

< 1. (9)

Hence, when d > 0, there may be two effects that reduce the marginal value of voting for the

A-supporters relative to the B-supporters. The first effect is captured by the term pB/pA in

Equation (9), and is merely the underdog effect, which is based on the ex-ante distribution of

preferences. The second effect is captured by the term xA/xB in Equation (9) and arises only

because alternative B is handicapped with respect to alternative A. That is, alternative A needs

fewer votes than alternative B in the second voting round to be chosen as the final outcome.

This second effect is therefore called the handicap effect. Remarkably, examples show that for

some handicaps d > 0, game G2(d) can sometimes have the following two equilibria: one in

which alternative A is expected to win with a probability higher than 1/2 and another in which

alternative A is expected to win with a probability lower than 1/2.24 That is, both effects

22The case d ≤ −1 can be proven analogously by symmetry. This enables us to put the focus of this section
on the case d ≥ 0 without any loss of generality.

23The right-hand side of Equations (7) and (8) are modified Bessel functions of the first kind.
24First, let d = 5 and c = 0.169185. Then, (xA, xB) = (0, 5.4) is an equilibrium of G2(d), and the probability

that A will be eventually chosen is 0.467359. Second, let d = 5 and c = 0.182668. Then, (xA, xB) = (0, 4.4) is an
equilibrium of G2(d), and the probability that A will be eventually chosen is 0.644138.
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combined can be so strong as to overturn the expected advantage that alternative A has over

alternative B in terms of both the support within the population (with a right to vote in the

second round) and the handicap (from the first round). When d < 0, both effects work in opposite

directions. The underdog effect increases the probability that alternative B will be eventually

chosen, the handicap effect favors the chances of alternative A. Each of the two effects can be

more dominant than the other at different times.

Take now any integer d ≥ 0 and some pair (xA, xB) that is a solution to the corresponding

system of equilibrium equations. Then, the turnout probability in the totally mixed equilibrium

determined by (xA, xB) of a citizen with preferred alternative t ∈ {A,B} is proportional to xt

and inversely proportional both to the (perceived) support pt that his/her preferred alternative

gains in the entire population and to the expected size of the electorate participating in the

second voting round, n2. This follows from

αt =
xt

n2 · pt
. (10)

Although this is a trivial observation, it captures some of the main comparative statics of our

model of costly voting (with and without handicaps) such as the underdog effect and the size effect

(whereby individual turnout rates decrease with the size of the electorate).25 The observation

in (10) also has important implications when there is aggregate uncertainty about pA, and hence

about pB, or when such parameters can be manipulated or affected by behavioral or heuristic

rules. From (10) it is clear, for instance, that political parties or lobbies supporting either

alternative would like to convince their supporters that their share in the society is less than

what it really is. One way to do so is for parties or lobbies to manipulate the polls through

which their constituency informs itself. Deviations in the perceived support can also be equal

across voter types: first, when there are more polls available to the citizens; second, when in pre-

election polls the number of citizens who report that they have not yet decided their preferences

increases. The latter figure can be very high at times, particularly in volatile scenarios and at

the beginning of the campaign—when many citizens make up their mind about whether or not

they will be voting.26

Once supporters of some alternative are convinced that their share in the society is lower than

what it really is, they overestimate the probability that they will be pivotal, and as a result

they are more likely to turn out. From an empirical viewpoint, the perceived citizen support for

one’s own preferred alternative could be considered a proxy of the perceived probability of being

pivotal.27 There is substantial evidence that individuals tend to overestimate the probability of

being pivotal (see e.g. Levine and Palfrey, 2007; Duffy and Tavits, 2008; Faravelli et al., 2017).

25The observation in (10) also explains the weak competition effect (whereby the individual turnout rates of
supporters of either alternative become closer when pre-election polls are tighter). Since the total turnout xA+xB
is independent of pA and pB , the competition effect (whereby the total turnout rate is higher when pre-election
polls are tight) cannot be directly replicated in our model.

26In Spain, for instance, the ratio of citizens who reported they had not yet decided who to vote for was
above 36% prior to the 2015 general elections, and has generally been above 25% for the last decades, see https:

//www.eldiario.es/piedrasdepapel/20D-CIS-indecisos_6_460613961.html, retrieved 6 December 2018.
27The empirical literature has considered various proxies for pivotality, such as closeness in the election (see

e.g. Foster, 1983) or the size of the electorate (see e.g. Hansen et al., 1987).
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This indicates a potential way in which a society populated by citizens actively performing a

cost-benefit analysis based on pivotality and participation costs can sustain levels of turnout

that are higher than the ones predicted by a narrow interpretation of the theory.

Above and beyond aggregate uncertainty or poll manipulations, some citizens may use heuristics

to estimate this probability (Myatt, 2015) or follow other behavioral rules—such as conforming

to voting for the alternative leading in the polls—which, in turn, affect the pivotality calculus of

other citizens. For example, suppose that a share of citizens in the minority group decides to vote

for the winner, say, because they like to be part of the winning coalition. If this is not anticipated

by the remaining citizens—who vote according to their perceived pivotal probabilities—, the

final outcome will display a higher relative voting share for the alternative favored in the polls

compared to the case where no citizen will vote according to winner confirmation. This (reduced-

form) bandwagon effect counteracts the underdog effect—in particular, both effects may coexist—

and it offers a rationale within the costly voting theory for (more frequent) lopsided elections.28

4.1.1 High handicaps

Having described some properties of the totally mixed strategy equilibria of G2(d), we investigate

in the remainder of this section the general existence of equilibria of this game and, more partic-

ularly, we analyze the system of equations defined by (7) and (8). The first result demonstrates

that this system of equations is incompatible if the handicap yielded by the first round of AV is

large enough (in absolute value).

Proposition 2. There exists a positive integer d∗(c) such that the system of equations defined

by (7) and (8) has no solution for all d ≥ d∗(c). Moreover, d∗(c) increases as c decreases.29

Hence, game G2(d) has no totally mixed strategy equilibria if d ≥ d∗(c). The reason is that all

citizens will prefer to save the cost of voting rather than casting a ballot and then expecting their

vote to be pivotal given the votes in both rounds. This property of G2(d) simply requires that

citizens perform a standard cost-benefit analysis. Most importantly, d∗(c) depends only on c,

the cost parameter. Specifically, d∗(c) is of the order of 1/c2. In particular, this threshold is

independent of n2 and hence of the expected size of the electorate. The threshold d∗(c) does not

depend on pA and pB either (nor on any beliefs citizens may have about these parameters). The

latter implies that changes in the perceived support of the alternatives within the electorate will

not make it possible that equilibria different from the no-show equilibrium exist.

The negative result identified by Proposition 2 does not follow from the fact that the two equa-

tions of the system are incompatible, but rather from the fact that neither of them can separately

hold for values of d that are large enough. This implies, also remarkably, that the result that

voting is discouraged for all voters of the second round extends to scenarios where the voting

28The bandwagon effect (whereby the majority obtains more votes than the minority relative to the electorate’s
true preferences) has received much scholarly attention (see Klor and Winter, 2007; Duffy and Tavits, 2008; Großer
and Schram, 2010; Morton et al., 2015, among others). Beyond the need to conform to voting for the (ongoing)
majority (see Callander, 2007, for multi-stage voting schemes), the bandwagon effect can also be rationalized in
a costly voting set-up through very concave utility functions (Grillo, 2017).

29The increase of d∗(c) as function of c is weak, since d∗(c) must be an integer number.
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costs differ between A-supporters and B-supporters, as well as to scenarios where voters are

uncertain about their own preferences. To state this second impossibility result formally, we now

assume that d ≥ 2 and focus on equilibria of the following type: citizens of type A vote with

probability zero, while citizens of type B randomize. Note that because d ≥ 2, a profile where

only citizens of type A vote with positive probability cannot be an equilibrium, as alternative A

will be chosen with certainty in the absence of any further votes. Hence we assume that αA = 0

and 0 < αB < 1, in which case we have the following two equilibrium conditions:

2c ≥ xdB
exBd!

+
xd+1
B

exB(d+ 1)!
(11)

and

2c =
xdB
exBd!

+
xd−1
B

exB(d− 1)!
. (12)

The inequality guarantees that citizens i of type ti = A are content with their decision not to

vote, while the second equation is the indifference condition for any voter i of type ti = B. We

can prove the following proposition:

Proposition 3. There exists a positive integer d∗(c) such that Equation (12) does not have a

solution for all d ≥ d∗(c).

The proof of Proposition 3 is technical in nature and shows that the right-hand side of Equa-

tion (12) is lower than the left-hand side for all xB > 0, provided that handicap d is sufficiently

large—i.e., provided that d ≥ d∗(c). As a consequence, if d ≥ d∗(c), there are also no partially

mixed equilibria of G2(d) in which one voter type randomizes (between voting and abstaining)

and the other voter type does not vote at all. Given the asymmetry introduced by d in the game

describing the second round of AV, it is natural to examine equilibria of this type besides the

more customary totally mixed equilibria. We point out that the threshold d∗(c) of Proposition 3

is precisely the threshold used in Proposition 2 and that we will use this same notation through-

out the paper, including the Appendices. On the other hand, it is straightforward to see that

if d ≥ 2, there is an equilibrium in which no citizen will vote, so the problem of the existence

of equilibria of G2(d) is trivial. This latter equilibrium—we call it the no-show equilibrium—

involves only pure strategies, and, in particular, it is neither partially mixed nor totally mixed.

The combination of Proposition 2 and Proposition 3 leads to the first main result of the paper.30

Theorem 1. If d ≥ d∗(c), the only equilibrium of G2(d) is the no-show equilibrium.

Theorem 1 refers to partially mixed and totally mixed equilibria, as well as to equilibria in

pure strategies. This result indicates that if the absolute vote difference between the two al-

ternatives in the first voting round, namely |d|, is large enough, there are no incentives for any

citizen to participate in the second voting round. This can be seen as a property of the Poisson

distribution—and hence of large electorates—, and it holds regardless of the (expected) size of

the second-round voting group.

30Proposition 3 also shows that no profile in pure strategies can be an equilibrium of G2(d).
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Remarkably, Theorem 1 continues to hold in the presence of aggregate and/or individual uncer-

tainty (in particular, when there is asymmetry of information), polls manipulation, cost differ-

ences across types, and also if there are minority voters who conform to voting for the alternative

leading in the polls.31 As developed in Faravelli et al. (2017), the incentive to vote with the

majority might be stronger in larger groups—e.g., the entire society—compared to the smaller

groups—e.g., AG in AV. The robustness of Theorem 1 will be the basis for the (potential) appeal

of AV as a voting procedure and is in contrast with voluntary one-round voting, which is much

more sensitive to the above perturbations.32 In the case of AV, citizens could thus save the costs

of learning the true values of pA and pB, because any concerns about manipulation or strategic

transmission of these parameters are eliminated. As we will see in Section 7.2, the generality

of Theorem 1 has implications in voting beyond AV and may accordingly constitute a general

technical contribution to the literature.

It is important to stress that, in AV, all members of AG will exercise their right to vote and that

this hard fact—namely, actual votes—is very different from reported opinions in pre-election polls,

in which case cheap talk or other strategic behavior may lead to a biased revelation of preferences

(Goeree and Grosser, 2007; Agranov et al., 2018). The first round of AV cannot be substituted

either by a pre-voting stage with an information market that can deliver information about the

aggregate preferences, since the latter does not affect the vote tally directly as handicaps do.

4.1.2 Low handicaps

The above analysis has focused on the case where handicap d is large enough (in absolute value).

An ensuing question is then whether there are equilibria different from the no-show equilibrium

when |d| is moderately low. To answer this question, we proceed in two steps. We first focus on

partially mixed equilibria and then on totally mixed equilibria. In the first case, we obtain the

following result:

Proposition 4. Given d ≥ 1, there is c∗(d) ∈ (0, 1/2) such that for all c < c∗(d) an equilibrium

(0, xB) of G2(d) exists.

The above proposition complements the result of Theorem 1. While d∗ = d∗(c) determines the

threshold on handicaps above which the no-show equilibrium is the only equilibrium, c∗ = c∗(d)

determines the cost level below which equilibria that are different from the no-show equilibrium

exist. It turns out—see the proof of Proposition 2—that for any given c ∈ (0, 1/2), there exist

constants K1 and K2, with K2 < K1, such that

(i) if d > K1

c2
, the only equilibrium of G2(d) is the no-show equilibrium, and

(ii) if d < K2

c2
, then G2(d) has equilibria that differ from the no-show equilibrium.

31In Section 6.5 we discuss the case of individual uncertainty in more detail.
32Theorem 1 will also remain valid if the number of citizens with a right to vote follows some distribution—

not necessarily a Poisson distribution—satisfying the counterpart of Propositions 2 and 3. Some examples of
(non-parametric) distributions can be found in Krishna and Morgan (2015).
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Hence, both thresholds, d∗(c) and c∗(d), are (asymptotically) tight, in the sense that d∗ ∼ 1
(c∗)2

.

In addition, it can be verified numerically that uniqueness of equilibria of G2(d) is not guaranteed

within all admissible parameter ranges, even if we only consider equilibria of the type (0, xB).33

As to the second case, it turns out that totally mixed equilibria also exist if d is low. Given the

trivial existence of the no-show equilibrium when |d| ≥ 2, standard arguments based on fixed-

point theorems fail to show the existence of totally mixed equilibria of our voting game. In the

proof of the next proposition, we develop a (technical) approach to show the existence—but not

the uniqueness—of a solution to the equilibrium system of equations. The technique we develop

here has a potential value in its own right, since it may be helpful for other (voting) settings

where fixed-point theorems are not helpful.

Proposition 5. Given d ≥ 1, there is c∗∗(d) ∈ (0, 1/2) such that for all c < c∗∗(d) an equilibrium

(xA, xB) of G2(d) exists.

The threshold c∗∗(d) of Proposition 5 is very close to the threshold c∗(d) obtained in Proposition 4.

In particular, both thresholds are of the same order in d.34 Propositions 4 and 5 combined

establish that there are at least two different equilibria (with different expected turnout levels

and winning probabilities) besides the no-show equilibrium if the first-round handicap does not

achieve the required threshold. There is one partially mixed equilibrium—in which the handicap

effect is so strong that only supporters of the alternative that is handicapped will turn out—and

there is one totally mixed equilibrium. As a consequence, when the handicap is low (in absolute

value), multiplicity of equilibria cannot be avoided. This makes it difficult to predict the outcome

of AV, unless conditions are imposed on the size of AG guaranteeing that threshold d∗(c) will

be reached with a probability that is sufficiently high. This is crucial, since the handicap effect

could provide incentives for citizens to vote against their true preferences in the first round.

These incentives vanish when citizens anticipate that the above threshold will almost surely be

reached. Remarkably, the multiplicity of equilibria survives even if there is aggregate uncertainty

and, in particular, even if there is asymmetry of information across voter types.35

We summarize all the results of this section in Table 2.

0 ≤ d ≤ 1 2 ≤ d ≤ K2

c2
K1

c2
≤ d

(Multiple) equilibria with positive expected turnout 3 3 7

Equilibrium with zero turnout 7 3 3

Table 2: A (partial) characterization of equilibria of game G2(d) for d ≥ 0.

33Multiplicity of partially mixed equilibria occurs if we consider c = 0.2 and d = 3. In this case, (0, y1) and

(0, y2) are equilibria of G2(3), where y1 ≈ 3.17 and y2 ≈ 3.76 are positive solutions of the equation 0.4ey = y3

6 + y4

24 ,

both of which additionally satisfy the inequality 0.4ey > y4

24 + y5

120 . Multiplicity of equilibria also occurs if we
restrict ourselves to totally mixed strategy equilibria. Numerical examples for this case can be provided upon
request.

34From the proofs of Proposition 4 and 5, c∗(d) = 1
2

(
dd−1

ed(d−1)!
+ dd

edd!

)
> 1

2

(
dd

edd!
+ dd+1

ed(d+1)!

)
= c∗∗(d).

35The proofs of Propositions 4 and 5 can be easily adapted to the case where the ex ante probability of being
a supporter for either alternative is uniform.
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4.2 First voting round

Theorem 1 yields a very strong and fairly robust prediction. If handicap d is above a certain

threshold depending only on the cost parameter c, no citizen will vote in the second round of AV.

It turns out that by making N1, the size of AG, large enough, the probability that d will be larger

than this threshold converges to one. This is proved in the following result, which characterizes

the outcome of AV (almost surely).

Theorem 2. For every ε > 0, there is N∗1 = N∗1 (ε, c, pA − pB) such that for all N1 ≥ N∗1 the

outcome of AV satisfies the following properties with probability at least 1− ε:

• All citizens of the first voting round vote for their preferred alternative.

