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Abstract

This paper introduces a structural model for the coevolution of networks and behavior.

The microfoundation of our model is a network game where agents adjust actions and network

links in a stochastic best-response dynamics with a utility function allowing for both strategic

externalities and unobserved heterogeneity. We show the network game admits a potential

function and the coevolution process converges to a unique stationary distribution characterized

by a Gibbs measure. To bypass the evaluation of the intractable normalizing constant in

the Gibbs measure, we adopt the Double Metropolis-Hastings algorithm to sample from the

posterior distribution of the structural parameters. To illustrate the empirical relevance of

our structural model, we apply it to study R&D investment and collaboration decisions in the

chemicals and pharmaceutical industry and find a positive knowledge spillover effect. Finally,

our structural model provides a tractable framework for a long-run key player analysis.
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1 Introduction

Since the seminal paper by Manski (1993), substantial progress has been made in the econometrics

of networks following two research threads. The first thread studies the identification and estimation

of behavioral interdependence of individuals in a network under the assumption that the network

structure is exogenously given. A popular model in this literature is the linear social-interaction

model (see, e.g., Bramoullé et al., 2009; Lee et al., 2010; Liu and Lee, 2010; Blume et al., 2015).

The second thread focuses on the modeling and estimation of the network formation process, with

some recent developments including Christakis et al. (2010), Snijders (2011), Leung (2015), Graham

(2017), Mele (2017), Menzel (2017), Sheng (2017), Chandrasekhar and Jackson (2018), de Paula

et al. (2018) and Dzemski (2018). To link the two research threads, we introduce a unified framework

to model the coevolution of networks and behavior in this paper.

The microfoundation of our structural model is a network game where agents make decisions

on actions and network links to maximizes their utilities. The utility function is a generalization

of the linear-quadratic utility function in Ballester et al. (2006) by incorporating direct payoffs

from the network structure captured by homophily/heterophily, popularity, congestion and cyclic

triangle effects (see Section 2.1 for more discussion on these effects).1 We show that, under some

mild assumptions, the utility function admits a potential game (Monderer and Shapley, 1996),

where the change in the utility of an agent from adjusting an action or link is identical to the

corresponding change in the potential function. The potential function thus aggregates individual

incentives to change from the status quo and greatly simplifies the equilibrium analysis. This is

crucial for deriving the likelihood function for the estimation.

1The linear-quadratic utility function in Ballester et al. (2006) admits a best response function that underlies
many well known linear social-interaction models in the literature (Blume et al., 2015).
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The coevolution of networks and behavior is modeled as a stochastic best-response dynamics

(Blume, 1993). In each period, a randomly selected agent gets a chance to change his action or

meet with another agent to adjust the link between them to maximize his utility, taking the actions

and links of the rest of the network as given. We show that this process follows a Markov chain

that converges to a unique stationary distribution of actions and networks characterized by a Gibbs

measure (i.e., an exponential family distribution that depends on the potential function).

Given an observation from the stationary distribution, the structural parameters can be iden-

tified and estimated based on the maximum likelihood principle. However, as pointed out in Mele

(2017), the frequentist maximum likelihood method or Bayesian Metropolis-Hastings (MH) algo-

rithm (Chib and Greenberg, 1995) are computationally infeasible due to the intractable normalizing

constant in the Gibbs measure. To bypass the evaluation of the intractable normalizing constant,

we adopt the Double Metropolis-Hastings (DMH) algorithm (Liang, 2010; Mele, 2017) to sample

from the posterior distribution of the structural parameters. Compared with Mele (2017), we face

the additional complication as we need to simulate actions as well as networks to generate auxiliary

data in the DMH algorithm. We propose a computationally simple MH algorithm for this purpose.

Another contribution relative to Mele (2017) is that we incorporate unobserved heterogeneity in

the coevolution process of networks and behavior. This captures the potential correlation between

action and network formation decisions. In Monte Carlo simulations, we find that unobserved

heterogeneity is confounded with network interactions and ignoring it tends to overestimate the

network spillover effect.

To illustrate the empirical relevance of our structural model, we apply it to study R&D invest-

ment and collaboration decisions in the chemicals and pharmaceutical industries. Using a unique

dataset on R&D collaborations matched to firms’ balance sheets, we find a positively significant

knowledge spillover effect on firms’ R&D investment decisions. When unobserved heterogeneity is

controlled for, the estimated spillover effect becomes weaker but remains statistically significant.

We also find that an R&D collaboration is more likely to form between firms in the same sub-sector

(the homophily effect), firms with different productivities (the heterophily effect) and firms with a

common collaboration partner (the cyclic triangle effect). Furthermore, firms benefit from forming
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an R&D collaboration with a firm having other collaboration partners (the popularity effect), but

the marginal benefit reduces as the number of other collaboration partners increases (the congestion

effect).

Finally, the proposed structural model has important policy implications as it allows the policy

maker to identify the key player whose exit would have the largest impact on welfare in the long

run. Conventional key player analysis assumes the remaining network is unchanged after the key

player is removed from the network (Ballester et al., 2006). This assumption might be reasonable if

the key player analysis is considered as a short-run policy analysis and the network exhibits inertia

in its evolvement. However, in the long run, it is difficult to justify this assumption. Our structural

model provides a tractable framework for a long-run key player analysis. We find that the key

player rankings in the short run and in the long run do not coincide with each other. Therefore, it

is important to choose the right analysis (short run or long run) for policy evaluation needs. We

also show that the most important firms are not necessarily the ones with the highest market share,

largest R&D expenditure, or most R&D alliances.

Our paper is related to recent papers that study the identification and estimation of net-

work interactions with endogenous networks (Goldsmith-Pinkham and Imbens, 2013; ?; Auer-

bach, 2019; Johnsson and Moon, 2019). The focus of these papers is to consistently estimate

network interaction effects controlling for the unobserved heterogeneity in the network formation

process. However, network formation externalities (e.g., popularity, congestion and cyclic triangle

effects) are ruled out in these models.2 By contrast, our model incorporates both strategic ex-

ternalities and unobserved heterogeneity. Hsieh and Lee (2017) also propose a network formation

game with both network formation externalities and unobserved heterogeneity. But to guarantee

the existence of a unique equilibrium, the game is assumed to be cooperative in that paper. The

cooperative strategy assumption is difficult to justify when the number of agents is large. The

closest work to our paper is Badev (2018), which proposes a network formation game where agents

make decisions on binary actions and network links in the absence of unobserved heterogeneity. Our

model, on the other hand, considers continuous actions and allows for unobserved heterogeneity.

2Goldsmith-Pinkham and Imbens (2013) allow for time-lagged externalities in the endogenous network formation
model.
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The rest of the paper is organized as follows. The structural model is introduced in Section 2,

where Section 2.1 derives the potential function, and Section 2.2 defines the stochastic coevolution

process of networks and behavior and characterizes the stationary distribution. The estimation

strategy is presented in Section 3, where Section 3.1 discusses the computational difficulty of con-

ventional estimation methods, Sections 3.2 outlines the DMH algorithm, Section 3.3 explains how

to control for unobserved heterogeneity, and Section 3.4 provides some Monte Carlo simulation

results. The empirical study is given in Section 4, where Section 4.1 presents the empirical model,

Section 4.2 describes the data, Section 4.3 reports the estimation results, and Section 4.4 con-

ducts a key player analysis. Finally, Section 5 concludes. All proofs are relegated to Appendix A.

Implementation details of the DMH algorithm can be found in Appendix B.

