
DISCUSSION PAPER SERIES

 

DP13904
  (v. 2)

Markets and Markup: A New Empirical
Framework and Evidence on Exporters

from China

Meredith A Crowley, Giancarlo Corsetti, Lu Han and
Huasheng Song

INTERNATIONAL MACROECONOMICS AND FINANCE

INTERNATIONAL TRADE AND REGIONAL ECONOMICS



ISSN 0265-8003

Markets and Markup: A New Empirical Framework
and Evidence on Exporters from China
Meredith A Crowley, Giancarlo Corsetti, Lu Han and Huasheng Song

Discussion Paper DP13904
  First Published 05 August 2019

  This Revision 28 May 2021

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

International Macroeconomics and Finance
International Trade and Regional Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Meredith A Crowley, Giancarlo Corsetti, Lu Han and Huasheng Song



Markets and Markup: A New Empirical Framework
and Evidence on Exporters from China

 

Abstract

Exporting firms frequently change the set of foreign markets they serve: changes in the pattern of
destinations for a firm's product convey information on unobservable factors affecting pricing and
market participation. Building on this insight, we show how to construct a "trade-pattern" fixed
effect estimator that helps reduce omitted variable and selection biases in analyses of pricing-to-
market. Using this estimator and a new product classification, we document substantial markup
elasticities to the exchange rate among exporters of highly differentiated goods, accounting for half
of China's exports. Conversely, we find little evidence of pricing-to-market in the trade of less
differentiated goods.

JEL Classification: F31, F41, F14

Keywords: Exchange rate, markup elasticity, pricing-to-market, Trade pattern, product
classification, differentiated goods, China

Meredith A Crowley - crowley.meredith@gmail.com
Faculty of Economics, University of Cambridge and CEPR

Giancarlo Corsetti - giancarlo.corsetti@gmail.com
Faculty of Economics, University of Cambridge and CEPR

Lu Han - lu.han2@liverpool.ac.uk
School of Management, University of Liverpool and CEPR

Huasheng Song - songzju@zju.edu.cn
Zhejiang University

Acknowledgements
We thank Andy Atkeson, Andy Bernard, Ariel Burstein, Natalie Chen, Joris Hoste, Oleg Itskhoki, Alexei Onatski, Thierry Mayer,
Dennis Novy, our discussants Doireann Fitzgerald, Jozef Konings, Leonardo Melosi, Jakob Munch and Zhihong Yu, and
participants at the Empirical Investigations in Trade and Investment Conference (Tokyo), March 2018; the Annual GEP/CEPR
Postgraduate Conference, April 2018; the Rocky Mountain Empirical Trade Conference (Ottawa), May 2018; the China Finance
Review International Conference (Shanghai), June 2018; the ``New Issues in Macroeconomics'' Conference (Ischia, Italy), June
2018; the Barcelona GSE Summer Forum, June 2018; the Tsinghua Workshop in International Finance (Beijing), June 2018; the
California Trade Workshop (San Luis Obispo, California), June 2018; the NBER Summer Institute, International Finance and Macro
(Boston), July 2018; the Annual Meeting of CEBRA (Frankfurt), August 2018; the ETSG Annual Conference (Warsaw), September
2018; the WTO's ``Updating Economic Cooperation'' Conference (Geneva), December 2018; the RIDGE-IEA-Banco Central de
Uruguay Summer School (Montevideo), December 2018; and participants in seminars at the University of Southern California, the
Fed Board, the University of Oregon, Carlos III, Nanjing University, the IMF, and the Bank of Italy for comments. We are also
grateful to those who offered feedback on preliminary versions presented at the Paris Trade Seminar, March 2017; the China



Center for Economic Research at Peking University's Summer Institute (Yantai, China), June 2016; the Banque de France,
December 2015; and the European Trade Study Group (Paris), September 2015. We thank Cambridge INET, the Centre For
Macroeconomics, and the Economic and Social Research Council (United Kingdom) Brexit Priority Grant R001553/1 for supporting
our research. We thank the staff of the HMRC datalab, especially Yee-Wan Yau, for supporting us in our analysis of UK
administrative data.

Powered by TCPDF (www.tcpdf.org)



Markets and Markups:

A New Empirical Framework and Evidence on Exporters from China

Giancarlo Corsetti

Cambridge, Cambridge-INET and CEPR

Lu Han

Liverpool and CEPR

Meredith Crowley

Cambridge, Cambridge-INET and CEPR

Huasheng Song

Zhejiang University

28 May 2021

Abstract

Exporting firms frequently change the set of foreign markets they serve: changes in the

pattern of destinations for a firm’s product convey information on unobservable factors affect-

ing pricing and market participation. Building on this insight, we show how to construct a

“trade-pattern” fixed effect estimator that helps reduce omitted variable and selection biases
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1 Introduction

Firms that export to more than one country account for the lion’s share of cross-border trade.

Serving multiple markets, these firms face demand conditions and costs shocks that may be specific

to an export destination and are inherently time-varying. From the perspective of an exporter,

a changing local economic environment systematically creates opportunities to raise profits, or

induces the need to contain losses, through destination-specific adjustment of export prices, i.e.,

by engaging in pricing-to-market (see, e.g., Krugman (1986), Dornbusch (1987), Goldberg and

Knetter (1997) and, for a recent reconsideration, Burstein and Gopinath (2014)).1

The increasing availability of high-dimensional administrative customs databases has provided

a wealth of new insights about the pricing behavior of exporters, stressing that larger, more highly

productive firms adjust markups more (see, e.g., Berman, Martin and Mayer (2012), Chatter-

jee, Dix-Carneiro and Vichyanond (2013), Fitzgerald and Haller (2014), De Loecker, Goldberg,

Khandelwal and Pavcnik (2016), Amiti, Itskhoki and Konings (2014, 2019, 2020)). This literature

has broken new ground in documenting significant heterogeneity in markups and markup elastic-

ities across firms by directly employing estimates of the firm’s (unobservable) productivity and

marginal costs, or by indirectly controlling for unobservables with fixed effects. At the same time,

the wealth of information on prices at fine levels of firm, product, and market disaggregation has

created opportunities for new solutions to the problem of controlling for unobservable determinants

of pricing, as well as for investigating heterogeneity in pricing behavior along new dimensions.