• No citizen of the second voting round votes.

• Alternative A is chosen.

According to the above theorem, citizens who have a right to vote in the second round are all

discouraged from voting if AG is large enough. The logic behind this result hinges on the analysis

of Section 4.1 and the law of large numbers. Recall that (i) alternative A is ex ante more highly

preferred in the society than alternative B, (ii) members of AG are selected randomly, and (iii)

voting is compulsory or subsidized for members of AG.36 As a consequence, with high probability

the handicap yielded by the first voting round of AV will be higher as we increase the size of

AG, until the threshold for the first-round handicap is reached, above which only the no-show

equilibrium exists.

It is important to point out that provided that there is little aggregate uncertainty about pA and

pB, it is immaterial for the main thrust of Theorem 2 to hold whether voting in the first round

does happen before voting in the second round. As long as it is common knowledge that voting

will be made compulsory for a group of citizens of a certain size—namely, those who belong

to AG—, the remaining citizens taking part in one-round voluntary voting would anticipate

that a handicap above the threshold d∗(c) would be very likely, and then they would abstain.37

This would save the potential costs of organizing two separate voting rounds. With one voting

round only, having a sufficiently large number of announced early votes can therefore deter costly

participation.

The next corollary follows from Theorem 2 and reveals how the size of AG should vary with

respect to the most important parameters of the model. From a purely positive perspective,

this corollary provides a benchmark for the (desired) direction of change in turnout when some

parameters change.

36If voting can neither be made compulsory for AG members nor subsidies transferred to them, the following
possibility could be used instead, especially if voting is done electronically: keep selecting citizens randomly until
the desired number of citizens voting has been reached. As long as the decisions to vote in the first round of AV
are not correlated with preferences and kept secret, this additional option would be equivalent to making voting
compulsory or subsidizing it. Also note that instead of being guaranteed a monetary subsidy to vote, members
of AG could be given a half-day off from work to go the ballot box.

37With high aggregate uncertainty about preferences, these results would be qualitatively similar, but the
probability that the threshold d∗(c) would be attained could be much lower. This could prevent the no-show
equilibrium from being unique.
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Corollary 1. Let N∗1 = N∗1 (ε, c, pA − pB) as defined in Theorem 2, where ε > 0. Then,

• N∗1 increases if ε decreases, with lim
ε→0

N∗1 =∞,

• N∗1 increases if pA − pB decreases, with lim
pA−pB→0

N∗1 =∞,

• N∗1 increases if c decreases, with lim
c→0

N∗1 =∞.

The behavior of N∗1 with respect to changes in ε and pA−pB is self-evident. If the society is more

divided (i.e., lower pA − pB), or if we want to be more certain that the voting outcome will be

dictated entirely by AG members (i.e., lower ε), the size of AG has to be greater. Corollary 1 also

implies that, ceteris paribus, a lower size of AG suffices when c increases. This is not obvious,

since the direct effect of a higher participation cost is to make voting not only more costly for

a given citizen, but also for everybody else. The latter makes voting by an average citizen less

likely, thereby increasing the probability that a single vote will be pivotal. Nevertheless, the

net effect of increasing c does indeed disincentivize voting for all citizens in the second round of

AV for a larger set of handicaps—see Proposition 2. This implies that the size of AG can be

reduced if participation costs increase, without reducing the probability that the outcome will

be as described by Theorem 2.

Two final remarks and some illustrations are in order. First, N∗1 must be generally large enough

to satisfy two objectives: on the one hand, second-round citizens’ incentives to turn out must

disappear; on the other, alternative A must be chosen with at least probability 1 − ε. In speci-

fications where N∗1 is very large, in particular, one possible interpretation is that voting should

be made compulsory.38 Second, although N∗1 provides a sufficient condition with regard to the

size of AG for the outcome of AV to be as described by Theorem 2, the discussion at the end

of Section 4.1 has shown that this required size is (approximately) tight, in the sense that the

desired outcome may fail to hold for lower AG sizes. Finally, Table 3 depicts the value of N∗1 for

some parameter constellations.39

pA − pB = 0.01 pA − pB = 0.05

ε = 0.1 16,922,427 3,271,649

ε = 0.01 17,268,220 3,301,394

c = 0.001 (with d∗(c) = 159, 155)

pA − pB = 0.01 pA − pB = 0.05

ε = 0.1 864,256 146,049

ε = 0.01 954,780 152,788

c = 0.005 (with d∗(c) = 6, 367)

pA − pB = 0.01 pA − pB = 0.05

ε = 0.1 291,314 41,856

ε = 0.01 352,459 45,769

c = 0.01 (with d∗(c) = 1, 592)

pA − pB = 0.01 pA − pB = 0.05

ε = 0.1 63,075 3,003

ε = 0.01 109,143 4,858

c = 0.1 (with d∗(c) = 16)

Table 3: The (optimal) size of the Assessment Group (AG).

38We stress that N1 (the size of the first voting group) and n2 (the size of the second group) are independent
parameters of our model.

39The values depicted in Table 3 do not depend on the total number of citizens in the population.
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5 Welfare Analysis

After the characterization of the equilibrium outcome under AV, an ensuing question is what

the evaluation of such a voting procedure looks like from a welfare perspective. There are two

one-round voting procedures that are natural benchmarks for this evaluation: first, voting may

be voluntary; second, voting may be compulsory. For the analysis of either of the two procedures,

it will be convenient to assume that the total number of citizens follows a Poisson probability

distribution of parameter N1 + n2. As for our notion of social valuation, we focus on expected

average utilitarian welfare (henceforth welfare). The societal calculus thus takes into account

both the utilities derived from the alternative being implemented and the participation costs

that accrue in the process of voting. The former needs no justification. As for the latter, it

requires that, ceteris paribus, turnout be as low as possible. To quote Feddersen and Sandroni

(2006)—see p. 1273: “Expressions of concern about low turnout need not represent a concern for

turnout, per se. Instead, people may be concerned by what low turnout signals about society, e.g.,

lack of civic mindedness.” Our analysis builds on this premise, i.e., subject to implementing the

socially desirable alternative with a given probability, voting costs should be minimized.

Under one-round voluntary voting, one can easily verify from Section 4 that welfare is

W vol :=
1

2
− x

N1 + n2

· c, (13)

where x is the solution to Equation (6). Under one-round compulsory voting, it is also easy to

verify that welfare amounts to

W com := wcom − c, (14)

where wcom is the welfare obtained from the alternative eventually implemented when the entire

population, which has an expected size equal to N1 + n2, votes sincerely. It is easy to verify

that wcom = pA · (1 − zcom(N)) for some function zcom(N) that satisfies limN→∞ z
com(N) = 0.

Moreover, according to Theorem 2, there is N∗1 = N∗1 (ε, c, pA − pB) such that for all N1 ≥ N∗1 ,

with probability at least 1− ε we have

WAV := pA −
N1

N
· c, (15)

where pA coincides with the expected welfare obtained from the alternative being eventually

implemented when all members of AG (which has a certain size N1) vote sincerely. Finally, a

lower bound for welfare is

W := pB − c. (16)

We will use W to estimate welfare when our analysis does not yield clear-cut predictions as to

the outcome of AV. Our main result regarding welfare is the following:

Theorem 3. For every ε > 0, there exist positive integers N∗∗1 (ε, c, pA− pB) and n∗2(c) such that

if N1 ≥ N∗∗1 (ε, c, pA − pB) and n2 ≥ n∗2(c),

WAV > max{W vol,W com}.
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The logic behind Theorem 3 can be explained as follows: On the one hand, if the size of AG

is large enough (N1 ≥ N∗∗1 (ε, c, pA − pB)), Theorem 2 guarantees that only members of AG

will vote. These will represent the society’s preferences very accurately. On the other, if the

entire electorate is large enough (n2 ≥ n∗2(c)), participation costs will weigh less in welfare

than the utility obtained from the alternative chosen, but they will still matter.40 This means

that in large societies where participation costs are of first-order importance, AV will perform

better on average than standard one-round voting, whether voting in the latter is voluntary

or compulsory. In comparison with one-round voluntary voting, average participation costs in

AV will be similar in extent, but decisions will represent the population preferences much more

accurately. Compared to compulsory one-round voting, decisions will represent the population

preferences equally well, but participation costs will be much lower in AV. Hence, within our

set-up, AV simultaneously exhibits the most desirable properties of voluntary and compulsory

one-round voting, and it can thus be seen as an appropriate mixture of both approaches.

As a matter of fact, the same logic behind Theorem 3 can be applied to show that AV implements

the optimal solution from a utilitarian perspective, which we denote by W opt := pA, asymptoti-

cally as the expected size of the electorate goes to infinity. When the number of citizens grows

unbounded, the absolute size of AG can be made arbitrary large and, at the same time, its

relative size can be made arbitrarily small. This asymptotic result is formalized next.

Corollary 2. The following holds:

lim
n2→∞

WAV = W opt.

Spanning all values for the relative size of AG with respect to total population, we find at the

two extremes of the spectrum one-round voluntary voting (when AG’s relative size is 0) and

one-round compulsory voting (when AG’s relative size is 1).41 From this perspective, Theorem 3

suggests the optimal size of AG for this family of schemes. Another option is to pose this question

without reference to AV. What is the optimal size of a representative electorate of expected size

N1 + n2 when we balance the maximization of the probability of choosing the socially optimal

solution against the minimization of the voters’ participation costs? The answer to this question

is provided by Theorems 2 and 3, which can be used as benchmark for positive turnout analyses

in elections and referenda.

40This follows from the fact that (i) the (expected) absolute turnout is independent of the (expected) size of
the group of citizens who have the right to vote in the second round, and (ii) all citizens derive utility from the
alternative chosen, no matter whether they have voted or not.

41Another possible benchmark for AV is the following: Choose the level of a fine, φ ≥ 0, to be imposed on
those who do not turn out in one-round voting. If φ ≥ c, the outcome (i.e., the alternative chosen and the average
voting costs incurred) will be the same as in compulsory one-round voting with cost of voting equal to c. If φ < c,
the alternative will be chosen as in one-round voluntary voting with cost of voting equal to c− φ. That is, both
alternatives will be chosen with the same probability. Moreover, individual turnout probabilities will be higher
for citizens of both types compared to the case where voting costs are equal to c. This follows from the proof of
Proposition 1 in Arzumanyan and Polborn (2017), which shows that the solution of Equation (6)—namely, the
total turnout rate for either voter type, denoted by x—is a decreasing function of c. Accordingly, when φ < c
average participation costs will be higher compared to one-round voluntary voting with voting cost equal to c,
and welfare will be lower. As a consequence, Theorem 3 shows that AV with AG size equal to N∗∗

1 (ε, c, pA − pB)
will also be superior to this benchmark based on fines.
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Theorem 3’s statement is valid for given parameters. From a constitutional perspective, however,

neither N∗∗1 (ε, c, pA−pB) nor n∗2(c) could depend on the particular instances of voting that would

take place. These voting instances would be characterized by different parameters, and more

particularly by different values of pA− pB and c. One possibility would be to take the maximum

values of N∗∗1 and n∗2 for a certain constellation of parameters, which could then be drafted in

the constitution. If such a constellation is broad enough to encompass (almost) all plausible

scenarios, AV continues to be preferable to standard one-round voting procedures.

We conclude the welfare analysis with three further remarks. First, alternatives that find little

support in the citizenry are bound to be defeated in equilibrium when AV is used. In direct

democracies such as Switzerland and California, this may reduce the incentives to initiate popular

voting on issues that are only supported by a small minority. In Switzerland, in particular, the

100,000-signature threshold for popular initiatives has become easier to attain with the help of

social media. With more popular votes in the form of referenda, organization and opportunity

costs represent an increasingly important factor to be taken into account. Facing more popular

votes also demands more effort from the citizens themselves, especially when they are poorly

informed ex ante. AV constitutes a new democratic tool that may help to solve some of these

problems, thereby adding to the appeal of this voting procedure from a welfare perspective.

Second, if costs associated with participation do not enter the societal welfare calculus, a trivial

(theoretical) solution to the problem of implementing the socially optimal alternative through

voting is to make it compulsory in one round. Quite often, however, large and convex compliance

costs, caps on fines or ethical concerns (see e.g. Lever, 2010) make it impossible to attain turnout

rates close to 100%.42 This makes it easier for adopted decisions to be unrepresentative of the

preferences of the whole electorate, as in voluntary voting. Our results indicate that making

voting compulsory for all citizens may not actually be necessary to implement the alternative

preferred by the majority, so the turnout rates of around 80% typically observed where voting is

compulsory may not be a matter for concern.

Third and last, whether AG members participate in AV because voting is compulsory or because

they receive a subsidy compensating for their voting costs is immaterial for outcomes. As for

welfare, it will make a difference only if voting costs are heterogeneous. In such case, making

voting compulsory will mean less costs from a welfare perspective since every citizen will pay

exactly their costs, while subsidies should in principle be made equal to the highest possible

cost to ensure participation of all AG members. Of course, one could consider lower subsidies

and target a larger number of individuals to be members of AG (those with higher costs may

not vote). If costs are uncorrelated with preferences, outcomes would not change and average

participation costs may be lower.

42See https://www.idea.int/data-tools/data/voter-turnout/compulsory-voting, retrieved 3 Novem-
ber 2018.
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6 Robustness and Model Extensions

The baseline set-up can be extended in at least four sensible ways. First, as an exercise of a

rather technical nature, one can ask whether the prediction that citizens of the second round will

(almost) never vote if the size of AG is large enough hinges on our equilibrium concept, and very

particularly on the assumption that citizens of the same type all use the same strategy. Second,

it is clear that in real elections and referenda, a cost-benefit analysis is not the only motivation

to vote. For instance, some citizens are committed to parties or issues, while other individuals

may feel a moral obligation to exercise their right to vote. Hence, it is reasonable to ask whether

our results extend to a set-up where a fraction of the citizens has zero voting costs. Third, there

may exist differences across alternatives regarding how costly it is for its supporters to cast a

vote. Fourth, one may speculate about the performance of AV when three or more alternatives

exist. We discuss these issues next. The formal results (viz. Propositions 6–13) and their proofs

can be found in Appendix B.

6.1 More citizen types

We start by inquiring whether the assumption that all citizens with the same preferences will use

the same strategy does drive the result that no equilibria differing from the no-show equilibrium

exist if the handicap yielded by the first round of AV is large enough in absolute terms. Given

the nature of this negative result, investigating this issue transcends a mere technical robust-

ness check. The answer is negative, i.e., with regard to the second round of AV, the no-show

equilibrium remains unique if the handicap is above a certain threshold, even if we consider

different (sub)types of citizens who have the same preferences, with each subtype potentially

using a different strategy. This is shown in Proposition 6 (see Appendix B), the proof of which

is based on properties of the Poisson distribution and the multinomial theorem. This adds to

the robustness of our prediction regarding the outcome of AV, because it indicates that more

freedom for choosing strategies is not enough to incentivize citizens to vote.

6.2 Partisan voters

The results of Section 4, and hence of Section 5, rest on the assumption that voting is costly

for all voters. In this section, we study the robustness of these results with respect to the

presence of voters who experience no costs of voting or even actually enjoy voting. Such voters

are generically referred to as partisan voters and are assumed to have zero participation costs.

They act out of duty or obligation, be it to their party or to society and democracy (see e.g.

Riker and Ordeshook, 1968; Blais, 2000; Feddersen, 2004).43 We will proceed on the assumption

that partisan voters will vote in the AV round they are allocated to—independently of whether

43See Herrera et al. (2014) for a recent analysis of how partisan voters affect turnout rates in elections.
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they expect to influence the final outcome—and that they will do so sincerely.44 All this will be

common knowledge.45

As a consequence, in terms of voting outcome partisan voters will make no difference in the first

round of AV. All members of this group are incentivized to vote and thus everybody in the group

will vote, no matter whether their voting costs are positive or zero. For the second round, by

contrast, partisan voters do matter, since they will vote independently of the outcome in the first

round. This will affect the non-partisans’ decision whether or not to vote in this second round.

A crucial observation is that as far as strategic concerns of the latter voters are regarded, the

partisan voters voting in the second round are indistinguishable from the members of AG. The

only difference with respect to the baseline set-up where there are no partisans is that the size of

this compound set (the set made up of members of AG plus partisan voters with a right to vote

in the second round) is now stochastic. With appropriate modification of thresholds, we will be

able to build on the analysis in Sections 4 and 5.