2 Structural Model

2.1 Utility and the Potential Game

Consider a network g ∈ G consisting a set of agents N ≡ {1, . . . , n}, where G is the set of all

networks with n nodes. The topology of the network is represented by an n× n adjacency matrix

G = [gij ], where gij = 1 if agents i and j form a link and gij = 0 otherwise. The network links are

reciprocal, that is, gij = 1 implies gji = 1. As a normalization, we set gii = 0 for all i ∈ N . Let

Ni ≡ {j ∈ N|gij = 1} denote the set of agent i’s peers (or, loosely speaking, “friends”).

Agent i, with his exogenous characteristics given by a (row) vector Xi, makes decisions on

network links gij and the effort level yi in an activity to maximize utility. We assume Xi can be

observed by all the agents. To introduce unobserved heterogeneity in the econometric model, we

allow some components of Xi to be unobservable to the econometrician. Let Y = (y1, · · · , yn)′, and

let Y−i denote the effort levels of all agents but i. The utility of agent i follows a linear-quadratic

function given by

Ui(g, Y,X) = ai(g,X) + b(Xi)yi + λ
∑
j∈N

gijyiyj −
1

2
y2i , (1)
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where

ai(g,X) =
∑
j∈N

gij

δ0 + h(Xi, Xj , δ1) + δ2dij + δ3d
2
ij + δ4

∑
k∈N\{i,j}

gikgjk

 . (2)

The first term of Equation (1), ai(g,X), captures the direct utility from the network topology.

In particular, δ0 is the fixed cost of maintaining links, and h(Xi, Xj , δ1) captures the (dis)similarity

between agents i and j in exogenous characteristics, with the coefficient vector δ1 representing the

homophily or heterophily effect. dij =
∑
k∈N\{i,j}(gik + gjk) is the total number of links of agents i

and j excluding the link gij . If δ2 > 0 and δ3 < 0, then the coefficients δ2 and δ3 can be interpreted

as the popularity and congestion effects respectively. That is, an agent may benefit from indirect

links via linking to an agent with some “friends” (i.e., the popularity effect) but the marginal utility

decreases as the number of indirect links increases (i.e., the congestion effect).
∑
k∈N\{i,j} gikgjk

is the number of common “friends” between agents i and j, with the coefficient δ4 representing the

cyclic triangle effect. We impose the following assumption on the functional form of h(Xi, Xj , δ1)

to guarantee the existence of a potential game.

Assumption 1. h(Xi, Xj , δ1) = h(Xj , Xi, δ1) for any i, j ∈ N .

The second term of Equation (1), b(Xi)yi, represents the direct utility from the effort, with

the marginal utility of effort given by b(Xi). The third term, λ
∑
j∈N gijyiyj , characterizes the

social utility, with the spillover effect given by the coefficient λ. Finally, we assume the cost of

exerting effort is given by the last term of Equation (1), 1
2y

2
i , which exhibits increasing marginal

cost. Maximizing Equation (1) with respect to yi gives the best response function for the effort

choice

yi = λ
∑
j∈N

gijyj + b(Xi), (3)

which coincides with the one in Ballester et al. (2006).

Remark 1. In the network formation game considered in Mele (2017), agents only make decisions

on links gij to maximize the direct utility from the network topology.3 In our model, agents make

3In Mele (2017), the specification of the direct utility from the network topology is slightly different from ai(g,X)
as the links are assumed to be non-reciprocal (directed) in that paper.
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decisions on links gij as well as actions yi, taking into account the direct utility from the network

topology, the direct utility from the effort, and the social utility given by λ
∑
j∈N gijyiyj . Badev

(2018) considers a network formation game where agents decide on binary actions and network links.

In our model, the action space is allowed to be continuous and the utility function implies a best

response function given by Equation (3) that underlies many well known linear social-interaction

models in the literature (e.g., Bramoullé et al., 2009; Liu and Lee, 2010; Blume et al., 2015).

The following proposition shows that the utility function defined in Equation (1) admits a

potential game (Monderer and Shapley, 1996).

Proposition 1. Under Assumption 1, the utility function defined in Equation (1) admits a potential

game with the potential function given by

Q(g, Y,X) = a(g,X) +
∑
i∈N

b(Xi)yi +
λ

2

∑
i∈N

∑
j∈N

gijyiyj −
1

2

∑
i∈N

y2i , (4)

where

a(g,X) =
1

2

∑
i∈N

∑
j∈N

gij

δ0 + h(Xi, Xj , δ1) + δ2dij + δ3d
2
ij +

1

3
δ4

∑
k∈N\{i,j}

gikgjk

 .

The potential function has the property that the change in the utility of an agent from adjusting

a link or effort level is identical to the corresponding change in the potential function. The potential

function thus aggregates the incentives to change from the status quo for every agent in the network.

The existence of a potential function is crucial for the equilibrium characterization of the coevolution

process introduced in the following section.

2.2 Coevolution of Networks and Behavior

Let the realization of the network in period t be denoted by gt with the adjacency matrix Gt = [gij,t],

and let the network including all the current links but gij,t be denoted by g−ij,t. Similarly, the effort

profile of N in period t is given by the vector Yt = [yi,t], and the effort profile of N\{i} is written

as Y−i,t. To simplify notation, we drop X from Ui(g, Y,X) and Q(g, Y,X) henceforth.
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The coevolution of networks and behavior is specified as a stochastic best-response dynamics

(Blume, 1993). We assume time is discrete. Each time period is either a link-adjustment period

(with probability 0 < ρ0 < 1) or an effort-adjustment period (with probability 1− ρ0). In the fol-

lowing, we give details of these two adjustment periods and characterize the stationary distribution

of the stochastic process.

Link Adjustment In a link-adjustment period, a pair of agents i and j is randomly selected

from the population with probability ρ(gt−1, Xi, Xj). To make the equilibrium analysis feasible, we

impose the following assumption on the selection rule characterized by ρ(gt−1, Xi, Xj).
4

Assumption 2. (i) ρ(gt−1, Xi, Xj) = ρ(gt−1, Xj , Xi); (ii) ρ(gt−1, Xi, Xj) does not depend on

gij,t−1; and (iii) ρ(gt−1, Xi, Xj) > 0 for all (i, j) ∈ N ×N .

Conditional on being selected, agents i and j update the link gij to maximize their current

utilities taking the rest of the network and effort choices as given. Also, as in Mele (2017), we

assume that agents do not take into account the effect of their decisions on the future effort choices

and network evolution. To capture the uncertainty (from the perspective of the econometrician)

in the link adjustment process, we introduce an idiosyncratic shock to the utility and assume that

gij,t = 1 if and only if both agents i and j find that gij,t = 1 improves their utility, i.e.,

Ui(gij,t = 1, g−ij,t−1, Yt−1) + ε1t ≥ Ui(gij,t = 0, g−ij,t−1, Yt−1) + ε0t,

and

Uj(gij,t = 1, g−ij,t−1, Yt−1) + ε1t ≥ Uj(gij,t = 0, g−ij,t−1, Yt−1) + ε0t.

As

Q(gij,t = 1, g−ij,t−1, Yt−1)−Q(gij,t = 0, g−ij,t−1, Yt−1)

= Ui(gij,t = 1, g−ij,t−1, Yt−1)− Ui(gij,t = 0, g−ij,t−1, Yt−1)

= Uj(gij,t = 1, g−ij,t−1, Yt−1)− Uj(gij,t = 0, g−ij,t−1, Yt−1),

4See Mele (2017) for more discussion on the selection (or meeting) rule.
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the above two inequalities can be written more compactly as

Q(gij,t = 1, g−ij,t−1, Yt−1) + ε1t ≥ Q(gij,t = 0, g−ij,t−1, Yt−1) + ε0t.