The point of departure for our study is a stylized fact in international trade that has been

overlooked in micro studies of pricing to market. Namely, the set of foreign markets in which a

firm sells a particular product(s), which we define as the “trade pattern” for a firm and product,

changes from year to year. Moreover, certain trade patterns tend to reappear time and again over

the course of a firm’s export life.2 The theory of firms in international trade has long recognized

that firms may choose to enter a new market or discontinue exports to a destination in response

to variation in idiosyncratic demand or marginal cost, the very factors that most likely affect

pricing (Melitz and Redding (2014)). This suggests that the changes in a firm’s trade patterns,

and the reoccurrence of certain trade patterns over time that we observe in the data, are not purely

random. Rather, they contain valuable information about unobservable economic variables that,

in addition to determining market participation, affect pricing in all the foreign markets where

1Pricing-to-market is a standard feature in open macro models, which increasingly feature firm dynamics and
competition (see, e.g., Bergin and Feenstra (2001) and Atkeson and Burstein (2008)), vertical interactions of ex-
porters with local producers and distributors (see, e.g., Corsetti and Dedola (2005)), and nominal rigidities in either
local or a third-country vehicle currency (Corsetti, Dedola and Leduc (2008), Gopinath (2015) and Gopinath, Boz,
Casas, Dı́ez, Gourinchas and Plagborg-Møller (2020)).

2Han (2018) offers a pioneering study of systematic changes in the extensive margin, documenting the same
stylized fact in UK data.
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the firm continues to make sales. Our main methodological contribution consists of showing how

a firm’s trade patterns can be integrated into the design of a fixed effect estimator of markup

elasticities – the Trade Pattern Sequential Fixed Effect (TPSFE) estimator – in order to reduce

omitted variable and selection biases.

Our substantive contribution is a novel set of estimates of pricing to market by exporters from

China, drawing distinctions across estimates for different types of products and firms. Specifically,

our estimates unveil significant evidence of markup adjustment in response to movements in the

bilateral exchange rate not only for large, State-Owned, and Foreign-Invested enterprises, but also

for firms exporting highly differentiated products. For these exporters, our estimated elasticities

are up to 50% higher than those from fixed effects estimators used in the literature. In light of

the prevailing view that most Chinese exporters set the prices of their products in dollars, our

findings suggest that, for highly differentiated goods and large exporters, pricing in a dominant

currency does not necessarily preclude markup and price adjustments to local economic conditions.3

Conversely, for private firms and exporters of less differentiated merchandise, we find little or no

evidence of pricing to market. For these exporters, covering roughly half of China’s global exports,

our study provides independent evidence of global pricing, closely in line with the properties of an

international price system dominated by the US dollar analyzed by Gopinath (2015) and Gopinath,

Boz, Casas, Dı́ez, Gourinchas and Plagborg-Møller (2020).

Our study is organized in three core chapters. First, to gain theoretical insight into our estima-

tor, we rely on a standard open economy macro model with multiple countries, heterogeneous firms,

and variable markups solved in partial equilibrium. The model shows how the interaction of the

firms’ exporting and pricing decisions creates multiple and complex sources of bias in estimators of

pricing to market. Our main innovation is the construction of a firm-product-destination-specific

fixed effect indexed by trade patterns. This novel fixed effect restricts the estimator to compare

observations conditional on a firm selling to the same set of export markets. We show both an-

alytically and based on model-simulated data that our new estimator enhances transparency of

identification, and can significantly reduce biases associated with unobservable time-varying factors

at the firm, product and even destination level, relative to conventional fixed effect estimators.4

Second, we introduce a new product classification to obtain a better empirical proxy for market

power. In addition to varying with an exporter’s size, market power can also be expected to vary

3Although the invoicing currency of Chinese exports is not recorded in our dataset, the value of exports is
reported in US dollars and the US dollar is widely-held to have been the principal invoicing currency for Chinese
exports throughout this period. See appendix G.8 for evidence on dollar invoicing. We report results from applying
our TPSFE estimator conditional on price changes in dollars.

4We provide a formal discussion on how our approach can be thought as a variation of the control function
approach by Heckman (1979) and Kyriazidou (1997) in Appendix B. We show how our fixed effect approach
connects to more conventional fixed effects approaches in Appendix C, and how it is related to the productivity
estimation approach by De Loecker, Goldberg, Khandelwal and Pavcnik (2016) in Appendix E.

2



with the type of product and the market segment in which a firm operates. Most intuitively,

everything else equal, firms selling highly differentiated products may be better able to segment

the market and exercise monopoly power than firms exporting less differentiated goods. We exploit

information contained in Chinese customs records – specifically, Chinese linguistic particles that

reflect a good’s physical attributes and act as measures for numbers of items – to construct a

comprehensive, general, and exogenous product classification that distinguishes between goods

with high versus low degrees of differentiation. A key advantage of our classification is that it

articulates the large class of differentiated goods obtained by following the approach of Rauch

(1999) into two large subgroups. These subgroups, of high- and low-differentiation products, can

then be combined with other criteria (e.g., firm size) and classifications (e.g., functional end-use of

a product) to further refine firms into smaller groups according to their (potential) market power.5

Finally, we apply our TPSFE estimator together with our linguistics-based product classifica-

tion to estimate markup elasticities to the exchange rate using the universe of Chinese exports

over 2000-2014. To reduce the incidence of nominal rigidities, we follow the method pursued

by Gopinath, Itskhoki and Rigobon (2010) and carry out our analysis conditional on detecting

a change in the dollar price of a product. Our framework allows us to study markup elastici-

ties according to the types of products exporters sell, by firm ownership, and by exporter size

(measured by global export revenue). We are thus able to document significant heterogeneity in

pricing-to-market across firms and products.

