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Abstract

We study risky behavior of adolescents. Concentrating on smoking and alcohol use, we
structurally estimate a dynamic social interaction model in the context of students' school networks
included in the National Longitudinal Study of Adolescent Health (Add Health). The model allows
for forward-looking behavior of agents, addiction effects, and social interactions in the form of
preferences for conformity in the social network. We find strong evidence for forward looking
dynamics and addiction effects. We also fi nd that social interactions in the estimated dynamic
model are quantitatively large. A misspeci fied static model would t data substantially worse, while
producing a much smaller estimate of the social interaction effect. With the estimated dynamic
model, a temporary shock to students' preferences in the 10th grade has effects on their behavior
in grades 10, 11, 12, with estimated social multipliers 1.53, 1.03, and 0.76, respectively. The
multiplier effect of a permanent shock is much larger, up to 3.7 in grade 12. Moreover, (semi-)
elasticities of a permanent change in the availability of alcohol or cigarettes at home on child risky
behavior implied by the dynamic equilibrium are 25%, 63%, and 79%, in grades 10, 11, 12,
respectively.
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Onur Özgür§

Melbourne Business School

onur.ozgur@mbs.edu

Eleonora Patacchini¶

Cornell University

ep454@cornell.edu

August 6, 2019

∗We are grateful to Steven Durlauf, Matt Jackson, David Levine for their extensive comments and suggestions
at different stages. We also thank Larry Blume, Pierre-André Chiappori, Aureo De Paula, Marcel Fafchamps,
Bryan Graham, Bob Lucas, Jen Overbeck, Tom Sargent, José Scheinkman, Giorgio Topa, and seminar participants
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Abstract

We study risky behavior of adolescents. Concentrating on smoking and alcohol use, we

structurally estimate a dynamic social interaction model in the context of students’ school

networks included in the National Longitudinal Study of Adolescent Health (Add Health). The

model allows for forward-looking behavior of agents, addiction effects, and social interactions

in the form of preferences for conformity in the social network.

We find strong evidence for forward looking dynamics and addiction effects. We also

find that social interactions in the estimated dynamic model are quantitatively large. A

misspecified static model would fit data substantially worse, while producing a much smaller

estimate of the social interaction effect. With the estimated dynamic model, a temporary

shock to students’ preferences in the 10th grade has effects on their behavior in grades 10, 11,

12, with estimated social multipliers 1.53, 1.03, and 0.76, respectively. The multiplier effect

of a permanent shock is much larger, up to 3.7 in grade 12. Moreover, (semi-) elasticities of a

permanent change in the availability of alcohol or cigarettes at home on child risky behavior

implied by the dynamic equilibrium are 25%, 63%, and 79%, in grades 10, 11, 12, respectively.

Journal of Economic Literature Classification Numbers: C18, C33, C62, C63, C73, I12.

Keywords: Dynamic social interactions, conformity, addiction, identification, model validation,

dynamic social multiplier, Heckman selection.
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1 Introduction

Smoking and alcohol use are widespread among adolescents. According to the 2018 National

Youth Tobacco Survey, more than 1 in 4 high school students and about 1 in 14 middle school

students had used a tobacco product in the past 30 days.1 Smoking and alcohol are a serious

policy concern in that they involve severe risks in terms of health outcomes. The World Health

Organization’s Global Health Risks Report 2009 establishes that tobacco and alcohol account for,

respectively, 10.7 and 6.7% of the global burden of disease and injury in high income countries,

as measured in disability-adjusted life years (DALYs); see WHO (2009), Table 2. Furthermore,

smoking and especially alcohol are responsible for a large amount of socio-economic costs, in

terms of, e.g., poor academic performance (Renna, 2007), earnings and unemployment (Kenkel

and Ribar, 1994; Mullahy and Sindelar, 1996; Terza, 2002), and criminal victimization (French

and Maclean, 2006).

The empirical literature on risky health behavior in economics and in the social sciences

emphasizes several fundamental aspects of smoking and alcohol use. First of all, they respond to

dynamic incentives, such as, e.g., future price changes and anticipated future consumption, and

have an addictive component (Becker, Grossman, and Murphy, 1991; Chaloupka, 1991; Waters

and Sloan, 1995). Furthermore, they are social behaviors, in the sense that they depend on the

behavior of relevant peers (Argys and Rees, 2008; Lundborg, 2006; Duncan et al., 2005; Balsa

and Diaz, 2018).2

In this paper, we study the smoking and alcohol consumption decisions of adolescents. In

accordance with the empirical literature, we account for the dynamic forward-looking aspect of

the decision problem, allowing adolescents to consider the addictive characteristics of tobacco and

alcohol in evaluating the consequences of their behavior. Furthermore, we embed the dynamic

choice of adolescents regarding alcohol and smoking use in a school environment characterized

by rich social interactions. The joint consideration of dynamic choice and social interactions

highlights interesting novel dimensions of the choice problem, allowing students e.g., to anticipate

a change in their social network after high-school, which in turn may affect the importance of

peer effects over schooling age.

More specifically, we formulate and structurally estimate a dynamic social interactions model.

1The National Survey on Drug Use and Health reports that, in 2017, about 19% of underage people (ages 12-20)
were current alcohol users, and about 11.9% of the underage were binge drinkers.

2See Cawley and Ruhm (2011) and Kenkel and Sindelar (2011) for extensive surveys.
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Agents’ preferences over choices at any time depend on their own previous choices, to capture

habits and addiction. Agents interact in their social reference group, the social network, and

display preference externalities: each individual’s preferences depend on the current choices of

the agents in his/her network, to capture preferences for conformity to the social reference group.

This dynamic interaction structure induces each individual’s choice to depend on previous choices

and current preference shocks of all other individuals in his/her social network.3 We bring the

model to data in the context of students’ school networks included in the Add Health. The data

collected by this survey includes information about each student’s health-risk behavior as well as

his/her social network, repeatedly, in distinct school-years. We use the panel dimension of the

data to structurally estimate our dynamic social interaction model. We estimate the system of

linear policy rules describing the equilibrium. In turn, the equilibrium characterization of the

dynamic game allows us to back out the structural preference parameters from our estimates of

the policy rules.

There are well-known inferential problems in the study of social interactions.4 In our context,

three main issues arise due to: (i) the endogeneity of previous choices as explanatory variables

for current choice, in the absence of any restrictions on the intertemporal correlation structure of

errors, (ii) the existence of common shocks or common unobserved factors affecting all individuals’

choices in a network, independently of social interactions, and (iii) the endogeneity of the network.

All these issues translate into correlation between the regressors and the errors. For all three

issues, we offer solutions that allow us to construct a consistent estimator in our environment by

using the moment restrictions imposed by the dynamic equilibrium.

Our empirical analysis confirms the main thrust of our model regarding smoking and alcohol

use in the adolescent population. The preference parameters driving the addiction effect and

the social interaction effect are estimated both to be significantly different from 0. Furthermore,

a significant forward looking component characterizes students’ decision making: namely, the

discount rate also is positive and significant. Indeed, we measure a relevant bias associated

with estimating (i) a mis-specified myopic model (which allows for addiction but not for forward

looking choice); as well as (ii) a mis-specified static model (with no addiction nor forward looking

behavior). Notably, the static model produces a much smaller estimate of the social interaction

3Formally, the model is reduced to a dynamic game which, under our assumptions, we show has a unique
Subgame Perfect Equilibrium. We characterize equilibrium behavior as a system of linear non-stationary Markovian
policy rules, for each individual and in each time period.

4See e.g., Blume et al. (2015), Brock and Durlauf (2001b), and Manski (2008).
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effect.5 As for social interactions, we estimate sizable quantitative effects, as measured by the

implied social multiplier and by the induced correlation between the students’ choices across

the network.6 More precisely, the social multiplier, in our context, has a fundamental dynamic

component: a temporary (one-period) shock to agents’ preferences in the 10th grade has effects

on their behaviors in grades 10, 11, 12, with multipliers 1.53, 1.03, and 0.76, respectively. The

multiplier of a permanent shock in grade 10 is 1.55 in the same grade, 2.6 in grade 11, and 3.68 in

grade 12. Finally, the same-period multiplier effect of a temporary shock in the different grades

encodes the importance of the number of periods to the end of school in students’ choice. In this

respect, our estimates imply that the same-period social multiplier in grade 12 (the last year of

high-school) is about 1.7, whereas it is 1.56 and 1.53, respectively, in grades 11 and 10. This

is evidence that students anticipate a change in their social network after high-school and this

affects the importance of peer effects over schooling age: as the time to the end of high-school

increases, the students’ policy functions weigh more heavily future shocks and the current shock

has a smaller effect.

We also implement a validation exercise of our empirical strategy and our structural estimates.

We use the structural estimates to make out-of-sample predictions of students’ equilibrium be-

havior in networks that are not included in the estimation sample. More precisely, we use the

structural parameters off of our estimation network sample consisting of grades 10, 11, and 12 to

predict equilibrium behavior for students in the network sample consisting of grades 7, 8, and 9.

We compare predictions and actual choice data to validate the model and demonstrate that the

model performs very well in the validation exercise.

The remainder of the paper is organized as follows. Section 1.1 places the paper in context

vis-à-vis the related literature. Section 2 presents the structural model of dynamic health risk

choices with network interactions. Section 3 describes the Add Health data set we use to estimate

the model. Section 4 describes the empirical implementation of the model. Section 5 presents

our main empirical findings, model validation outcomes, as well as our results regarding the

social multiplier and cross-sectional behavioral correlation effects, obtained using actual student

networks. Section 6 investigates the sensitivity of the results to an alternative definition of peers.

5The empirical analysis demonstrates also the importance of controlling for endogeneity, hence allowing for
selection into the social network. Neglecting the endogeneity of the social network leads to a large significant
downward bias in the estimate of addiction effects and an upward bias in the estimate of conformity effects.

6The social multiplier measures the amplification on individual actions of the effects of an exogenous shock due
to peer effects. It is the standard metric adopted for social interactions. Similar results are obtained also using as
a measure of social interactions the correlation between students’ choices in each period and the average level of
those of their peers at different social distances (smallest number of links between them in the network).
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Finally, Section 7 concludes.

1.1 Related Literature

As we noted in the Introduction, risky health behaviors have been extensively studied in economics

and more generally in the social sciences. We refer to Cawley and Ruhm (2011) and Kenkel and

Sindelar (2011) for extensive and detailed surveys of the literature. A fundamental aspect of

both the theoretical and the empirical literatures in economics involves i) distinguishing rational

addiction models, as introduced by Becker and Murphy (1988) and developed by Orphanides and

Zervos (1995), from behavioral models, as in Gruber and Kosegi (2001), Bernheim and Rangel

(2004) and others; ii) dealing with the inferential problems plaguing the empirical study of social

interactions, as noticed by Manski (1993) and addressed by Blume et al. (2015), Brock and

Durlauf (2001b) and many others.

With respect to rational and behavioral models of addiction, it should be noted that in both

classes of models agents respond to dynamic incentives, such as, e.g., future price changes and

anticipated future consumption. But the implied responses are different along several dimen-

sions. Agents’ choices in behavioral models are driven by preferences for immediate gratification,

impulsivity, and cue-triggered addiction which have no role in models of rational addiction. The

distinction between rational and behavioral addiction manifest itself most clearly, therefore, in

high frequency decisions, over days. It is much less relevant when studying, as in our case, low

frequency decisions, over years. For this reason we postulate rational agents in our analysis.

With respect to inference in social interactions models, as we noted in the Introduction, we

try and address the main issues in the literature: (i) the endogeneity of previous choices as

explanatory variables for current choice, in the absence of any restrictions on the intertemporal

correlation structure of errors, (ii) the existence of common shocks or common unobserved factors

affecting all individuals’ choices in a network, independently of social interactions, and (iii) the

endogeneity of the network. First of all, regarding (i) we instrument previous choices, using the

characteristics of connected individuals in the social network as well as own lagged characteristics.

In the absence of dynamics, the quest for valid instruments is conducted necessarily at the cross-

sectional level and exclusion restrictions are translated into necessary conditions on the structure

of the adjacency matrix.7 In our dynamic environment, we are not restricted to the cross-section.

7The characteristics of friends and friends of friends are valid instruments under appropriate restrictions on the
structure of the adjacency matrix; see e.g. Bramoullé et al. (2009), Calvo-Armengol et al. (2009).
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In particular, we have access, for each period, to the strictly exogenous lagged variables from the

information set in the previous periods. These variables are informative for the lagged choice

variables by virtue of the intertemporal linkages formed by the moment restrictions of dynamic

equilibrium of our social interactions model. To sum up, exploiting the equilibrium restrictions

that jointly employ interactions in “space” as well as rational expectations interactions in “time”

provides us with much richer possibilities for identification. As for (ii), we tackle the issue by

including network fixed effects. Because in the Add Health data networks are small (composed

on average of 25 students, with 10 as the median), this strategy reasonably accounts for the

presence of unobserved factors common to groups of friends. Finally, regarding (iii), to control

for the endogeneity due to selection into the friendship network, we add a Heckman-correction

term to the structural equations we estimate as also recommended by Blume et al. (2015). More

precisely, we estimate an extended version of our model, by adopting an approach developed by

Qu and Lee (2015), in which we explicitly account for a possible correlation between unobserved

factors jointly affecting both network formation and equilibrium outcomes.8

From a theoretical point of view the main novelty in the analysis of this paper consists in

the study of the theoretical properties of equilibrium in an economy displaying both dynamic

forward-looking agents and social interactions. In this respect, a related model is introduced in

Reiff (2018), to characterize the theoretical properties of addiction in a dynamic forward-looking

model with social interactions. Social interactions, however, are modeled in a reduced form, by

having agents’ preferences depend on the average action in the economy, without a specification

of the structure of interactions on the network. Differently than in our model, therefore, in

Reiff (2018) agents need not anticipate the effects of their actions on those of their peers in

their decision problems. Various theoretical properties of models of social interactions in linear

dynamic economies are also studied in Özgür, Bisin, and Bramoullé (2019). In the current paper,

however, the analysis of social interactions is extended to allow for a general network topology.