Assuming the shocks ε0t and ε1t are independent from each other, i.i.d. across links and time

periods and follow a Gumbel distribution with the distribution function F (ε) = exp[− exp(−ε/σ2)],

conditional on the meeting of agents i and j, the probability for them to form a link is given by

Pr(gij,t = 1|g−ij,t = g−ij,t−1, Yt = Yt−1) (5)

=
exp[σ−2Q(gij,t = 1, g−ij,t−1, Yt−1)]

exp[σ−2Q(gij,t = 0, g−ij,t−1, Yt−1)] + exp[σ−2Q(gij,t = 1, g−ij,t−1, Yt−1)]
,

where the parameter σ2 captures the level of “noise” in link adjustment decisions.5

Effort Adjustment In an effort-adjustment period, an agent i is randomly selected from the

population with probability ρ(Xi). We assume any agent can be selected with positive probability

in the following assumption.

Assumption 3. ρ(Xi) > 0 for all i ∈ N .

Conditional on being selected, agent i updates the effort level yit ∈ Y to maximize his current

utility, where Y is the set of all possible effort choices. We allow Y to be continuous and assume that,

taking the network gt−1 and the effort levels of the other agents Y−i,t−1 as given, the probability

that agent i chooses an effort level in Z ⊂ Y in period t is given by

Pr(yit ∈ Z|gt = gt−1, Y−i,t = Y−i,t−1) =

∫
Z exp[σ−2Ui(gt−1, z, Y−i,t−1)]dz∫
Y exp[σ−2Ui(gt−1, y, Y−i,t−1)]dy

. (6)

Similar to Equation (5) in the link adjustment period, the probability given in Equation (6) can be

justified by an additive random utility model over a nonfinite choice set (McFadden, 1976), where

the parameter σ2 captures the level of “noise” in effort adjustment decisions. Equation (6) admits

5The parameter σ2 can be identified because the coefficient of y2i is normalized to −1/2 in the utility (and
potential) function.
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the probability density function

p(yit|gt = gt−1, Y−i,t = Y−i,t−1) =
exp[σ−2Ui(gt−1, yit, Y−i,t−1)]∫
Y exp[σ−2Ui(gt−1, y, Y−i,t−1)]dy

. (7)

Equilibrium In the stochastic process described above, the coevolution of the network gt and

effort choices Yt follows a Markov chain. In the following proposition, we show that the Markov chain

converges to a unique stationary distribution. Let γ denote the vector of all unknown parameters

in the potential function and θ = (γ′, σ2)′.

Proposition 2. Under Assumptions 1-3, the coevolution process of the network and behavior con-

verges to a unique stationary distribution characterized by the Gibbs measure

π(g, Y |θ) = c(θ)−1 exp[σ−2Q(g, Y |γ)], (8)

where c(θ) =
∑
g∈G

∫
Yn exp[σ−2Q(g, Y |γ)]dY .

3 Estimation

In this section, we discuss how to estimate the structural parameters based on the Gibbs measure

defined in Equation (8). We first assume all components in Xi can be observed by the econo-

metrician in Sections 3.1 and 3.2. Then, to introduce unobserved heterogeneity, we allow some

components of Xi to be unobservable in Section 3.3.

3.1 Computational Problem and the Exchange Algorithm

Given an observation (g, Y ) from the stationary distribution defined in Equation (8), we can esti-

mate the parameter vector θ based on the maximum likelihood principle. However, as pointed out in

Mele (2017), the frequentist maximum likelihood method is impractical due to the computational

difficulty in evaluating the normalizing constant c(θ) in Equation (8), and a standard Bayesian

method would encounter the same problem because, with the prior distribution p(θ), the posterior
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distribution p(θ|g, Y ) ∝ π(g, Y |θ)p(θ) = c(θ)−1 exp[σ−2Q(g, Y |γ)]p(θ) also contains the normalizing

constant c(θ). To sample from the posterior using Markov Chain Monte Carlo (MCMC) method,

a standard MH algorithm (Chib and Greenberg, 1995) updates θ to θ̃, a random draw from the

proposal distribution qθ(θ̃|θ), according to the acceptance probability

αθ,MH = min

{
1,
p(θ̃|g, Y )qθ(θ|θ̃)
p(θ|g, Y )qθ(θ̃|θ)

}
= min

{
1,
c(θ) exp[σ̃−2Q(g, Y |γ̃)]p(θ̃)qθ(θ|θ̃)
c(θ̃) exp[σ−2Q(g, Y |γ)]p(θ)qθ(θ̃|θ)

}
.

The computational problem still exists as c(θ) and c(θ̃) in the acceptance probability do not cancel

each other.

A way to bypass the evaluation of the intractable normalizing constant c(θ) is to use the exchange

algorithm (?; Murray et al., 2006) as follows.

Algorithm 1 (Exchange Algorithm). At each iteration:

Step 1 Draw θ̃ from the proposal distribution qθ(θ̃|θ).

Step 2 Generate (g̃, Ỹ ) from the distribution π(g̃, Ỹ |θ̃) using a perfect sampler.

Step 3 Accept θ̃ according to the acceptance probability

αθ,EX = min

{
1,
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
(9)

= min

{
1,

exp[σ̃−2Q(g, Y |γ̃)]p(θ̃)qθ(θ|θ̃) exp[σ−2Q(g̃, Ỹ |γ)]

exp[σ−2Q(g, Y |γ)]p(θ)qθ(θ̃|θ) exp[σ̃−2Q(g̃, Ỹ |γ̃)]

}
.

The main advantage of the exchange algorithm is that the acceptance probability does not

contain the normalizing constant c(θ) and thus can be evaluated. The following proposition shows

that the unique stationary distribution of the above described exchange algorithm is the posterior

distribution p(θ|g, Y ) ∝ π(g, Y |θ)p(θ).

Proposition 3. The unique stationary distribution of Algorithm 1 is p(θ|g, Y ).
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3.2 Double Metropolis-Hastings Algorithm

In the second step of the exchange algorithm, we need to generate auxiliary data using a perfect

sampler (Propp and Wilson, 1996), which is computationally costly for our model and, more gen-

erally, exponential random graph models (ERGMs) (Wasserman and Pattison, 1996). To overcome

this issue, Liang (2010) and Mele (2017) propose a DMH algorithm, which uses a finite run of the

MH algorithm initialized at the observed (g, Y ) to generate auxiliary data (g̃, Ỹ ). More specifically,

at each iteration, the DMH algorithm follows the same steps as the exchange algorithm with the

second step replaced by:

Step 2* Generate (g̃, Ỹ ) from the distribution π(g̃, Ỹ |θ̃) using a finite run of the MH algorithm

initialized at the observed (g, Y ).

Compared with Mele (2017), one additional complication is that we need to simulate both

networks g̃ and effort choices Ỹ in Step 2* of the DMH algorithm. To generate auxiliary data (g̃, Ỹ ),

one could use a sampler following the process described in Section 2.2. However, the convergence

of such a sampler could be slow in practice. To improve convergence and reduce computational

burden, we propose a MH algorithm to generate (g̃, Ỹ ) as follows:

Algorithm 2 (Auxiliary Data Generation). Given θ, at each iteration:

Step 1 Draw g̃ from the proposal distribution qg(g̃|g). Let G̃ denote the adjacency matrix of g̃.

Step 2 Generate Ỹ ∼ N(Ỹ ∗,ΣỸ ), where Ỹ ∗ ≡ (In−λG̃)−1B(X), with B(X) = [b(X1), · · · , b(Xn)]′,

is the equilibrium effort vector derived from the best response function (3), and ΣỸ = σ2(In−

λG̃)−1.

Step 3 Accept (g̃, Ỹ ) according to the acceptance probability

α(g,Y ),MH = min

{
1,
π(g̃, Ỹ |θ)pY (Y |g)qg(g|g̃)

π(g, Y |θ)pY (Ỹ |g̃)qg(g̃|g)

}

= min

{
1,

exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)

}
,
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where pY (Ỹ |g̃) denotes the density function of N(Ỹ ∗,ΣỸ ).