According to our estimates, over the period of the managed float of the renminbi (2006-2014), in

response to a 10% appreciation of a destination country’s currency against the Chinese currency,

Chinese exporters of highly differentiated goods raised their markups by 2% while exporters of

goods characterized by little or no differentiation raised their markups by a mere 0.6%. This means

that, conditional on a dollar price change following an exchange rate movement, firms exporting

highly differentiated goods kept their prices measured in local currency significantly more stable

than firms exporting less differentiated products. Other things equal, pricing-to-market is more

pervasive in markets in which firms face less direct competition because of the highly differentiated

nature of their output. Consistently, we detect even larger markup elasticities when we examine

subsamples of our data that include large (as opposed to small) exporters, firms selling consumption

(as opposed to intermediate) goods, and firms with complex corporate structures such as State-

Owned or Foreign-Invested Enterprises (as opposed to private firms). In these subsamples, our

5Applying Rauch (1999)’s categories to the Chinese Customs Database, we find about 80 percent of Chinese
export value is classified as differentiated because these products are not traded on organized exchanges or in markets
with published reference lists. According to our linguistics-based classification, about half of this, amounting to
39 percent of Chinese export value, is actually highly differentiated, while 41 percent exhibits low differentiation.
Furthermore, we find that many products which are left unclassified by Rauch can be classified as high or low
differentiation goods according to our classification.
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estimated markup elasticities for highly differentiated products almost double, ranging from 0.3 to

0.4. Conversely, for low-differentiation goods, markup elasticities typically remain close to zero.

In estimating markup elasticities to bilateral exchange rates, we appeal to the classical view

in international economics that, after controlling for a firm’s costs, currency movements provide

a measure of destination-specific shifts in the demand faced by exporters (see, e.g., Goldberg and

Knetter (1997)). Consequently, consistent with the classical view, changes in relative export vol-

umes across markets should be positively correlated with predicted changes in relative markups

arising from exchange rate changes. We complete our analysis with an empirical exercise showing

that this correlation, as expected, is positive in the data. In addition, we show that the strength

of the correlation is weaker for products and groups of firms with higher markup elasticities to the

exchange rate. This suggests that exporters with market power that respond to currency move-

ments by adjusting their markups substantially also keep their export quantities relatively stable

across destinations, especially when compared to firms operating in more competitive markets.

For State-Owned and Foreign-Invested Enterprises (SOEs and FIEs), each percentage increase in

markups in a destination corresponds to a rise in exports by mere 0.3%; in contrast, for private

firms, the corresponding elasticity is as high as 5.2%.

As a final point, we note that SOEs, FIEs, and, more generally, large firms selling highly differ-

entiated products are those most likely to be integrated into complex supply chain structures. They

arguably set prices responding to a host of administrative, taxation, and institutional demands.

Altogether, this suggests that their demand and costs are more exposed to variation in destination-

specific factors relative to the other firms in the sample. Since controlling for destination-specific

time-varying unobservable factors is precisely the comparative advantage of our TPSFE procedure,

we would expect our TPSFE estimates for these groups of firms to be distinctively different from

those obtained from conventional fixed effects. Our evidence squares remarkably well with this

conjecture. A comparison among the TPSFE and fixed effects estimators used in leading studies

shows that divergences are especially large and significant for SOEs and FIEs, while very small

and insignificant for smaller exporters and exporters of low differentiation goods.

In addition to the contributions referred to above, our paper is also closely related to the

literature that examines the effects of extensive margin adjustments of aggregate, product- and

firm-level exports on trade elasticities and exchange rate pass through (Helpman, Melitz and

Rubinstein (2008), Nakamura and Steinsson (2012), Bas, Mayer and Thoenig (2017) and Fitzgerald

and Haller (2018)) as well as studies specifically devoted to assess how Chinese firms respond to

changes in foreign trade policy (Khandelwal, Schott and Wei (2013), Crowley, Meng and Song

(2018)) and exchange rates (Dai and Xu (2017)). Finally, our paper naturally complements the

empirical study by Manova and Zhang (2012), who establish a set of stylized facts on exporters

from China pointing to systematic price differences across countries and the potential relevance of

4



destination specific variations in demand and costs.

The rest of the paper is organized as follows. Section 2 draws on the Chinese dataset to

present the general stylized fact that motivates our analysis: the variability in the set of desti-

nations reached by exporters over time. Section 3 carries out a model-based analysis of biases

that potentially plague studies of pricing to market, and discusses the theoretical foundations of

our approach to its estimation. Section 4 introduces our product classification and discusses its

properties relative to alternative classifications. Section 5 presents our empirical results. Section

6 concludes.

2 The Variable Trade Patterns of Exporting Firms

We motivate our empirical analysis of international pricing by highlighting a key salient feature

of firms’ engagement in international trade: the set of foreign markets reached by an exporting

firm changes frequently over time, with particular sets of foreign markets featuring repeatedly for

a given firm. In this section, we briefly describe our dataset and document that most of China’s

exports originate from firms selling to multiple destinations. We then present statistics on the

variability of firms’ product-level trade patterns, focusing on the number of unique trade patterns

observed during a firm’s export history. We conclude with a stylized example, introducing at an

intuitive level the idea we exploit in our analysis.