6.2.1 The uncorrelated case

To explore the consequences when partisan voters are present, further assumptions are needed

about the share of these citizens. There are at least two distinct possibilities. First, whether a

citizen is partisan or not may be independent of his/her own preferences. This is the standard

assumption in the literature, despite there is no conclusive empirical evidence behind it. For this

case, we use µ ∈ [0, 1] to denote the expected share of partisan voters, which we assume to be

common knowledge. Since each voter is equally likely to be partisan, µ is also the probability

that an arbitrary voter will have zero voting costs. When µ = 0, we recover our baseline set-up.

When partisanship is not correlated with preferences, we prove (see Proposition 7 in Appendix B)

that for a given cost c and a given AG size N1, the size of the compound set will be above the

threshold N∗1 (c) of Theorem 2 with a probability close to one if both the expected size of the

second voting group (n2) and the share of partisans (µ) are large enough. Also with a very

high probability, citizens who are not partisan will then have no incentives to vote in the second

round of AV. The latter property follows from Theorem 1, while Proposition 7 is an application

of tail-bound analysis for the Poisson distribution. We note that the (sufficient) lower bound

for µ converges to zero as n2 tends to infinity and that it decreases with N1. Taking N1 = 0, in

particular, yields a bound for the share of partisans above which only such voters will vote in

one-round voluntary voting.

The above results have the following implications for welfare: If the electorate is large and the

share of partisan voters is also sufficiently large, AV yields the majority’s preferred outcome

with probability close to one. One-round voting, whether compulsory or voluntary, also yields

44Another possibility is that a partisan voter has a participation cost c > 0, but votes nevertheless with
probability one by not including such a cost in his/her calculus. Whether or not partisan voters experience a cost
if they vote has no bearing on the equilibrium outcome, provided that they vote (sincerely) in all cases. The only
difference between the two approaches will affect welfare considerations.

45If the fact that there are partisan voters is not known by non-partisan voters, the equilibrium behavior of
the baseline set-up without partisan voters remains valid in essence. Nevertheless, the outcome may be different,
as we will need to add the votes from the partisan voters.
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this outcome. The main difference across voting procedures lies in the average participation

costs. They are highest for compulsory voting and higher for AV than for voluntary voting.46

The reason is that, in AV, the non-partisan members of AG will (be forced to) vote, but these

citizens will abstain in one-round voluntary voting. In such cases, incentivizing citizens to vote

in the first round of AV is actually socially undesirable. This result rationalizes the use of the

majority rule when the share of partisans and the size of the electorate are both large enough,

provided that preferences are not correlated with partisanship. The social optimum decision will

be implemented trivially in such cases. Though some technicalities are different, this same result

is obtained by Krishna and Morgan (2015).

Now that we have analyzed the case of a sufficiently large share of partisan voters within a

large electorate, one ensuing question is what are the consequences when partisans are present in

other scenarios. We demonstrate (see Proposition 8 in Appendix B) that for a given n2, the vote

difference yielded by partisan voters in the second round—and, hence, in one-round voluntary

voting, where there is no first round—is smaller than d∗(c) with probability close to one if the

share of partisan voters is itself low enough. In such cases, the participation of non-partisan voters

in the first round of AV is essential to reach the critical threshold for handicaps above which only

the no-show equilibrium exists. If this threshold is not reached, we know from Proposition 4 and

Proposition 5 that there are typically at least two equilibria besides the no-show equilibrium. In

particular, there is no assurance that the alternative preferred by the majority will be selected

with high probability. This is, in particular, the case with one-round voluntary voting. Under

these circumstances, AV could still be preferable to one-round voting from a welfare perspective.

6.2.2 The correlated case

In the above discussion, we have assumed independence between partisanship and preferences.

The main implication is that the expected difference between the number of A-supporters and

B-supporters who are partisan is positive and increases unboundedly with the expected number

of citizens. An alternative and equally plausible assumption is that the number of partisan voters

favoring alternative A is similar to the number of partisan voters favoring alternative B. In the

US, for instance, the percentage of registered voters identifying themselves as Republicans is

close to the percentage of registered voters identifying themselves as Democrats.47

This second approach to partisanship is based on the assumption that the difference between

the number of A-supporters and B-supporters who are partisan is distributed according to a

probability distribution that is symmetric around zero. Since pA > pB, this implies a degree

of correlation between preferences and partisanship (i.e., voting costs). It is more likely for

B-supporters to be partisan than A-supporters.48 One possibility is that political parties need

46The difference between AV and one-round voluntary voting disappears if partisan voters incur voting cost c,
which they disregard in their decision to vote but which has to be computed for the societal welfare calculus.

47See http://www.people-press.org/2018/03/20/1-trends-in-party-affiliation-among-

demographic-groups/, retrieved 30 November 2018.
48As seen in the Introduction, turnout rates in the US (and hence its determinants) differ across sex, age, and

origins, and so do preferences. Kawai et al. (2015) have recently found for the US that, in fact, preferences and
voting costs are correlated through socioeconomic and socioeconomic characteristics.
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to exert some effort or money to persuade citizens to become partisan in their favor, with the

outcome whether or not a citizen becomes partisan for either party being determined according

to some contest function. If parties have similar (limited) budgets and use the same technology

to persuade citizens, one plausible assumption is that they will be successful in equal numbers

(at least, in expectation).49

An additional rationale for our second approach to examine partisan voters has to do with

political disaffection (see e.g. Torcal and Montero, 2006). One can model this negative attitude

towards the political system as a random shock that may be privately observed by partisan

citizens, who will become non-partisan before the election as a result of the shock. Although

their preferred alternative will be the same no matter whether they have incurred a shock or

not, these citizens may no longer vote when performing a cost-benefit analysis. Our assumption

here is simply to consider that members of the majority are more likely to receive such shocks

than members of the minority. This is a plausible assumption in the case of (runoff) elections

in which the majority candidate is the incumbent representing the establishment and, as has

happened recently in many countries, there is a wake of populist movements undermining the

political institutions.

When preferences are correlated with partisanship, we show (see Proposition 9 in Appendix B)

that the probability of either alternative winning in one-round voluntary voting is the same

as in the case without partisans, namely 1/2 in the case of common, fixed voting costs. This

is a remarkable result that transcends AV and expands knowledge on standard elections and

referenda. From a theoretical perspective, a non-partisan citizen voting on a cost-benefit basis

will decide to turn out if s/he expects to be pivotal in certain cases. In most of the costly voting

literature, this property requires randomness in outcomes and that the expected total turnout

be bounded regardless of the electorate size.50 Our result shows that the latter property can

be dispensed with. In our reduced-form approach to partisanship, it suffices for non-partisan

voters to turn out with a positive probability that the net effect on the vote-count generated

by partisan voters is distributed according to some probability distribution that is symmetric

around zero. Because the total number of partisan voters can nonetheless be made arbitrarily

large, so can total turnout. Roughly speaking, the two groups of partisan voters cancel each other

out (in expectation). Randomness in decisions can therefore originate from two different sources,

namely, from partisan and from non-partisan voters. Remarkably, voting costs of non-partisan

voters need not be arbitrarily low as the (expected) turnout level goes to infinity, provided that

the probability distribution of the vote-count difference yielded by partisan voters has enough

concentration around zero, or at least so is perceived by non-partisan voters.

One can then prove that by choosing an appropriate size for AG, AV will be preferable to one-

round voting in this second framework with partisan voters. While in the baseline set-up we

49If we reinterpret partisan voters as (non-rationally) uninformed voters, assuming that the vote tally these
citizens yield is symmetrically distributed around zero follows from assuming that these voters follow the most
simple heuristic possible: they vote for either alternative with equal probability, if they vote at all. The role of
uninformed voters is therefore simply to provide some noise to the voting outcome.

50Randomness of the outcome and low participation are also connected in more general settings where partic-
ipation is costly (Osborne et al., 2000)
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choose N1 such that the difference d∗(c) will be achieved with high probability, with partisan

voters we need to impose an even higher difference in the first round of AV.51 This is due to the

uncertainty regarding the number of partisan voters participating in the second round, which

makes the vote-count difference created by partisan voters in this second round stochastic, albeit

with zero expected value.

6.3 Cost difference across types

For the most part of our analysis thus far—with and without handicaps—, we have assumed no

difference across citizen types regarding voting costs. The only exception is when partisanship

is correlated with preferences, in which case the cost distributions are different for supporters of

either alternative, albeit with the same support—see Section 6.2. The assumption of equal voting

costs has allowed us to isolate two main equilibrium effects on turnout: the underdog effect—

which is generated by preferences—and the handicap effect—which is generated by handicaps.

We next explore the robustness of our results when voter types have positive voting costs drawn

from different degenerated distributions. Cost differences may occur in the political process. For

example, an incumbent majority government could try to influence voting costs through executive

action or, alternatively, the members of the minority could be more motivated or feel they have

more at stake, to name but two examples. In either case, one group—be it the majority or the

minority—would be advantaged over the other in terms of how costly it is for them to turn out

to vote.

We have already mentioned in Section 4.1.2 that Theorem 1—which describes AV’s performance

when the handicap attained in the first voting round is large enough relative to voting costs—is

robust against differences in voting costs. We can also show (see Propositions 10–12 in Ap-

pendix B) that when handicaps are low—and, in particular, when the handicap is zero—, there

is a further equilibrium effect that is neither linked to preferences nor to handicaps. As one

would expect, ceteris paribus, the incentives to turn out are greater for those with a lower cost.

Moreover, if we consider that no group will turn out with probability one, this effect—which

we call the cost effect—can offset the underdog effect and the handicap effect completely if the

relative difference between voting costs exceeds a threshold that depends on handicap d. In such

cases, only the citizens with the lowest voting costs will turn out with positive probability in the

second voting round of AV.52

6.4 Three or more alternatives

A setting with three or more alternatives enables us to extend the application of AV from binary

decisions (above all, referenda) to other decisions, say elections for executive offices or primaries,

where several candidates typically compete. The case of multiple alternatives has been recently

studied by Arzumanyan and Polborn (2017) for homogeneous voting costs and later generalized by

51Proofs can be provided upon request.
52With no handicaps, a similar result has been proved by Taylor and Yildirim (2010b).

30



Xefteris (2019) to account for heterogeneity in such costs. Building on their set-up, we show that

sincere voting in the first round is consistent with equilibrium behavior, although other equilibria

may also exist (possibly involving strategic voting).53 In doing so, we prove the counterpart of

Theorem 1 for three or more alternatives. Consider the alternative ranked first in the first round

of AV according to the plurality rule. Then, there is a threshold d∗∗(c) guaranteeing that if this

alternative has received at least d∗∗(c) more votes than any other alternative, no citizen will vote

in the second round of AV. This is shown in Proposition 13 (see Appendix B), the proof of which

is based on an induction argument on the number of alternatives.54 Our analysis is nonetheless

silent with respect to the general welfare evaluation of AV in this case. The reason is that with

three alternatives, the alternative that wins according to the plurality rule (under sincere voting)

may lose in a pairwise voting against any other alternative. The extent to which AV favors

coordination on certain alternatives over standard one-round voting is crucial for establishing a

comprehensive welfare comparison between both voting procedures. Such an analysis is beyond

the scope of this paper.

6.5 Remarks and future research

We conclude this section with two remarks that add to the robustness of our results. First, in the

case of large electorates, our assumption of homogeneous voting costs covers all relevant cases

of costs distributions with a strictly positive support and possibly a mass point at zero. If, as

considered for example in Herrera et al. (2014) and Krishna and Morgan (2015), the (common)

cost distribution is differentiable within some non-negative, compact and convex set that includes

zero, some technicalities change, but one can verify that the main thrust of Theorem 1 remains

valid. If the vote-count difference from the first round of AG is above a certain threshold, with

high probability total turnout in the second voting round will be low enough not to overturn the

outcome from the first stage. In fact, expected total turnout in the second voting round converges

to zero if the first-round handicap goes to infinity. This implies that our welfare analysis of

AV remains valid with arbitrary cost distributions, provided that there are enough citizens (in

absolute terms). Note that with arbitrary cost distributions, AG members have random voting

costs, while in one-round voluntary voting only the citizens why the lowest costs will turn out.

Yet, the benefits of AV from implementing the right alternative with higher probability will

compensate the benefits of having lower voting costs in one-round voluntary voting. As for the

robustness of our results about lower handicaps, the main mechanisms from our set-up will also

be at work in a set-up based on Herrera et al. (2014). A comprehensive analysis of such cases is

nonetheless beyond the scope of our paper.

53As shown by Myatt (2007) and Bouton and Castanheira (2012), strategic voting and coordination may occur
when there are three or more alternatives.

54Proposition 13 (see Appendix B) bears some resemblance to Hummel (2012), who also considers voting over
several alternatives taking place in two stages, with the outcome of the first stage made public before the second
voting stage takes place. While we show that turnout incentives completely disappear in the second round if the
vote-count difference from the first voting round is large enough, Hummel (2012) shows that with three candidates,
incentives to vote (sincerely) for the candidate who obtained the least votes in the first round also disappear in
the second round if the difference in votes with respect to the first two candidates is large enough. The latter
happens with arbitrarily large probability if citizens vote sincerely in the first round and the electorate is itself
arbitrarily large. Hummel (2012) differs from our model in that voting is not costly.
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Second, in our analysis (with high and low handicaps) we have explicitly proceeded on the

assumption that every citizen has full information about their own preferences. Often, however,

there is also a public-value component over and above the private-value component in the decision

to be taken. This public-value component depends on the unknown state of the world, about

which each citizen receives a noisy signal. Such a set-up is considered by Ghosal and Lockwood

(2009) for the case of one-round voluntary voting, but with some further differences from to our

setting. Ghosal and Lockwood (2009) prove a perfect separation result: The information from

the private signals will be used if and only if the public-value component is sufficiently important

in utility terms. If not, the private-value component will dictate all voting decisions.

Our insights about high handicaps translate into an extension of our set-up based on Ghosal

and Lockwood (2009). This is because regardless of citizens’ utilities and beliefs, if the handi-

cap obtained in the first voting round of AG is large enough, no citizen will cast a vote in the

second round. In particular, no information aggregation will occur in that round—see Theo-

rem 1. Suppose now that AG members anticipate that turnout in the second round of AG will

be zero. If voting in the first round is according to the (certain) private-value component when

this is more important than the (uncertain) private-value component, no information will be

aggregated either. If voting takes place in accordance with the signals when the public-value

component is more important, by contrast, dispersed information will be aggregated, as in Con-

dorcet jury models (see e.g. Boland, 1989; Austen-Smith and Banks, 1996). This would lead to

the implementation of the socially optimal alternative with very high probability. By making

voting compulsory in the first round, AV could also solve the problem of turnout being too low

locally (see Proposition 3 in Ghosal and Lockwood, 2009). This is another potential advantage

of AV with respect to one-round voluntary voting in welfare terms (at least in some equilibria).

A thorough analysis of this setting for low handicaps remains for further research.

7 Implementation, Reinterpretation, and Remarks

In this section we do two things. First, we discuss the potential implementation of AV as

an electronic voting procedure. Second, we reinterpret some of our (mathematical) results for

existing democratic procedures, with special emphasis on one-round voluntary voting.

7.1 Real-world implementation of Assessment Voting

As far as our previous theoretical analysis is concerned, it is immaterial whether AV is to be

implemented with paper ballots or to be introduced as an electronic voting procedure. This

feature does not necessarily hold if we consider the implementation of AV in real-world environ-

ments. Since the implementation with paper ballots does not pose specific challenges on its own,

we focus here mainly on electronic voting. The latter type of voting may reduce participation

costs, make voting easier, enable citizens living abroad to exercise their rights, and eliminate
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invalid votes, the share of which can sometimes be very significant.55 These features open up

the possibility of improving the design of the current electoral systems (see Demange, 2018).

At the same time, however, electronic voting involves a variety of concerns related to privacy,

integrity, transparency, affordability, and accessibility.56 Thus, it comes as no surprise that many

efforts within one strand of computer science research are currently directed at solving these

problems. Doing so would very particularly enhance the possibility of implementing AV as an

electronic voting procedure, both in direct democracies and in those representative democracies

that allow referenda. Chaum (2016), for instance, has proposed an initial protocol for Random

Sample Voting (RSV)—see Footnote 6—, which was already used on a small scale and is of clear

interest for AV.57 Chaum (2016) argues that randomness of voter selection, non-manipulability,

verifiability, and anonymity can be guaranteed.

In research conducted parallel to our paper, a provably secure protocol for RSV has been de-

veloped by Basin et al. (2018). The protocol guarantees individual verifiability and receipt free-

ness, as long as some cryptographic assumptions are fulfilled. The latter paper, a complement

to Chaum (2016), considers a strong adversary model. A (malevolent) adversary can intercept all

messages sent via the network, construct new messages and deliver them, and even compromise a

(small) number of citizens in such a way that the adversary can control their behavior. By using

additional uncompromised devices, Basin et al. (2018) construct a protocol that could deliver a

trustworthy outcome for the first round of AV.