In the following proposition, we show that the long run stationary distribution of the proposed

MH algorithm is the Gibbs measure defined in Equation (8).

Proposition 4. The unique stationary distribution of Algorithm 2 is π(g, Y |θ).

Remark 2. If Step 1 of Algorithm 2 adopts a local sampler, where only one randomly selected

link is updated at each iteration, the convergence can be slow as shown in Mele (2017). Therefore,

we follow Mele’s suggestion (see Appendix B of Mele, 2017) to allow for large steps, where multiple

links are swapped at the same time, to improve convergence.

Remark 3. In Step 2 of Algorithm 2, we generate Ỹ from a multivariate normal distribution

because (i) it is computationally simple to sample from a normal distribution, and (ii) it resembles

the effort adjustment process described in Section 2.2. To see the second point, we assume that link

adjustment periods arrive much less frequent than effort adjustment periods (i.e., ρ0 is very small)

in the coevolution process. Given the network g̃, it follows a standard Gibbs sampler argument

that the transition density defined in Equation (7) converges to

pY (Ỹ |g̃) =
exp[σ−2Q(g̃, Ỹ )]∫

Yn exp[σ−2Q(g̃, Y )]dY
. (10)

where

Q(g, Y ) = a(g) +
∑
i∈N

b(Xi)yi +
λ

2

∑
i∈N

∑
j∈N

gijyiyj −
1

2

∑
i∈N

y2i (11)

= a(g) +B(X)′Y − 1

2
Y ′(In − λG)Y.

Inserting Equation (11) into Equation (10), it follows by the Gaussian integral formula (Bronshtein

et al., 2015) that

pY (Ỹ |g̃) =
exp[σ−2B(X)′Ỹ − 1

2σ
−2Ỹ ′(In − λG̃)Ỹ ]∫

Yn exp[σ−2B(X)′Y − 1
2σ
−2Y ′(In − λG̃)Y ]dY

= (2π)−n/2|det ΣỸ |
−1/2 exp[−1

2
(Ỹ − Ỹ ∗)′Σ−1

Ỹ
(Ỹ − Ỹ ∗)]
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which is the density function of N(Ỹ ∗,ΣỸ ).

Remark 4. In Algorithm 2, we often need to evaluate (In − λG̃)−1 and det(In − λG̃), where G̃ is

the adjacency matrix of the network g̃ resulting from adding/removing a link to/from the network

g. The computational cost of the inverse and determinant can be high when the newtork size is

large. To alleviate the computational burden, we adopt a matrix perturbation technique detailed in

Appendix B.2, and derive a result that facilitates the computation of (In−λG̃)−1 and det(In−λG̃)

when (In − λG)−1 and det(In − λG) are known.

3.3 Unobserved Heterogeneity

The structural model introduced in Section 2 allows some component of exogenous characteris-

tics Xi to be unobservable to the econometrician. More specifically, let Xi = [XO
i , x

U
i ], where

XO
i = (xOi1, · · · , xOiK)′ is a K-dimensional vector of exogenous characteristics observable to the

econometrician and xUi ∼ i.i.d.(0, ς2x) is a scalar random variable capturing unobserved heterogene-

ity. Further, let Zij be a vector of dyad-specific exogenous characteristics based on XO
i and XO

j .

For example, one could define the lth element of Zij as zij,l = |xOil − xOjl| if xOil is a continuous

variable or zij,l = 1(xOil = xOjl) if xOil is a binary indicator variable. In the empirical model, we

consider the following specification in the same spirit as Auerbach (2019) and Johnsson and Moon

(2019), where b(Xi) in Equation (1) is given by

b(Xi) = β0 +XO
i β1 + β2x

U
i (12)

and h(Xi, Xj , δ1) in Equation (2) is given by

h(Xi, Xj , δ1) = Zijδ1 + xUi + xUj . (13)

As the unobserved heterogeneity influences both the effort and link choices, failing to control for it

would bias the estimation result.

We regard xU = (xU1 , · · · , xUn )′ as individual random effects with a density function denoted by
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p(xU ). Instead of sampling θ from the marginal posterior distribution

p(θ|g, Y ) =

∫
p(θ|g, Y, xU )px(xU )dxU ,

which does not have a closed form expression, we adopt the Bayesian data augmentation approach

(Tanner and Wong, 1987; Albert and Chib, 1993) to sample θ together with xU from the joint

posterior distribution p(θ, xU |g, Y ) ∝ π(g, Y |θ, xU )p(θ)p(xU ) in the MCMC procedure. The details

of the MCMC procedure can be found in Appendix B.

3.4 Monte Carlo Experiments

We conduct a Monte Carlo simulation with 100 repetitions to examine the performance of the pro-

posed MCMC procedure. In each repetition, we generate a network g with the corresponding effort

levels Y of n = 100 individuals according to the Gibbs measure defined in Equation (8). The detailed

data generating process (DGP) runs as follows. We first generate exogenous individual character-

istics xOi and xUi in b(Xi) of Equation (12) from log-normal distribution, lnxOi ∼ N(1.5, 0.5), and

normal distribution xUi ∼ N(0, 1), respectively, with the coefficients (β1, β2) = (1, 1). The dyad

variable Zij in h(Xi, Xj , δ1) of Equation (13) is generated by Zij = |xOi − xOj | using the variable

xOi previously produced. We set δ0 = −2.5 and δ1 = −0.5. The popularity, congestion, and cyclic

triangle effects are measured by the coefficients (δ2, δ3, δ4) = (0.5,−0.05, 0.5). The spillover effect

λ is set to 0.01, which is comparable to the empirical estimate in Section 4. Finally, we set the

noise parameter σ2 to 0.5. Given the above generated variables, we generate the network and effort

levels by Algorithm 2 in Section 3.2 with one million iterations and treat the realization of the last

iteration as the generated sample. On average, the generated network has the average degree equals

to 2.689, the density equals to 0.027, and the clustering coefficient equals to 0.081. The average

effort level is 4.95.

To show the potential bias problem that may result from ignoring unobserved heterogeneity

in the model, we perform the MCMC procedure with and without controlling for unobserved het-

erogeneity. We run MCMC for 20,000 iterations and drop the first 10,000 draws for burn-in and
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Table 1: Monte Carlo simulation results.

True value Model 1 Model 2

λ 0.0100 0.0238 (0.0049) 0.0114 (0.0024)

β1 1.0000 0.9372 (0.0204) 0.9813 (0.0166)
β2 1.0000 0.9671 (0.1636)

δ0 -2.5000 -3.2906 (1.2907) -2.5169 (0.0885)
δ1 -0.5000 -1.0792 (0.2661) -0.5145 (0.0561)
δ2 0.5000 0.5126 (0.3848) 0.4678 (0.0531)
δ3 -0.0500 -0.0385 (0.0325) -0.0501 (0.0064)
δ4 0.5000 0.7484 (0.3692) 0.5000 (0.0582)

σ2 0.5000 0.8843 (0.1667) 0.5106 (0.0399)
ς2x 1.0000 1.0893 (0.3244)

Notes: Model 1 ignores unobserved heterogeneity and Model 2
controls for unobserved heterogeneity. Standard deviations in
parentheses.

use the rest draws for computing the posterior mean of each parameter. The simulation results

are reported in Table 1 and the values reported are the mean and standard deviation of the 100

repetitions.

From the estimation results of Model 1 reported in the left panel of Table 1, we can see that the

spillover effect parameter λ is overestimated by 238% when unobserved heterogeneity is ignored.