2.1 Data

Our analysis uses the Chinese Customs Database, the universe of annual import and export records

for China from 2000 to 2014 along with annual macroeconomic data from the World Bank.6 The

final estimation dataset consists of over 200,000 multi-destination exporters, around 8,000 HS08

products, and 152 foreign markets over 15 years. The Chinese Customs Database reports values

and quantities of exports in US dollars by firm (numerical ID and name) and foreign destination

country at the 8-digit Harmonized System product level over 2000-2014.7

Chinese exports are thus structured as a panel with four dimensions—firm, product, destination

6Details regarding the macroeconomic data and information about the Chinese Customs Database are given in
appendix G.

7The database is available at the monthly frequency during the period 2000-2006 and annual frequency during
the period 2007-2014. We aggregate the monthly data for 2000-2006 to the annual level in this study. Because no
information on the currency of invoicing is reported in the Chinese Customs Database, we turn to administrative data
from Her Majesty’s Revenue and Customs (HMRC) in the UK to provide information about the currency of invoicing
of Chinese exports to the UK so that we can place our results in context. See Appendix G.8. We should nonetheless
note upfront that, because our TPSFE estimator differences out the common components across destinations, using
prices denominated in dollars with dollar-destination exchange rates versus using prices denominated in renminbi
with renminbi-destination exchange rates in the estimation procedure yields exactly the same estimates.

5



market, and time. However, some specific characteristics of the Chinese customs data allow us to

obtain a classification of types of products by their differentiation and types of firms by the nature

of their commerce. Most notably for our purposes, each observation in the database contains (a)

the Chinese measure word in which quantity is reported, (b) an indicator of the form of commerce

for tax and tariff purposes, and (c) a categorization based on the registration type of the exporting

firm.8 We will see that all these entries can be exploited to obtain information on the firm’s market

power in its export markets.

Like other firm-level studies using customs databases, we use unit values as a proxy for prices.

However, the rich information on forms of commerce and Chinese measure words enables us to build

more refined product-variety categories than prior studies have used. Specifically, we define the

product identifier as an 8-digit HS code plus a form of commerce dummy. The application of our

product-variety definition generates 14,560 product-variety codes in our final estimation dataset

as opposed to 8,076 8-digit HS codes reported in the database.9 Throughout our study, we will

use the term “product” to refer to these 14,560 product-varieties. This refined product measure

allows us to get a better proxy of prices for two reasons. First, the inclusion of the information

on form of commerce helps to distinguish subtle differences of goods being sold under the same

8-digit HS code. Second, as discussed later on in the text, the extensive use of a large number of

measure words as quantity reporting units makes unit values in Chinese data conceptually closer

to transactions prices than unit values constructed with other national customs datasets.10

2.2 Quantitative Importance of Multi-destination Exporters

An overwhelming majority of Chinese exporters serve multiple foreign destinations. A similar

pattern has been documented for other markets, most notably for France by Mayer, Melitz and

Ottaviano (2014), suggesting that this is a core feature of foreign market participation by exporting

8The form of commerce indicator records the commercial purpose of each trade transaction including “general
trade,” “processing imported materials,” and “assembling supplied materials.” Essentially, a firm can produce the
same HS08 product under different tax regulations depending on the exact production process used. We simplify
different tax treatments into a form of commerce dummy equal to 1 if the transaction is “general trade” and
0 otherwise. The registration type variable contains information on the capital formation of the firm by eight
mutually-exclusive categories: state-owned enterprise, Sino-foreign contractual joint venture, Sino-foreign equity
joint venture, wholly foreign-owned enterprise, collective enterprise, private enterprise, individual business, and
other enterprise. In our analysis, we aggregate the three types of foreign-invested firms, namely wholly foreign-
owned enterprises, Sino-foreign contractual joint ventures and Sino-foreign equity joint ventures, into one category
dubbed “foreign-invested enterprises.” We group minority categories including collective enterprises, individual
businesses and other enterprises into one category and refer to them as “other enterprises.”

9When we clean the data, the number of HS08 products and HS08 product-varieties declines with the number
of observations. These numbers refer to products and product-varieties in the final estimation dataset.

10Important previous studies have constructed unit values (export value/export quantity) from data in which
quantity is measured by weight (Berman, Martin and Mayer (2012)) or in a combination of weights and units
(Amiti, Itskhoki and Konings (2014)).
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Table 1: Multi-destination exporters (2007)

Number of Foreign Destinations
1 2-5 6-10 10+ Total

(a) by Share of Exporters 27.2 33.1 14.7 25.0 100.0
(b) by Share of Export Values 5.4 11.9 10.4 72.3 100.0
(c) by Share of Number of Annual Transactions 3.0 8.0 7.8 81.2 100.0

Note: Each cell in the top row is the proportion of exporters in the Chinese customs data in 2007 that fall under the
relevant description. The middle and bottom rows present the corresponding proportions for export value and count of
annual export transactions, respectively.

firms. Based on our dataset, table 1 presents a breakdown of the proportion of exporting firm,

export values, and count of annual transactions according to the number of destinations served in

2007. Overall, we see that around three-quarters of exporters reach more than one destination (row

a). These firms are responsible for 94.6% of export value (row b) and 97.0% of annual transactions

(row c). Conversely, the 27.2% of exporters that sell to a single destination, comprised only 5.4%

of Chinese export value and 3.0% of export transactions in 2007. While we present a single year

snapshot from our dataset in the table, the patterns in year 2007 are by no means special: the

shares of exporters, export value, and export transactions by count of destination markets remain

relatively stable over our sample period, 2000-2014.