Guaranteeing uniform random choice for the subset of players in the first round is clearly an

important requirement for the correct functioning of AV. Micali and Cheng (2017) argue that

a verifiable random function can also be implemented in the blockchain environment. This

environment is of double interest for AV, since this voting procedure could be implemented using

blockchain protocols and even be used for the governance of the entire blockchain.58

Another aspect of the implementation of AV that requires careful inspection, whether imple-

mentation is electronic or not, is the size of AG. As already discussed, one can easily envision

situations where there is aggregate uncertainty about the support for each alternative within

the citizenry, in which case pA and pB are not known with full precision. For example, suppose

that pA is believed—by the citizens and the social planner—to be distributed in the interval

I := [pA, pA] with some cumulative distribution function F (·), where

1

2
< pA < pA ≤ 1. (17)

55The share of invalid votes is usually around 4% worldwide, but at some elections it has been much
higher. This was the case in some elections for the local parliament in Zurich, in which the share
of invalid votes was 26%. See http://aceproject.org/electoral-advice/archive/questions/replies/

864793780 and https://www.swissinfo.ch/eng/politics/electronic-voting_ten-arguments-for-and-

against-e-voting/43959200, retrieved 2 November 2018.
56See https://icorating.com/upload/whitepaper/PlwK2rH1BpHDSzd56OZTRlzjJo4ffOyNSO41kOKJ.pdf,

retrieved 1 November 2018.
57See github.com/rsvoting/publications/blob/master/trials/crypto-2015-demo-report.md and

github.com/rsvoting/publications/blob/master/trials/rwc-2016-demo-report.md, retrieved 1 Novem-
ber 2018.

58It is crucial to have an efficient voting procedure for achieving true decentralization in the pubic ledger. For
blockchains, how changes in governance should be decided is one of the central themes in the blockchain research
area. See Goodman (2014), for an example of a blockchain that has a built-in voting procedure.
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First, the social planner can set the size of AG such that AV will yield the no-show equilibrium

with probability close to one for the worst possible realization of pA, namely pA. Second, the first

round of AV reveals information about the value of pA. This may help in taking better informed—

though not necessarily more efficient—decisions in the second voting round if threshold d∗(c)

has not been attained. Importantly, AV can still perform well even if the interval I contains

1/2. When pA = 1/2, both alternatives are equally likely to gather the largest support within

the citizenry. In this second scenario, consider some small δ > 0, and then set the size of

AG equal to N1 = N∗1 (c, ε, 2δ). Then, the result of Theorem 2 holds with probability (1 −
(F (1/2 + δ)− F (1/2− δ)) · (1 − ε). That is, as long as the distribution of pA is not highly

concentrated around 1/2, the probability that the outcome of AV will still be as described by

Theorem 2 is high. The possibility that pA ≈ pB then simply sets a lower bound for AG size.

Moreover, as far as expected welfare is concerned, this knife-edge case can be neglected if it is ex

ante not very likely. A more thorough investigation must nonetheless be left to future research.

7.2 Reinterpreting our results

The procedure we have suggested in this paper, AV, consists of two voting rounds. Voting is

compulsory in the first round and voluntary in the second. Mathematically, the game underlying

the second round is the game underlying one-round voluntary voting in large electorates, with

one fundamental difference: in AV, the handicap d taken as given before the vote takes place

may differ from zero. For the game describing the second round of AV, we have proved a series

of results “on the equilibrium path” (i.e. for large values of d) and “off the equilibrium path”

(i.e. for low values of d). From a broader perspective, one can conceive of handicap d (and of

other parameters) as capturing some elements of one-round voting and other related procedures

in democracy, in which case our results provide some interesting insights. As already mentioned,

AV is just one natural application of our analysis.

In Sections 6.2 and 6.3, we have already shown three results on one-round voluntary voting

(with two alternatives) that follow from our analysis. First, the majority rule will implement the

utilitarian optimal solution if partisanship is uncorrelated with preferences and both the share of

partisan voters and the electorate are sufficiently large. Second, decisions yielded by the majority

rule will be highly uncertain if, in contrast to the previous case, partisanship is correlated with

preferences in a specific way. Third, an advantage in voting costs typically translates into an

electoral advantage, even in the presence of handicaps. We next provide six additional examples

of how to reinterpret our set-up and enable an application of our results to democratic procedures

that differ from one-round voluntary voting. These insights display the property that (future)

costly participation can be deterred if some example-specific form of handicap is sufficiently large.

First, let one of the alternatives, s ∈ {A,B}, represent the status quo. Then, two requirements

are imposed: (i) a share ρ ∈ [1/2, 1) of total votes is needed for the alternative −s ∈ {A,B}\{s}
to be implemented; (ii) a participation quorum requirement q ∈ N needs to be reached (if the

total number of voters that turn out is less than q, the status quo will prevail). These conditions
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were imposed for example on the independence referendum in Montenegro.59 Straightforward

algebraic manipulations indicate that

x−s − xs ≥ q · (2ρ− 1),

where xs (x−s) is the number of votes for s (−s). Magnitude q·(2ρ−1) plays the role of handicap d

in game G2(d), and it converges to q as ρ approaches one.60 In the light of Theorem 1, large

qualified majorities in combination with large quorum requirements may disincentivize turnout

dramatically, and hence protect the status quo even if there is a large majority in favor of the

reform.61

Second, we have already mentioned that in some countries such as Switzerland one can initiate

political action by gathering a minimum number of signatures, say σ ∈ N. By identifying σ with

handicap d and focusing on partially mixed equilibria of G2(d), Proposition 3 shows that there is

a threshold for σ that may block popular initiatives altogether. This threshold, which depends

asymptotically on the inverse of the square of the cost of signing the initiative, may in absolute

terms be much lower than the support this initiative gathers in the population.62

Third, sometimes true information about voting outcomes is revealed before all polling stations

are closed. This is the case in Spain, for example, where the official turnout rate at each mu-

nicipality is revealed at three points in time during election day. In principle, one can extract

from these reported rates information about the development of the voting outcome. Our anal-

ysis with an arbitrary number of alternatives—see Section 6.4—has revealed that, if we leave

aside the strategic incentives for choosing the moment for going to the polls, early release of

information of this type may have a significant impact on voting outcomes, particularly if voters

infer that one alternative is leading the other(s) by more than d∗(c). This insight also applies

if voting results are leaked, a possibility enhanced by the extensive use of social networks (see

e.g. the examples in Morton et al., 2015). This may be relevant for US federal elections, because

citizens of some states cast their vote well ahead citizens of other states. Such a time window

offers the possibility for strategic behavior by different political parties, including the diffusion of

information concerning the ongoing actual voting outcome that can take the form of handicaps.

These practices are forbidden by law in many countries.63

Fourth, it is known that vote buying cannot be avoided completely in elections and referenda and

that it is even common in certain countries (see e.g. Brusco et al., 2004; Finan and Schechter,

2012). At the same time, the possibility of vote buying is a major concern in electronic voting

(see e.g. Parkes et al., 2017). Suppose the vote-count difference resulting from vote buying (by

all parties involved)—i.e., the handicap(s)—can be assessed with some precision before election

59See https://en.wikipedia.org/wiki/Montenegrin_independence_referendum,_2006, retrieved 8
November 2018. We refer to Herrera and Mattozzi (2010) for a list of countries with participation quorum
requirements.

60An equilibrium of G2(d) with zero (positive) turnout will always be an equilibrium in this new setting (if the
turnout level is above q).

61This “quorum paradox” also arises in the framework of a group turnout model (Herrera and Mattozzi, 2010).
62We refer to Battaglini (2017) and Ginzburg (2018), as well as the references therein, for related papers on

the subject of initiatives (or petitions).
63See https://en.wikipedia.org/wiki/Election_silence, retrieved 11 November 2018.
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day. Then, our result from Section 6.4 suggests that there may be a threshold for the number of

votes to be bought by a single party relative to the others, namely d∗(c) or d∗∗(c), for which vote

buying is a very effective tool in demobilizing voters. Trying to buy votes beyond this threshold

may be futile.

It is worth noting that a further appeal of AV relative to one-round voluntary voting has to

do with vote buying. In the latter voting procedure, vote buying can be targeted wherever

possible, as only the absolute number of ballots bought matters for disincentivizing electoral

participation. In AV, by contrast, this strategy is unlikely to be as effective, since AG members

are chosen randomly, no matter whether they have committed themselves ex ante to sell their

ballots or not. Ex post, the identification of AG members would also be costly.

Fifth, it is quite often the case that some parties or issues have a solid electoral base of citizens

who vote for them regardless of any consideration; we have referred to them as partisan voters.

Sometimes, these voters are concentrated in regions or towns, or more frequently in districts.

When all other citizens are aware of the existence of partisan voters—who, by definition, are

committed to vote—, the incentives for non-partisan citizens to turn out may be substantially

affected by differences in the number of partisan voters across parties or issues within the entire

jurisdiction. These differences take the form of handicaps. Especially if they are very large,

these differences may be pivotal for the election outcome. This case is covered for two alter-

natives in Proposition 7 (see also Proposition 8) in Appendix B, which shows the importance

for turnout incentives—and hence for outcomes—of the extent to which political parties can

announce committed votes.

Sixth, assume that a parliament votes on a binary decision and that after the vote, citizens can

decide in a referendum which of the two alternatives they prefer. Results from the parliament

vote and the referendum will be aggregated to determine the final outcome—say, with parliament

and the citizenry having equal weight. This procedure is called Co-voting (Gersbach, 2017).

Our results show that if voting is costly for the citizens, a clear majority in parliament cannot

be overturned later by an equally clear majority with opposite sign in the citizenry. That is,

whether the initiative is given to parliament or to the citizenry could have dramatic consequences.

If organizing a referendum is very costly for society, our results suggest that as far as Co-

voting is concerned, there might be no need to call on a referendum to revise a parliament’s

decision if the latter has been lopsided. In actual democracies, if a referendum can be called

after the parliament’s decision, the two voting outcomes are not added. Rather, citizens have

full power to revoke the parliament’s decision if they reach some vote share that is independent

of the parliament’s outcome. Although this is different from Co-voting, some of our insights are

applicable to actual democracies.

In the previous examples, we have for the most part reinterpreted the results from Proposi-

tions 2, 3, and 13 in different democratic frameworks. Nevertheless, the handicap effect identified

by Proposition 1 and the equilibrium existence results from Propositions 4 and 5 are also insight-

ful in such frameworks, as are some of the examples discussed in Section 4.2. That is, future

costly participation might not be deterred in the above examples if the corresponding handicap

is sufficiently low, but it is difficult to predict what the outcome will be in these circumstances.
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If handicap d is below d∗(c), for instance, the alternative lagging behind during election day may

get a boost if results are released early, vote buying might backfire, and enlarging the partisan

electoral base may have counterproductive effects.

The above considerations have illustrated how the results we have obtained for AV can generate

relevant insights for an array of existing democratic procedures. For instance, we have implicitly

offered a rationale for banning the publication of ongoing results before all polling stations are

closed. Doing so may open a Pandora’s box enabling many strategic behavior options, some of

which, as our examples have shown, may lead to very inefficient outcomes. The latter observation

is also insightful for the US primaries, as the delegate vote tally in the underlying sequential voting

scheme plays a similar role as handicap d in AV.64 In the same vein, our analysis and results cast

some doubts on whether having the same referendum take place twice—and adding up the results

of both instances—could be generally used to eliminate randomness in the decisions compared

to one-shot referenda. A more comprehensive understanding of all the scenarios outlined in this

section would require an analysis in its own right.

Finally, we note that despite our focus on one-shot decisions, our analysis is also valid for a series

of decisions, as long as they are independent of each other. In this case, one can interpret the

(fixed) Assessment Group as “legislature by lot,” with the citizens who do not belong to this

legislature having the right to undo the legislature’s decisions at a later stage.

8 Conclusion

We have examined the role of early information about the vote tally in voting, and applied our

results to the optimal design of Assessment Voting (AV). This a new voting procedure that fulfills

all standard democratic requirements (e.g. one person, one vote) and is very simple. Within our

framework of costly voting with private values and two alternatives, AV lowers the participation

costs of popular votes and ensures that the majority/minority relation in the citizenry is better

reflected in the voting outcome. AV could therefore be a partial remedy to some of the problems

often associated with standard one-round voting procedures, which serve as a natural benchmark.

Given the current availability of computer-science protocols capable of implementing this voting

procedure, AV may thus be suitable for experimentation in democracies (and also in private

voting environments). This is clearly pertinent for direct democracies such as Switzerland and

California, but also for those representative democracies where there exists a growing demand

for more frequent consultation of the citizenry. AV offers a potentially efficient way to do so.

Although our main analysis has focused on binary decisions (primarily referenda, but also runoff

elections), the main mechanisms can also take effect with three or more alternatives, which is the

case of multi-candidate elections. Remarkably, our results regarding equilibrium outcomes and

welfare continue to hold if we either allow subgroups of the electorate to use voting strategies

different from those of other subgroups even if they have the same preferences, if voting costs

64The literature on US primaries is vast (see e.g. Morton and Williams, 2000; Klumpp and Polborn, 2006;
Knight and Schiff, 2010).
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differ across citizen types, or if there is a significant, but neither extremely large nor very biased,

share of citizens who vote out of a sense of duty. This is because the (mathematical) result that

turnout incentives completely disappear if there is public asymmetry between alternatives in the

form of a large vote-count difference (i.e., in the form of a large handicap) relies solely on one

assumption: the only requirement is that voters do a cost-benefit analysis based on participation

costs and pivotality. This calculus is further immune to aggregate and/or individual uncertainty,

poll manipulation, and the impact of citizens who vote according to heuristics or behavioral rules,

and it thus yields a fairly general result, which is arguably our main technical contribution. As

it happens, this result can be applied to a variety of (voting) settings, AV being just one natural

application. We have also identified a turnout compensation effect linked to low first-round

handicaps, which we have called the handicap effect and is relevant both for large elections and

small committees. In proving all of our results, we have contributed to the understanding of the

costly voting paradigm, and thus to the general understanding of the incentives to turn out in

democratic procedures. The costly voting models can replicate many phenomena observed in

real-world elections and referenda, and are thus more versatile than usually assumed. This, in

turn, enhances our insights on AV.

Our analysis could be extended in other ways beyond the ones considered in this paper. First, we

could study in detail all circumstances in which citizens may only have partial knowledge of their

own preferences, say, because there is a stochastic public-value component in the decision to be

made. As we have seen, a sequential voting procedure such as AV enables the transmission of

information from voters of the first voting group to voters of the second voting group, but it also

opens up the possibility of using this transmission channel strategically. Second, in anticipation of

the use of AV, proposal-making may change. For instance, proposals that have no chance under

AV (but do have a chance in single-round voting) may be no longer made. Third, one could

consider application of AV at the district level in multi-district elections with first-past-the-post

electoral systems. Fourth, in the case of runoff elections, one can conceive of the handicap as

some hard valence that provides one of the candidates with a number of votes more than the other

candidate before the quest for the remaining votes takes place. Endogenizing this hard valence

together with the candidate’s ideological location is required for a more comprehensive theory

of elections. Fifth, voting situations occur beyond the elections and referenda that take place

in democracies. We have mentioned the importance of governance for blockchain technologies,

which offer a real-world environment to test (a possibly tailored version of) AV. All these issues

are subjects for future research.
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Appendix A

In this appendix we prove Propositions 1–5, as well as Theorems 2 and 3 and Corollary 1. For the proofs

of the propositions, we do not follow the order established by their indices but a more constructive order.

By doing so, we will be able to prove some results by building on previous proofs. This will facilitate

reading. Accordingly, we start by proving Proposition 3, as it will be used in the proof of Proposition 2.

In its turn, the proof of Proposition 1 precedes that of Theorem 2.