The estimates of other parameters are also affected, for example, the estimate of the cyclic triangle

effect δ4 is upward biased by 50% and the noise parameter σ is also upward biased by 77%. The

fixed cost of link formation δ0 and the homophily effect δ1 are downward biased by 32% and 116%,

respectively. These numbers reveal that neglecting unobserved heterogeneity could cause severe

biases in the estimation. On the other hand, the estimation results of Model 2 reported in the right

panel of Table 1 show that the proposed MCMC estimation procedure can successfully recover the

true model parameters under the correct model specification that takes unobserved heterogeneity

into account.

4 Empirical Illustration

4.1 A Simple Model of R&D Collaboration

To illustrate the empirical relevance of our model and estimation strategy, we consider a simple

model of R&D collaboration among a set of firms N = {1, . . . , n} with their characteristics given by
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vectors Xi. Firms can reduce their production costs by investing in R&D as well as by benefiting

from an R&D collaboration with another firm. The amount of cost reduction depends on the R&D

effort yi of firm i and the R&D efforts of firm i’s collaboration partners. The marginal production

cost ci of firm i is given by

ci = −b1(Xi)− yi − λ
n∑
j=1

gijyj , (14)

where b1(Xi) captures firm heterogeneity with regard to productivity and gij indicates whether

firms i and j have an R&D collaboration. The parameter λ captures the knowledge spillover effect.

We assume that the cost of R&D effort is given by 1
2y

2
i . We further assume it is costly to maintain

R&D collaborations with the collaboration cost −ai(g). With output qi, firm i’s profit is given by

Πi = (pi − ci)qi −
1

2
y2i + ai(g), (15)

where pi is the price of the good produced by firm i. We assume firms are local monopolies with

the inverse demand function pi = b0 − qi, where b0 represents the market size. Substitution of the

inverse demand function and Equation (14) into Equation (15) yields

Πi = [b0 − qi + b1(Xi) + yi + λ

n∑
j=1

gijyj ]qi −
1

2
y2i + ai(g). (16)

Profit maximization with respect to yi gives qi = yi. Substitution of qi = yi into Equation (16)

gives

Πi = ai(g) + b(Xi)yi + λ

n∑
j=1

gijyiyj −
1

2
y2i , (17)

where b(Xi) = b0 + b1(Xi). Equation (17) conforms to the general linear quadratic payoff function

defined in Equation (1). In the empirical study, we assume that ai(g) is given by Equation (2) with

h(Xi, Xj , δ1) defined in Equation (13) and that b(Xi) is given by Equation (12).
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4.2 Data

In the empirical illustration, we focus on the sector “Chemicals and Allied Products” (with two-

digit SIC code 28), as it is one of the most active sectors regarding R&D collaborations. Our data of

interfirm R&D collaborations stems from two sources which have been widely used in the literature

(Schilling, 2009). The first is the Cooperative Agreements and Technology Indicators (CATI)

database (Hagedoorn, 2002). The database only records agreements for which a combined innovative

activity or an exchange of technology is at least part of the agreement. The second is the Thomson

Securities Data Company (SDC) alliance database. SDC collects data from the U.S. Securities

and Exchange Commission (and their international counterparts) filings, trade publications, wires,

and news sources. We include only alliances from SDC which are classified explicitly as R&D

collaborations.6 We then merged the CATI database with the Thomson SDC alliance database.

For the matching of firms across datasets we adopted and extended the name matching algorithm

developed as part of the NBER patent data project (Trajtenberg et al., 2009).7 The systematic

collection of inter-firm alliances in CATI started in 1987 and ended in 2006. We take 2006 as the

base year and assume that an alliance lasts for 5 years (Rosenkopf and Padula, 2008). We construct

the R&D collaboration network by coding gij as one if an alliance between firms i and j exists in

2006, and zero otherwise.

The combined CATI-SDC database only provides the names of the firms in an alliance. To

obtain information about their balance sheets and income statements we matched the firms’ names

in the CATI-SDC database with the firms’ names in Standard & Poor’s Compustat U.S. and Global

Fundamentals databases, as well as Bureau van Dijk’s Orbis database (see, e.g., Bloom et al., 2013).

For the purpose of matching firms across databases, we employ the above mentioned name matching

algorithm. Compustat and Orbis databases only contain firms listed on the stock market, so they

typically exclude small private firms. However, they should include most R&D intensive firms, as

R&D is typically concentrated in publicly listed firms (Bloom et al., 2013).

We use a firm’s log-R&D expenditure to measure its R&D effort. Moreover, the firms’ pro-

6For a comparison and summary of different alliance databases, including CATI and SDC, see Schilling (2009).
7See https://sites.google.com/site/patentdataproject. We would like to thank Enghin Atalay and Ali Hortacsu

for sharing their name matching algorithm with us.
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Table 2: Descriptive statistics.

log-R&D expenditures productivity # of R&D alliances
Sector # of firms mean min max mean min max mean min max

SIC-28 347 9.6574 3.2109 15.2467 11.1018 5.0706 16.8160 0.8012 0 15

SIC-283 256 9.4861 3.2109 15.2467 10.8352 5.0706 16.8160 0.9297 0 15

Notes: R&D expenditure is measured by thousand U.S. dollars in 2006. A firm’s productivity is measured by
its log-R&D capital stock (lagged by one year).

ductivities are measured by their log-R&D capital stocks (lagged by one year). As in Hall et al.

(2000), Bloom et al. (2013) and König et al. (2018), the R&D capital stock is computed using a

perpetual inventory method based on the firms’ R&D expenditures with a 15% depreciation rate.

We drop firm observations with missing values on either R&D expenditure or R&D capital stock

which results in a sample of 347 firms and 139 R&D alliances in the SIC-28 sector. The SIC-28

sector has eight sub-sectors coded with 3-digit SIC codes. Among them, the sub-sector “Drugs”

(SIC-283) is the largest in our sample with 256 firms and 119 R&D alliances. Descriptive statistics

of the sample are shown in Table 2.

4.3 Estimation Results

Assuming the observed R&D expenditures and collaborations follow the stationary distribution

defined in Equation (8), we estimate the model parameters using the MCMC procedure described

in Section 3. We run the MCMC algorithm for 35,000 iterations and drop the first 5,000 draws for

burn-in and keep every 20th of the remaining draws to conduct the posterior analysis, i.e., compute

the posterior mean (as a point estimate) and posterior variance for each parameter. To check the

convergence of the MCMC algorithm, we provide the trace plot of draws for λ in Figure 1. The trace

plot of MCMC draws for λ and its posterior distribution in the upper and middle panels show that

the MCMC draws are stable and have good variations. The autocorrelation function (ACF) plotted

in the bottom panel indicates that the correlation among draws decline gradually over iterations.

The draws pass the convergence diagnostic test of Geweke (1992) with a p-value of 0.2216.8

8Geweke convergence diagnostic tests for an equal mean of the first 10% versus the last 50% of the draws. We
also try different proportions (e.g., 30% versus 70%), and obtain similar results for the convergence of the MCMC
algorithm.

19



Figure 1: Trace Plot for MCMC Draws of λ
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Table 3: Estimation results.

Model 1 Model 2

spillover effect (λ) 0.0082 (0.0021)*** 0.0060 (0.0013)***

Production Cost
productivity (β1) 0.8662 (0.0192)*** 0.8877 (0.0056)***
unobs. heterogeneity (β2) 0.0782 (0.0468)
sub-sector dummies Yes Yes

Collaboration Cost
constant (δ0) -4.7166 (0.0917)*** -5.1451 (0.1782)***
same sub-sector (δ11) 0.5322 (0.0275)*** 0.8163 (0.1299)***
diff-in-productivity (δ12) 0.0708 (0.0192)*** 0.0395 (0.0225)*
popularity (δ2) 0.0011 (0.0318) 0.0608 (0.0349)*
congestion (δ3) -0.0036 (0.0014)** -0.0056 (0.0015)***
cyclic triangle (δ4) 0.4547 (0.0535)*** 0.3531 (0.1088)***

Noise Parameters
noise in decisions (σ2) 0.3835 (0.0228)*** 0.4262 (0.0217)***
unobs. heterogeneity (ς2x) 0.8609 (0.0760)***

Notes: Model 1 ignores unobserved heterogeneity and Model 2 controls for unob-
served heterogeneity. Standard errors in parentheses. ***, **, and * indicate that
the highest density range does not cover zero at 99%, 95%, and 90% levels.