2.3 The Frequently Changing Trade Patterns of a Firm’s Product

Sales: Stylized Facts

The key stylized fact revealed by the customs records of multi-destination exporters is that the

sets of foreign markets a firm reaches with a given product are highly volatile. While this has re-

mained relatively under-researched by the literature, Han (2018) has provided detailed comparative

evidence using Chinese and UK data.11

To gain insight and introduce concepts that we will use extensively in our study, in Figure

1 we provide the simplest stylized example of an exporter selling a specific product to different

sets of foreign markets over a five-year span—similar to what can be found in the dataset. The

figure refers to a firm exporting a product to three destination countries, A, B and C, in different

combinations. Empty elements indicate that there is no trade in a period. We define the set of

markets active at a firm-product level in one period as a trade pattern. In our stylized example,

11A number of papers have studied the within-year volatility in trade flows in a given destination due to transaction
costs (see e.g., Alessandria, Kaboski and Midrigan (2010) and Kropf and Sauré (2014)). We inspect the volatility
in trade flows across years stemming from firms selecting in and out of destination markets and illustrate how the
time-varying trade pattern of firms can be used to construct a novel fixed effect estimator to improve the estimation
of markup elasticities.
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the firm has three unique trade patterns, A-B, A-C, A-B-C over the course of its five year trade

in that product. Notably, however, two of these firm’s product-level trade patterns repeat. The

pattern A-C repeats in periods 2 and 4; A-B-C repeats in periods 3 and 5.

t = 1 A B

t = 2 A C

t = 3 A B C

t = 4 A C

t = 5 A B C

Figure 1: Example of an observed trade pattern

The volatility of firm-product trade patterns in the Chinese Customs Database is summarized

in Table 2. To construct this table, we begin with the universe of firm-product pairs in the Chinese

Customs Database over the sample period 2000-2014. To build our table, we first drop all firm-

product pairs that appear only once in the 15 year timespan of our dataset—since there is no

time variation associated with these pairs. We next place firm-product pairs into bins according

to the total number of years (x) for which foreign sales were observed. In the last row of the

table, we report the share of firm-product pairs with observed foreign sales in 2, 3,...,15 years.

Unsurprisingly, firm-year pairs with observed sales in only a few years are the most common; in

our dataset (after removing the single period pairs) about 60% of firm-product pairs are observed

for between two and four years (29.3+17.9+12.0). At the other extreme, only 1.1% of firm-product

pairs are observed in every year.

In the columns of the table, for each number of exporting years, we calculate the share of

firm-product pairs associated with a specified number of unique trade patterns, y. For example,

the firm-product pair in the stylized example of Figure 1 has three unique trade patterns, {A-B,

A-C, A-B-C}, over five years of sales abroad. In the table, our stylized firm-product would be

included in the cell reporting that 14.1% of firm-product pairs observed for five years have three

unique trade patterns. More generally, entries in the first row of the table report the share of firm-

product pairs that have perfectly stable trade patterns over the course of their entire export life.

At the other extreme, the diagonal elements contain firm-product pairs with extremely volatile

trade patterns – these firm-products have a different, unique trade pattern in every year of export

life. Most crucially for our purposes, the statistics above the diagonal shows that the majority

of firm-product pairs have a smaller number of unique trade patterns than their total number of

exporting years. This means these firms export a particular product to the same set of destinations

8
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for two or more years in their lifetime. For example, consider the firm-product pairs being observed

for 5 years: 64.1% (100-35.9%) of them have at least one repeated trade pattern in their exporting

life.

At the core of our study is the recognition that the time-varying patterns of market participation

are informative about economically important but unobservable factors that drive exporters’ trade

strategies. By way of example, looking at Figure 1, a plausible hypothesis is that the time-varying

unobservables (in demand and production costs) that drive a firm to sell to destinations A and C

in periods 2 and 4 are very similar to each other; and that time variation in these unobservables

may also drive the firm’s choice of destinations A, B and C in period 3 and 5.

Intuitively, by constructing a fixed effect that controls for a destination market when it appears

as part of a larger trade pattern, one can restrict the comparison of observations to circumstances

in which the underlying time-varying unobservables take similar values.12 Restricting the analysis

of price and exchange rate variation by comparing observations for a destination conditional on the

same (repeated) trade patterns allows us to construct a difference-in-difference estimator that offers

a potentially stronger control in unbalanced panels, compared to alternative popular approaches,

effectively limiting the variation of unobserved confounding factors. We provide a theory-based

discussion of these points in the next section.

3 Pricing to Market by Heterogeneous Firms and Prod-

ucts: Model-based Analysis

In this section, we lay out the theoretical underpinnings of trade-patterns as a fixed effect that

improves on the control of unobservable variables. First, we will use a well-known model to gain

fundamental insight on how and why empirical analyses of pricing to market may suffer from bias

arising from omitted variables and market selection, as well as other econometric issues raised by

firm heterogeneity. Second, we will show that this model and the recent statistical literature lend

theoretical support to the hypothesis that trade patterns are informative about crucial factors

impinging on firms’ behavior. Finally, we will use simulated data to gauge the performance of

alternative fixed effects estimators in the presence of multiple sources of bias, and show that

comparing results across estimators can provide an informative diagnostic.

We use a variant of the model by Corsetti and Dedola (2005) and Berman, Martin and Mayer

(2012), specifying a multi-country framework that allows for heterogeneous firms, variable markups

12To be concrete, in our example this implies a set of fixed effects which interact each country with each of its
observed trade patterns; this set could be captured by a series of dummies: one for destination A interacted with
the trade pattern A-C that takes the value 1 in periods 2 and 4, but 0 in periods 1, 3, and 5; a second dummy for
destination A interacted with the trade pattern A-B-C that takes the value of 1 in periods 3 and 5, and a third for
destination A interacted with the (non-repeating) trade pattern A-B that is equal to 1 in period 1.
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and endogenous entry, and solve the model in partial equilibrium. The model calls attention to

vertical interactions between upstream producers and downstream distributors—we thus label it