This is important in particular because it changes identification conditions. More specifically,

8A growing literature on social interactions has resorted to modeling the formation of social networks, to provide
a more satisfactory solution to iii); see e.g., Apicella, Marlowe, Fowler, and Christakis (2012), Badev (2018), de
Paula, Richards-Shubik, and Tamer (2018), Hsieh and Lee (2015), Sheng (2018), Mele (2017a,b). Empirical work
along these lines also exploits Add Health data. Embedding network formation in a fully specified dynamic forward-
looking choice model is theoretically daunting. Mele (2017a,b), for instance, estimates a network formation model to
fit the observed networks’ statistical properties, such as, e.g. homophily. But the paper does not study equilibrium
choices in the network. Badev (2018), while estimating a network formation model in the context of smoking choice,
restricts the analysis to a static choice model (though the network is allowed to change following an evolutionary
process). For this reason, to be able to allow for dynamic choice, in this paper we take the simpler but admittedly
reduced form approach of estimating a Heckman-correction term.
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an incomplete network structure provides a source of non-linearity (intransitive triads) that can

be exploited for identification purposes (Bramoullé et al., 2009; Calvo-Armengol et al., 2009) in

addition to lagged values of exogenous variables as suggested by the moment restrictions of the

dynamic equilibrium.

In terms of the empirical analysis, the main contribution of this paper still consists in estimat-

ing structurally a model which allows jointly for both dynamic forward-looking agents and social

interactions. Indeed, most studies of risky health behaviors have examined either peer group

effets or addiction and dynamic effects; see the literature surveyed by Cawley and Ruhm (2011)

and Kenkel and Sindelar (2011), and, more recently, e.g., Nakajima (2007), Card and Giuliano

(2013), Eisenberg et al. (2014), Lee et al. (2014) and Hsieh and Van Kippersluis (2018). On this

dimension, the closest paper to ours is Dahl, Løoken, and Mogstad (2014), on the influence of

peers in the take up of social programs (specifically, paid paternity leave in Norway). Using in-

formation transmission as the channel for social interactions, Dahl, Løoken, and Mogstad (2014)

estimates “snowball effects”, that is, peer effects which have a dynamic component as in our

dynamic social multiplier. The analysis however does not allow for forward-looking behavior in

the dynamic choice of agents, and the dynamics of peer effects is due to the exogenous spreading

of interactions over the network.

2 Dynamic Interactions on Networks

In this section, we introduce the theoretical structure we shall adopt in the paper to study dynamic

interactions on networks. Agents make choices over time. Their preferences over choices at any

time t depend on their own previous choices at t − 1. In the context of health risk behavior

we study in this paper, this dependence represents the costs associated to behavioural changes

due, e.g., to habits and addictions. Agents interact in their social reference group, the social

network, and display preference externalities: each agent’s preferences at any time t depend

on the current choices of agents in her network. In the context of health risk behavior, this

effect represents agents preferences for conformity with the social reference group. This dynamic

interaction structure induces each agent’s optimal choice to depend on all other agents’ previous

choices and current preference shocks.
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2.1 The model

The economy is populated by a finite number of agents i = 1, . . . , N for t = 1, . . . , T periods.

Each agent i chooses an action yit at time t after having observed a preference shock θit ∈ Θ.9 Let

yt and θt denote the corresponding N -dimensional vectors stacking all agents. Let θ := (θt) :=

(θit)i=1,...,N, t≥1 be the stochastic process of agents’ preference shocks.

The economy’s social network is represented by an N×N matrix G = [gij ], where gij indicates

the friendship relationship between i and j. We consider a directed network, in which each agent

interacts directly with her friends, and friendship of i with j does not imply friendship of j with

i. Following the convention in the social networks literature, i) gij > 0 if i nominates j as one of

her friends, otherwise gij = 0; ii)
∑

j gij = 1; iii) gii = 0.10

The preferences of an agent i at time t are represented by the utility function

ui(yit−1,yt, θt,G) := −α1(yit−1 − yit)2 − α2(θit − yit)2 (1)

−α3

N∑
j=1

gij(yjt − yit)2,

where α1, α2, α3 ≥ 0 are parameters. The utility function ui represents the trade-offs that each

agent i faces in her choice at time t. Each agent i obtains utility from matching her individual

choice yit with her previous choice yit−1, her preference shock θit, and with the current choices of

her peers {yjt}j:gij 6=0. We refer to α1 as the addiction effect, to α2 as the own effect, and to α3

as the peer effect. While (α1, α2, α3) are restricted to be homogeneous across agents, preference

heterogeneity is captured in the formulation of the stochastic processes θit.
11

Agents maximize expected present discounted utility, with discount rate δ < 1. Before her

choice at time t, each agent observes i) the history of previous choices, yt−1 = (y0,y1, . . . ,yt−1),

and ii) the history of preference shocks, θt = (θ1, . . . , θt) (including the period-t realization).

9 See Appendix A for the formal introduction of the model, where all the technical assumptions are well-specified.
10 By assuming a directed network, the matrix G is asymmetric. None of our theoretical results, however, hinge

on this assumption. That is, they hold also in the case of a symmetric netwok structure.
11 While we model preferences for conformity directly as a preference externality, we intend this as a reduced

form of models of behavior in groups that induce indirect preferences for conformity, as e.g., Jones (1984) , Cole et
al. (1992), Bernheim (1994), and Peski (2007).
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2.2 Equilibrium

We consider Subgame Perfect Nash equilibria of this economy. At a Subgame Perfect Nash

equilibrium, agents make optimal choices simultaneously at each time t. The equilibrium is

represented by a family of maps {y∗i }Ni=1 such that for all i = 1, . . . , N and for all (yt−1, θt),

y∗it
(
yt−1, θt

)
∈ argmaxyit∈Y E

[
T∑
t=1

δt−1 ui(yit−1,yt, θt,G)

]
(2)

for (y0, θ1) given.

The economy displays a unique Subgame Perfect Equilibrium.12 The first order condition for

agent i’s problem can be written as

yt = α1 Btyt−1 + α2 Bt (Dt + θt) , t = 1, ..., T, (3)

where (y0, θ1) is given and the N × N matrix Bt and the N × 1 matrix Dt can be computed

recursively: Bt, t < T depends only on the future equilibrium coefficient matrices (Bτ )τ>t; while

Dt represents the discounted sum of the effects of expected future θτ ’s, τ > t.13

3 Data

Our data source is the Add Health, a dataset on adolescents’ behavior in the United States. The

dataset collects self-reported demographic and behavioral characteristics from students in grades

7-12 from a nationally representative sample of roughly 130 private and public schools in years

1994-95.14 Every student attending the sampled schools on the interview day was asked to com-

plete a questionnaire (in-school questionnaire) containing questions on respondents’ demographic

12 In Appendix A, we formally state and prove the equilibrium existence and uniqueness result, as well as the
details of recursive algorithm to compute equilibria. Uniqueness requires α1 +α2 > 0 to anchor agents’ preferences
on their own private types or past choices. Clearly, without such an anchor, actions are driven only by social
interactions, own past behavior and types have no effect on the outcomes, and a large multiplicity of equilibria
would arise.

13 See Appendices B and C for closed form characterizations of Bt and Dt, as well as a recursive algorithm to
compute them.

14The Add Health is a program project directed by Kathleen Mullan Harris and designed by J. Richard Udry,
Peter S. Bearman, and Kathleen Mullan Harris at the University of North Carolina at Chapel Hill, and funded by
grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development,
with cooperative funding from 23 other federal agencies and foundations. Information on how to obtain the Add
Health data files is available on the Add Health website (http://www.cpc.unc.edu/addhealth). No direct support
was received from grant P01-HD31921 for this analysis.

9



and basic family background characteristics. A subset of students randomly selected from the ros-

ters of the sampled schools was then asked to complete at home a longer questionnaire containing

more sensitive individual and household information (in-home questionnaire), including detailed

questions about risky behaviors. In 16 randomly sampled schools, all students are interviewed

at home (the so-called saturated sample). Our analysis focusses on this data. Specifically, we

restrict our sample to include all students in the schools where information on risky behaviors is

collected for the entire school.15

A unique feature of the Add Health data is that students are asked to identify their best

friends from a school roster, so that the geometry of the friendship networks within each school is

observed.16 The nominations are asked in two waves of the survey (wave I and wave II) one year

apart. The demographic and behavioral characteristics of the nominated friends of each of the

students in the sample are also observed. As a result, each student’s information is collected twice,

in two waves in consecutive grades. Hence the sample has a panel dimension. In our analysis,

we use Wave II to measure the students’ risky behavior a time t and the network topology, and

wave I to get information on the students’ risky behavior at time t− 1. In Section 6, we show the

robustness of our results when adopting as network definitions the network topology at wave I.17

We focus our analysis on smoking and alcohol use, which are the most common risky behaviors

among teenagers. We focus on students who declare having tried smoking and alcohol to avoid

the difficult and arbitrary classification of adolescents as “consumers” or “non-consumers.” To

measure smoking, we use the answers to the question “During the past 30 days, on the days you

smoked, how many cigarettes did you smoke each day?”. To measure alcohol consumption, we use

the most similar question: “Think of all the times you have had a drink during the past 12 months.

How many drinks did you usually have each time?”. We construct an index of risky behavior

for each individual by first standardizing each component (cigarette and alcohol consumption) in

[0,1] and then averaging. An higher value of the index is interpreted as a riskier health choice.

Figure 1 shows the distribution of the teenagers in our sample by cigarette consumption, alcohol

consumption, and the composite index. The distributions have a mode (of about 40% of students)

15This is done to avoid the complex inferential issues due to the missing observations in the friendship data for
the schools where a random sampling scheme is adopted.

16The number of nominations is limited to five males and five females, but the limit is not binding not even by
gender. Less than 1 percent of the students in our sample report a list of ten best friends, less than 3 percent
report a list of 5 boys, and roughly 4 percent a list of 5 girls.

17In the saturated sample, about 30 percent of the wave I nominations are not confirmed in wave II and about
30 percent of new nominations appear in Wave II.
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corresponding to minimal consumption of cigarettes and alcohol.18

Our set of control variables includes the variables indicated by the literature (see e.g., Cawley

and Ruhm, 2011; Lee et al., 2014) as determinants of teenagers’ risky behavior, such as age,

gender, parental education, race, and indicators of the social structure of families as well as

variables measuring the susceptibility of a teenager to engage in risky behavior (whether alcohol

or cigarettes are easily available at home and whether the child receives a weekly allowance

from the parents).192021 Finally, we include height, since it has been indicated as a predictor of

participation in social activities, such as team sports (see Persico, Postlewaite, and Silverman,

2004).22 The uniqueness of our data where both respondents and friends are interviewed allows us

to control for peers’ characteristics, thus disentangling the effects of endogenous from exogenous

effects. More precisely peers’ characteristics are defined as the average value of the above controls

over the nominated friends.

The sample counts 2336 students, about 543 of which are in middle schools (grades 7, 8, and

9) and 1793 in high-schools. We use the (larger) sample of high school students to structurally

estimate our model and the sample of middle school students for its validation. In the sample

of high school students without missing values in the variables (1759 out of 1793 students),

there are 552 students who do not indicate any best friend in the nomination roster. In Table

G1, we report summary statistics for the entire sample (Panel (a))), for the sample without

observations with missing values (Panel (b)) and for the sample with no isolates (Panel (c)). It

appears that the composition of the sample is roughly unaffected, thus revealing that the average

18About 40 percent of students smoke one cigarette or less and/or have one drink or less.
19In the wave I in-home questionnaire students are asked, for each parent, to select how far each of their

biological parents went in their education, with possible answers: “never went to school”, “not graduate from high
school”,“high school graduate”,“graduated from college or a university”, “professional training beyond a four-year
college”. If the information is available for both residential parent, we select the father level of education. We
construct a variable “Parents College degree”, which is coded as 1 if the parent is “graduated from college or a
university” or “professional training beyond a four-year college”. The base category is “never went to school”.

20From the wave I in-home questionnaire, we construct a variable “Two-parents family” using the respondent’
answers about household composition. In particular, this variable is coded as 1 if students report to have two
parents (both biological or not) that are currently living in their household, and 0 otherwise.

21Students are asked to answer yes or no to the questions “Are cigarettes easily available to you in your home?”
and “Is alcohol easily available to you in your home?”. We construct a variable “Alcohol/tobacco at home”, which
is coded as 1 if the respondent answers yes in at least one of the questions above, and 0 otherwise. We construct
a variable “Pocket money”, from student responses to the question: “How much is your allowance each week?
If you don’t receive your allowance weekly, how much would it be each week?”. The three questions together
measure the accessibility to alcohol and tobacco, either directly (i.e. stealing a cigarette from the mother’s purse)
or indirectly, by buying them and are also related with the price elasticities of demand for cigarettes (see e.g.,
Gallet and List, 2003; Cook and More, 2000). We measure these variables in both wave I and Wave II, from the
in-home questionnaire.

22The respondents’ height in feet and inches is available in both wave II and wave I in-home questionnaire.
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student who do not indicate any best friend and are not nominated by anyone is not dissimilar

from the average student who names at least one best friend. Because a smaller sample size

substantially decreases computing time in the estimation of our model, we focus our analysis

on students who are connected in a social network and show the robustness of our main results

when including isolated individuals in Section 6. Our final sample of high school students counts

1207 individuals (Table G1, Panel (c)). Consistently with the epidemiological literature (see e.g.,

Malone et al., 2012) which find persistence of alcohol and tobacco consumption after initiation,

our risky behavior index increases from wave I to wave II given the young age of students (from

14 to 20 with an average of 17 in wave II. Girls make up about 50 percent of the sample.

Around 60 percent of the sample is White, 11 percent is Black or African American, 18 percent

is Hispanic or Latino, and the reminder is Asian or with unclear racial background. The average

height in the sample is 67 feet and the average allowance around 8 dollar per week. Finally,

26 percent of our adolescents have cigarettes or alcohol easily available at home. Regarding

student family background, about 73 percent of the adolescents in our sample have two parents

living in the household and roughly 25 percent have parents who are college graduates or above.

These percentages are in line with data from other national representative surveys. We report

in Table G2 in Appendix G information from the 1994 Current Population Survey (CPS) that is

re-weighted to match the age distribution of the Add Heath sample. As shown, the Add Health

population is broadly similar to the U.S. population as calculated from the CPS.23

4 Empirical Methodology

We use the panel dimension of our data to structurally estimate our dynamic social interac-

tion model. The structural system of equations we estimate is the first order condition system

describing the equilibrium, Equation 3,

yt = α1 Btyt−1 + α2 Bt (Dt + θt) , t = 1, ..., T.

which expresses the vector of outcomes yt as a function of the outcomes in the previous period,

yt−1, and contemporaneous variables (including expectations about the future).