The estimation results are reported in Table 3. Similar to what we observe in the Monte Carlo

simulations in Section 3.4, the spillover effect is overestimated when unobserved heterogeneity is

ignored. When unobserved heterogeneity is controlled for, the estimated spillover effect is weaker

but remains positively significant.

To capture firm heterogeneity in the marginal production cost given by Equation (14), we include

a productivity measure defined as a firm’s one-year-lagged log-R&D capital stock and sub-sector

dummies (defined at the 3-digit SIC level). As expected, the estimate of β1 shows that higher

time-lagged R&D capital stock reduces the marginal production cost.

From the estimation of the collaboration cost −ai(g) given by Equation (2), we find that the

collaboration cost is lower between firms in the same sub-sector (reflected by δ11; the homophily

effect), firms with different productivities (reflected by δ12; the heterophily effect) and firms with a

common collaboration partner (reflected by δ4; the cyclic triangle effect). Furthermore, firms benefit

from forming an R&D collaboration with a firm having other collaboration partners (reflected by

δ2; the popularity effect), but the marginal benefit reduces as the number of other collaboration

partners increases (reflected by δ3; the congestion effect).
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Finally, we evaluate the model’s goodness-of-fit following Hunter et al. (2008). We generate 100

networks from the Gibbs measure defined in Equation (8) with the estimates of Model 2 reported

in the right panel of Table 3. The model’s goodness-of-fit is examined by comparing the 100

generated networks with the observed network in terms of four network statistics: the degree (the

number of links of a firm), the minimum geodesic distance (the number of links in the shortest

path between two firms), the number of edge-wise shared partners (the number of shared partners

of two connected firms), and the average nearest neighbor connectivity (the average degree of the

collaboration partners of a firm with a certain degree). Figure 2 shows the distributions of the

four network statistics of the observed network (in solid lines) and the corresponding means and

95% confidence intervals of the 100 generated networks (in dashed lines). From the figure we find

that the generated networks and the observed network display similar distributions over these four

statistics. This shows that our estimated model is able to capture the underlying network generating

process.

4.4 Key Player Analysis

In this section we evaluate the expected total welfare loss from the exit of a firm from the network.

The exit of a firm could either be due to financial reasons, such as the recession experienced by the

American automobile manufacturing industry during the global financial downturn of 2007-2008, or

legal reasons, such as the recent emission-fraud scandal of Volkswagen in 2015. In the former case,

policy makers want to know the overall welfare gain of “bailing out” a bankrupting firm, while, in

the latter case, policy makers want to know the overall welfare cost they impose on the economy

by inflicting high penalties that might threaten the continued existence of a firm.

The firm whose exit results in the highest expected total welfare loss is termed the key player

(Zenou, 2016). This counterfactual analysis is related to Ballester et al. (2006), who perform a

key player analysis where agents are ranked according to the reduction in aggregate output when

they are removed from the network, and König et al. (2018) who do this for the reduction in

welfare similar to our setup. However, while these authors assume that the network is exogenously

given and does not adapt to the exit of a firm, here we can relax this assumption and allow the
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Figure 2: Goodness-of-fit Statistics
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network to rewire to a new equilibrium after the exit of a firm. Formally, welfare is defined as

W (g, Y ) ≡
∑n
i=1 Ui(g, Y ) where Ui(g, Y ) is utility (or, in this example, profit) given by Equation

(1), and the key player is defined as i∗ = arg maxi∈N E[W (g−i, Y−i)], where g−i and Y−i denote

the network and effort vector without agent i and the expectation is evaluated under the Gibbs

measure π(g−i, Y−i|θ) given by Equation (8).

We proceed by removing each firm from the network one at a time. Using the estimates of

Model 2 reported in the right panel of Table 3, we then simulate the coevolution process of R&D

investment and collaborations for the remaining n− 1 firms using Algorithm 2 described in Section

3.2. We run the simulation for 10,000 iterations,9 and use the observation of the last iteration to

calculate the corresponding welfare value. We then repeat this procedure 200 times and report the

average welfare loss.

The results for the key player analysis can be seen in Table 4. We report the welfare loss and key

player ranking with and without allowing the network to rewire after the exit of a firm. One could

interpret the key player analysis without network rewiring as a short-run analysis while the one

with network rewiring as the long-run analysis. In general, the welfare loss is lower with network

rewiring, because firms can mitigate the welfare loss from the exit of a firm by forming new links

with the remaining firms. We also find that the key player rankings with and without network

rewiring do not coincide with each other. Therefore, it is important to choose the right analysis

(short run or long run) for policy evaluation needs. Finally, Table 4 shows that firms with the

highest key player ranking are not necessarily the ones with the highest market share, largest R&D

expenditure, or most R&D alliances. Rather, in order to identify the key player, we need to take

every aspect of the structural model into account.

5 Conclusion

This paper proposes a structural model for the coevolution of networks and behavior. We provide

a microfoundation for the model and characterize the equilibrium of the coevolution process. We

9We also tried 15,000 and 20,000 iterations and get similar results.
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Table 4: Key player ranking.

w/o network with network
rewiring rewiring

SIC mkt. share R&D exp. deg. welfare loss rank welfare loss rank

Johnson & Johnson Inc. 283 3.0547 15.1535 7 -0.5237 3 -0.3511 1
Wyeth 283 1.1686 14.2487 2 -0.5373 1 -0.3219 2
Schering-Plough Corp. 283 0.6057 13.8905 1 -0.5158 4 -0.3096 3
Bristol-Myers Squibb Co. 283 1.0287 14.2351 6 -0.5255 2 -0.2924 4
Pfizer Inc. 283 2.7679 15.2467 15 -0.4712 9 -0.2843 5
Unilever PLC 284 5.4914 13.2439 0 -0.5025 7 -0.2694 6
Abbott Laboratories Inc. 283 1.2907 14.5658 3 -0.5088 5 -0.2553 7
Merck & Co Inc. 283 1.2999 14.6794 10 -0.5046 6 -0.2515 8
Akzo Nobel NV 285 11.7496 13.2205 2 -0.4450 13 -0.2423 9
Bayer 280 3.8340 14.1742 10 -0.4562 11 -0.2361 10
Daiichi Sankyo Co. Ltd. 283 0.4590 13.4980 5 -0.4239 20 -0.2354 11
Elsai 283 0.3329 13.0432 1 -0.4673 10 -0.2297 12
L’Oreal SA 284 2.1873 12.7125 0 -0.4545 12 -0.2276 13
Novartis 283 2.0691 14.7913 15 -0.4715 8 -0.2190 14
Asahi Kasei Corp. 280 1.4715 12.3177 0 -0.4370 16 -0.2171 15
Merck KGaA 283 0.4515 13.0571 3 -0.4419 14 -0.2094 16
Henkel AG & Co. KGaA 284 1.7648 12.2638 0 -0.4243 19 -0.2022 17
Solvay SA 280 1.2445 12.7682 3 -0.3612 41 -0.1948 18
Kaocorp 284 1.1679 12.1513 0 -0.4272 18 -0.1948 19
Shionogi & Co. Ltd. 283 0.0986 11.9814 0 -0.4161 22 -0.1908 20
Chugai Pharma. 283 0.1610 12.3585 1 -0.4209 21 -0.1908 21
Takeda Pharma. Co. Ltd. 283 0.6445 13.6225 7 -0.4064 27 -0.1894 22
Amgen 283 0.8193 14.6398 13 -0.3903 33 -0.1852 23
Toray Industries Inc. 282 2.3563 12.1022 0 -0.4135 24 -0.1805 24
Syngenta AG 287 4.1430 12.8862 0 -0.4357 17 -0.1797 25
Colgate-Palmolive Co. 284 1.3493 11.6935 0 -0.3911 32 -0.1766 26
Monsanto Co. 287 3.7815 12.7928 0 -0.4376 15 -0.1710 27
Allergan Inc. 283 0.1759 13.1684 3 -0.3778 37 -0.1693 28
Human Genome Sci. Inc. 283 0.0015 11.5501 2 -0.3466 49 -0.1657 29
Mitsui Chemicals Inc. 282 2.5721 11.9677 0 -0.4015 28 -0.1649 30