CD, for Cost and Distribution. As a result, markups are heterogeneous across firms depending

on a firm’s size and the incidence of distribution costs in the product market between distributors

and producers, all of which impinge on the trade elasticity. We also allow for heterogeneity in

the type(s) of products firms sell. The model will thus be useful to understand the multi-layered

econometric problems arising from the fact that product-level marginal costs are not observed and

firms’ responses to shocks are likely to be heterogeneous.13

3.1 The Model Setup

The world consists of H countries. In each country, there is a continuum of industries indexed by

i. The final consumption Ydt and price Pdt in each destination d ∈ H are CES aggregated across

the industries and defined as:

Ydt =

[∫
i

(Yidt)
η−1
η di

] η
η−1

, Pdt =

[∫
i

(Pidt)
1−ηdi

] 1
1−η

(1)

where η is the elasticity of substitution across industries. Within each industry, there are domestic

and foreign firms producing different varieties with the substitutability of these varieties indicated

by ρi. The industry-level consumption Yidt and price Pidt are defined as:

Yidt =

[∑
o

∑
f

φfiodt (αfiodt)
1
ρi (Yfiodt)

ρi−1

ρi

] ρi
ρi−1

,

Pidt =

[∑
o

∑
f

φfiodtαfiodt(Pfiodt)
1−ρi

] 1
1−ρi

(2)

where αfiodt is a preference shifter of the demand for firm f ’s product i from origin o in destination d

at time t and φfiodt indicates whether the firm f from origin o is active in industry i and destination

d at time period t.

Firms’ Problem. Markets are assumed to be segmented and each firm makes its pricing

and entry decisions independently in each market.14 A firm decides whether to sell to a market

13Progress in estimating markups for multi-product firms has been made in contributions including De Loecker
and Warzynski (2012) and De Loecker, Goldberg, Khandelwal and Pavcnik (2016), but these approaches require
strong assumptions on input ratios in production functions as well as detailed balance sheet data on firm-level
inputs which, for many countries, is not readily available to researchers or is only available for some firms. See
Appendix E for a formal discussion.

14The independent market decisions are implied by the assumption of a constant return to scale production
function. As the marginal cost in one destination does not depend on that in another destination, the optimization
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(indicated by φfiodt) by calculating its expected operating profit in that market πfiodt and comparing

it to the entry cost Eiod:

φfiodt =

{
1 (observed) if πfiodt ≥ Eiod

0 (missing) if πfiodt < Eiod
(3)

Upon entry into market d, the firm’s operating profit is given by:

πfiodt = max
Pfiodt

Yfiodt
[
Eodt(Pfiodt − χiPN

dt )− τodtMCfiodt
]

subject to

Yfiodt = αfiodt

(
Pfiodt
Pidt

)−ρi (Pidt
Pdt

)−η
Ydt (4)

where MCfiodt is the marginal cost of firm f from industry i and origin o selling to destination

d at time t; τodt is the bilateral trade cost between origin o and destination d at time t; Eodt is

the bilateral exchange rate defined as the units of currency o per unit of currency d at time t.

We assume that χi units of destination nontradable goods are needed to distribute the product to

local consumers, resulting in an additional “wedge”, χiP
N
dt , in the profit maximisation problem.15

At the retail level, the firm’s optimal price expressed in the destination’s currency is given by:

Pfiodt =
ρi

ρi − 1

(
τodtMCfiodt
Eodt

+ χiP
N
dt

)
. (5)

At the border, the firm’s optimal price denominated in the producer’s currency (i.e., origin country

o’s currency) is given by:

PB
fiodt ≡ Eodt

(
Pfiodt − χiPN

dt

)
=

ρi
ρi − 1

(
τodt +

1

ρi

χiP
N
dt Eodt

MCfiodt

)
︸ ︷︷ ︸

Markups ≡µfiodt

MCfiodt (6)

Define the retail cost ratio as the retail cost divided by the marginal cost multiplied by the trade

cost expressed in the producer’s currency as ωfiodt ≡
χiP

N
dt Eodt

τodtMCfiodt
. From the above expressions, the

optimal markup adjustment is a function of changes in the exchange rate Êodt, the marginal cost

M̂Cfiodt, the retail cost P̂N
dt and the trade cost τ̂odt:

µ̂fiodt = Γfiodt

(
Êodt − M̂Cfiodt + P̂N

dt

)
+ (1− Γfiodt) τ̂odt (7)

problem can be solved independently in each market.
15PNdt is the price of non-tradable goods. We assume that the non-tradable goods market is monopolistically

competitive and that firms selling non-tradable goods charge a constant markup.
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where the markup elasticity to exchange rates is given by:

Γfiodt ≡
ωfiodt

ρi + ωfiodt
=

χiP
N
dt Eodt

ρiτodtMCfiodt + χiPN
dt Eodt

(8)

Equations (7) and (8) highlight the two key theoretical predictions of the model: (a) the markup

elasticity to the exchange rate is decreasing in ρi, suggesting high differentiation goods tend to have

higher markup adjustments relative to low differentiation goods; and (b) the markup elasticity is

increasing in the retail cost ratio, suggesting that more productive firms—with lower marginal

costs and a larger market share—tend to make higher markup adjustments.

3.2 From Theory to Data: Potential Sources of Estimation Bias

There are at least three empirical hurdles to estimating the markup elasticity to the exchange

rate (8) using the observed border price defined in (6). First and foremost, product-level marginal

cost is generally not observable and might reasonably be expected to vary over time. Relatedly,

firms may endogenously change the set of destination markets they choose to serve, depending on

the realizations of shocks to marginal costs, or other variables such as the bilateral exchange rate.