In our empirical exercise, the empirical counterpart of this equation system at time t = T is

constructed by considering students at grade 12 in wave II and the same individuals in grade 11

23The IPUMS-CPS database is freely available since 1962. See Flood et al. (2018) for further information.
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at wave I. In other words, we use outcomes of 12th grade students as yT and outcomes of the

same students in the 11th grade as yT−1. The empirical counterpart of the system at t = T − 1

is then constructed by considering individuals in grade 11 in wave II and the same individuals in

grade 10 in wave I; and so on until t = T − 4 with students in 8th grade (wave II) and the 7th

(wave I). In Table 1, we summarize the structure of our sample.

We estimate Equation 3 at t = T , t = T − 1 and t = T − 2 with data referring to high school

students (grades 10th to 12th). We then exploit the structural equation at t = T−3 and t = T−4

with data referring to middle school students (grades 7th to 9th) to validate the model.

Equation 3 depends on the structure of the stochastic process of preference shocks θT , which

captures the heterogeneity across agents in the model. In our empirical exercise, we implement

heterogeneous preference shocks as follows. Let the index k = 1, ...,K account for the k-th distinct

component of individual i’s observable characteristics (e.g. age, gender, parent’s education) and

let x
(k)
it denote its value for agent i at time t. The preference shock θit is allowed to depend on

individual i’s characteristics and on those of the member of her network. It is decomposed as

follows:

θit :=
K∑
k=1

βk x
(k)
it +

K∑
k=1

N∑
j=1

φk gij x
(k)
jt︸ ︷︷ ︸

Observed exogenous heterogeneity (ait)

+ uit,︸︷︷︸
Unobserved component

(4)

where βk and φk are parameters. In matrix form:

θt = Xtβ + GXt φ+ ut, (5)

where β and φ are K × 1 vectors of parameters, Xt is an N ×K matrix, and t = 1, . . . , T .

4.1 Identification

In this section, we derive conditions under which the dynamic model with social interaction we

have introduced is identified when the number of individuals N , the horizon of the economy T ,

and the social structure G, are fixed and known to the econometrician.

The structural equation system defining the equilibrium of the dynamic social interaction

economy is obtained by substituting the equation for the preference shocks, Equation 5, into the
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first order condition system, Equation 3:

yt = α1 Btyt−1 + α2 Bt (Dx
t + Xtβ + GXt φ ) + εt, t = 1, 2, . . . , T (6)

where the conditional expectations in Dt are conveniently split into an observable and an unob-

servable component, respectively denoted Dx
t and Du

t and εt = α2Bt (Du
t + ut).

The parameters of the economy are the utility parameters (α1, α2, α3), the discount factor δ,

the own and social effects parameters β = (β1, . . . , βK)′ and φ = (φ1, . . . , φK)′. Utility functions

are unique up to positive affine transformations and hence (α1, α2, α3) are normalized so that∑
i αi = 1. We assume the following standard conditions:

Exogeneity: E[us | Xt] = 0, for any s, t = 1, . . . , T ;

Full rank: the moment matrix generated by the elements of {XT ,XT−1,XT−2} has full rank.

Exogeneity requires that observable covariates and unobservables are orthogonal, contempora-

neously and intertemporally. Full rank requires lack of multicollinearity and enough intertemporal

variation in the observable covariates. We also assume that

Regularity: there exists k ∈ {1, . . . ,K} such that α1α2(βk + φk) 6= 0.

This assumption requires that the lagged variables from the information set in period t − 1,

{Xt−1,Xt−2, . . . ,X0,y0}, are potentially informative for the lagged choice variable yt−1, which

is the endogeneous variable, in the structural equation for period t. Importantly, all these as-

sumptions are consistent with substantial correlation over time and across the network, both in

observables and unobservables.

Under these assumptions, the structural equations of our dynamic model with social interac-

tion, Equation 6, for T ≥ 2, are identified.24 The proof of this identification result proceeds in two

steps: i) we prove that the coefficients of the structural equation, Equation 6, can be consistently

estimated, and ii) we show that the map from the structural parameters (α1, α2, α3, β, φ, δ) to the

coefficients of Equation 6 is injective. We provide here the main arguments and a general discus-

sion of how we can implement step i) of the identification result. Technical arguments needed for

proving i) and a description of the recursive algorithm for step ii) are detailed in Appendix D.

24 More precisely,
Fp(y,X) = Fp′(y,X) ⇒ p = p′;

where p = (α1, α2, α3, β, φ, δ) and Fp(y,X) is the joint probability distribution of observables (y,X) induced by
the parameters p .
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Consider the system in Equation 6 at t = T, T − 1. Because Dt contains expectations about

future shocks, DT = 0. The system in 6 can be reduced to

yT = α1 BT yT−1 + α2 BT (XTβ + GXT φ) + εT , (7)

yT−1 = α1 BT−1 yT−2 + α2 BT−1 (XTβ + GXT φ) + α2 BT−1 Dx
T−1 + εT−1. (8)

The endogeneity of yT−1 in Equation 7 and of yT−2 in Equation 8 requires to find suitable

instrumental variables, qT−1 and qT−2. Consider selecting qt = [Xt,GXt], t = T−1, T . Predicted

values of yt−1 are formed by projecting them on the space spanned by the set of instrumential

variables qt−1, t = T − 1, T . These are valid instruments by construction since: (i) Regularity

implies E[qt−1yt−1] 6= 0, t = T − 1, T ; (ii) Full rank implies explanatory variables are not

collinear; (iii) Exogeneity guarantees that exclusion restrictions are satisfied, i.e., E[qt−1εt] = 0,

t = T − 1, T . Finally, Equation 7 is independent of δ and hence the condition T ≥ 2 is necessary

to identify it.

The set of instruments qt, t = T − 1, T is larger than necessary allowing for flexibility and

power in empirical implementation. More specifically, our dynamic model with social interactions

can be identified using the dynamic equilibrium restriction imposed by the model with only past

variables as instruments, qt−1 = [Xt−1]. The model can also be identified with only the topology

of the social network, qt−1 = [GXt−1], though this requires some extra regularity conditions on

the network, e.g., the linear independence of the powers of G, as in Bramoullé et al. (2009).

4.2 Estimation

Because of the dynamic recursive structure of the theoretical framework, we can jointly estimate

the reduced-form equilibrium equations 6, for t = T, T − 1, T − 2 (as in Table 1). In particular,

we implement a nonlinear optimal Generalized Method of Moments (GMM) estimator (Hansen

(1982) and Cameron and Trivedi (2005)).25 The definition of the instrument matrix is based on

our identification result and it is detailed in Appendix E. We consider two modelling strategies.

First, we estimate the model assuming exogeneity of the network G. Because of the dynamic

recursive structure of the theoretical framework, we can jointly estimate the reduced-form equilib-

rium equations 6, for t = T, T −1, T −2 (as in Table 1). Second, we tackle a possible endogeneity

of the network by implementing a two-step procedure à la Heckman, as recommended by Blume

25 See Appendix E for details on the GMM procedure.
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et al. (2015).26 Specifically, we estimate an extended version of our model in which we explicitly

account for a possible correlation between unobserved factors jointly affecting both network for-

mation and equilibrium outcomes. To this end, we adapt an approach developed by Qu and Lee

(2015) for the estimation of a spatial autoregressive model with geographical data.

In our context, the approach consists in modeling friendship ties between students using a

standard dyadic model of link formation (see, e.g., Fafchamps and Gubert (2007)). Let gij denote

the probability that two students i and j are linked as friends. We postulate a linear probability

model in terms of the distance between the agents in terms of their characteristics, [xki , x
k
j ], for

k = 1, ...,K:

gij = λ0 +
∑

k
λk|x

(k)
i − x

(k)
j |+ ηij (9)

where

E(ηijηik) =

 σ2
η ∀j = k

= 0 ∀j 6= k
.

The selection effect is the correlation between unobservable characteristics determining link for-

mation ηij and the unobservable characteristics uit in the preference shock θit in equation 4. It

is assumed to be homogeneous across agents:

E(uitηij) = σuη, ∀j 6= i.

Under these assumptions and linearity of the conditional expectation of uit given ηij , E(uit|ηi2, . . . , ηin) =

ψξt, where ψ = σuησ
2
η and ξt =

∑
j 6=i ηij Equation 6 can then be rewritten as:27

yt = α1 Bt yt−1 + α2Bt (Dx
t + Xtβ + GXt φ) + α2Bt (ψξt) + et, (10)

where et = α2Btεt with εt = (ut − ψξt), ξt = (ξ1, ...ξn) and the term ψξt captures the selectivity

bias.

We implement a two-stage estimation procedure of equation 10:

Stage 1 Estimate ξ̂t from an OLS regression of 9;

26 Alternative avenues to address this issue would embed a network formation game into our dynamic recursive
behavioral model. We reserve such challenging avenues for future research.

27Observe that normality is not required. Linearity of the conditional expectation of uit given ηij suffices.
For example, exponential and uniform distributed errors also satisfy the requirement. See also the discussion of
Assumption 2 in Qu and Lee (2015).
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Stage 2 Estimate by nonlinear optimal GMM the reduced-form equilibrium equations 10 for

t = T, T − 1, T − 2, after replacing ξt with its estimated counterpart in Stage 1, ξ̂t.
28

Inference is however complicated in this estimation procedure because the selectivity term is

a generated regressor from a previous estimation and no closed form solution is available for the

nonlinear optimal GMM standard errors estimates. We use bootstrapped standard errors with

1000 replications. Because of the inherent structural dependency of network data, the design of

the resampling scheme needs special consideration. The residuals in the vector êt are not i.i.d.,

and thus one cannot sample with replacement from this vector. We thus use a residual bootstrap

procedure, resampling on the structural errors εt which are assumed to be i.i.d.29 The extended

model 9-10 is identified even if the xki variables used in the link formation and in the outcome

equation completely overlap, as in our case (see Goldsmith-Pinkham and Imbens (2013), and

Hsieh and Lee (2015)).30

5 Empirical network effects

Estimating our structural model of dynamic interaction on networks allows us to recover individ-

ual preferences from health risk behavior data. The main preference parameters in the model are

the discount rate δ, the addiction effect parameter α1, the own effect parameter α2, and the peer

effects parameter α3, which we normalize without loss of generality so that
∑3

i=1 αi = 1. In the

specifications in which the network is endogenous, we also estimate the selectivity parameter ψ,

a measure of the importance of unobservables leading individuals both to risky behavior and to

form friendship ties.

Table 2 presents the estimates of the structural parameters: in Column 1 the network G is

assumed to be exogenous, while in Column 2 network formation is assumed to satisfy the linear

dyadic structure in equation 9.

28 In this stage we use the same instrument matrix of the exogenous network case detailed in Appendix E.
29 This procedure is commonly used in spatial econometrics; see e.g., Anselin (1990). In practice, having in hand

the residual vector êt one can derive the estimates of the structural errors from ε̂t = B̂−1
t êt. These estimates are

then resampled school by school.
30Observe that the way identification is achieved, however, is not by functional form as in the traditional Heckman

selection model (that is based on the use of a 0-1 dependent variable in the first stage). The identification strategy
here exploits non-linearities specific to the network structure of our model. In our approach, the dyad-specific
regressors used in the first stage (the network formation stage) are expressed in absolute values of differences of

individual characteristics, |x(k)
i − x(k)

j |. These differences do not appear in the outcome equation. Finding pure
“excluded variables” is notoriously difficult in environments like ours.
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The estimate for δ is significant and relatively stable, independently of whether network

formation is endogenized. The point estimate is low but not abnormally so with respect to the

results in the experimental literature; see e.g., Frederick, Lowenstein, and O’Donoghue (2002).

Most importantly, the peer effect α3 and the addiction effect α1 are also significant; they are

similar in size, but they are 2-3 times larger (with respect to the own effect α2) when controlling for

the endogeneity of network formation. The selectivity parameter ψ is small and not significantly

different from 0. The validation exercise we implement next in Section 5.1 gives however statistical

support to our approach to control for the endogeneity of the network. Interestingly, the negative

sign of the point estimate for ψ is consistent with the presence of unobservables which lead

individuals to form friendship ties while reducing their utility for risky behavior.31

5.1 Out-of-sample Validation

In this section, we implement a model validation exercise of the structural estimates of our

dynamic recursive model, comparing out-of-sample predicted equilibrium behavior to actual be-

havioral data across different networks not employed in the estimation sample. We believe that

by demonstrating that our dynamic model’s predictions perform well when applied to pertinent

new data, this validation exercise would give the reader more confidence that a mechanism of

social interactions (the underlying structure) is uncovered from the data rather than imposed on

the data.

To fullfil this objective, we follow an approach inspired by Todd and Wolpin (2006).32 More

precisely, as we explain in Section 4.2, we first estimate the structural parameters using the

(larger) sample of students in grades 10, 11, and 12 under two specifications: (i) under the

exogeneity of the network G, using the reduced-form equilibrium equations 6 jointly, for t =

T, T − 1, T − 2, by linking the structural equations and the sample as in Table 1; and (ii) under

the possible endogeneity of the network G, using the reduced-form equilibrium equations 10

jointly, for t = T, T − 1, T − 2, once again by linking the structural equations and the sample

as in Table 1 and by explicitly accounting for a possible correlation between unobserved factors

jointly affecting both network formation and equilibrium outcomes. Those parameter estimates

under both specifications are reported in Table 2.

31This could be the case if, for example, individuals practice a sport together with their peers.
32In the context of a randomized social experiment in Mexico, Todd and Wolpin (2006) estimate a dynamic

model without using post-program data and then compare the model’s predictions about program impacts to the
experimental impact estimates.
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Next, we predict equilibrium risky behavior index for students in the hold-out sample con-

sisting of grades 7, 8, and 9. Specifically, (i) under the exogeneity of the network G, we use

the reduced-form equilibrium equations 6 jointly, for t = T − 3, T − 4, by linking the structural

equations and the sample as in Table 1, and (ii) under the possible endogeneity of the network

G, we use the reduced-form equilibrium equations 10 jointly, for t = T − 3, T − 4, once again

by linking the structural equations and the sample as in Table 1. For both specifications, the

predicted student behaviors are generated recursively, using the estimated parameters in Table 2,

the baseline controls (and network G) for grades 7, 8 and 9, and students’ initial risky behavior

index values for t = T − 5, observed in the data.

Finally, we compare the predictions of our dynamic model for grades 8 and 9 to the actual

behavioral choices of those adolescents observed in the data. Further, comparing the out-of-

sample predictions obtained through the exogenous and endogenous network estimates allows us

to statistically discriminate between the two modeling strategies.