Notes: The market share is defined as the percentage of a firm’s sales in a sub-sector at the 3-digit SIC level. Welfare
loss is measured in percentage.
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show the model can be estimated using an MCMC algorithm and investigate the finite sample per-

formance of the estimation procedure in a Monte Carlo simulation experiment. We then apply the

model to study R&D investment and collaboration decisions in the chemicals and pharmaceutical

industry and find a positive knowledge spillover effect. We also demonstrate how to use the model

estimates to conduct a long-run key player analysis.

Due to the generality of the utility function we consider, we believe that our structural framework

– from both theoretical and empirical perspectives – can be applied to a variety of related contexts,

where externalities can be modelled in the form of an adaptive network. Examples include peer

effects in education, crime, risk sharing, scientific coauthorship, etc. (Jackson and Zenou, 2014).
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A Proofs

Proof of Proposition 1. First, we consider the case where the effort level of agent i is updated from

y0 to y1, while g and Y−i remain unchanged. In this case,

Q(g, yi = y1, Y−i, X)−Q(g, yi = y0, Y−i, X)

= b(Xi)(y1 − y0) + λ(y1 − y0)
∑
j∈N

gijyj −
1

2
(y21 − y20)

= Ui(g, yi = y1, Y−i, X)− Ui(g, yi = y0, Y−i, X).

Next, we consider the case where the network is updated from g0 = {gij = 0, g−ij} to g1 = {gij =

1, g−ij}, while Y remains unchanged. In this case,

Q(g1, Y,X)−Q(g0, Y,X) = a(g1, X)− a(g0, X) + λyiyj .

As

a(g1, X)− a(g0, X) = δ0 + δ1hij + δ2dij + δ3d
2
ij + δ4

∑
k∈N\{i,j}

gikgjk

= ai(g1, X)− ai(g0, X),

we have

Q(g1, Y,X)−Q(g0, Y,X) = Ui(g1, Y,X)− Ui(g0, Y,X).

The desired result follows.

Proof of Proposition 2. The sequence {(gt, Yt)} is a Markov chain. A sufficient condition for the

stationarity of the Gibbs measure given in Equation (8) is the detailed balance condition, i.e.,

π(ω0)p(ω0, ω1) = π(ω1)p(ω1, ω0), where p(ω0, ω1) is the transition density from state ω0 to state

ω1. Here, we only need to verify the detailed balance condition for (i) ω0 and ω1 differ by only one

element of g and (ii) ω0 and ω1 differ by only one element of Y , since the transition density for

other cases is zero.
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(i) ω0 and ω1 differ by only one element of g. Let ω0 = (gij = 0, g−ij , Y ) and ω1 = (gij =

1, g−ij , Y ). Then,

π(ω0)p(ω0, ω1)

= π(ω0)ρ0ρ(gt−1, Xi, Xj)
exp[σ−2Q(gij = 1, g−ij , Y )]

exp[σ−2Q(gij = 0, g−ij , Y )] + exp[σ−2Q(gij = 1, g−ij , Y )]

= π(ω1)ρ0ρ(gt−1, Xi, Xj)
exp[σ−2Q(gij = 0, g−ij , Y )]

exp[σ−2Q(gij = 0, g−ij , Y )] + exp[σ−2Q(gij = 1, g−ij , Y )]

= π(ω1)p(ω1, ω0).

(ii) ω0 and ω1 differ by only one element of Y . Let ω0 = (g, y0, Y−i) and ω1 = (g, y1, Y−i). Then,

π(ω0)p(ω0, ω1)

= π(ω0)(1− ρ0)ρ(Xi)
exp[σ−2Ui(g, y1, Y−i)]∫

Y exp[σ−2Ui(g, y, Y−i,t−1)]dy

= π(ω0)(1− ρ0)ρ(Xi)
exp[σ−2Q(g, y1, Y−i)]∫

Y exp[σ−2Q(g, y, Y−i,t−1)]dy

= π(ω1)(1− ρ0)ρ(Xi)
exp[σ−2Q(g, y0, Y−i)]∫

Y exp[σ−2Q(g, y, Y−i,t−1)]dy

= π(ω1)(1− ρ0)ρ(Xi)
exp[σ−2Ui(g, y0, Y−i)]∫

Y exp[σ−2Ui(g, y, Y−i,t−1)]dy

= π(ω1)p(ω1, ω0).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the Markov

chain.

Proof of Proposition 3. To show p(θ|g, Y ) is the stationary distribution, we need to check the de-

tailed balance condition, i.e., p(θ|g, Y )p(θ̃|θ) = p(θ̃|g, Y )p(θ|θ̃) where

p(θ̃|θ) = qθ(θ̃|θ)π(g̃, Ỹ |θ̃) min

{
1,
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
.
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Indeed,

p(θ|g, Y )p(θ̃|θ) = p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃) min

{
1,
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)

}
= min

{
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃), p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

}
= min

{
p(θ|g, Y )qθ(θ̃|θ)π(g̃, Ỹ |θ̃)
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

, 1

}
p(θ̃|g, Y )qθ(θ|θ̃)π(g̃, Ỹ |θ)

= p(θ̃|g, Y )p(θ|θ̃).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the Markov

chain.

Proof of Proposition 4. To show π(g, Y |θ) is the stationary distribution, we need to check the de-

tailed balance condition, i.e., π(g, Y |θ)p(g̃, Ỹ |g, Y ) = π(g̃, Ỹ |θ)p(g, Y |g̃, Ỹ ) where

p(g̃, Ỹ |g, Y ) = pY (Ỹ |g̃)qg(g̃|g) min

{
1,
π(g̃, Ỹ |θ)pY (Y |g)qg(g|g̃)

π(g, Y |θ)pY (Ỹ |g̃)qg(g̃|g)

}
.

Indeed,

π(g, Y |θ)p(g̃, Ỹ |g, Y )

= c(θ)−1 exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g) min

{
1,

exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)

}
= c(θ)−1 min

{
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g), exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

}
= min

{
exp[σ−2Q(g, Y |γ)]pY (Ỹ |g̃)qg(g̃|g)

exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)
, 1

}
c(θ)−1 exp[σ−2Q(g̃, Ỹ |γ)]pY (Y |g)qg(g|g̃)

= π(g̃, Ỹ |θ)p(g, Y |g̃, Ỹ ).

The desired result follows by the reversibility, irreducibility, and Harris recurrence of the Markov

chain.

33



B Implementation Details

B.1 MCMC

In our empirical study of R&D collaboration networks, we want to estimate the spillover effect

parameter λ, parameters in the marginal cost of production β = (β0, β
′
1, β2)′ (with the dimension

denoted by K), parameters in the collaboration cost δ = (δ0, δ
′
1, δ2, δ3, δ4)′ (with the dimension

denoted by S), and the noise parameter σ2. These parameters are denoted by θ = (λ, β′, δ′, σ2)′.