This endogeneity is apparent from the market participation condition (3) and the change in the

operating profits of the firm:16

π̂fiodt = (1− ρi)
[

1

1 + ωfiodt

(
τ̂odt − Êodt + M̂Cfiodt

)
+

ωfiodt
1 + ωfiodt

P̂N
dt

]
+ Êodt

+ α̂fiodt + (ρi − η)P̂idt − ηP̂dt + Ŷdt (9)

When, conditional on current shocks, the drop in profits is sufficiently large, a firm may no longer

find it optimal to export to a particular destination. Conversely, favourable shocks may raise

prospective profits in a destination market enough to induce entry. Selection bias in estimating

markup elasticities to exchange rates arises from variables that enter both the pricing (6) and the

selection (i.e., (9) and (3)) equations. Thus, the bias arises from the unobserved marginal cost, the

(destination-specific) distribution and trade costs, as well as the exchange rate.17 This implies the

16The operating profit in levels is given by

πfiodt =
αfiodt
ρi

(
ρi

ρi − 1

)1−ρi (τodtMCfiodt
Eodt

+ χiP
N
dt

)1−ρi
(Pidt)

ρi−η (Pdt)
−η
Ydt

17Other variables in (9), such as changes in preferences α̂fiodt, the sectoral price index P̂idt, the destination CPI

P̂dt, and the aggregate demand Ŷdt are important determinants of the firm’s market choices, but they will not result
in selection bias as the optimal price is independent from these variables in the CD model. Nonetheless, markup
estimation may still suffer from omitted variable bias if any of these variables are correlated with the bilateral
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markup elasticity estimate will thus be biased, even if the bilateral exchange rates are uncorrelated

with the unobserved marginal cost.

A third hurdle to estimating markup elasticities is heterogeneity across firms and products. The

literature addresses heterogeneity by estimating elasticities on subsamples of firms and products.

For example, differences in market power are captured by grouping observations by firm size or by

ownership; such as private, state-owned and foreign-invested enterprises.18

3.3 Using Trade (Selection) Patterns to Control for Omitted Variable

Bias

To introduce our analysis of fixed effect estimators in the most transparent manner, we temporarily

abstract from heterogeneity and simplify the firm’s problem in the model—we will add all the

layers of the model back in subsection 3.4. We focus on the joint pricing and market-participation

decisions by one firm producing a particular product. For simplicity, we write the optimal price

as a function of only two variables, the bilateral exchange rate and the unobserved marginal

cost, positing that the same variables also drive the market participation (selection) equation.

Expressing all variables in logs, let pdt denote the (log) border price in destination d denominated in

the producer currency; edt the (log) bilateral exchange rate between the origin and the destination

country and mdt the (log) marginal costs the firm incurs in producing the goods exported there.

In our simplified framework the optimal price is:

pdt = β0 + β1edt + β2mdt (10)

where β1 is the markup elasticity to exchange rates; while the selection equation is:

φdt =

{
1 (observed) if γ0 + γ1edt + γ2mdt < 0

0 (missing) if γ0 + γ1edt + γ2mdt ≥ 0
(11)

Since mdt is unobserved and potentially correlated with edt, a simple OLS regression will generally

be biased:

E(pdt|edt, φdt = 1) = β0 + β1edt + β2E(mdt|edt, φdt = 1). (12)

Our analysis moves from a key observation stressed by Heckman (1979), that selection bias

itself can be thought of as an omitted variable bias: it would not be a problem if the variables

creating the bias could be controlled for explicitly or implicitly in the estimation equation, for

exchange rate.
18See Appendix D for an analysis of differences across estimators due to approximation biases and different

weightings of the observations when the markup elasticities are heterogeneous across firms and products.
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example, by using fixed effects.19 Thus, in our model, if the marginal cost mdt only varied over

time but not across destinations, then adding time fixed effects would be sufficient to eliminate

both the omitted variable and the selection biases. Both destination and time fixed effects would

be needed, instead, if the marginal cost variation could be broken down into an additive process

of two factors each varying at a particular dimension, i.e., mdt = ψd + εt.

These very basic considerations convey a first, reassuring, message from the model: appropri-

ately specified fixed effects can make headway in addressing these sources of bias. But of course the

inclusion of destination and time fixed effects cannot be expected to eliminate the bias in general—

in our simplified model, they would not work for instance when the variation in the marginal cost is

driven by factors varying over both dimensions and following non-additive processes.20 One reason

why these (statistically well-established) points have not been discussed by the literature is that,

in practice, estimation methods (especially those that employ iterative statistical procedures) do

not facilitate the inspection of the economic underpinnings of the variation used by fixed effects

to recover parameters. As shown below, a benefit from our approach is that it provides greater

clarity into the economics of identification.21

3.3.1 Trade Patterns as Fixed Effects

Our main innovation is to bring forward trade patterns – the sets of destinations observed in each

period, denoted Dt—as a new fixed effect that can be used to improve upon existing estimators

in addressing the biases in estimates of the markup elasticity to exchange rates.22 This innovation

rests on recognizing that, in an unbalanced panel, trade patterns are per se an informative panel

dimension that can be exploited econometrically. For transparency of exposition, we restrict our

attention to a two (d and t) dimensional panel—in the appendix C.2 we show that our analysis

generalizes to more complex three or four dimensional panels.

In large unbalanced panels, parameters in models with fixed effects over multiple dimensions

cannot be simply estimated by sequentially removing the mean of variables at each of the cor-

responding panel dimensions (e.g., in our two dimensional example, removing the mean across

19To wit: both the omitted variable and the selection biases could be simultaneously addressed if, trivially, mdt

were observable. Note that E(pdt|edt,mdt, φdt = 1) = β0 + β1edt + β2mdt.
20We cannot add destination-time fixed effects as this would absorb all the variation in the bilateral exchange

rate edt, the variable of interest.
21Popular statistical programs that take an iterative approach to estimating the fixed effects include Guimaraes

and Portugal (2011), Rios-Avila (2015), and Correia (2017). As stressed by Guimaraes and Portugal (2011), while
these algorithms work very nicely in practice, there is no theoretical guidance on whether the estimates obtained
by these approaches are consistent.