Figure 2 presents the distributions of actual and predicted risky behavior index values. The

distribution of the behaviors generated by the dynamic model, using parameter estimates in Table

2, are close to the distribution of the actual risky behavior index values, particularly so for the

estimates controlling for the endogeneity of the network. The Pseudo−R2 scores, computed as

Corr2(y, ŷ), where y is the observed and ŷ the predicted behavior, are equal to 0.0917 and 0.1952

for the exogenous and the endogenous network estimates, respectively.

Table 3 reports the comparison of mean predicted and mean actual risky behavior index values

for the overall sample and for several subgroups defined by gender, race, parental education, and

others. Mean predicted values are close to the actual values in the data, for the whole sample and

all the chosen sub-groups; again particularly so when predictions are obtained from the estimates

allowing for endogeneity of the network. Indeed, for the specification allowing for endogeneity

of the network, the p-values for t-tests for differences between predicted and actual means are

uniformly higher across subgroups and we never reject the zero null.

We believe that the results presented in Figure 2 and in Table 3 deliver enough confidence

in our dynamic model and produce a clear ranking of the goodness of fit of predictions for the

two competing estimates in favor of controlling for network endogeneity. We therefore proceed

to study further the implications of our structural estimates, with the endogenous network case

as the baseline.
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5.2 Social Multiplier

The social multiplier is a measure of the amplification of the effects of an exogenous shock on

individual actions which is due to peer effects. It is a fundamental metric used to represent

the implications of peer effects. In this section, we report on the social multiplier implied by

our baseline structural estimates, allowing for endogeneity in network formation. Importantly,

the social multiplier, in our context, has a fundamental dynamic component: a shock to agents’

preferences in the 10th grade has effects on their behavior in all grades 10, 11, and 12.

Consider an exogenous shock to θi,t, say by ∆θi,t = π > 0, for all agents i. This shock

could represent, e.g., the outcome of a policy geared towards affecting students’ behavior directly

or indirectly through information or preferences. Consider first the case in which the shock is

temporary at t, that is, preferences are now shocked once at any given grade t. From the structural

equation 3 at t, the total change on the risky behavior index at t, accounting for peer interaction

effects in the network at equilibrium, is ∆yt = α2 πBt 1, where 1 is the N × 1 matrix of ones.

The direct effect, abstracting from peer effects, that is, for α3 = 0, would be ∆yt |direct= α2 π1.

Therefore, we define the multiplier of an exogenous preference shock at t on behavior at t as

mt,t =
∆yt

∆yt |direct
= Bt 1.

Iterating the structural equation 3 for τ = t, . . . , T , we trace out the effects of an exogenous

preference shock at t on behavior at all τ > t:

∆yτ = π ατ−t1 α2 (Bt × · · · ×Bτ ) 1;

and the (dynamic forward-looking) social multiplier of an exogenous preference shock at t on

behavior at τ is

mt,τ = ατ−t1 (Bt × · · · ×Bτ ) 1 (11)

for any period τ = t, . . . , T .33

Similarly, for a permanent shock from time t to the end-time τ , we can compute the multiplier

33Please see Appendix F for detailed derivation of the dynamic social multiplier.
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effect as:

mt,τ =
τ∑
s=t

ατ−s1 (Bτ × · · · ×Bs)
(
1 + D̃s

)
(12)

The sample means of multiplier values (m̄t,τ ) for the baseline estimated parameter values,

with endogenous network, are reported in Table 4. In Figure 3 the instantaneous multiplier m̄t,t

is reported for t = 10, 11, 12 and for both a temporary and a permanent shock.

Several interesting properties of the calibrated multipliers are worth noticing. First of all, the

multiplier effects of a temporary preference shock at t decline over time: mt,τ decreases with τ , for

all t. For instance, a temporary shock at t = 10 has multiplier 1.53, 1.03, and 0.76, respectively

at τ = 10, 11, 12. The multiplier of permanent shocks instead increase over time. A permament

shock in grade 10 has multiplier 1.55 in the same grade, 2.6 in grade 11, and 3.68 in grade

12. Furthermore, permanent shocks have larger multiplier effects than temporary shocks, both

instantaneously and over time.34 Perhaps most interestingly, the same-period multiplier effect

decreases with the number of periods to the end of high-school T : m̄10,10 < m̄11,11 < m̄12,12.

This is the case for both temporary and permanent shocks. In the case of temporary shocks, our

estimates imply that the same-period social multiplier in grade 12 (the last year of high-school)

is about 1.7, whereas it is 1.56 and 1.53, respectively, in grades 11 and 10. The same-period

multiplier effects in the different grades encode the importance of the number of periods to the

end of school in students’ choice. Our estimates, therefore, are evidence that students anticipate

a change in their social network after high-school and that this affects the importance of peer

effects over schooling age: as the time to the end of high-school T − t increases, the students’

policy functions weigh more heavily future shocks and the current shock has a smaller effect.

Multiplier effects operate also through an expectations channel: forward-looking agents change

their contemporaneous behavior in response to an anticipated shock in the future. Namely, we

can compute the multiplier effect of an exogenous preference shock at a future date t on behavior

at τ < t:

mt,τ = BtD̃t (13)

where D̃t capture the sum of the expected effects on period τ marginal utility of a unit future

34 Note that, obviously, a permanent shock at T = 12 is equivalent to a temporary shock and hence the multipliers
are the same.
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shock that is anticipated to change the random component of preferences, θt.
35

In Table 5, we report the expected multiplier effects, in grade 10, 11 and 12 , induced by an

anticipated shock to the preferences of all agents in grade 12; that is, we report the multipliers

mt,τ for t = 12 and τ = 10, 11, 12. In anticipation of an increased preference for risky behavior

in grade 12 agents increase risky behavior in grade 11 (m̄12,11 = 0.0540) and decrease it slightly

in grade 10 (m̄12,10 = −0.0055). These effects are subtle but can be intuitively be explained as

follows. In grade 10, agents anticipate that they will increase risky behavior at 12 and anticipate

that so will do all their peers in the network (m̄12,12 = 1.7132). This entails an adjustment cost

in terms of utility, because the addiction effect penalizes behavioral changes over time. As a

consequence, with strictly concave preferences, the agents will have an incentive to smooth these

adjustment costs over time, increasing risky behavior starting from grade 10 and then in grade 11

and 12 as well. Interestingly, however, a compensating effect could dominate in grade 10 inducing

the agents to decrease risky behavior first in grade 10 and then to increase in grades 11 and 12.

This occurs in particular at the estimated parameter values, and more generally when peer effects

are particularly strong, that is, α3 is relatively large. Indeed, peer effects induce agents to engage

in more risky behavior than their own preferences would induce them to in grade 12; the more so

the stronger the peer effects. That is, generally yi,12 > θi,12; and this also implies an adjustment

cost in terms of utility for the agents. The negative multiplier in grade 10, therefore, is the result

of the trade-off between smoothing the adjustment costs via the addiction channel and via the

own preference channel in the presence of large peer effects.36

The salience of the social multiplier dynamics implied by our estimates can be illustrated by

comparing the different (semi-) elasticities of a change in the availability of alcohol or cigarettes

at home on child risky behavior implied by the direct effect (∆E(y12)/E(y12) |direct) versus

the equilibrium effect (∆E(y12)/E(y12)).37 Thus, 12th graders adolescents that have alcohol or

35D̃t’s can be computed recursively. The explicit formula for D̃t = π−1∆Dt is given using

∆Dt :=

t∑
s=t+1

δs−t
(
− α1 diag (Λt,s−1 − Λt,s) (∆Γt,s−1 −∆Γt,s)

+ diag (Λt,s)
(
∆θ̄s −∆Γt,s

)
−α3

N∑
k=1

diag
(
G•k ι

′
N

)
diag (ιN Λk•,t,s − Λt,s) (∆Γk,t,s1−∆Γt,s)

)
(14)

Please see Appendix F for the explicit derivation of the multiplier formulas recursively.
36Simulations of the anticipation effect at different values of the parameters, which we do not report, validate

this intuition regarding the occurrance of a negative multiplier in grade 10.
37For all the computations we report the sample means of the semi-elasticities. Semi-elasticity is the percentage
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tobacco easily available at home (directly) increase their risky behavior index by roughly 44%

(with respect to adolescents that do not have alcohol or tobacco easily available at home). This

effect almost doubles when we consider network peer effects in equilibrium (roughly 78%). Please

refer to Table 7 for analogous results for the simulated (semi-) elasticities of a temporary as well

as a permanent change in the availability of alcohol or cigarettes at home in any given grade

on child risky behavior implied by the direct effect versus the equilibrium effect on behaviors in

grades 10, 11, and 12.

5.3 Static and myopic bias

The main thrust of our theoretical analysis consists in modeling health risk behavior as the

outcome of dynamic choice by forward looking agents. Empirically, the dynamic choice component

of this approach is validated by the fact that the addiction effect α1 is estimated to be significantly

different than 0. The forward looking (as opposed to myopic) component of this approach is

instead validated by the fact that the discount rate δ is estimated to be significantly different

than 0.

To better gauge at the relevance of dynamic forward looking behavior, in this section we

measure the bias associated to estimating (i) a mis-specified myopic model, obtained by restricting

the structural equation 3 by imposing δ = 0; (ii) a mis-specified static model, obtained restricting

the structural equation 3 by imposing δ = α1 = 0. We then compare the resulting parameter

estimates and goodness of fit of these models with those of our dynamic baseline model with no

restrictions. All models are estimated controlling for the endogeneity of the network. Results are

reported in Table 8 and Figure 6. Table 8 compares the parameter estimates across specifications.

The striking feature is that while the static model produces an estimate of the peer effect α3 which

is small, about a half of the own effect α2, in the dynamic model, the peer effect estimate is on the

contrary more than twice as large as the own effect. Furthermore, the sign of the selectivity effect

parameter is positive in the static model estimates and negative in the dynamic model estimates.

On the other hand, the estimates of the preference parameters obtained from the myopic model

are in line with those associated with the dynamic baseline. Nonetheless, the performance of the

two models is different, as shown in Figure 6.38 Figure 6 compares the fit of the three models

change in a function relative to an absolute change in its parameter. Algebraically, the semi-elasticity of a function

f at point x is f ′(x)
f(x)

= d ln f(x)
dx

.
38Observe that the point estimate of the selectivity parameter is of the opposite sign and especially of much

larger magnitude in the myopic model estimates with respect to the dynamic baseline. In fact, the bias associated
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with the data. It plots the actual data and the predictions that are obtained when using different

models. It appears that the predictions of the dynamic baseline model are closer to the actual data

than the predictions of both the static and the myopic models. Indeed, the pseudo−R2 is equal

to 0.3190, 0.2488 and 0.0571 for the dynamic, the myopic and the static models, respectively.

In addition to this evidence, observe that the restrictions imposed by both the static and the

myopic models induce a dramatic bias in the estimation of the social multipliers. Firstly, as can

be seen immediately from the construction of the multiplier measures in (11), (13) and (12), a

misspecified static model cannot generate any intertemporal multiplier effects since the link across

two consecutive periods is broken by setting α1 = 0. Second and perhaps more importantly, if

a shock in question has not realized yet but will in the future, forward-looking agents anticipate

that shock and change their contemporaneous behavior accordingly. However, myopic agents

do not care about their future behavioral paths and consequently do not change their behavior

accordingly. For a misspecified myopic model, as δ → 0, |BT −Bt| → 0 for any period t, and the

model becomes one of a sequence of myopic period economies. Consequently, the instantaneous

multiplier effect generated under this specification is constant across periods, yielding a bias,

which is increasing in the time-to-end T − t, relative to our benchmark dynamic specification.

5.4 Spatial Correlation

We conclude our investigation by looking at the performance of our model in terms of spatial

correlation, which is a traditional metric used to represent the implications of peer effects in terms

of the spillovers they induce. We demonstrate that the correlations between risky behavior of

agents at different social distances predicted by our dynamic model (with endogenous network

formation) track very closely the correlations in the actual data.

In order to do that, we introduce a linear order along which space, and hence distance between

agents, is defined. Let the social distance between any pair of students be characterized by the

smallest number of links establishing a connection between them. Formally, we construct a

minimum-path algorithm that maps any given network G into a series of geodesic adjacency

matrices Gk, k = 1, 2, . . . , d(G), where Gk is the matrix of agents who can reach each other

through a shortest path of length at least k and d(G) is the diameter of the entire friendship

network G.39 We then pick the the largest network component in our sample which consists of

to the myopic model with respect to our dynamic baseline model appears especially in the estimated effects of the
conditioning characteristics, which we report in Table G4 in Appendix G.

39The geodesic adjacency matrices are weighted by the number of connections each student has.
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286 students and whose diameter is 24.40 Figure 4 presents the actual series of geodesic student

adjaceny matrices Gk of increasing social distance with k = 1, 5, 10, and 20, obtained using our

algorithm, starting with the largest student network component in our sample. As is apparent in

the Figure, and is consistent with theory, Gk first gets denser as k increases and later becomes

sparse, as k gets closer to the diameter of the entire network component.

Using this definition of social distance between students, we follow an approach similar to

that of Todd and Wolpin (2006) to predict the individual equilibrium paths of risky behavior

of students by using the reduced-form equilibrium equations 10 jointly, for t = T, T − 1, T − 2,

once again by linking the structural equations and the sample as in Table 1, and with parameters

calibrated using the baseline estimates from Table 2, Column 2. Then, we compute the correlation

between students’ choices in each period and the average level of those of their peers at different

social distances, as represented by adjacency matrix Gk, k = 1, 2, . . . , d(G).41 Figure 5 reports

the results with 95 percent confidence interval, showing that spatial correlation declines quickly

and is effectively zero at and after social distance k = 3. The trends in the estimated and actual

correlations are remarkably similar.

6 Robustness

In our analysis, we control for a possible endogeneity of the social network by implementing a

Heckman correction procedure. In this section, we investigate the sensitivity of the results to

an alternative definition of peers, which does not require dealing with network endogeneity. We

experiment by defining as peers all students of the same gender within the same grade at a school.

This definition is grounded on the sociological literature documenting that adolescents are more

likely to have same gender friends (see, e.g. McPherson, 2001). We inspect the validity of this

hypothesis in our data in Figure 8. Figure 8 depicts friendship linkages in the larger network in

our data (286 nodes with diameter 24) by using different colors for nodes indicating students of

different gender. The picture reveals that indeed social interactions are assortative by gender.