Proof of Proposition 3: The goal of the proof is to show that if d is sufficiently large, there does not

exist a non-negative solution in y for the following equation:

2c =
yd

eyd!
+

yd−1

ey(d− 1)!
. (18)

We start by noting that the right-hand side of Equation (18) is equal to 0 for y = 0 and d ≥ 2, and tends

to 0 as y tends to ∞. Therefore, proving that Equation (18) does not have a non-negative solution is

equivalent to proving that for all y ∈ R+, the left-hand side of Equation (18) is strictly larger than the

right-hand side.65 To that end, we prove two auxiliary results. First, for a given d ≥ 1, we define

fd(y) := cey − yd

d!
. (19)

We claim that

fd(y) > 0 for all y ∈ R+ ⇒ fd+1(y) > 0 for all y ∈ R+. (20)

For the proof of the claim, assume that the left-hand side of (20) is true. Then,

∂fd+1(y)

∂y
= fd(y) > 0. (21)

That is, fd+1(y) is increasing in y ∈ R+. Since fd+1(0) = c > 0, it follows immediately that the claim

in (20) is correct. Second, for a given d ≥ 2, define

gd(y) :=
fd(y)

ey
= c− yd

eyd!
(22)

and note that

gd(y) > 0⇔ fd(y) > 0. (23)

Consider now the following claim, which we will also prove:

gd∗(y) > 0 for all y ∈ R+ for some d∗ := d∗(c) ≥ 1. (24)

By straightforward calculations,
∂gd(y)

∂y
= −y

d−1(d− y)

eyd!
. (25)

65We use R+ to denote the set of non-negative real numbers.
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It then follows that y∗ = d is the (global) minimum of gd(y) in R+, since

∂gd(y)

∂y
|y=d = 0

and ∂gd(y)
∂y is negative for all y < d and positive for all y > d. We accordingly obtain that, for all y ∈ R+,

gd(y) ≥ gd(d) = c− dd

edd!
≥ c− 1

√
2πde

1
12d

,

where the last inequality holds by an improved Stirling’s approximation (Robbins, 1955). Hence, a

sufficient condition for the claim of (24) to hold is that

c >
1

√
2πde

1
12d

.

It is straightforward to verify that the right-hand side of the above inequality is a decreasing function of

d, provided that d ≥ 1. Moreover, the right-hand side converges to zero as d goes to infinity. Accordingly,

we let d∗(c) be (uniquely) defined as the smallest positive integer larger than one that satisfies

c >
1√

2π(d∗(c)− 1)e
1

12(d∗(c)−1)

. (26)

Note that, in particular,

d∗(c) = Ω

(
1

c2

)
. (27)

Now we have proved the claim in Equation (24). Finally, let d ≥ d∗(c). Then, for all y ∈ R+,

2c−
(
yd

eyd!
+

yd−1

ey(d− 1)!

)
= gd(y) + gd−1(y) > 0,

where the strict inequality holds by the claims in (20) and (24). This completes the proof of the

proposition.

Proof of Proposition 2: The goal of the proof is to show that if d is sufficiently large the following system

of equations in (x, y) does not have a solution with non-negative components:

2c =

∞∑
k=0

xk

exk!

(
yk+d

ey(k + d)!
+

yk+d+1

ey(k + d+ 1)!

)
, (28)

2c =

∞∑
k=0

xk

exk!

(
yk+d

ey(k + d)!
+

yk+d−1

ey(k + d− 1)!

)
. (29)

The system of equations is obtained from (7) and (8) by algebraic manipulations and by setting xA = x

and xB = y. From the proof of Proposition 3, there is a positive integer d∗ = d∗(c) such that, for all

d ≥ d∗, k ≥ 0 and y ∈ R+,
yk+d

ey(k + d)!
+

yk+d+1

ey(k + d+ 1)!
< 2c. (30)
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Moreover, it is known from the properties of the Poisson probability distribution that

∞∑
k=0

xk

exk!
= 1. (31)

Accordingly,

∞∑
k=0

xk

exk!

(
yk+d

ey(k + d)!
+

yk+d+1

ey(k + d+ 1)!

)
<
∞∑
k=0

xk

exk!
2c = 2c,

where first inequality is due to (30) and the equality is due to (31). This completes the proof of the

proposition, since (28) cannot be satisfied for any (x, y) with x, y ∈ R+.

Proof of Proposition 4: Throughout the proof, we have d ≥ 1 fixed. First, we show that an equilibrium

(0, xB) of G2(d) exists if and only if Equation (12) has a solution. It suffices to prove sufficiency, i.e., if

Equation (12) holds for a given (0, xB), this must be an equilibrium of G2(d). Take the smallest positive

root of Equation (12), which we denote by x∗B. Additionally, consider

hd+1(y) = 2cey − yd+1

(d+ 1)!
− yd

d!
and hd(y) = 2cey − yd

d!
− yd−1

(d− 1)!
.

That is, x∗B is the smallest positive solution y of the equation hd(y) = 0. In particular, it must be the

case that

hd(x
∗
B) = 0

and, by continuity of hd and the fact that hd(0) = 2c > 0,

hd(y) ≥ 0 for all y ≤ x∗B. (32)

Next, note that from Equation (21) in Proposition 3, it follows that

∂hd+1(y)

∂y
=

∂

∂y
(fd+1(y) + fd(y)) = fd(y) + fd−1(y) = hd(y), (33)

where fd−1, fd, fd+1 were defined in (19). Hence, Equations (32) and (33) imply that

∂hd+1(y)

∂y
≥ 0 if y ≤ x∗B. (34)

Then, (34) implies that

2c−
(x∗B)d

ex
∗
Bd!
−

(x∗B)d+1

ex
∗
B (d+ 1)!

=
hd+1(x∗B)

ex
∗
B

≥ hd+1(0)

ex
∗
B

= 2c > 0.

As a consequence, Inequality (11) is (strictly) satisfied for x∗B, and hence (0, x∗B) is an equilibrium

of G2(d).

Second, we show that there is c∗(d) > 0 such that an equilibrium of G2(d) of the type (0, xB) exists for

all c ≤ c∗(d). By the first part of the proof, it is sufficient to prove that such c∗(d) exists guaranteeing

that there is xB such that hd(xB) = 0, provided that c ≤ c∗(d). Indeed, let c∗ := c∗(d) be defined as
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follows:

2c∗ =
dd−1

ed(d− 1)!
+

dd

edd!
.

Then, for 0 < c ≤ c∗,
hd(0) = 2c > 0

and

hd(d) = 2ced − dd

d!
− dd−1

(d− 1)!
≤ 2c∗ed − dd−1

(d− 1)!
− dd

d!
= 0.

Hence, due to continuity of hd, the equation hd(xB) = 0 must have a solution. This proves the result of

the proposition.

We conclude the proof with a remark. If we apply Stirling’s formula to c∗(d) = dd

edd!
, we obtain

c∗(d) = O

(
1√
d

)
. (35)

In combination with (27), Condition (35) implies that d ≥ d∗(c), with d∗(c) = Ω
(

1
c2

)
, is not only

sufficient for the result in Proposition 3 to hold, it is in fact also necessary. In other words, the

difference in the vote count obtained after the first voting round must reach threshold d∗(c) in order

for the no-show equilibrium to be the only equilibrium of G2(d), where G2(d) is the game in the second

round. More specifically, for any given c ∈ (0, 1/2), there exist constants K1 and K2, with K2 < K1,

such that the following two statements hold: First, if d > K1
c2

, the no-show equilibrium is the only

equilibrium of G2(d). Second, if d < K2
c2

, then G2(d) has equilibria that are different from the no-show

equilibrium. The existence of K1 and K2 follows from Conditions (27) and (35).

Proof of Proposition 5: To establish the proposition, it will be sufficient to show that the system of

equations composed of (28) and (29)—see the proof of Proposition 2—has a solution (x, y) ∈ R+ ×R+.

For that purpose, we henceforth let an integer d ∈ N with d ≥ 1 be given, and then have td(x, y) denote

the right-hand side of Equation (28), i.e.,

td(x, y) =

∞∑
k=0

xk

exk!

(
yk+d

ey(k + d′)!
+

yk+d+1

ey(k + d+ 1)!

)
=

∞∑
k=0

xk

exk!
(2c− gk+d(y)− gk+d+1(y)) , (36)

where the second equality follows from the definition of gd′(y), with d′ ∈ N, in (22)—see the proof of

Proposition 3. It is then straightforward to verify that finding a solution (x, y) to the above system of

equations is equivalent to finding a solution (x, y) to

2c = td(x, y), (37)

2c = td−1(x, y). (38)

For a moment, let k be some given natural number. Using the expression for the derivative of gd′(y)

in (25), also from the proof of Proposition 3, yields

∂gk+d(y)

∂y
= −(k + d)yk+d−1 − yk+d

ey(k + d)!
= − yk+d−1

ey(k + d− 1)!
+

yk+d

ey(k + d)!
= gk+d−1(y)− gk+d(y). (39)

We now take the derivative of td(x, y), for which we rely on expressions (36) and (39). For this purpose,

we further observe that the sums of td(x, y) and the sums of its derivative uniformly converge in both

47



variables, and thus

∂td(x, y)

∂y
= −

∞∑
k=0

xk

exk!

(
∂gk+d(y)

∂y
+
∂gk+d+1(y)

∂y

)

= −
∞∑
k=0

xk

exk!
(gk+d−1(y)− gk+d(y) + gk+d(y)− gk+d+1(y))

= −
∞∑
k=0

xk

exk!
(gk+d−1(y) + gk+d(y)) +

∞∑
k=0

xk

exk!
(gk+d(y) + gk+d+1(y))

=
∞∑
k=0

xk

exk!
(2c− gk+d−1(y)− gk+d(y))−

∞∑
k=0

xk

exk!
(2c− gk+d(y)− gk+d+1(y))

= td−1(x, y)− td(x, y). (40)

Next, we claim that for any real number ε > 0, there exists another real number z∗(ε), such that

zk

ezk!
< ε, for all z > z∗(ε) and all k ∈ N. (41)

The proof of this claim follows immediately from two observations. First, given ε, we know from

Proposition 3 that there is k∗(ε) such that

zk

ezk!
< ε, for all z ∈ R+ and any integer k with k ≥ k∗(ε). (42)

Second, consider some k ∈ {0, . . . , k∗(ε)}. Considering k a constant, zk

k! is a polynomial function of z,

while ez is an exponential function. Therefore, there is z(ε, k) such that

zk

ezk!
< ε, for all z ≥ z(ε, k). (43)

Then, the claim in (41) follows from (42) and (43) by taking

z∗(ε) = max
k∈{0,...,k∗(ε)}

z(ε, k).

Now, note that for any fixed x, we have

td(x, 0) = 0 (44)

and

lim
y→∞

td(x, y) = 0. (45)

The first equality is straightforward since d ≥ 1, the latter holds since (41) implies that

lim
y→∞

td(x, y) = lim
ε→0

lim
y→∞
y≥z∗(ε)

∞∑
k=0

xk

exk!

(
yk+d

ey(k + d′)!
+

yk+d+1

ey(k + d+ 1)!

)

< lim
ε→0

lim
y→∞
y≥z∗(ε)

2ε ·
∞∑
k=0

xk

exk!
= lim

ε→0
2ε = 0,

where the penultimate equality follows from the fact that
∑∞

k=0
xk

exk! = 1. As a consequence, Equa-

tions (44) and (45), together with the fact td(x, y) is a positive function, imply that there is y∗(x) such
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that td(x, y) is maximum at (x, y∗(x)). Since td(x, y) is differentiable (and, hence, bounded) in both

variables, the following first-order condition must hold at the maximum:

∂td(x, y
∗(x))

∂y
= 0. (46)

By (40), it then follows that

td(x, y
∗(x)) = td−1(x, y∗(x)). (47)

Thanks to the equality in (47), we are now in a position to solve the system of equations made up of (37)

and (38). To do this, let us define the following real-valued function:

s(x) := td(x, y
∗(x)) = td−1(x, y∗(x)) = max

y∈R+

td(x, y). (48)

We now study the properties of s(x). First, from the definitions of td(x, y) and s(x), it is straightforward

that

s(0) ≥ td(0, d) =
dd

edd!
+

dd+1

ed(d+ 1)!
.

Second,

lim
x→∞

s(x) = 0.

The above limit can be proved in the same way as the limit in (45), if we use (41) and the fact that for

all y ∈ R+,
∞∑
k=0

(
yk+d

ey(k + d)!
+

yk+d−1

ey(k + d− 1)!

)
≤ 2.

Third, td(x, y) has bounded partial derivatives with respect to both variables x and y, since the sums

uniformly converge to finite values. This implies that the function td(x, y) is uniformly continuous in

both variables x and y. Indeed, analogously to (40), it can be shown that

∂td(x, y)

∂x
= td−1(x, y)− td(x, y).

Then, one can verify that the partial derivatives of td(x, y) are in [−1, 1]. This follows from noting that

both td(x, y) and td−1(x, y) belong to [0, 1] when x, y ≥ 0.

Fourth, we show by contradiction that s(x) is continuous. Suppose that s(x) is not continuous. Then,

there exists x0 and a sequence (xn)n≥1 converging to x0, such that (s(xn))n≥1 does not converge to

s(x0). We distinguish two cases:

• Case 1: There exists ε > 0 and a subsequence of (xn)n≥1 that converges to x0, say (x′n)n≥1, such

that for each i ∈ N,

s(x′i) < s(x0)− ε. (49)

By the definition of function s(x), we must have s(xi) ≥ t(xi, y(x0)), which together with (49),

implies that for all i ∈ N,

t(xi, y(x0)) < s(x0)− ε. (50)

However, by uniform continuity of td(x, y) in x, it must also be the case that

lim
i→∞

td(xi, y(x0)) = s(x0).
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This is in contradiction to (50).

• Case 2: There exists ε > 0 and a subsequence of (xn)n≥1 that converges to x0, say (x′n)n≥1, such

that for each i ∈ N,

s(x0) + ε < s(x′i). (51)

By the definition of function s(x), we must have s(x0) ≥ t(x0, y(x′i)), which together with (51),

implies that for all i ∈ N,

t(x0, y(x′i)) < s(x′i). (52)

However, since td(x, y) is uniformly continuous in x,

lim
i→∞

td(xi, y(x0)) = s(x0).

This is a contradiction with (52).

Finally, note that s(0) ≥ 2c is equivalent to

c ≤ 1

2

(
dd

edd!
+

dd+1

ed(d+ 1)!

)
:= c∗∗(d). (53)

Assuming (53), it follows from the properties of s(x) outlined above that there is x∗ ∈ R+ such that

s(x∗) = 2c. In turn, by the definition of s(x), this implies that the pair (x∗, y∗(x∗)) satisfies

td−1(x∗, y∗(x∗)) = td(x
∗, y∗(x∗)) = 2c.

That is, (x∗, y∗(x∗)) solves the system of equations made up of Equations (37) and (38). This completes

the proof of the proposition.

Proof of Proposition 1. Throughout the proof, we have d ≥ 1 denote a given positive integer. In addi-

tion, for any integer h ≥ 1, define

lh(x, y) :=
∞∑
k=0

xk

k!

(
yk+h−1

(k + h− 1)!
− yk+h+1

(k + h+ 1)!

)
. (54)

Given a solution (xA, xB) ∈ R+ × R+ of the system of equations made up of (28) and (29), one can

obtain after straightforward algebraic manipulations that

ld(xA, xB) = 0. (55)

Next, we discuss some properties of lh(x, y) for all integers h ≥ 1. We start by noting that for all y > 0,

lh(y, y) =

∞∑
k=0

(
y2k+h−1

k!(k + h− 1)!
− y2k+h+1

k!(k + h+ 1)!

)

=
yh−1

(h− 1)!
+

∞∑
k=0

y2k+h+1

(
1

(k + 1)!(k + h)!
− 1

k!(k + h+ 1)!

)
> 0, (56)

where the inequality holds since for any integer k ≥ 0,

k!(h+ k + 1)!

(k + 1)!(h+ k)!
=
k + 1 + h

k + 1
> 1.
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Next, we show that function lh(x, y) is increasing in x. For this purpose, we first note that

∂lh(x, y)

∂x
= lh+1(x, y). (57)

Second, for all integers k ≥ 0 and all y > 0,

yk+h−1

(k + h− 1)!
− yk+h+1

(k + h+ 1)!
> 0⇐⇒ (k + h+ 1)(k + h)− y2 > 0. (58)

Third, take the smallest integer h∗ ≥ 1 such that

x2
B < (h∗ + 1)h∗.

Trivially, for any integer k ≥ 0,

(k + h∗ + 1)(k + h∗) > (h∗ + 1)h∗,

which, together with (58), implies that

xB
k+h∗−1

(k + h∗ − 1)!
− xB

k+h∗+1

(k + h∗ + 1)!
> 0. (59)

It then follows from (57) and (59) that for all x > 0,

∂lh∗(x, xB)

∂x
> 0. (60)

From (56) and (60), we then see that for all x ≥ xB,

lh∗(x, xB) > 0. (61)

Finally, by induction on h = h∗, . . . , 1, if we use (56) and (57) repeatedly, we can similarly show—

departing from (60) and (61) as the base case—that lh(x, xB) is positive and increasing in x, given that

x ≥ xB. In particular, if xA ≥ xB, it must be the case that

ld(xA, xB) > 0, (62)

which is in contradiction to (55). This completes the proof of the proposition.