Other than θ, there are also unobservable individual-specific random variables xU = (xU1 , · · · , xUn )′,

which are regarded as individual random effects, in the model. We assign the prior distributions of

model parameters and unknown variables as follows:

1. Individual latent variable: xU ∼ N(0, ς2xIn), with ς2x ∼ κInvχ2(α).

2. Spillover effect parameter: λ ∼ U(−‖G‖−1∞ , ‖G‖−1∞ ).

3. Parameters in the marginal cost of production: β ∼ N(µβ , ς
2
βIK).

4. Parameters in the collaboration cost: δ ∼ N(µδ, ς
2
δ IS).

5. Noise parameter: σ2 ∼ N[0,∞)(µσ, ς
2
σ).

The above prior distributions are conjugate priors commonly used in the Bayesian literature.

First, treating xUi as an individual random effect, we specify a hierarchical prior for xUi with a prior

for the variance given by ς2x ∼ κInvχ2(α). The hyper-parameters κ and α are to be specified by the

user. The spillover effect parameter λ shares similar properties as the spatial lag parameter in the

spatial econometrics literature and we use a uniform prior for λ following Smith and LeSage (2004)

and assume λ ∈ (−‖G‖−1∞ , ‖G‖−1∞ ) to guarantee that the best response function (3) has a unique

equilibrium. Finally, to guarantee that σ2 is non-negative, we assume it follows a truncated normal

distribution on [0,∞). We also assume independence across prior distributions of parameters and

latent variables. We set µβ = 0, µδ = 0, µσ = 0, ς2β = ς2δ = ς2σ = 100, κ = 1 and α = 2 to ensure

our prior distributions cover a wide range of parameter spaces and thus be uninformative in our

empirical analysis.
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We adopt the Bayesian data augmentation approach (Tanner and Wong, 1987; Albert and

Chib, 1993) to sample θ together with xU from the joint posterior distribution by the MCMC

procedure. In an iteration of the MCMC procedure with the current values of the parameters and

individual latent variables denoted by θ and xU , we perform the following steps sequentially. Let

xU−i = (xU1 , · · · , xUi−1, xUi+1, · · · , xUn )′.

Step I. Simulate x̃Ui from p(x̃Ui |g, Y, xU−i, θ) by the DMH algorithm, for i = 1, · · · , n.

I.1. Propose x̃Ui from a random walk proposal density qx(x̃Ui |xUi ).

I.2. Simulate auxiliary data (g̃, Ỹ ) by R runs of Algorithm 2 defined in Section 3.2, starting

from the observed (g, Y ). In the first step of Algorithm 2, we allow for both a “local

update” (with probability 1 − pglobal), where only one link is flipped, and a “global

update” (with probability pglobal), where all links are flipped.10

I.3. Accept x̃Ui according to the acceptance probability

αx = min

{
1,
π(g, Y |θ, x̃U )

π(g, Y |θ, xU )
· p(x̃

U
i |ς2x)

p(xUi |ς2x)
· π(g̃, Ỹ |θ, xU )

π(g̃, Ỹ |θ, x̃U )

}

= min

{
1,

exp[σ−2Q(g, Y |γ, x̃U )]

exp[σ−2Q(g, Y |γ, xU )]
· p(x̃

U
i |ς2x)

p(xUi |ς2x)
· exp[σ−2Q(g̃, Ỹ |γ, xU )]

exp[σ−2Q(g̃, Ỹ |γ, x̃U )]

}
,

where p(xUi |ς2x) denotes the density function of N(0, ς2xIn). Otherwise, set x̃Ui = xUi .

Step II. Simulate ς̃2x from [κ+
∑n
i=1(x̃Ui )2]Invχ2(α+ n) by a standard Gibbs sampler.

Step III. Simulate θ̃ from p(θ̃|g, Y, x̃U ) by the DMH algorithm.

III.1. Propose θ̃ from a random walk proposal density qθ(θ̃|θ).

III.2. Simulate auxiliary data (g̃, Ỹ ) by R runs of Algorithm 2 defined in Section 3.2, starting

from the observed (g, Y ) and allowing for both local and global updates as described in

Step I.2.

10Similar local and global updates are suggested in Snijders (2002) and Mele (2017) to improve the convergence
of graph sampling, particularly when the graph distribution exhibits a bimodal shape, one mode having low and
the other high graph densities. In the simulation and empirical studies, we set the probability of global update
pglobal = 0.01.
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III.3. Accept θ̃ according to the acceptance probability

αθ = min

{
1,
π(g, Y |θ̃, x̃U )

π(g, Y |θ, x̃U )
· p(θ̃)
p(θ)

· π(g̃, Ỹ |θ, x̃U )

π(g̃, Ỹ |θ̃, x̃U )

}

= min

{
1,

exp[σ̃−2Q(g, Y |γ̃, x̃U )]

exp[σ−2Q(g, Y |γ, x̃U )]
· p(θ̃)
p(θ)

· exp[σ−2Q(g̃, Ỹ |γ, x̃U )]

exp[σ̃−2Q(g̃, Ỹ |γ̃, x̃U )]

}
,

where x̃U = (x̃U1 , · · · , x̃Un )′. Otherwise, set θ̃ = θ.

B.2 Matrix Perturbation

In the MCMC algorithm, we need to evaluate (In − λG)−1 and det(In − λG) whenever a link is

added or removed in the network g. The following lemma is helpful for this purpose.

Lemma 1. Let ei be the ith unit basis vector in Rn. Let A denote an n× n matrix and

Bij =
A−1eie

′
jA
−1

1 + αe′jA
−1ei

.

Adding a perturbation α to the matrix A in the (i, j)th and the (j, i)th position can be written as

A+ αeie
′
j + ρeje

′
i.

(i) The inverse of the perturbed matrix can be written as

(A+ αeie
′
j + αeje

′
i)
−1 = A−1 − αBij − α

(A−1 − αBij)eje′i(A−1 − αBij)
1 + αe′i(A

−1 − αBij)ej
. (18)

(ii) The determinant of the perturbed matrix can be written as

det(A+ αeie
′
j + αeje

′
i) = [1 + αe′i(A

−1 − αBij)ej ](1 + αe′jA
−1ei) det(A). (19)

Proof. We first prove part (i) of Lemma 1. By the Sherman-Morrison formula (Meyer, 2000),

(A+ αeie
′
j)
−1 = A−1 − α

A−1eie
′
jA
−1

1 + αe′jA
−1ei

= A−1 − αBij .
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Therefore,

(A+αeie
′
j+αeje

′
i)
−1 = [(A−1−αBij)−1+αeje

′
i]
−1 = A−1−αBij−α

(A−1 − αBij)eje′i(A−1 − αBij)
1 + αe′i(A

−1 − αBij)ej
,

where the last equality holds by the Sherman-Morrison formula.

We next prove part (ii) of Lemma 1. By the matrix determinant lemma (Horn and Johnson,

1985),

det(A+ αeie
′
j + αeje

′
i) = det[(A+ αeie

′
j) + αeje

′
i]

= [1 + αe′i(A+ αeie
′
j)
−1ej ] det(A+ αeie

′
j)

= [1 + αe′i(A+ αeie
′
j)
−1ej ](1 + αe′jA

−1ei) det(A)

= [1 + αe′i(A
−1 − αBij)ej ](1 + αe′jA

−1ei) det(A),

where the last equality holds by the Sherman-Morrison formula.

With Lemma 1 the inverse and determinant of the perturbed matrix A+ αeie
′
j + αeje

′
i can be

easily computed if the inverse and determinant of A are known.
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