40A component of a network is a nonempty subnetwork in which every two nodes belonging to it are connected
to each other by paths, and which is connected to no additional nodes outside of the subnetwork. The diameter of
a network is the shortest distance between the two most distant nodes in the network.

41Our method of internal validation works by predicting students’ risky behavior indices at different time periods.
The setup is the same as the one used in Section 5.1. In particular, predicted behaviors are generated recursively
for each grade starting from grade 10 (t = T − 2) and going up to grade 12 (t = T ). We use the actual and the
predicted dependent variables to construct the correlation between each individual choice and the average level of
individual’s peers’ choices at different social distances represented by k.
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Formally,let G̃ = [g̃ij ] be the “new” interaction network,

g̃ij =

 1
|NG̃(i)| , if i and j have the same gender

0, otherwise.
(15)

where |NG̃(i)| denotes the number of friends (of the same gender) that agent i has. Hence

the social term G̃Xt, in the preference shock decomposition in equation (5), is an average, for

each agent i, of the covariates of all other agents of the same gender. Note also that as in our

benchmark dynamic model, student i is removed (i.e. g̃ii = 0) when the average risky behavior

index of same-gender students is computed from the school-grade distribution. While this is a

much coarser network definition, it has the advantage of being exogenous. Infact, when parents

choose the school for their children, they are unlikely to be aware of how the intensity of risky

behavior by gender vary by grade within a particular school. The idea is to treat the composition

of students by grade and gender within a school as quasi-random and to use this quasi-random

variation to identify peer effects.42 We show that the the variation in the average risky behavior

of same grade and gender school mates is unrelated to the variation in a number of predetermined

student characteristics in Table G5 in Appendix G. We consider the same controls as the baseline

specification listed in Table G1. We run separate regressions with each of these variables as

alternate dependent variables, and add school fixed effects to control for differences in average

student characteristics across schools as well as for other aspects of school quality. As shown in the

table, none of the estimated correlations appear to be significantly different from zero, supporting

the notion that our model specification identifies an exogenous source of variation. We estimate

the model using the same strategy of Subsection 4.2. Specifically, we use the nonlinear optimal

GMM estimator detailed in Appendix E, and replacing network fixed effects with school fixed

effects.43

Results are reported in Table 9. The first column reports results of the estimated coefficients

in the original sample using both middle and high school students. The second column report

the estimated coefficients of the model using our regression sample (high school students). The

42This approach has been first proposed by Hoxby (2000b) to estimate the impact of class size, and subsequently
widely used in studying peer effects in education (e.g. Angrist and Lang (2004); Friesen and Krauth (2007);
Hanushek, Kain, and Rivkin (2002); Lavy and Schlosser (2011); Lavy, Paserman, and Schlosser (2012); Olivetti,
Patacchini, and Zenou (2018)). Also, Patacchini and Zenou (2016) use a similar approach to investigate the impact
of peer religiosity in the intergenerational transmission of religion.

43The matrix of instruments for the GMM estimation is defined as the one that we used in Section 4.2 with G̃
instead of G. Details are shown in Appendix E.
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estimates of the preference parameters of the model confirm the salience of our theoretical model:

the presence of the dynamic choice component is validated by the fact that the estimate of

the addiction effect α1 remains positive and significantly different than 0; the forward looking

component is validated by the fact that the discount rate δ also remains positive and significantly

different than 0; and the importance of the peer effect component is reflected in the positive and

significant estimate α3. Perhaps unsurprisingly, the magnitudes of the effects are different due to

the different definition of peers. Notably, the estimated peer effect is much smaller, perhaps a

consequence of a less precisely specified network.

Finally, we further perform two robustness checks. We estimate our dynamic model when

considering the friendship nominations at wave I (rather than wave II) and when including also

students who do not nominate any best friend and are not nominated by anyone. Table G6 in

Appendix G reports the estimates of the structural parameters for these two cases: the network

with wave I friendship nominations (Column 1), and the sample including isolated individuals

(Column 2). For each robustness exercise the network is assumed to be endogenous. Results

remains qualitatively unchanged when compared with the baseline estimates reported in Table

2.44

7 Concluding Remarks

Dynamic social interactions provide a rationale for several important phenomena at the intersec-

tion of economics and sociology. The theoretical and empirical study of economies with long-lived

social interactions has been hindered by both mathematical and conceptual problems.

In this paper, we show how some of these obstacles can be overcome while studying the risky

behavior of adolescents. We formulate and structurally estimate a dynamic social interaction

model in the context of students’ school networks included in Add Health. The equilibrium

characterization of the dynamic game allows us to offer solutions to the well-known inferential

problems in the study of social interactions. We construct a consistent estimator in our envi-

ronment, by using the moment restrictions imposed by the dynamic equilibrium to back out the

structural preference parameters. Our empirical analysis confirms the main thrust of our exercise

regarding smoking and alcohol use in the adolescent population. We find strong evidence for

forward looking dynamics, addiction effects, and social interaction effects. Social interactions in

44When we include isolated individuals in the sample we also add in the specification a dummy, which indicates
if an individual is isolated or not.
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the estimated dynamic model are indeed quantitatively large.

These results have important policy implications. The importance of social interactions for

policy analysis relies on the fact that when social interactions are quantitatively important, well-

targeted policy interventions at a smaller scale might have much larger effects at the aggregate

through the social multiplier channel for those interactions. In this respect, we show that a

misspecified static model would a much smaller estimate of the social interaction effect than the

dynamic model. Furthermore, our empirical analysis implies that the effects of policy interven-

tions to affect adolescents’ risky behavior display over time, indeed increase over time when policy

interventions are permanent. Finally, it also implies that the design of policy interventions should

depend on the students’ network structure and should consider the dynamics of the network itself,

as students anticipate its natural breaks.
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Figures and Tables

Figure 1: Distribution of students by alcohol and cigarette consumption

This figure graphs the empirical densities of alcohol consumption, cigarette consumption and the risky behavior
index. Densities are smoothed using a kernel density estimator.
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Figure 2: Distributions of actual and predicted values of the risky behavior index

This figure graphs the distributions of actual and predicted values of the risky behavior index. we predict equilibrium
risky behavior index for students in the hold-out sample consisting of grades 7, 8, and 9. Specifically, (i) under
the exogeneity of the network G, we use the reduced-form equilibrium equations 6 jointly, for t = T − 3, T − 4,
by linking the structural equations and the sample as in Table 1, and (ii) under the possible endogeneity of the
network G, we use the reduced-form equilibrium equations 10 jointly, for t = T − 3, T − 4, once again by linking
the structural equations and the sample as in Table 1. For both specifications, the predicted student behaviors are
generated recursively, using the estimated parameters in Table 2, the baseline controls (and network G) for grades
7, 8 and 9, and students’ initial risky behavior index values for t = T − 5, observed in the data.

Table 1: Linking the structural equations and the sample

YT−5 YT−4 YT−3 YT−2 YT−1 YT

Eq’n 3 at t = T g11 WI g12 WII

Eq’n 3 at t = T − 1 g10 WI g11 WII

Eq’n 3 at t = T − 2 g9 WI g10 WII

Eq’n 3 at t = T − 3 g8 WI g9 WII

Eq’n 3 at t = T − 4 g7 WI g8 WII

This table summarizes the structure of our sample.
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Figure 3: Temporary and permanent instantaneous multiplier effects

This figure illustrates temporary and permanent instantaneous multiplier effects. The sample means of dynamic
multiplier values are computed across grades using actual parameter estimates from Table 2 column 2. Here, we
plot the permanent effect relative to the temporary effect.

Figure 4: Adjacency matrices by social distance

This figure graphs the actual series of geodesic student adjaceny matrices Gk of increasing social distance with
k = 1, 5, 10, and 20, obtained using our algorithm, starting with the largest student network component in our
sample.
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Figure 5: Behavioral corrrelation and social distance

This figure illustrates the correlation between students’ choices in each period and the average level of those of
their peers at different social distances, as represented by adjacency matrix Gk, k = 1, 2, . . . , d(G). Our method of
internal validation works by predicting students’ risky behavior indices at different time periods. The setup is the
same as the one used in Section 5.1. We use the reduced-form equilibrium equations 10 jointly, for t = T −3, T −4,
by linking the structural equations and the sample as in Table 1. In particular, predicted behaviors are generated
recursively for each grade starting from grade 10 (t = T − 2) and going up to grade 12 (t = T ). Predicted values
for dynamic model are obtained by equation 10 with parameters calibrated using the values of Table 2 Column
2. We use the actual and the predicted dependent variables to construct the correlation between each individual
choice and the average level of individual’s peers’ choices at different social distances represented by k. Dotted
lines represents 95 percent confidence interval for the estimated correlations.
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Figure 6: Distributions of actual and predicted values of the risky behavior index

This figure graphs distributions of actual and predicted values of the risky behavior index. In particular, predicted
behaviors are generated recursively for each grade starting from grade 10 (t = T − 2) and going up to grade 12
(t = T ). Predicted values for the dynamic baseline model are obtained by the structural model 10 with parameters
calibrated using the values of Table 2 Column 2. Predicted values for the myopic and static model are obtained by
the structural model 10 with parameters calibrated using the values of Table 8 Column 3 and 4.
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Figure 7: Behavioral correlation and social distance

This figure illustrates the correlation between students’ choices in each period and the average level of those of
their peers at different social distances, as represented by adjacency matrix Gk, k = 1, 2, . . . , d(G). Our method of
internal validation works by predicting students’ risky behavior indices at different time periods. The setup is the
same as the one used in Section 5.1. We use the reduced-form equilibrium equations 10 jointly, for t = T −3, T −4,
by linking the structural equations and the sample as in Table 1. In particular, predicted behaviors are generated
recursively for each grade starting from grade 10 (t = T − 2) and going up to grade 12 (t = T ). Predicted values
for dynamic model are obtained by equation 10 with parameters calibrated using the values of Table 2 Column 2.
Predicted values for myopic and static model are obtained by equation 10 with parameters calibrated using values
of Table 8 columns 1 and 2.
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Figure 8: Gender assortativeness

This figure depicts friendship linkages in the larger network in our data (286 nodes with diameter 24) by using

different colors for nodes indicating students of different gender. The picture reveals that indeed social interactions

are assortative by gender. Nodes represented by a light blue (resp., purple) dot correspond to female students

(resp., male students).Sizes of nodes are proportional to individuals’ risky index levels.
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Table 2: Dynamic recursive model

Dep. Var. Risky Behavior Index Exogenous network Endogenous network
(1) (2)

Addiction effect (α1) 0.3692*** 0.4299***
(0.0095) (0.1552)

Own effect (α2) 0.3499*** 0.1538***
(0.0170) (0.0210)

Peer effect (α3) 0.2809*** 0.4163**
(0.0172) (0.1665)

Discount factor (δ) 0.5038*** 0.4925**
(0.0640) (0.2017)

Selectivity (ψ) -0.0620
(0.5942)

Student characteristics Yes Yes
Peers’ characteristics Yes Yes
Networks fixed effects Yes Yes
N. Obs. 1,207 1,207

This table reports GMM estimates of the structural models 6 and 10. In Column 1
the network G is assumed to be exogenous, while in Column 2 network formation is
assumed to satisfy the linear dyadic structure in equation 9. Students’ characteristics are
listed in Table G1. The peers’ characteristics are calculated as friends’ averages of the
included variables. Heteroskedasticity-robust numerical standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.

Table 3: Model validation

Model Model
Data Exogenous network p-value Endogenous network p-value

Overall 0.0720 0.0612 0.3717 0.0719 0.9932
(0.1649) (0.1673) (0.1040)

If female = 1 0.1027 0.0550 0.0533 0.0684 0.1064
(0.1856) (0.1753) (0.1178)

If Parent college degree = 1 0.0952 0.0573 0.0385 0.0757 0.2259
(0.1839) (0.1631) (0.1154)

If two-parents = 1 0.0924 0.0588 0.0721 0.0736 0.261
(0.1806) (0.1550) (0.1142)

If Black or African American=1 0.1366 0.0665 0.1384 0.1153 0.6291
(0.2322) (0.1505) (0.1170)

If pocket money = 1 0.0932 0.0648 0.0932 0.0799 0.3656
(0.1784) (0.1635) (0.1129)

If Alcohol/tobacco at home = 1 0.0847 0.0141 0.2674 0.0362 0.3642
(0.2038) (0.1705) (0.0929)

If height > median 0.1116 0.0690 0.0758 0.0791 0.1358
(0.1963) (0.1539) (0.1128)

N. Obs. 381 381 381 381

This table reports the comparison of mean predicted and mean actual risky behavior index values for the
overall sample and for several subgroups defined by gender, race, parental education, and others. Means
and standard deviations (in parentheses) of observed and predicted risky behavior index are reported. The
reported p-values refer to zero null t-tests for differences in means between observed and simulated risky
behavior.
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Table 4: The multiplier

m̄10,10 m̄10,11 m̄10,12 m̄11,11 m̄11,12 m̄12,12

Temporary shock 1.5312 1.0293 0.7581 1.5638 1.1517 1.7132
Permanent shock 1.5523 2.6070 3.6767 1.6177 2.9042 1.7132

This table reports the sample means of multiplier values (m̄t,τ ) for the baseline
estimated parameter values, with endogenous network in Table 2, Column 2.

Table 5: The expectation multiplier

m̄12,10 m̄12,11 m̄12,12

-0.006 0.054 1.7132

This table reports the sample means of multiplier values (m̄t,τ ) in grade 10, 11
and 12 induced by an anticipated shock to the preferences of all agents in grade
12, calibrated to the baseline estimated parameters with endogenous network in
Table 2, Column 2.