Proof of Theorem 2: As already mentioned in the main body of the paper, we assume that all citizens

in AG vote sincerely, i.e., that they vote for their preferred alternative. Below, we show that this

assumption is also consistent with equilibrium behavior. Accordingly, the behavior of any such citizen

i is described by the random variable Xi—see (2)—, while the difference in vote count for alternative A

with respect to alternative B obtained in the first voting round is described by the random variable

D =
∑
i∈Ω1

Xi,

which has been defined in (3), with Ω1 denoting the set of citizens who belong to AG. Because E[Xi] =
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pA − pB and Xi are i.i.d., it follows that

E[D] = N1 · E[Xi] = N1 · (pA − pB).

Recall that d∗ = d∗(c) has been defined in Proposition 2. This integer guarantees that if d, the outcome

associated with the random variable D, is at least d∗, the only equilibrium of game G∗2(d) is the no-show

equilibrium. In that case, the only votes are cast in the first round, and because d > 0, alternative A

will be chosen. Now, let

N∗1 = N∗1 (c, ε, pA − pB) :=

 d∗

pA − pB
+

ln 2
ε

(pA − pB)2
+

√
2d∗(pA − pB) ln 2

ε + (ln 2
ε )2

(pA − pB)2

 . (63)

Henceforth, we assume that

N1 ≥ N∗1 (c, ε, pA − pB). (64)

Then, we obtain the following:

d∗ − E[D] = d∗ −N1 · (pA − pB) ≤ d∗ −N∗1 · (pA − pB) < 0, (65)

where the first inequality follows from Inequality (64) and the second inequality follows from the fact

that N∗1 ≥ d∗

pA−pB , as implied by the definition of N∗1 in (63). Then, the following chain of inequalities

also holds:

P [D ≤ d∗] = P [D − E[D] ≤ d∗ − E[D]] ≤ P [|D − E[D]| ≥ E[D]− d∗] ,

where the last inequality holds due to (65). Moreover, by Hoeffding’s inequality (Hoeffding, 1963),

P [|D − E[D]| ≥ E[D]− d∗] ≤ 2exp

(
− (E[D]− d∗)2

2N1

)
= 2exp

(
− (N1(pA − pB)− d∗)2

2N1

)
≤ ε,

where the last inequality holds by (63) and (64). Combining the last two chains of inequalities yields

P [D ≥ d∗] ≥ P [D > d∗] ≥ 1− ε.

Accordingly, with probability 1−ε, no citizen will vote in the second round. Given this outcome, citizens

in the first round will not want to change their sincere voting decision. On the one hand, all first-round

citizens whose preferred alternative is A are content with their decision as their preferred outcome will

be implemented. On the other, all first-round citizens whose preferred alternative is B would not obtain

a better outcome by switching their vote to A in the first round, for this would only increase d. This

completes the proof.

Proof of Corollary 1: From the proof of Theorem 2—see (63)—, it follows that N∗1 will increase if

either ε or pA − pB decreases. We now focus on changes in c. From the proof of Proposition 3—see

Equation (27)—, we know that d∗(c) increases as c decreases. Since N∗1 decreases when d∗ increases,

the claim holds.
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Proof of Theorem 3: Under AV, the average per-capita social cost of subsidizing is f · c, where f is the

expected ratio of the AG size to the total number of voters

f = E
[

N1

N1 +N2

]
. (66)

Since N2 is a Poisson random variable with parameter n2, we can easily obtain the following upper

bound for f :

f = N1 ·
∞∑
k=0

1

N1 + k

nk2
k!en2

≤ N1 ·
∞∑
k=0

nk2
(k + 1)!en2

=
N1

n2
·
(

1− 1

en2

)
. (67)

In particular, for a fixedN1, we have limn2→∞ f = 0. Next, according to Theorem 2, ifN1 ≥ N∗1 (ε, c, pA−
pB), the outcome will be fully determined by AG with probability 1− ε. Therefore,

WAV ≥ (1− ε) · (wd(N1, n2)− cf) + ε · (pB − c), (68)

where ε > 0 and wd(N1, n2) is the expected average welfare (in the entire population) obtained from

the alternative implemented when members of AG, a group of size N1, vote sincerely. One can see that

wd(N1, n2) = pA · (1− zd(N1, n2)), (69)

where zd(N1, n2) is some function that satisfies

lim
N1→∞

zd(N1, n2) = 0. (70)

Hence, there is ε∗ > 0 such that for all N1 ≥ N∗1 (ε∗, c, pA − pB) we derive from Inequality (68) that

WAV > pA − cf + δ(N1, n2), (71)

where

lim
N1→∞

δ(N1, n2) = 0. (72)

Finally, because pA − pB > 0 and due to (67) and (72), there must be N∗∗1 (ε, c, pA − pB), with

N∗∗1 (ε, c, pA − pB) ≥ N∗1 (ε∗, c, pA − pB) and n∗2(c) such that if N1 ≥ N∗∗1 (ε∗, c, pA − pB) and n2 ≥ n∗2(c),

pA − cf + δ(N1, n2) > pA − c = W com

and

pA − cf + δ(N1, n2) >
1

2
− 2x

N1 + n2
· c = W vol,

where x is the solution to Equation (6). In combination with (68) and (71), the latter two inequalities

prove that WAV > max{W vol,W com}.
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Appendix B

In this appendix we extend our analysis in three directions. First, we analyze the robustness of The-

orem 1 when citizens with the same preferences use different strategies; second, we analyze AV under

the assumption that voters are of two types: non-partisan (with participation cost c > 0) and partisan

(with zero participation costs); third, we investigate the performance of AV when there are more than

two alternatives.

Multiple citizen types

In the main body of the paper, we have assumed that all agents who preferred alternative A to B

used the same strategy. More particularly, in our analysis of game G2(d), we assumed that all citizens

played one of two strategies: αA for citizens whose preferred alternative is A and αB for citizens whose

preferred alternative is B. In this section, we assume that citizens of type A and B may be of different

(sub)types and that these are given exogenously.

More specifically, for a given integer T ≥ 1, let ST = {(ρk)Tk=1|ρ1, . . . , ρT ≥ 0,
∑T

k=1 ρk = 1} denote

the T -simplex. Then, we assume that there exist ρA = (ρkA)T
A

k=1 ∈ STA and ρB = (ρkB)T
B

k=1 ∈ STB ,

with TA, TB ≥ 1, such that any citizen i’s probability of being of (sub)type tkA is equal to pA · ρkA. We

assume that citizens of different (sub)types may use different strategies, i.e, they may randomize between

voting or not, using different probabilities. Accordingly, we use αA,k, with αA,k ∈ [0, 1], to denote the

probability according to which citizens of type tkA will turn out (and then vote for alternative A).66 In

turn, αB,k can be analogously defined for B-supporters. By the properties of the Poisson probability

distribution, the number of citizens of each (sub)type tkA in the second round of AV is a Poisson random

variable with parameter n2 · pA · ρkA · αA,k, which we denote by xA,k. Similarly, the number of citizens

of each (sub)type tkB is a Poisson random variable with average n2 · pB · ρkB · αB,k, which we denote by

xB,k. We recall that d∗(c) has been defined as the (minimum) threshold guaranteeing that, if d ≥ d∗(c),
no citizen will turn out in the second round of AV. We can prove the following result, which generalizes

Theorem 1 to a setting with multiple citizen types.

Proposition 6. Assume that there are TA (sub)types of A-supporters and TB (sub)types of B-supporters.

For any cost c, with 0 < c < 1/2, if d ≥ d∗(c) ≥ 2, the only equilibrium is the no-show equilibrium.

Proof. Let N denote the set of non-negative integer numbers. The fact that the no-show strategy profile

is an equilibrium is trivial, provided that d∗(c) ≥ 2. To show that this is the unique equilibrium, we

distinguish two cases.

Case I: TA ≥ 1 and TB = 1

For all voters of type A, regardless of their subtype, the indifference condition between turning out and

abstaining is the following:

2c =
∑

(k1,...,kTA)∈NTA

TA∏
r=1

xA,r
kr

exA,rkr!
·
(

xB
∑TA

s=1 ks+d

exB (
∑TA

s=1 ks + d)!
+

xB
∑TA

s=1 ks+d+1

exB (
∑TA

s=1 ks + d+ 1)!

)
. (73)

66To avoid cumbersome notation, we have dropped the dependence of strategies on handicap d.
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Nevertheless, by Inequality (30)—see the proof of Proposition 2—, we obtain for all d ≥ d∗(c) and all

xB ∈ R+

∑
(k1,...,kTA)∈NTA

TA∏
r=1

xA,r
kr

exA,rkr!
·
(

x
∑TA

s=1 ks+d
B

exB (
∑TA

s=1 ks + d)!
+

x
∑TA

s=1 ks+d+1
B

exB (
∑TA

s=1 ks + d+ 1)!

)

<
∑

(k1,...,kTA)∈NTA

TA∏
r=1

xA,r
kr

exA,rkr!
· 2c = 2c, (74)

where the second inequality holds from the following identity that

∑
(k1,...,kTA)∈NTA

TA∏
r=1

xkrA,r
exA,rkr!

= 1. (75)

Assuming Equation (96), it must be the case that Equation (73) does not have a solution, and hence

there cannot be an equilibrium of game G2(d) in which A-supporters are split into TA (sub)types and

each (sub)type trA of citizen plays according to a totally mixed strategy xA,r. Finally, it only remains

to prove Equation (96). We prove the claim by induction on TA. The case TA = 1 holds directly from

the properties of the Poisson probability distribution. Hence, assume that Equation (96) holds for some

TA ≥ 1. Then,

∑
(k1,...,kTA+1)∈NT

A+1

TA+1∏
r=1

xkrA,r
exA,rkr!

=

∞∑
k=0


∑

(k1,...,kTA+1)∈N
TA+1,

k
TA+1

=k

TA∏
r=1

xkrA,r
exA,rkr!

·
xk
A,TA+1

exA,TA+1k!




=
∞∑
k=0

 xk
A,TA+1

exA,TA+1k!

∑
(k1,...,kTA)∈NTA

TA∏
r=1

xkrA,r
exA,rkr!

 =
∞∑
k=0

xk
A,TA+1

exA,TA+1k!
= 1,

where the penultimate equality holds by induction and the last equality holds due to the properties of

the Poisson probability distribution.

Case II: TA ≥ 1 and TB > 1

Let us assume TA is given. We introduce further notation. Given xB = (xB,1, ..., xB,TB ) and kB =

(kB1 , ..., k
B
TB

), we use P (xB, k
B) to denote the probability that, for each (sub)type tBs (s = 1, . . . , TB),

there are exactly kBs citizens of this (sub)type that vote, provided that citizens of type tsB use strategy

αB,s (which leads to xB,s). Because (sub)types are drawn independently, we obtain

P (xB, k
B) =

TB∏
s=1

x
kBs
B,s

exB,skBs !
.

Moreover, because of the multinomial theorem we obtain that for all m ≥ 0

∑
(
kB1 ,...,k

B
TB

)
∈NTB ,∑TB

s=1 k
B
s =m

P (xB, k
B) =

(∑TB

s=1 xB,s

)m
e
∑TB

s=1 xB,sm!
. (76)
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For all voters of type A, the indifference condition between turning out and abstaining is

2c =
∑

(
kA1 ,...,k

A
TA

)
∈NTA

TA∏
r=1

xA,r
kAr

exA,rkAr !
·


∑

kB=
(
kB1 ,...,k

B
TB

)
∈NTB ,∑TB

s=1 k
B
s =
∑TA

s=1 k
A
s +d

P (xB, k
B) +

∑
kB=

(
kB1 ,...,k

B
TB

)
∈NTB ,∑TB

s=1 k
B
s =
∑TA

s=1 k
A
s +d+1

P (xB, k
B)



=
∑

(
kA1 ,...,k

A
TA

)
∈NTA

TA∏
r=1

xA,r
kAr

exA,rkAr !
·


(∑TB

s=1 xB,s

)∑TA

s=1 k
A
s +d

e
∑TB

s=1 xB,s
(∑TA

s=1 k
A
s + d

)
!

+

(∑TB

s=1 xB,s

)∑TA

s=1 k
A
s +d+1

e
∑TB

s=1 xB,s
(∑TA

s=1 k
A
s + d+ 1

)
!


=

∑
(
kA1 ,...,k

A
TA

)
∈NTA

TA∏
r=1

xA,r
kAr

exA,rkAr !
·

 σ
∑TA

s=1 k
A
s +d

B

eσB
(∑TA

s=1 k
A
s + d

)
!

+
σ
∑TA

s=1 k
A
s +d+1

B

eσB
(∑TA

s=1 k
A
s + d+ 1

)
!

 < 2c,

where σB :=
∑TB

s=1 xB,s, the second equality follows from Equation (76), and the inequality follows from

Inequality (74) if d ≥ d∗(c). Because this involves a contradiction, it must be the case that if d ≥ d∗(c),
there cannot exist an equilibrium of game G2(d) in which A-supporters are split into TA (sub)types and

each (sub)type trA of citizen plays according to a totally mixed strategy xA,r, and in which B-supporters

are split into TB (sub)types and each (sub)type trB of citizen plays according to a totally mixed strategy

xB,r. This completes the proof.67

Partisan voters

In this section, we assume that some voters are partisan, i.e., that they vote in favor of their preferred

alternative regardless of any other considerations. One possibility is that they experience no voting

costs. This is the approach we take in what follows. We consider two cases. First, we assume that

partisanship is independent of preferences; second, we assume that the expected number of partisan

voters is the same for both alternatives, so that partisanship is no longer independent of preferences.

No correlation between partisanship and preferences

We start by recalling that N1 citizens vote in the first round of AV and that N2 citizens vote in the second

round, where N1 is a given number (which will remain fixed throughout) and N2 is drawn from a Poisson

random variable with parameter n2. By the properties of Poisson games, the number of partisan voters

(non-partisan voters) in the second round is a Poisson random variable with parameter µ·n2 ((1−µ)·n2),

where µ is the probability that a citizen is a partisan voter.

Our first result shows that if the (expected) number of partisan voters who have a right to vote in the

second voting round is large enough (because the share of partisan voters and the size of the second

voting group are large), such voters, together with AG members, will decide the outcome of AV alone.

The reason is that non-partisan voters will have no incentives to vote in the second round of AV. We

recall that the threshold d∗(c) has been defined in Proposition 2.

67The case in which some (sub)types play according to pure strategies can be proved analogously to the case
considered above. We also note that, although we have focused on the case where TA and TB are finite numbers,
the claim in Proposition 6 can be extended to the case where TA or TB are infinite.
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Proposition 7. For each δ > 0, there exists N∗ = N∗(c, pA − pB, δ,N1) ∈ R+ such that if n2 · µ ≥ N∗

the vote-count difference (i.e., the handicap) yielded by AG members plus the partisan voters who have

a right to vote in the second round of AV is larger than d∗(c) with probability at least 1− δ.

Proof. First, let ε > 0, the precise value of which will be determined later. Then, given N∗1 =

N∗1 (ε, c, pA − pB) as introduced in Theorem 2, define

n∗ := max{0, N∗1 (ε, c, pA − pB)−N1}.

Second, we show that the probability of a Poisson random variable X with parameter λ being larger

than any given natural number converges to one exponentially as λ tends to infinity. This follows from

noting that the tail bound of such a random variable for x < λ (see Mitzenmacher and Upfal, 2005, p.

97) is

P (X ≤ x) ≤ e−λ(eλ)x

xx
. (77)

Now set λ = n2 · µ and x = n2·µ
2 . Then, by using (77), we obtain

P
(

there are at most
n2 · µ

2
partisan voters in the second round of AV

)
≤
(

2

e

)n2·µ
2

.

Therefore, the probability that the number of partisan voters in the second voting round is larger than

or equal to n2·µ
2 is at least 1− (2

e )
n2·µ
2 . If we take n∗2 and µ∗ such that

(
2

e

)n∗2·µ
∗

2

≤ ε

and

n∗2 · µ∗ ≥ n∗,

then the probability that the number of citizens from AG plus the number of partisan citizens participat-

ing in the second voting round of AV is larger than or equal to N∗1 is 1−ε. Moreover, because preferences

are uncorrelated with partisanship and all members of AG vote (because they are incentivized to do

so), as do all partisan voters of the second round (because they are partisan), the probability that the

outcome of AV is described by Theorem 2 is (1− ε)2. Choosing ε as the smallest solution of

(1− ε)2 = (1− δ)

completes the proof.