Table 6: The expectation multiplier - under different parameter values

a2 = 0.1 α3 = 0.8(α1 = 1− α2 − α3) α3 = 0.7 α3 = 0.6 α3 = 0.5 α3 = 0.4

m̄12,10 -0.089 -0.089 -0.067 -0.048 -0.0346
m̄12,11 -0.633 -0.275 -0.090 0.004 0.052
m̄12,12 5 3.3333 2.5 2 1.6667

a2 = 0.2 α3 = 0.6(α1 = 1− α2 − α3) α3 = 0.5 α3 = 0.4 α3 = 0.3 α3 = 0.2

m̄12,10 -0.023 -0.014 -0.006 -0.001 -0.001
m̄12,11 0.059 0.109 0.135 0.146 0.148
m̄12,12 2.5 2 1.6667 1.4286 1.25

a2 = 0.4 α3 = 0.5(α1 = 1− α2 − α3) α3 = 0.4 α3 = 0.3 α3 = 0.2 α3 = 0.1

m̄12,10 0.024 0.035 0.043 0.048 0.050
m̄12,11 0.201 0.227 0.238 0.240 0.238
m̄12,12 1.6667 1.4286 1.25 1.1111 1

a3 = 0 α1 = 0.1(α2 = 1− α1 − α3) α1 = 0.2 α1 = 0.3 α1 = 0.4 α1 = 0.5

m̄12,10 0.007 0.019 0.031 0.038 0.038
m̄12,11 0.082 0.137 0.172 0.192 0.198
m̄12,12 1 1 1 1 1

a3 = 0 α1 = 0.6(α2 = 1− α1 − α3) α1 = 0.7 α1 = 0.8 α1 = 0.9

m̄12,10 0.0299 0.013 -0.011 -0.031
m̄12,11 0.192 0.172 0.137 0.082
m̄12,12 1 1 1 1

This table reports the simulated sample means of expectation multiplier values (m̄t,τ ) with actual
school networks G and with δ = 0.99.
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Table 7: The (semi-) elasticities of “availability of alcohol or cigarettes at home”

10 on 10 10 on 11 10 on 12 11 on 11 11 on 12 12 on 12

Temporary shock
Direct Effect 0.0492 0.0212 0.0091 0.2014 0.0866 0.4393

Equilibrium Effect 0.0996 0.0736 0.0556 0.3398 0.2580 0.7895

Permanent shock
Direct Effect 0.0492 0.0704 0.0795 0.0004 0.2880 0.4393

Equilibrium Effect 0.0996 0.1757 0.2502 0.3399 0.6301 0.7895

This table reports the sample means of the (semi-) elasticities of a change of “availability of alcohol
or cigarettes at home” on child risky behavior implied by the direct effect versus the equilibrium
effect for the baseline estimated parameter values, with endogenous network in Table 2, Column
2.

Table 8: Myopic and static vs. dynamic baseline estimates

Dep. Var. Risky Behavior Index Endogenous network
Myopic Static Dynamic baseline
δ = 0 α1 = 0, δ = 0
(1) (2) (3)

Addiction effect (α1) 0.4233*** - 0.4299***
(0.1225) (0.1552)

Own effect (α2) 0.1468*** 0.6453*** 0.1538***
(0.0134) (0.0999) (0.0210)

Peer effect (α3) 0.4299*** 0.3547*** 0.4163**
(0.1347) (0.0999) (0.1665)

Discount factor (δ) - - 0.4925**
(0.2017)

Selectivity (ψ) 0.2615 0.0888 -0.0620
(1.1107) (0.1680) (0.5942)

Student characteristics Yes Yes Yes
Peers’ characteristics Yes Yes Yes
Networks fixed effects Yes Yes Yes
N. Obs. 1,207 1,207 1,207

This table reports GMM estimates of the structural model 10. In Column 1 we restrict the model
by setting δ = 0, while in Column 2 we restrict the model by setting α1 = 0 and δ = 0. Column
3 reports baseline estimates presented in Table 2 Column 2. Students’ characteristics are listed in
Table G1. The peers’ characteristics are calculated as friends’ averages of the included variables.
Heteroskedasticity-robust numerical standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Alternative definition of peers

Dep. Var. Risky Behavior Index
All Sample Regression Sample

(1) (2)

Addiction effect (α1) 0.4139*** 0.2937***
(0.0002) (0.0174)

Own effect (α2) 0.3260*** 0.3603***
(0.0003) (0.0265)

Peer effect (α3) 0.2601*** 0.3460***
(0.0004) (0.0381)

Discount factor (δ) 0.4210*** 0.5206***
(0.0009) (0.0833)

Student characteristics Yes Yes
Peers’ characteristics Yes Yes
School fixed effects Yes Yes
N. Obs. 1,759 1,207

This table reports GMM estimates of the structural models using the al-
ternative definition of peers defined in 15 (Column 1). In Column 2 we
condition the estimation to the sample used in the baseline estimation
(Table 2). Students’ characteristics are listed in Table G1. The peers’
characteristics are calculated as friends’ averages of the included variables.
Heteroskedasticity-robust numerical standard errors in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Technical Appendix

A Formal Model

A dynamic linear economy with social interactions is populated by a finite number of agents i = 1, . . . , N .

Agents live for the whole duration of the economy t = 1, . . . , T . Each agent i chooses an action yit at

time t from a closed and convex set Y ⊂ R after having observed a preference shock θit ∈ Θ ⊂ R,

a closed and convex set of possible types (we denote with yt ∈ Y and θt ∈ Θ the corresponding N -

dimensional vectors stacking all agents).45 Let θ := (θt) := (θit)i=1,...,N, t≥1 be the stochastic process of

agents’ types, which is assumed, with no loss of generality, to be defined, on the canonical probability

space (Θ,F ,P), where Θ :=
{

(θ1, θ2, · · · ) : θt ∈ ΘN , t = 1, 2, · · · , T
}

is the space of sample paths. The

sequence (F1,F2, · · · ,FT ) of Borel sub-σ-fields of F is a filtration in (Θ,F), that is F1 ⊆ F2 ⊆ · · · ⊆ F .

Finally, the process θ = (θ1, θ2, · · · , θT) is adapted to the filtration (Ft : t ≥ 1), that is, for each t, θt is

measurable with respect to Ft. Finally, P : F → [0, 1] is a probability measure where P ((θ1, . . . , θt ∈
A) := P ({θ ∈ Θ : (θ1, . . . , θt) ∈ A}), all A ∈ Ft.

The social network is represented by an N × N matrix G = [gij ], where gij indicates the friendship

relationship between i and j. Following the convention in the social networks literature, G has a main

diagonal of zeros. We consider row-normalized G’s, i.e., if i nominates j as one of his friends, then gij > 0,

otherwise gij = 0, and
∑
j gij = 1. In other words, we consider a directed network, in which each agent

interacts directly with his friends, and friendship of i with j does not imply friendship of j with i.

The instantaneous preferences of an agent i ∈ N are represented by the utility function

ui(yit−1,yt, θt,G) := −α1(yit−1 − yit)2 − α2(θit − yit)2 (A.1)

−α3

N∑
j=1

gij(yjt − yit)2

and α1, α2, α3 ≥ 0 are parameters. We require that either α1 or α2 be strictly positive.

The precise timing of events is as follows: Before each agent’s time t choice, the history of previous

choices, yt−1 = (y0,y1, . . . ,yt−1), and the history of preference shocks, θt = (θ1, . . . , θt) (including the

period-t realization), are observed by all agents. After time t choices are made, yt = (yit)
N
i=1 becomes

common knowledge and the economy moves to time t+ 1.

Each agent i chooses strategy yi = (yit), where for each t, yit : Yt ×Θt → Y , to maximize

E

[
T∑
t=1

δt−1 ui(yit−1,yt, θt,G)
∣∣∣ (y0, θ1)

]
(A.2)

given {yj}j 6=i, the strategies of other agents, and any finite initial history (y0, θ1) ∈ Y ×Θ.

45All of our results are easily extended to the case in which choice and type variables are multidimensional.
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Definition A. 1 A Subgame Perfect Equilibrium of a dynamic linear conformity economy is a family of

maps {y∗i }Ni=1 such that for all i = 1, . . . , N and for all (yt−1, θt) ∈ Yt ×Θt

y∗it
(
yt−1, θt

)
∈ argmaxyit∈Y E

[
T∑
t=1

δt−1 ui(yit−1,
(
yit, {y∗jt}j 6=i

)
, θt,G)

∣∣∣ (y0, θ1)

]
(A.3)

B Proof of Proposition 1 (Existence and Uniqueness):

Proposition 1 (Equilibrium Existence and Uniqueness) Consider a dynamic linear economy with

social interactions and preferences for conformity, with α1 +α2 > 0. There exists a unique subgame perfect

equilibrium. Individuals’ equilibrium choices at time T are uniquely determined by

yT = [∆T I− α3 G]
−1︸ ︷︷ ︸

BT

× (α1 yT−1 + α2 θT ) (B.1)

where BT := [bijT ] is an N ×N matrix of equilibrium coefficients. For any t = 1, . . . , T − 1, individuals’

optimal choices in equilibrium are uniquely given by

yt = Bt (α1 yt−1 + α2 θt + α2 Dt) . (B.2)

Each Bt, t < T , depends only on the future equilibrium coefficient matrices (Bτ )τ>t and is computed

recursively as the unique fixed point of contraction maps induced by the first-order conditions of problem

(A.3).

Proof: - Step 1: Existence and uniqueness at t = T . Let any history of previous choices, yT−1 =

(y0,y1, . . . ,yT−1) and of preference shocks, θT = (θ1, . . . , θT ), and other agents’ choices (yjT )j 6=i be given.

Agent i solves

max
yiT∈Y

−α1(yiT−1 − yiT )2 − α2(θiT − yiT )2 − α3

N∑
j=1

gij(yjT − yiT )2

 (B.3)

The first order condition

2

α1 (yiT−1 − yiT ) + α2 (θiT − yiT ) + α3

N∑
j=1

gij(yjT − yiT )

 = 0

implies that

yiT = ∆−1
T

α1 yiT−1 + α2 θiT + α3

N∑
j=1

gij yjT

 (B.4)

where ∆T := α1 +α2 +α3 > 0. This choice is feasible (in Y ) since it is a convex combination of elements of
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Y , a convex set by assumption. The objective function (B.3) is strictly concave in yiT , thus the right-hand

side of (B.4) is the unique optimizer.

Let B be the class of bounded FT -measurable functions y : (Y ×Θ)T → Y . The right hand side of

(B.4) can be seen as an operator, call it FOCiT , that maps any given collection f = {fj} of bounded and

FT -measurable functions in B to the FT -measurable function FOCiT (f), defined as

FOCiT (f)(yT−1, θT ) := ∆−1
T

α1 yiT−1 + θiT + α3

N∑
j=1

gij fj(y
T−1, θT )

 (B.5)

FOCiT is a self-map for any i. Thus, the map FOCT := (FOCiT )i : Bn → Bn. Endow both B

and Bn with the sup norm which makes (Bn, || · ||∞) a Banach space. Showing the existence of an

equilibrium in the continuation given history (yT−1, θT ) is equivalent to finding the fixed point of the

operator FOCT := (FOCiT )i : Bn → Bn. To that end, we show next that the map FOCT is a contraction

map. Pick f, f̂ ∈ Bn. We have for all
(
yT−1, θT

)
∣∣∣FOCiT (f)

(
yT−1, θT

)
− FOCiT

(
f̂
) (

yT−1, θT
) ∣∣∣

= ∆−1
T

∣∣∣α1 yiT−1 + θiT + α3

N∑
j=1

gij fj(y
T−1, θT )

−α1 yiT−1 − θiT − α3

N∑
j=1

gij f̂j(y
T−1, θT )

∣∣∣
=

(
α3

∆T

) ∣∣∣ N∑
j=1

gij

(
fj(y

T−1, θT )− f̂j(yT−1, θT )
) ∣∣∣

The coefficient
(
α3

∆T

)
< 1 since either α1 or α2 is nonzero by assumption. But then the expression in the

last line

(
α3

∆T

) ∣∣∣ N∑
j=1

gij

(
fj(y

T−1, θT )− f̂j(yT−1, θT )
) ∣∣∣

≤
(
α3

∆T

) N∑
j=1

gij

∣∣∣fj(yT−1, θT )− f̂j(yT−1, θT )
∣∣∣

≤
(
α3

∆T

) N∑
j=1

gij

∥∥∥fj − f̂j∥∥∥
∞

≤
(
α3

∆T

)∥∥∥f − f̂∥∥∥
∞

Hence FOCT is a contraction mapping on (Bn, || · ||∞). Thus, by Banach Fixed Point Theorem (see e.g.,

Aliprantis and Border (2006), p.95), FOCT has a unique fixed point f∗ in Bn.
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Consider now Bc the subset of B that includes families of bounded measurable linear maps as in

Bc :=


f : yt−1, θt → Y s.t.

f(yt−1, θt) =
∑N
j=1 cj yj,t−1 +

∑N
j=1 dj θj,t +

∑T
τ=t+1

∑N
j=1 ej,τ−tE [θj,τ |θt]

with cj , dj , ej ≥ 0 and
∑N
j=1

(
cj + dj +

∑T
τ=t+1 ej,τ−t

)
≤ 1

 (B.6)

where each element is a linear combination of one-period before history, current and expected future

preference shocks. Thanks to the linearity and inequality constraints, Bn
c is a closed subset of Bn and

that FOCT in (B.4) maps Bn
c into itself. Since FOCT is a contraction mapping, its unique fixed point

then lies necessarily in Bn
c . Moreover, the existence of the unique fixed point for FOCT in (B.4) written

in matrix form

∆TyT = α1 yT−1 + α2 θT + α3 GyT (B.7)

is equivalent to the invertibility of this matrix equation.46 Hence, the equilibrium choices vector takes the

form

yT = [∆T I− α3 G]
−1︸ ︷︷ ︸

BT

× (α1 yT−1 + α2 θT ) (B.8)

This proves that the statement of the Proposition is true for the last period (1-period economies). Next,

we demonstrate that this result holds for any finite-horizon, T -period economy. Hence, the rest of the

proof will use an induction argument. In any period t = 1, . . . , T − 1, future equilibrium policy matrices

Bt+1, . . . ,BT are known. The first-order condition for agent i’s problem takes the form

0 = α1 (yi,t−1 − yi,t) + α2 (θi,t − yi,t) + α3

N∑
j=1

gij (yj,t − yi,t)

+E

[
T∑

τ=t+1

δτ−t

(
− α1 (yi,τ−1 − yi,τ )

(
∂yi,τ−1

∂yi,t
− ∂yi,τ
∂yi,t

)
+ α2 (θi,τ − yi,τ )

∂yi,τ
∂yi,t

−α3

N∑
j=1

gij (yj,τ − yi,τ )

(
∂yj,τ
∂yi,t

− ∂yi,τ
∂yi,t

))]
(B.9)

46Another way to see this is that since α3
∆T

< 1, ∆T I− α3 G is invertible. See Case (1991), footnote 5.
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By iterating through future policy functions, we can write yτ , for τ = t+ 1, . . . , T , as

yτ = Bτ [α1 yτ−1 + α2 θτ + α2 Dτ ]

= α2
1 (Bτ ×Bτ−1) yτ−2 + α1 α2 Bτ ×Bτ−1 (θτ−1 +Dτ−1) + α2 Bτ (θτ + Dτ )

...