We note that N∗ is decreasing in N1, and that by taking n∗2 to infinity, µ∗ converges to zero. The above

result thus warns us against the use of AV (with compulsory voting in the first round) when partisans

are numerous enough to determine the outcome by themselves. Because this property also holds for

one-round voluntary voting (it suffices to take the bound given by setting N1 = 0), there is no underdog

effect that AV can solve—as already discussed, one-round voting with the majority rule implements the

utilitarian optimal solution in such circumstances.

Our second proposition complements Proposition 7 insofar as it proves that for fixed N1 and n2, if,

by contrast to the latter result, there are not too many partisans, then the members of AG plus

partisan voters with a right to vote in the second voting round will not yield a vote-count difference
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(i.e., a handicap) above the threshold above which only the no-show equilibrium exists with very high

probability. Given the results in Propositions 5 and 4, this opens up the possibility that one-round

voluntary voting decisions may often not reflect the will of the majority. As in the baseline model

without partisans, AV is able to correct this drawback at low cost. For the sake of simplicity, we assume

that N1 = 0. The logic of the proof is the same for different values of N1.

Proposition 8. For each δ > 0, there exists a threshold µ∗∗ = µ∗∗(c, pA − pB, δ, n2) such that for any

µ < µ∗∗, the vote-count difference (i.e., the handicap) yielded by the partisan voters who have a right to

vote in the second round of AV is smaller than d∗(c) with probability at least 1− δ.

Proof. Again, we use a tail bound of a Poisson random variable with parameter λ. Specifically, this

time we use the fact that the tail bound of such random variable for x > λ (see Mitzenmacher and

Upfal, 2005, p. 97) is

P (X ≥ x) ≤ e−λ(eλ)x

xx
. (78)

Now set λ = n2 · µ and x = d∗(c), where, as we recall, d∗(c) has been defined in Proposition 2. Then,

using (78), we obtain

P (there are at least d∗(c) partisan voters in the second round of AV) ≤ ed∗(c)−n2·µ ·
(
n2 · µ
d∗(c)

)d∗(c)
.

The right-hand side of the above inequality is decreasing in µ and, moreover,

lim
µ→0

[
ed
∗(c)−n2·µ ·

(
n2 · µ
d∗(c)

)d∗(c)]
= 0.

Therefore, there exists µ
′
(c, pA − pB, δ, n2) such that for µ < µ

′
(c, pA − pB, δ, n2),

ed
∗(c)−n2·µ ·

(
n2 · µ
d∗(c)

)d∗(c)
< δ.

In turn, the probability that there are at most d∗(c) partisan voters in the second round of AV is at

least

1− ed∗(c)−n2·µ ·
(
n2 · µ
d∗(c)

)d∗(c)
.

Taking µ∗∗ such that

µ∗∗ = min

{
µ
′
(c, pA − pB, δ, n2),

d∗(c)

n2

}
completes the proof. The reason is that even if all partisan voters with a right to vote in the second

round vote alike, the vote-count difference (i.e., the handicap) they yield will not be above d∗(c).

We point out that higher thresholds µ∗∗ could have been attained had we considered more likely outcomes

for the vote-count difference yielded by partisan voters, in which case bounds for the Skellam distribution

would have to be used instead of bounds for the Poisson distribution. Qualitatively, the results would

be the same, but the technicalities would be much more involved.
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Correlation between partisanship and preferences

In the previous section, we assumed that partisanship and preferences were drawn independently for

each citizen. One important consequence is that, as we increase n2, we increase the (expected) difference

between the number of partisan voters who are A-supporters and the number of partisan voters who

are B-supporters. This follows because pA > pB, i.e., is more likely to be an A-supporter than a

B-supporter. In the present section, we again focus on the second round of AV or, equal in essence,

we assume N1 = 0. That is, we consider one-round voluntary voting. Then, we take a reduced form

modelling assumption on partisan voters and assume that the vote-count difference yielded by their

votes (i.e., votes for A minus votes for B) follows a probability distribution that is symmetric around

zero. We use f(d), with d ∈ Z, to denote this (discrete) density function. Note that we are not making

any assumption about the expected total number of partisan voters, which can be arbitrarily chosen (in

particular, it can be made arbitrarily high). One possibility is that both the number of A-supporters

who are partisan and the number of B-supporters who are partisan each follow a Poisson distribution

with parameter (n2 ·µ)/2, in which case f(d) is a Skellam distribution. In the latter case, the number of

non-partisan voters who are A-supporters (B-supporters) is in turn distributed according to a Poisson

distribution of parameter (1− µ)pA ((1− µ)pB). We proceed on this assumption regardless of whether

f(d) is a Skellam distribution or not. This can be done without loss of generality. As a consequence, A

is the socially preferred alternative from an ex-ante perspective. For this setting, we obtain the following

result:

Proposition 9. In any totally mixed strategy equilibrium, the probability that either alternative will win

is equal to 1
2 . Moreover, if

c <
1

2
· (f(0) + f(−1)) (79)

there is always a totally mixed strategy equilibrium.

Proof. We start by showing that both alternatives are expected to be chosen with equal probability.

The indifference condition for each non-partisan A-supporter is

c =
1

2

∞∑
d=−∞

f(d)
∞∑
a=0

[pxA(a)pxB (a+ d) + pxA(a)pxB (a+ d+ 1)] , (80)

while the indifference condition for each non-partisan B-supporter is

c =
1

2

∞∑
d=−∞

f(d)
∞∑
a=0

[pxA(a)pxB (a+ d) + pxA(a)pxB (a+ d− 1)] . (81)

In the above equations, xA (xB) is the expected number of A-supporters (B-supporters) voting in the

second round, xA = αApA(1−µ)n2 (xB = αBpB(1−µ)n2). This is analogous to our baseline set-up. In

turn, pxA(a) (pxB (b)) denotes the probability that a Poisson random variable with parameter xA (xB)

is equal to a (b).

We claim—and will now prove—that xA = xB. By making the right-hand sides of (80) and (81) equal,

we obtain after straightforward algebraic manipulations the following expression:

∞∑
d=−∞

f(d)

∞∑
a=0

pxA(a)pxB (a+ d+ 1) =

∞∑
d=−∞

f(d)

∞∑
a=0

pxA(a)pxB (a+ d− 1). (82)
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Let now some d ≥ 0 be fixed momentarily. Then, consider the summand corresponding to d from the

left-hand side (82) and the summand corresponding to −d from the right-hand side. If we subtract both

terms, we obtain

∞∑
a=0

pxA(a)pxB (a+ d+ 1)−
∞∑
a=0

pxA(a)pxB (a− d− 1), (83)

which can be rewritten as

∞∑
a=0

pxA(a)pxB (a+ d+ 1)−
∞∑
a=0

pxA(a+ d+ 1)pxB (a) =
∞∑
a=0

xaAx
a
B

exAexBa!(a+ d+ 1)!

(
xd+1
B − xd+1

A

)
.

On the one hand, the left-hand side of the above expression can be obtained from (83) by means of

the change of variable a := a + d + 1. Indeed, it suffices to note that pxB (a − d − 1) = 0 whenever

a− d− 1 < 0. On the other hand, the right-hand side of the above expression can be obtained from the

left-hand side if we note that xd+1
A −xd+1

B = (xA−xB) ·gd(xA, xB), where gd(xA, xB) is some polynomial

in xA and xB with the property that all its coefficients are positive. In the case of d < 0, we can obtain

the very same expressions. As a consequence, summing up such expressions for all d ∈ Z yields

(xA − xB)g(xA, xB) = 0,

where g(xA, xB) is some strictly positive function. Therefore, xA = xB, as we claimed. Then, the

probability that alternative A will win is equal to

PAxA,xB =
∞∑

d=−∞
f(d)

∞∑
a=0

pxA(a)
a−d−1∑
b=0

[
pxB (b) +

1

2
pxB (a− d)

]
,

while the probability that alternative B will win is equal to

PBxA,xB =
∞∑

d=−∞
f(d)

∞∑
b=0

pxB (b)
b+d−1∑
a=0

[
pxA(a) +

1

2
pxA(b+ d)

]
.

It then remains to note that PAxA,xB = PBxB ,xA , which together with xA = xB implies that PAxA,xA = 1
2 ,

as we claimed.

Now that we have shown that the probability that either alternative will win is equal to 1/2 in any

totally mixed strategy equilibrium, we show the existence of such equilibria if (79) holds. Due to the

symmetry of f(d) and the fact that x := xA = xB, one can easily see that Equations (80) and (81) are

the same and that they reduce to

c =
1

2

∞∑
d=−∞

f(d)
∞∑
a=0

[px(a)px(a+ d) + px(a)px(a+ d+ 1)] . (84)

Let us focus for a moment on the right-hand side of Equation (84), which we denote as G(x). On the

one hand, one can easily see that if y 6= 0, then p0(y) = 0. After some algebraic manipulations and

simplifications, this property implies that

G(0) =
1

2
(f(0) + f(−1)). (85)
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On the other hand, along the lines of the proof of Proposition 5—see Equations (41), (42), and (43)—one

can verify that

lim
x→∞

G(x) = 0. (86)

This is very intuitive: if turnout yielded by partisan voters goes to infinity, the probability that their

voting will make a difference goes to zero. Finally, given the continuity of G(x), Equations (85) and (86)

imply that there must be a positive real number x∗ such that c = G(x∗). This proves the existence of

totally mixed strategy equilibria, thereby completing the proof of the proposition.

The above result shows that an equilibrium where non-partisan voters turn out with positive probability

exists for one-round voluntary voting. It suffices for voting costs to be lower than half the (perceived)

probability that the net vote effect of partisan voters’ will yield either a tie or one vote fewer for their

preferred alternative. This is just a sufficient condition, and weaker conditions will also guarantee the

existence of such equilibria. Inquiring about such conditions is beyond the scope of our paper.

Different costs across types

In this section, we analyze the case where voting costs differ across citizen types. Specifically, we assume

that voting costs are drawn from two degenerate distributions: all A-supporters have a voting cost equal

to cA, with 0 < cA < 1/2, while all B-supporters have a voting cost equal to cB, with 0 < cB < 1/2.

We consider all possible cases regarding the relation between cA and cB, and in particular it will be

possible for the minority to enjoy a cost advantage or for the majority to do so. Recall that for a voter

of type t ∈ {A,B}, total expected turnout in an equilibrium (αA(d), αB(d)) of game G2(d) is given by

xt = n2 · pt · αt, and that it is equivalent to describe an equilibrium by (αA, αB) or by (xA, xB).

As a benchmark case, we focus on one-round voluntary voting, and thus we assume d = 0. The

equilibrium conditions for a totally mixed equilibrium in this case are

cA =
1

2

∞∑
k=0

xkA
exAk!

xkB
exBk!

+
1

2

∞∑
k=0

xkA
exAk!

xk+1
B

exB (k + 1)!
, (87)

cB =
1

2

∞∑
k=0

xkA
exAk!

xkB
exBk!

+
1

2

∞∑
k=0

xk+1
A

exA(k + 1)!

xkB
exBk!

. (88)

By subtracting Equations (87) and (88), we obtain

cA − cB =
1

2
(xB − xA)

∞∑
k=0

xkAx
k
B

exA+xB (k + 1)!k!
.

That is, cA − cB and xA − xB have opposite signs, so expected turnout is higher for the alternative

whose supporters have lower voting costs; we have have called this the cost effect. We note that if

d = 0, there cannot be a handicap effect, and then the cost effect dominates over the underdog effect:

If the majority has lower voting costs than the minority, the former displays higher aggregate—but not

necessarily individual—turnout levels, despite any potential underdog effect that could favor the latter.

Next, we focus on positive handicaps, i.e., we assume d > 0.68 We obtain the following result:

68The case d < 0 yields symmetric results.
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Proposition 10. Let (αA(d), αB(d)) ∈ (0, 1) × (0, 1) be a (totally mixed) equilibrium of game G2(d),

for some d > 0. Then,

(i) cA > cB implies xA < xB,

(ii) cA < cB does not necessarily imply xA > xB.

Proof. First, we show Part (i). It suffices to build on the proof of Proposition 1, and hence we can

focus on the differences that arise when cA 6= cB.69 After algebraic manipulations, one can verify that

the expression defined in (54) reduces to

ld(xA, xB) = 2(cB − cA) < 0. (89)

In the proof of Proposition 1, where cA = cB, we have ld(xA, xB) = 0—see Equation (55). Now, if we

assume xA ≥ xB, we obtain (62) as in the case where d = 0. This contradicts (89), and hence it must

be that xA < xB.

Second, we show Part (ii) by providing a counterexample to the statement that cA < cB must imply

xA > xB. Indeed, let d = 2 and cA ≈ 0.1577 < cB ≈ 0.1733. Then, xA = 9.6 and xB = 9.8 define an

equilibrium of game G2(d).

According to Proposition 10, if the minority (namely, B-supporters) has lower costs than the majority

(namely, A-supporters) and alternative B is handicapped with respect to alternative A, the expected

turnout in favor of alternative B in the second round of AV is higher than that of alternative B in any

totally mixed equilibrium. In this case, the cost effect, the handicap effect and the underdog effect all

work towards increasing the marginal value of a vote for alternative B compared to the marginal value

of a vote for alternative A. If cA < cB, by contrast, the cost effect works against the handicap effect

(and against the underdog effect). This is reflected in the possibility that despite the cost disadvantage,

total expected turnout is larger for alternative B than for alternative A. As discussed above, this is

not possible if d = 0, in which case there is no handicap effect and the underdog effect alone does not

suffice to counteract the cost effect. Which effect dominates in general is nonetheless ambiguous in

the case of non-zero handicaps. While Part (ii) of Proposition 10 has shown that the handicap effect

together with the underdog effect may dominate over the cost effect, the opposite holds for different

cost specifications. One such example is cA ≈ 0.192498, cB ≈ 0.180021, and d = 2. It can be verified

that xA = 6.8 and xB = 10 define an equilibrium of game G2(d). A complete characterization of the

interplay between the three equilibrium effects in the case of cost differences is beyond the scope of the

present paper.

Up to this point, in our analysis in this section we have investigated some properties of totally mixed

equilibria, but we have not tackled the issue whether such equilibria (or other equilibria) exist at all. We

address this next. First, we show that if the difference across types regarding voting costs is sufficiently

large in relative terms, the citizens with the highest costs will typically not turn out at all in any

possible equilibrium of G2(d), and hence their preferred alternative will obtain zero votes in the second

voting round of AV. One possible exception is the case where the minority is very small—i.e., pB is very

small—and has arbitrarily lower relative voting costs than the majority (in particular, B-supporters

69A complete proof can be provided upon request.
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could have zero voting costs). In such a scenario, despite cost differences, there is an equilibrium in

which all members of the minority turn out with certainty and all members of the majority turn out

with probability one.

Proposition 11. Consider the game G2(d). Then,

(i) For a given cA, there is c∗B(cA, d) > 0 such that if cB < c∗B(cA, d), then A-supporters abstain in

any equilibrium where B-supporters do not vote with probability one.

(ii) For a given cB, there is c∗A(cB, d) > 0 such that if cA < c∗A(cB, d) and d > 1, then B-supporters

abstain in any equilibrium where A-supporters do not vote with probability one.

Proof. For x, y ≥ 0, it will be convenient to define

qd(x, y) =
∞∑
k=0

xk

exk!

yk+d+1

ey(k + d+ 1)!
. (90)

We stress that we focus on equilibria in which at least one voter type does not turn out with probability

one. Note that αt < 1 if and only if xt < n2 · pt, where t ∈ {A,B}. Then, the equilibrium conditions

for an equilibrium to be defined by (xA, xB) = (x, y), with x > 0 and 0 ≤ y < n2 · pB, can be written as

2cA ≤ qd(x, y) + qd−1(x, y), (91)

2cB ≥ qd−1(x, y) + qd−2(x, y). (92)

In any equilibrium defined by inequalities (91) and (92), A-supporters turn out with positive probability,

while B-supporters need not necessarily do so (and they do not turnout with probability one, by

assumption). By contrast, the equilibrium conditions for an equilibrium to be defined by (xA, xB) =

(x, y), with 0 ≤ x < n2 · pA and y > 0, are

2cA ≥ qd(x, y) + qd−1(x, y), (93)

2cB ≤ qd−1(x, y) + qd−2(x, y). (94)

In any equilibrium defined by inequalities (93) and (94), B-supporters turn out with positive probabil-

ity, while A-supporters need not necessarily do so (and they do not turnout with probability one, by

assumption).