= ατ−t1 (Bτ × · · · ×Bt+1) yt +

τ∑
s=t+1

ατ−s1 α2 (Bτ × · · · ×Bs)︸ ︷︷ ︸
τ−s+1 terms

(θs + Ds) (B.10)

Define Λt,τ , for any τ = t+ 1, . . . , T , as

Λt,τ := ατ−t1 Bτ × . . .×Bt+1 (B.11)

with the convention that Λt,t := IN , the identity matrix. Using this latter, one can obtain the intertemporal

partial derivatives as

∂yj,τ
∂yi,t

= ατ−t1 Bj•,τ × · · · ×B•i,t+1 = Λji,t,τ (B.12)

where Bj•,τ denotes the j’th row of the N × N matrix Bτ and B•i,t+1 denotes the i’th column of the

N ×N matrix Bt+1, and Λji,t,τ denotes the entry at the j’th row and i’th column of the N ×N matrix

Λt,τ . Similarly, define Γt,τ , for any τ = t+ 1, . . . , T , as

Γt,τ :=

τ∑
s=t+1

ατ−s1 (Bτ × · · · ×Bs)
(
θ̄s + Ds

)
(B.13)

with the convention that Γt,t := 0N , the N × 1 matrix of zeros, and where for notational simplicity, θ̄s is

the expected value of θs, conditional on period-t information. The first-order condition is linear hence we

know that the total coefficient of yj,t is going to be given by the cross partial derivative of the objective

function with respect to yj,t and yi,t, i.e.,

∆ii,t := α1 + α2 + α3 +

T∑
τ=t+1

δτ−t

(
α1

(
∂

∂yi,t
(yi,τ−1 − yi,τ )

)2

+ α2

(
∂

∂yi,t
yi,τ

)2

+α3

N∑
k=1

gik

(
∂yk,τ
∂yi,t

− ∂yi,τ
∂yi,t

)2
)

= α1 + α2 + α3 (B.14)

+

T∑
τ=t+1

δτ−t
(
α1 (Λii,t,τ−1 − Λii,t,τ )

2
+ α2 (Λii,t,τ )

2
+ α3

N∑
k=1

gik (Λki,t,τ − Λii,t,τ )
2

)
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Similarly, for any j 6= i,

∆ij,t := α3 gij −
T∑

τ=t+1

δτ−t

[
α1

(
∂

∂yj,t
(yi,τ−1 − yi,τ )

∂

∂yi,t
(yi,τ−1 − yi,τ )

)
+ α2

(
∂

∂yj,t
yi,τ

∂

∂yi,t
yi,τ

)
+α3

N∑
k=1

gik

(
∂yk,τ
∂yj,t

− ∂yi,τ
∂yj,t

)(
∂yk,τ
∂yi,t

− ∂yi,τ
∂yi,t

)]
= α3 gij (B.15)

−
T∑

τ=t+1

δτ−t

[
α1 (Λij,t,τ−1 − Λij,t,τ ) (Λii,t,τ−1 − Λii,t,τ ) + α2 Λij,t,τ Λii,t,τ

+ α3

N∑
k=1

gik (Λkj,t,τ − Λij,t,τ ) (Λki,t,τ − Λii,t,τ )

]

Let diag (A) be the N ×N diagonal matrix whose non-zero entries are the diagonal elements of the matrix

A. So, in matrix form the matrix ∆t is defined in two-steps as

∆̃t := −
T∑

τ=t+1

δτ−t

[
α1 diag (Λt,τ−1 − Λt,τ ) (Λt,τ−1 − Λt,τ ) + α2 diag (Λt,τ ) Λt,τ

+ α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (ιN Λk•,t,τ − Λt,τ )

]
(B.16)

where ιN is an N × 1 column-vector of ones and ι′N is an 1×N row-vector of ones; G•k is the k’th column

of the N ×N matrix G; Λk•,t,τ is the k’th row of the N ×N matrix Λt,τ . Now,

∆t := α3 G + (α1 + α2 + α3) IN + ∆̃t − 2 diag
(

∆̃t

)
(B.17)

Finally, let Dt capture the sum of the effects on the current period (period t) marginal utility of future

θτ ’s. Dt’s can be computed recursively beginning with t = T , setting DT = 0, N × 1 vector of zeros (no

future period). Then, for t < T , let Dt be defined as

α2Di,t := α2

T∑
τ=t+1

δτ−t

(
− α1 (Γi,t,τ−1 − Γi,t,τ ) (Λii,t,τ−1 − Λii,t,τ )

+
(
θ̄i,τ − Γi,t,τ

)
Λii,t,τ

−α3

N∑
k=1

gik (Γk,t,τ − Γi,t,τ ) (Λki,t,τ − Λii,t,τ )

)

56



Hence, in matrix form

Dt :=

T∑
τ=t+1

δτ−t

(
− α1 diag (Λt,τ−1 − Λt,τ ) (Γt,τ−1 − Γt,τ )

+ diag (Λt,τ )
(
θ̄τ − Γt,τ

)
−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (Γk,t,τ1− Γt,τ )

)
(B.18)

where 1 is an N × 1 column vector of ones. For t = T − 1, this translates into

Now define

∆̄t := diag(∆t)

and

¯̄∆t := ∆t − ∆̄t

using which we can rewrite the system of first-order conditions in matrix form as

∆̄tyt = α1 yt−1 + α2 θt + α2 Dt + ¯̄∆tyt (B.19)

As we did in the beginning of the proof for the final period, the right hand side of (B.19) can be seen as an

operator, call it FOCit, that maps any given collection f = {fj} of bounded and Ft-measurable functions

in B to the Ft-measurable function FOCit(f). Hence, showing the existence of a linear equilibrium policy

for the first period of a T − t + 1-period economy is equivalent to finding the fixed point of the operator

FOCit. Using straightforward modifications of the arguments in the proof for the last period, FOCit is a

contraction mapping and that it maps the closed subset Bn
c of Bn into itself; hence its unique fixed point

then lies necessarily in Bn
c . Thus, the equilibrium choice vector is linear in period t − 1 choices, period-t

shocks, and future expected shocks. Moreover, the existence of the unique fixed point for FOCt in (B.19)

is equivalent to the invertibility of this matrix equation. Hence, the equilibrium choices vector takes the

form

(
∆̄t − ¯̄∆t

)
yt = α1 yt−1 + α2 θt + α2 Dt (B.20)

and the optimal policy then is given by

yt =
(

∆̄t − ¯̄∆t

)−1

︸ ︷︷ ︸
Bt

(α1 yt−1 + α2 θt + α2 Dt) (B.21)

where Bt := [bij,t] is an N × N matrix of equilibrium coefficients for period t. Therefore, in any period
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t = 1, . . . , T − 1, the system of first-order conditions in matrix form can be written as

(
∆̄t − ¯̄∆t

)
yt = [α1 yt−1 + α2 θt + α2 Dt] (B.22)

and the optimal policy then is given by

yt =
(

∆̄t − ¯̄∆t

)−1

︸ ︷︷ ︸
Bt

(α1 yt−1 + α2 θt + α2 Dt) ; (B.23)

which concludes the proof of the Proposition. In the next section of this appendix we provide a recursive

algorithm to compute ∆̄t,
¯̄∆t (and hence Bt =

(
∆̄t − ¯̄∆t

)
, and Dt.

�

C Recursive Algorithm

Below is the recursive algorithm that follows the steps of the recursive characterization argument of the

last section. We use this algorithm to compute the equilibrium policy weights when we simulate our model.

1. Compute BT from the last period (T = 12), assuming that DT = 0 is the N × 1 vector of zeros.

2. Define θ̄t := Xtβ + GXtφ + η ιN as the N × 1 vector of non-stochastic part of period-t shocks, for

all t = 8, . . . , 12.

3. Let t = 11.

4. Compute Λt,t+1, . . . ,Λt,T using equation (F.1).

5. Compute Γt,t+1, . . . ,Γt,T using equation ( B.13).

6. Compute ∆t using (B.17).

7. Compute Dt using (B.18).

8. Compute ∆̄t := diag(∆t) and ¯̄∆t := ∆t − diag(∆t).

9. Compute Bt from (B.21).

10. Let t = t− 1. If t 6= 8 then go to Step 3. Otherwise Stop.

D Proof of Identification

Proposition 2 Suppose that T ≥ 2, and Full Rank, Exogeneity, and Regularity assumptions of Section

4.1 are satisfied. Then, our dynamic linear economy with social interactions is identified.
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Proof: : Based on the equilibrium characterization in Proposition 1 and using the decomposition in

(4) and (5), the following reduced-form equations hold

yT = [∆T I− α3 G]
−1 ×

[
α1 yT−1 + α2

(
K∑
k=1

(βkI + φkG) x
(k)
T + uT

)]

yT−1 =
[
∆̄T−1 − ¯̄∆T−1

]−1
(
α1 yT−2 + α2

(
K∑
k=1

(βkI + φkG) x
(k)
T−1 + uT−1

)
+ DT−1

)

We split the term DT−1 that includes the conditional expectations given period-T − 1 information into

observable and unobservable (by the econometrician) parts, namely, E
[∑K

k=1 (βkI + φkG) x
(k)
T |X

T−1
]

and E
[
uT |uT−1

]
. Agents observe both X and u and these two are not correlated by the Exogeneity

Assumption. Furthermore, E
[∑K

k=1 (βkI + φkG) x
(k)
T |X

T−1
]

is a function of XT−1 which is known by

the econometrician. Hence, using the definition of DT−1 in equation (B.18) in Appendix B and letting

θ̄xT := E
[∑K

k=1 (βkI + φkG) x
(k)
T |X

T−1
]

and θ̄uT := E
[
uT |uT−1

]
,

DT−1 := Dx
T−1 + Du

T−1

= δ

(
− α1 diag (IN − α1BT )

(
−BT θ̄

x
T

)
+ diag (α1BT )

(
θ̄xT −BT θ̄

x
T

)
−α3

N∑
l=1

diag (G•l ι
′
N )α1diag (ιN Bl•,T −BT )

(
(BT θ̄

x
T )l,•1−BT θ̄

x
T

))

+ δ

(
− α1 diag (IN − α1BT )

(
−BT θ̄

u
T

)
+ diag (α1BT )

(
θ̄uT −BT θ̄

u
T

)
−α3

N∑
l=1

diag (G•l ι
′
N )α1diag (ιN Bl•,T −BT )

(
(BT θ̄

u
T )l,•1−BT θ̄

u
T

))

Substituting these back into the reduced-form equation for T − 1 above, we get the following system of

linear simultaneous econometric equations with N endogenous variables on the right hand side of each

equation,

yT = α1 BT yT−1 + α2 BT

(
K∑
k=1

(βkI + φkG) x
(k)
T

)
+ εT (D.1)

εT = BT α2 uT.

yT−1 = α1 BT−1 yT−2 + α2 BT−1

(
K∑
k=1

(βkI + φkG) x
(k)
T−1

)
+ α2 BT−1D

x
T−1 + εT−1 (D.2)

εT−1 = BT−1 α2 uT−1 + BT−1 α2D
u
T−1.

where the error terms εT−1, εT are known linear combinations of own and friends’ current unobservables

and expectations of future unobservables.
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The endogeneity of yT−1 in equation (D.1) and of yT−2 in equation (D.2) require us to find suitable

instrumental variables zT−1 and zT−2. Thanks to the Regularity Assumption, one of the characteristic

dimensions does affect the individual choice yit, either through direct own effects βkx
(k)
it , or through social

effect φkGix
(k)
t . Assume for simplicity of presentation that it is the former. The argument for the latter is

identical. Hence, we can define zit := x
(k)
it for t = T − 1, T − 2. This way, we have N instruments for each

period. Predicted values of yt, t = T −1, T −2, are formed by projecting them on to the space spanned by

the set of instrumential variables zt, t = T − 1, T − 2. These are valid instruments by construction since:

1. They are uncorrelated with the errors, hence satisfy exclusion restrictions: Thanks to the Exogeneity

Assumption and using iterated expectations, for t = T

E[εT | zT−1] = α2BT E[ uT | x(k)
T−1]

= α2BT E[E[ uT | X1, . . . ,XT−1] | x(k)
T−1] = E[0 | x(k)

T−1] = 0

and for t = T − 1, similar arguments lead to

E[εT−1 | zT−2] = α2BT−1E[E[ uT−1 +Du
T−1 | X1, . . . ,XT−1] | x(k)

T−1]

Note that εt is a linear function of two sets of variables: ut and E [uτ |ut], with τ ≥ t + 1. By

the Exogeneity Assumption, we have E [ut|xt−1] = 0 and, since E [uτ |ut] is a function of ut,

E [E [uτ |ut] |xt−1] = 0.

2. They are informative about the explanatory variable, i.e. E[zT−1yT−1] 6= 0, thanks to α2βk 6= 0 by

the Regularity Assumption.

Moreover, they are not collinear with Xt, t = T − 1, T , thanks to the Full Rank Assumption. With T ≥ 2,

we can consistently estimate BT and BT−1 using the constructed instrumental variables.

So far, we have demonstrated that we can estimate the reduced form equilibrium coefficients con-

sistently under the stated assumptions. In the second part, we show that the map from the utility

parameters into the reduced form coefficients is injective. Consider now two sets of structural parameters

γ = (α1, α2, α3, β, φ) and γ′ = (α′1, α
′
2, α
′
3, β
′, φ′) leading to the same reduced form in equation (7).47

Coefficient estimates would imply

α1 BT (γ) yT−1 = α′1 BT (γ′) yT−1 =⇒ α1 BT (γ) = α′1 BT (γ′)

47If needed, one can simply add a constant term to the structural equations to make the comparison with the
previous works easier. This addition would not alter any of the results or the proof argument.
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due to observational equivalence, where BT (γ) := [∆T I− α3 G]
−1

, and BT (γ′) := [∆′T I− α′3 G]
−1

. Since

α1, α
′
1 6= 0 by the Regularity assumption, and BT (γ) and BT (γ′) are invertible, we obtain

1

α1
[∆T I− α3 G] =

1

α′1
[∆′T I− α′3 G] (D.3)

Since gii = 0, the diagonal entries on left and right hand sides of the equation give ∆T /α1 = ∆′T /α
′
1.