First, we show Part (i). To this purpose, we have cA fixed and proceed by contradiction, i.e., we assume

that equilibria defined by (xA, xB) with xA > 0 and 0 ≤ xB < n2 · pB exist, even if cB is arbitrarily

close to zero. Then, consider any decreasing sequence {cn}n≥0 such that limn→∞ cn = 0. For every

such sequence, we let xn > 0 and 0 ≤ yn < n2 · pB be compatible with inequalities (91) and (92) when

A-supporters have voting costs equal to cA and B-supporters have voting costs equal to cn. It suffices

to consider any subsequence where such equilibria exist. On the one hand, assume that

z := inf
n≥0

qd−1(xn, yn) > 0.

From inequality (92), it must necessarily be that

cn ≥ z.
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However, this contradicts our assumptions on the sequence {cn, xn, yn}n≥0. Hence, there has to be

c∗B(cA, d), with c∗B(cA, d) > 0, such that if cB < c∗B(cA, d), then xA = 0 in any (possible) equilibrium

(xA, xB) of game G2(d) where xB < n2 · pB. If, on the other hand, z = 0, it follows from cA > 0 being

fixed that, at least for some subsequence {cn, xn, yn}n≥0,

w := inf
n≥0

qd(xn, yn) > 0. (95)

Next, we claim that

qd−1(xn, yn) ≥ w · d+ 1

n2 · pB
, (96)

which, together with (95), implies that z > 0, a contradiction with the assumption that z = 0. In such

case, i.e. if (96) holds, we obtain that xA = 0 if cB is below c∗B(cA, d) = 1
n2·pBw(d+ 1). Accordingly, it

remains to prove the claim in (96) for all n ≥ 0, which holds since

qd−1(xn, yn) ≥ d+ 1

yn
qd(xn, yn) ≥ d+ 1

n2 · pB
qd(xn, yn) ≥ w · d+ 1

n2 · pB
,

where the first inequality follows from some algebraic manipulations applied to the definition of qd(x, y)—

see expression (90)—, the second inequality holds because yn ≤ n2 · pB (by definition), and the third

inequality follows from (95). This completes the proof of the claim in (96).

Second, we show Part (ii). We recall that we are assuming d > 1. Similarly to the proof of Part (i), we

take cB > 0 fixed and proceed by contradiction. That is, we assume that equilibria defined by (xA, xB)

with 0 ≤ xA < n2 · pA and xB > 0 exist, even if cA is arbitrarily close to zero. Consider any decreasing

sequence {cn}n≥0 such that limn→∞ cn = 0. For every such sequence, we let 0 ≤ xn < n2 · pA and

yn > 0 be compatible with inequalities (93) and (94) when B-supporters have voting costs equal to cB

and A-supporters have voting costs equal to cn. On the one hand, assume that

z := inf
n≥0

qd−1(xn, yn) > 0,

From inequality (93), it must necessarily be that

cn ≥ z.

However, this contradicts our assumptions on the sequence {cn, xn, yn}n≥0. Hence, there has to be

c∗A(cB, d), with c∗A(cB, d) > 0, such that if cA < c∗A(cB, d), then xB = 0 in any equilibrium of G2(d)

where xA < n2 · pA. If, on the other hand, z = 0, it follows from cB > 0 being fixed that, at least for

some subsequence {cn, xn, yn}n≥0,

w := inf
n≥0

qd−2(xn, yn) > 0. (97)

Next, we claim that there is a constant χ such that

qd−1(xn, yn) ≥ w2 · χ, (98)

which, together with (95), implies that z > 0, a contradiction with the assumption that z = 0. First,

we note that for d > 1,

w ≤ yn. (99)
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The reason is that for any xn ≥ 0,

w ≤ qd−2(xn, yn) =

∞∑
k=0

xk

exnk!

yk+d−1
n

ey(k + d− 1)!
≤ yn.

We stress that we are assuming d > 1. Let now vs(x, y) denote the partial sum of s terms in qd−2(x, y),

i.e.

vs(x, y) :=
s∑

k=0

xk

exk!

yk+d−1

ey(k + d− 1)!
. (100)

Take any ε > 0 sufficiently small. Then, there is some large enough integer s(ε) such that

vs(ε)(xn, yn) ≥ w · (1− ε). (101)

The latter inequality can be proved by using the concentration bound of a Poisson random variable

given in (78) and the fact that, by definition, we have yn ≤ n2 · pB <∞. Therefore, we obtain that for

all n ≥ 0,

qd−1(xn, yn) ≥ vs(ε)(xn, yn) · yn
s(ε)

≥ w · yn · (1− ε)
s(ε)

≥ w2 · 1− ε
s(ε)

.

The first inequality follows from some algebraic manipulations applied to the definitions of qd−1(x, y)—

see expression (90)—and vs(x, y)—see expression (100)—, the second inequality holds due to (101), and

the third inequality follows from (99). This completes the proof of the claim in (98), and hence that of

the proposition.

We have to make four remarks. First, in the above result, we do not rule out the possibility that an

equilibrium exists in which the citizens with the lowest voting costs turn out with probability one and

the citizens with the highest voting costs turn out with positive probability, even if the relative difference

in voting costs is arbitrarily large. This is because citizens cannot vote with a probability higher than

one, and hence the variables xA are xB bounded from above (for fixed n2, the size of the electorate).

Second, Part (ii) of Proposition 11 does not extend to the case where d = 1. In the above proof, one can

observe why. When d = 1, qd−1(x, y) has a term that does not depend on y, namely x0

ex0! . This enables

us to take a sequence yn → 0 and obtain cn = q2(x, yn) + q1(x, yn) → 0 for cB = q1(x, yn) + q0(x, yn).

In equilibrium, the latter expression is lower bounded by 1
ex , for fixed x. Third, the same result as in

Proposition 11 is obtained by Taylor and Yildirim (2010a) in the case where d = 0. It is important

to point out that the authors are implicitly assuming that no citizen votes with certainty, analogously

to what we assume. Fourth and last, Proposition 11 has identified sufficient conditions on the relative

voting costs for the different citizen types that guarantee that no equilibria exist in which the citizens

with the highest cost turn out with positive probability and the citizens with the lowest cost do not

turn out with probability one. This is a consequence of the cost effect dominating completely over any

other potential equilibrium effect (handicap or underdog). Reversely, one can ask when do partially

mixed equilibria exist, in which only the citizens with the lowest voting costs participate, albeit with

probability lower than one. We do this next.

Proposition 12. Let d ≥ 1 be given. There is a threshold c∗(d), such that for any cB ≤ cA ≤ c∗(d),

there is a partially mixed equilibrium of type (0, xB).

Proof. The result follows directly from the proof of the Proposition 4, with the same threshold c∗(d).
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In the main section we have seen that our results about high values of handicaps do not hinge on the

assumption that the majority and the minority have equal voting costs. The results in this section show

that the main insights of the baseline model with regard to low values of handicaps are not knife-edged

either on the assumption of equal voting costs across types, very particularly when alternative A has

some initial advantage—namely, handicap d is positive—and is associated with higher voting costs than

alternative B.

Three or more alternatives

In this section, we analyze the case of three or more alternatives. As already noted in Section 2, this case

has been analyzed for one-round voluntary voting by Arzumanyan and Polborn (2017) (in the case of

heterogeneous voting costs) and by Xefteris (2019) (in the case of homogeneous voting costs). Although

for tractability we build on the approach of the former paper to analyze AV, at the end of this section

we will briefly discuss how to extend our results to the set-up of the latter paper. We show that the

negative result identified by Theorem 1 holds regardless of the number of alternatives at hand. That is,

we show that there is a threshold—which coincides with d∗( c2)—such that there is an equilibrium of the

second-round voting game in which no citizen will turn out, provided that the vote-count difference in

the first voting round between the alternative with most votes and all other alternatives is sufficiently

large.70

Accordingly, suppose there is a set of m alternatives A1, A2, ..., Am, denoted by A. Citizens are of one

of m! possible types (A1, A2, ..., Am), ..., (Am, Am−1, ..., A1), where type (Ai1Ai2 , ..., Aim) stands for the

citizen whose most preferred alternative is Ai1 , the second most preferred alternative is Ai2 , and so on.

Let T denote the set of all citizen types. We assume that there are V1, . . . , Vm such that each citizen i

derives a utility level Vj if his/her jth best alternative wins. Without loss of generality, we impose the

normalization 1 = V1 ≥ V2 ≥ ... ≥ Vm = 0. In addition, we use (a1, a2, ..., am) to denote the number of

votes collected by each alternative in the first voting round of AV.

As in the case of the two alternatives analyzed in the main body of the paper, we proceed on the

assumption that the number of citizens of each type (Ai1 , Ai2 , ..., Aim) in the second voting round of

AV is distributed according to a Poisson probability distribution with parameter pi1,i2,...,im . As for

the solution concept, we again consider type-symmetric perfect Nash equilibria and use the following

notation: If a citizen of type (Ai1 , ..., Aim) decides to turn out in the second round of AV, s/he will vote

for alternative Aij with probability p
ij
i1,i2,...,im

, where 1 ≤ j ≤ m. It will suffice to assume momentarily

that these probabilities are exogenously given and satisfy

pimi1,i2,...,im = 0 and

m−1∑
j=1

p
ij
i1,i2,...,im

= 1.

Note that we are assuming that citizens will never vote for their least preferred alternative—this assump-

tion generalizes sincere voting in a framework with at least three alternatives. By using xi1,i2,...,im ∈ [0, 1]

to denote the (equilibrium) probability that a voter of type (Ai1 , ..., Aim) will turn out at all, we find

that in the second round of AV the number of votes in favor of alternative Aj when citizens vote ac-

cording to the strategy profile (xi1,i2,...,im)(Ai1 ,...,Aim )∈T is distributed as a Poisson random variable with

70We cannot rule out the possibility that equilibria may also exist in which strategic voting will occur in the
first voting round. One-round voting mechanisms have the same drawback.
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parameter71

ηj := n2 ·
∑

(Ai1 ,...,Aim )∈T :ik=j

pi1,i2,...,im · xi1,i2,...,im · p
ik
i1,i2,...,im

.

The reason is that a sum of independent Poisson random variables is itself a Poisson random variable.

Together with the probabilities (p
ij
i1,i2,...,im

)(Ai1 ,...,Aim )∈T ,ij∈{1,...,m}, any profile (xi1,i2,...,im)(Ai1 ,...,Aim )∈T

uniquely determines a vector (η1, . . . , ηm). Because we want to prove that no equilibrium will exist where

xi1,i2,...,im > 0 for some (Ai1 , ..., Aim) ∈ T , we can in fact assume that (p
ij
i1,i2,...,im

)(Ai1 ,...,Aim )∈T ,ij∈{1,...,m}

are taken as given. As a tie-breaking rule, we consider that if there are k alternatives with the same

number of votes combined in the two voting rounds and if the remaining alternatives have strictly fewer

votes, then the alternative that wins will be chosen among these k alternatives, each alternative having

a probability 1
k of winning.

Next, suppose that alternative Ai has received ai votes in the first voting round. We can assume

that a1 ≤ a2 ≤ ... ≤ am without loss of generality. Finally, we use Gm(a1, a2, ..., am) to denote the

modification of G2(d), so that citizens can now vote for any of the m alternatives in any voting round.

We have the following proposition:

Proposition 13. For any c > 0 and any vector of votes (a1, a2, ..., am) after the first voting round,

there is a positive integer d∗∗(c) such that, if am − am−1 ≥ d∗∗(c), the only equilibrium of game

Gm(a1, a2, ..., am) is the no-show equilibrium.

Proof. The proof is based on an induction on m. The case m = 2 is proven in Theorem 1. Now assume

that the claim of the proposition is true for the case of m− 1 alternatives, and consider the case of m

alternatives. In particular, we will show that no citizen will vote for alternative A1 in any equilibrium of

game Gm(d), where A1 is the alternative receiving the lowest number of votes in the first voting round.

This means that, instead of m alternatives, it is as if there were only m − 1 alternatives, A2, . . . , Am.

Because am−am−1 ≥ d∗∗(c), we find by induction that the only equilibrium that survives is the no-show

equilibrium.

We distinguish two cases corresponding to the cases in which one more vote in the second voting round

in favor of alternative A1 will make a difference in the final outcome. In both cases, we let i be a citizen

of type (A1, Ai2 , ..., Ain). It will suffice to consider this type of citizen.72

Case I: In the two voting rounds combined, alternative A1 received exactly the same number of votes as

each of the alternatives of a given (non-empty) set B, with all alternatives in A \ (B ∪ {A1}) receiving

strictly fewer total votes than those in B.

In this case, with one additional vote in the second voting round, A1 will win without ties. Accordingly,

the expected gain that citizen i derives from voting for A1 in the second round is equal to

H(B) := 1− 1

1 + |B|
·

1 +
∑
j∈B

Vj

 .

Let x denote the total number of votes received by A1 and alternatives from B in the two voting rounds

combined. It is straightforward to verify that x ≥ am, because alternative Am already has am votes

from the first round (the highest number among all alternatives). Then, the probability of having an

71To avoid cumbersome notation, we do not write the dependence of x
ij
i1,i2,...,im

on (a1, a2, ..., am).
72The argument of the proof can be easily adapted for all other types of citizens.
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alternative of set B winning the voting after both rounds (excluding i’s vote) is

Pequal(B) :=

∞∑
x=am

 ∏
j∈B∪{A1}

η
x−aj
j

eηj (x− aj)!
· P (x,A \ (B ∪ {A1}))

 ,

where P (x,S) denotes the probability that alternatives in set S will all receive strictly fewer votes

than x. Let s denote the size of any arbitrary set S. It is easy to verify the following:

P (x,S) =
∑

(l1,...,ls)∈Ns,
lj+asj<x,j=1,...,s

s∏
r=1

ηlrsr
eηsr lr!

. (102)

Case II: In the two voting rounds combined, alternative A1 received one vote less than each of the

alternatives of a given (non-empty) set C, with all alternatives in A\ (C ∪ {A1}) receiving strictly fewer

total votes than those in C.

In this case, with one additional vote in the second voting round, there is a chance that A1 will be

chosen. Accordingly, the expected gain that citizen i derives from voting in the second round in favor

of A1 is equal to

F (B) :=
1

1 + |C|
·

1 +
∑
j∈C

Vj

− 1

|C|
·
∑
j∈C

Vj ,

which is always a non-negative number since maxj∈CVj ≤ 1. Let x + 1 now denote the number of

total votes received by each of the alternatives in set C in the two voting rounds combined. That is,

alternative A1 has received x votes in both rounds combined, and it must be the case that x ≥ am.

Then, the probability of having an alternative of set C winning the voting after both rounds (excluding

i’s vote) is

Plow(C) :=

∞∑
x=am

(
ηx−a11

eη1(x− a1)!
·
∏
j∈C

η
x+1−aj
j

eηj (x+ 1− aj)!
· P (x,A \ (C ∪ {A1}))

)
,

where P (x, S) has been defined in Equation (102).

Finally, let 2A denote the power set of A. Then, the indifference condition for citizen i that equalizes

the expected gain of voting for alternative A1 and the cost of voting is

c =
∑

B∈2A\{A1}\∅

Pequal(B) ·H(B) +
∑

C∈2A\{A1}\∅

Plow(C) · F (C). (103)

By Inequality (30)—see the proof of Proposition 2—, if d ≥ d∗∗(c) and for all y ∈ R+ and k ≥ 0, it

holds that
yk+d

ey(k + d)!
<
c

2
, (104)

If we now assume that am − am−1 ≥ d∗∗(c), which implies am − a1 ≥ d∗∗(c), then because H(B) and

F (C) are at most one and all the events described in the calculations of Pequal and Plow are disjoint, we
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have ∑
B∈2A\{A1}\∅

Pequal(B) ·H(B) +
∑

C∈2A\{A1}\∅

Plow(C) · F (C)

≤

 ∑
B∈2A\{A1}\∅

Pequal(B) +
∑

C∈2A\{A1}\∅

Plow(C)

 ≤ ( ∞∑
x=am

ηx−a11

eη1(x− a1)!
· (P1(x) + P2(x))

)
< c,

where the strict inequality holds by Inequality (104) and P1(x), P2(x) are some functions satisfying

∞∑
x=am

P1(x) ≤ 1 and
∞∑

x=am

P2(x) ≤ 1.

That is, Equation (103) cannot hold if am−a1 is above a certain threshold, which in fact coincides with

d∗( c2), and hence is approximately four times bigger than d∗(c). Letting d∗∗(c) = d∗( c2) concludes the

proof.

We conclude by noting that when dealing with three or more alternatives within a costly voting set-up,

Xefteris (2019) considers the possibility that voting costs may vary across voters. Assuming hetero-

geneous voting costs in our set-up is equivalent to assuming a common voting cost c > 0, but then

proceeding on the assumption that utilities Vi can no longer be normalized. One can verify that our

main result in this section—Proposition 13—will remain valid in this generalized setting, albeit with a

different threshold d∗∗(c).
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