Moreover, the row sums on both sides off the diagonal yield α3/α1 = α′3/α
′
1. Under the normalization

∆T =
∑
i αi = 1, we obtain

α1

∆T
= α1 = α′1 =

α′1
∆′T

which would in turn imply, by substituting back into (D.3), that α3 = α′3. Therefore, α2 = 1− α1 − α2.

Consistent estimate of the reduced form equation (7) yields further observable equivalence restrictions,

namely, for k = 1, . . . ,K

(βkI + φkG) x
(k)
T = (β′kI + φ′kG) x

(k)
T =⇒ (βkI + φkG) = (β′kI + φ′kG)

which is equivalent to

(βk − β′k) I + (φk − φ′k) G = 0 (D.4)

Since I and G are linearly independent (remember that gii = 0), this yields βk = β′k and φk = φ′k.

Similarly, for t = T − 1, we obtain consistent coefficient estimates in equation (8) and can recover

BT−1 since we already recovered the true α1 using (7) above. We can then recover ∆T−1 by reversing the

operations in Step 8 of the recursive algorithm we used to obtain BT−1 from ∆T−1, that we presented in

Section C, namely by

∆T−1 = diag(B−1
T−1)−

(
B−1
T−1 − diag(B−1

T−1)
)

and using the expression in (B.17), we can also recover

Λ := ∆̃T−1 − 2 diag
(

∆̃T−1

)
= ∆T−1 − α3 G− (α1 + α2 + α3) IN (D.5)

since we already recovered everything to the right of the second equality sign. Hence, we can also obtain

∆̃T−1 by reverse operations, namely by ∆̃T−1 = Λ − 2 diag (Λ). Moreover, we know by substituting
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period-T equilibrium into (B.16 )that, ∆̃T−1 takes the form

∆̃T−1 := −δ

[
α1 diag (IN − α1BT ) (IN − α1 BT ) + α2 diag (α1BT ) α1BT

+ α3

N∑
l=1

diag (G•l ι
′
N ) diag (ιN Bl•,T −BT ) (ιN Bl•,T − BT )

]
= −δM

where M represents everyhting inside the brackets, which we recovered using period-T equilibrium restric-

tions. Hence, δ is recovered as well. This concludes the proof. �

E Optimal GMM Estimator - G exogenous

Let zt = [yt−1,Xt,GXt] and qt = [Xt−1,GXt−1,G
2Xt,G

2Xt−1,Xt,GXt] be vectors of explanatory

variables and instruments, respectively. 48 Let γ = [α1, α2, α3, β
′, φ′, δ]′.

Let the stacked vectors be Y = [y′T , . . . ,y
′
T−4]′,Z = [z′T , . . . , z

′
T−4]′,Q = [q′T , . . . ,q

′
T−4]′ and F (Z, γ) =

α1 B5 y4 + α2 B5 (βX5 + φGX5 + D5 + u5)
...

α1 B1 y0 + α2 B1 (βX1 + φGX1 + D1 + u1)

. Finally, let h(Z,Q, γ) = Q′[Y − F (Z, γ)]. The mo-

ment conditions are then,

E(h(Z,Q, γ)) = E(Q′[Y − F (Z, γ)]) = 0; (E.1)

The optimal GMM estimator of γ satisfies

γ̂ ∈ arg min h(Z,Q, γ)′W−1 h(Z,Q, γ), (E.2)

where the weight matrix W is the variance of the moment condition, W = S = E[h(Z,Q, γ)h(Z,Q, γ)′].

In practice, we

Step 1 Obtain a GMM estimator using (the suboptimal choice of the weight matrix) W = IP ; obtain

also the consistent estimate Ŝ = 1
N

∑N
i=1 û

2
iqiq

′
i; where ûi = yi − F (zi, γ̂), qi is the i-th row of Q

and γ̂1 is the (inefficient) GMM estimator of γ0 in the first step.

Step 2 Obtain a GMM estimator, again, but using (the optimal weight matrix) W = Ŝ−1.

The optimal GMM estimator γ̂OGMM is consistent and asymptotically normally distributed with mean

48Observe that in principle we would not need to add G2Xt as excluded instrument. Given that empirically G
and G2 are linear independent we exploit Bramoullé et al. (2009) conditions including this additional instrument
in order to improve efficiency.
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γ0 and with estimated asymptotic variance V̂ = N
(
D̂′QS̃−1Q′D̂

)−1

, where S̃ denotes Ŝ evaluated at

γ̂GMM and a consistent estimate D̂ of D0 can be obtained from D̂ = ∂u
∂γ evaluated at γ = γ̂GMM . For the

model in Section 6, where we use G̃ instead of G (see (15)), the matrix of the instrument is defined as

q̃t = [Xt−1, G̃Xt−1, G̃
2Xt, G̃

2Xt−1,Xt, G̃Xt].

F Recursive Computation of the Dynamic Multiplier

Remember that Λt,τ , for any τ = t+ 1, . . . , T , as

Λt,τ := ατ−t1 Bτ × . . .×Bt+1 (F.1)

with the convention that Λt,t := IN , the identity matrix. Moreover, using equation (B.12) from the

Appendix for the definition of Γt,τ , for any τ = t+ 1, . . . , T , we obtain

∆Γt,τ :=

τ∑
s=t+1

ατ−s1 (Bτ × · · · ×Bs)
(
∆θ̄s + ∆Ds

)
(F.2)

with the convention that Γt,t := 0N , the N × 1 matrix of zeros, and where θ̄s is the expected value of θs,

conditional on period-t information. Similarly, equation (B.17) yields

∆Dt :=

T∑
τ=t+1

δτ−t

(
− α1 diag (Λt,τ−1 − Λt,τ ) (∆Γt,τ−1 −∆Γt,τ )

+ diag (Λt,τ )
(
∆θ̄τ −∆Γt,τ

)
−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − Λt,τ ) (∆Γk,t,τ1−∆Γt,τ )

)
(F.3)

where 1 is an N × 1 column vector of ones. These are the two variables we need for the computation.

For t = T , ∆DT = 0 by construction. For t = T − 1, (F.2) simplifies to

∆ΓT−1,T = BT ∆θ̄T = πBT 1 (F.4)

Hence, ∆DT−1, for example, can be obtained as

∆DT−1 = π δ

(
α1 diag (ΛT−1,T−1 − ΛT−1,T ) BT1

+ diag (ΛT−1,T ) (1−BT1)

−α3

N∑
k=1

diag (G•k ι
′
N ) diag (ιN Λk•,t,τ − ΛT−1,T ) ((BT 1)k•1−BT 1)

)
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Here is the recursive algorithm to compute these variables for the remaining periods t = 1, . . . , T−1:

1. Compute ∆Γt,τ , τ = t+ 1, . . . , T using equation (F.2).

2. Compute ∆Dt using equation (F.3).

3. Repeat until t = 0.
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G Data and Additional Tables Checks

Table G1: Sample Selection

Panel (a) Panle (b) Panel (c)
Initial sample Sample without Students connected

missing values in a social network
(N. obs.: 1793) (N. obs.: 1759) (N. obs.: 1207)

Variable Mean SD Mean SD Mean SD
Risky behavior index (wave II) 0.1535 0.2023 0.1545 0.2026 0.1579 0.204
Risky behavior index (wave I) 0.1396 0.1947 0.1399 0.1947 0.1345 0.1877
Female 0.4992 0.5001 0.4997 0.5001 0.4979 0.5002
Black or African American 0.1439 0.3511 0.145 0.3522 0.1052 0.307
White 0.5438 0.4982 0.5469 0.3522 0.6081 0.4884
Hispanic or Latino 0.2166 0.4121 0.2166 0.412 0.1806 0.3849
Parents College degree 0.2627 0.4402 0.2609 0.4393 0.2759 0.4471
Two-parent family 0.7317 0.4432 0.7351 0.4414 0.7664 0.4233
Age (wave II) 16.9844 0.9389 16.9835 0.9397 16.9246 0.9437
Pocket money (wave II) 8.7582 12.2948 8.7822 12.3681 7.9039 11.6601
Alcohol/tobacco at home (wave II) 0.2651 0.3497 0.2649 0.3493 0.2668 0.3475
Height (wave II) 67.1150 3.9558 67.133 3.9549 67.1814 3.941

This table reports means and standard deviations of students’ characteristics for the initial sample (Panel (a)),
for the sample without missing values in observations (Panel (b)) and the sample with no isolates (Panel (b)).

Table G2: Sample Representativness

Add Health CPS
(N. obs.: 1207) (N. obs.: 14257)

Variable Mean SD Mean SD
Female 0.4979 0.5002 0.5021 0.5000
Black or African American 0.1052 0.307 0.1268 0.3327
White 0.6081 0.4884 0.6587 0.4742
Hispanic or Latino 0.1806 0.3849 0.1639 0.3702
Parents College degree 0.2759 0.4471 0.2328 0.4227

This table reports summary statistics for the Add Health data sample used
in the paper and the 1994 CPS. Person weights are used in the 1994 Current
Population Surveys (CPS). The CPS sample is restricted to those aged 14-
20 and re-weighted to match the age distribution of the Add Health sample.
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Table G3: Dynamic recursive model- Controls and contextual effects

Dep. Var. Risky Behavior Index Endogenous networks
(1) (2)

Addiction effect (α1) 0.5084** 0.4299***
(0.2129) (0.1552)

Own effect (α2) 0.1017*** 0.1538***
(0.0227) (0.0210)

Peer effect (α3) 0.3899* 0.4163**
(0.2243) (0.1665)

Discount factor (δ) 0.4829* 0.4925**
(0.2614) (0.2017)

Selectivity (ψ) 0.1488 -0.0620
(0.7404) (0.5942)

Female -0.3266 -0.2897
(0.9793) (0.2546)

Black or African American -0.1789 -0.1920
(1.0958) (0.3811)

Age (wave II) -0.0021 0.0041
(0.1931) (0.0447)

Parents College degree -0.9833 -0.5259
(1.7672) (0.7302)

Two-parent family 0.7263 0.3738
(1.5658) (0.6258)

Pocket money 0.0065 0.0029
(0.0137) (0.0060)

Alcohol/tobacco at home (wave II) 0.4332 0.1698
(1.0185) (0.5274)

Height (wave II) 0.0008 -0.0026
(0.0556) (0.0122)

Peers’ characteristics No Yes
Networks fixed effects Yes Yes
N. Obs. 1,207 1,207

This table reports GMM estimates of the structural model 10. The network formation is
assumed to satisfy the linear dyadic structure in equation 9. The peers’ characteristics
are calculated as friends’ averages of the included variables. Heteroskedasticity-robust
numerical standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table G4: Constrained “myopic” and “static” models- Controls

Dep. Var. Risky Behavior Index Endogenous network
Myopic Static Benchmark
δ = 0 α1 = 0, δ = 0
(1) (2) (3)

Addiction effect (α1) 0.4233*** 0.4299***
(0.1225) (0.1552)

Own effect (α2) 0.1468*** 0.3547*** 0.1538***
(0.0134) (0.0999) (0.0210)

Peer effect (α3) 0.4299*** 0.6453*** 0.4163**
(0.1347) (0.0999) (0.1665)

Discount factor (δ) 0.4925**
(0.2017)

Selectivity (ψ) 0.2615 0.0888 -0.0620
(1.1107) (0.1680) (0.5942)

Female -0.2602 -0.0953 -0.2897
(0.5906) (0.0712) (0.2546)

Black or African American -0.0133 -0.0931 -0.1920
(0.7322) (0.1761) (0.3811)

Age (wave II) 0.0016 -0.0019 0.0041
(0.2155) (0.0238) (0.0447)

Parents College degree -1.0193 -0.3309 -0.5259
(0.9485) (0.2497) (0.7302)

Two-parent family 0.4994 0.1888 0.3738
(0.8497) (0.1347) (0.6258)

Pocket money 0.0056 0.0010 0.0029
(0.0092) (0.0019) (0.0060)

Alcohol/tobacco at home (wave II) 0.1601 0.0517 0.1698
(0.8999) (0.1634) (0.5274)

Height (wave II) 0.0015 0.0002 -0.0026
(0.0489) (0.0026) (0.0122)

Student characteristics Yes Yes Yes
Peers’ characteristics Yes Yes Yes
Networks fixed effects Yes Yes Yes
N. Obs. 1,207 1,207 1,207

his table reports GMM estimates of the structural model 10. The network formation is
assumed to satisfy the linear dyadic structure in equation 9. In Column 1 we restrict
the model by setting δ = 0, while in Column 2 we restrict the model by setting α1 =
0 and δ = 0. Column 3 reports baseline estimates presented in Table 2 Column 2.
The peers’ characteristics are calculated as friends’ averages of the included variables.
Heteroskedasticity-robust numerical standard errors in parentheses. *** p<0.01, **
p<0.05, * p<0.1.
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Table G5: Balancing tests
Parents Two-parent Black or Pocket money Alcohol/tobacco Height

College degree family African American (wave II) at home (wave II) (wave II)

Same gender average risky behavior -0.324 -0.1404 -0.3234 -21.1289 0.2696 5.4013
(0.8734) (0.8512) (0.3681) (21.2361) (0.7274) (5.4155)

School fixed effects yes yes yes yes yes yes

N. Obs. 1,207 1,207 1,207 1,207 1,207 1,207

The figures in each row are coefficients from separate regressions of students’ characteristics (parent college degree, two parent family, black or
African American, pocket money, alcohol/tobacco at home and height) on peers’ average risky behavior, a gender indicator and the students’ age.
Heteroskedasticity-robust numerical standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table G6: Dynamic recursive model - Robustness

Dep. Var. Risky Behavior Index WI links Isolated nodes
(1) (2)

Addiction effect (α1) 0.4040*** 0.3897***
(0.1177) (0.1106)

Own effect (α2) 0.1529*** 0.2061***
(0.0207) (0.0275)

Peer effect (α3) 0.4431*** 0.4042***
(0.1290) (0.1164)

Discount factor (δ) 0.5088*** 0.4989**
(0.1595) (0.2292)

Selectivity (ψ) 0.1059 -0.1545
-0.2519 (0.3356)

Student characteristics Yes Yes
Peers’ characteristics Yes Yes
Networks fixed effects Yes Yes
Dummy for isolated individuals No Yes
N. Obs. 1286 1759

This table reports GMM estimates of the structural model 10. The network formation is
assumed to satisfy the linear dyadic structure in equation 9. Students’ characteristics are
listed in Table G1. The peers’ characteristics are calculated as friends’ averages of the
included variables. Heteroskedasticity-robust numerical standard errors in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
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