22In what follows, we use D to denote the set of destinations and treat it as an additional, constructed, panel
dimension. We use D with subscripts to denote the realized trade patterns in a particular time period. For example,
Dt denotes the set of destinations at period t; Dfit denotes the set of destinations for firm f selling product i at
time t. For example in Figure 1, the trade pattern can be thought of as a new panel dimension D in which Dt takes
the value A-C in periods t = 2 and t = 4.
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destinations and then removing the mean across time periods). Their estimation requires the use

of iterative procedures (see Guimaraes and Portugal (2011), Rios-Avila (2015), and Correia (2017))

or, equivalently, a statistical projection matrix.23 While the complexity of either method makes it

hard to inspect how the estimator achieves identification, in the following proposition we exploit

the properties of projection matrices to show how fixed effects for trade patterns are inherently

embedded in the implementation of estimators with d+ t fixed effects.24

Proposition 1. In a two-dimensional unbalanced panel, factors varying at the d+ t panel dimen-

sions can be eliminated using a two-step procedure by which, in the first step, all variables are

demeaned across observed destinations within each period and, in the second step, destination (d)

and trade pattern (D) fixed effects are applied additively, i.e., d+D.

Proof. See Appendix C.1.1.

To appreciate this proposition, note that, if the panel were balanced, D would take the same

value over time and the second step would collapse into a simple destination d fixed effect. But

given that the panel is unbalanced, the two step procedure in Proposition 1 highlights that trade

patterns plays a crucial role in enabling the projection matrix to correctly estimate the parameters.

In light of proposition 1, the idea underlying our new estimator becomes quite intuitive. In

the second step of the procedure, we combine the d and D fixed effects interactively instead of

additively.

Proposition 2. In a two-dimensional unbalanced panel, factors varying at the dD+ t dimensions

can be eliminated in a two-step procedure in which all variables are demeaned across observed

destinations within each period in the first stage and destination (d) and trade pattern (D) fixed

effects are applied multiplicatively, i.e., dD, in the second stage. This procedure also eliminates all

confounding factors that the d+ t fixed effects can address.

Proof. See Appendix C.1.2.

23See Wansbeek and Kapteyn (1989) for the projection matrix constructed for estimating two-way fixed effects.
24In this section, we discuss our estimator and the key propositions in the context of the firm’s exporting problem.

However, these results are more general and can be easily applied to other literatures. For example, the destination
and time (d+t) fixed effects discussed in Proposition 1 are analogue to the worker and (firm-)time fixed effects often
applied in the labor literature (e.g., Abowd, Kramarz and Margolis (1999) and Card, Cardoso and Kline (2016)).
A key assumption for the (d+ t) fixed effect approach to work is that the unobserved variables affecting the pricing
and selection equations are exogenous after controlling for the two additive fixed effects (e.g., destination and time
or worker and time). However, this assumption may be strong under some scenarios, e.g., in the context of our
firms’ exporting problem, when the unobserved time-varying marginal cost is also destination-specific, or, in the
context of the labor literature, when workers systematically go to employers where they have a good match. Our
Proposition 2 and subsection 3.3.2 show how a more general estimator can be constructed by explicitly exploiting
the selection pattern of a particular panel dimension to relax this assumption.
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To illustrate the meaning of this proposition, we find it useful to return to the stylized example

in Figure 1. As noted earlier, in our example, two trade patterns (A-C and A-B-C) repeat twice,

reflecting distinct time patterns of participation, in periods {2, 4} and {3, 5}, respectively. The

first step of our estimator removes the common time-varying components by differencing out the

average value of a variable over all active destinations within a period. For example, for destination

A, the first step calculates the price residual in period 2 as p̃A2 = pA2 − 1/2(pA2 + pC2) and in

period 3 as p̃A3 = pA3 − 1/3(pA3 + pB3 + pC3). The second step performs a second demeaning,

this time within each destination-trade pattern pair (dD).25 For destination A, again, we calculate

p̈A2 ≡ p̃A2 − 1/2(p̃A2 + p̃A4) and p̈A3 ≡ p̃A3 − 1/2(p̃A3 + p̃A5), in periods 2 and 3, respectively.26

We then run an OLS regression with the twice demeaned variables. So, in an unbalanced panel,

the trade pattern fixed effect facilitates difference-in-difference identification by restricting the

comparison of price residuals to sets of destinations that are part of an identical (repeated) trade

pattern. Since the innovation in our approach is to use the observed trade patterns to construct

an additional fixed effect to be applied in steps, we refer to our procedure as the Trade Pattern

Sequential Fixed Effect Estimator (TPSFE).27

In light of this example, it should be clear that, relative to applying (conventional) additive

d + t fixed effects, combining the d and D panel dimensions has two main advantages. First,

the novel fixed effect helps reduce the omitted variable and selection biases driven by factors

that vary simultaneously at both the destination and time panel dimensions. Second, it enhances

interpretability of identification in economic terms.

To the extent that the underlying time-varying unobservables take similar values across identical

time patterns, the new fixed effect limits the variation of the unobserved factors that may confound

the estimator.28 In practice, the reduction of variability of unobserved confounding factors takes

25See table B1 in Appendix B.1.1 for an example of the construction of destination-trade pattern (dD) fixed
effects and see equations (C12)-(C15) in Appendix C.1.2 for formal definitions.

26In unbalanced panels, conventional fixed effects estimators do not achieve identification through a difference-in-
difference comparison. Consider the d+t fixed effects, implemented in the two-step estimator in Proposition 1. While
the second step contains D in additive form, i.e., (d+D), these fixed effects can only be eliminated through iterative
statistical procedures. These procedures prevent any clear economic interpretation of the underlying variation used
for identification. As an alternative estimator, consider the possibility of simply ignoring the unbalanced structure
of the data, and including only the destination fixed effects in the second step of Proposition 1. From each
variable, the second step would remove a mean calculated for a particular destination across all time periods. For
the price in destination A, for instance, it would calculate p̈A2 ≡ p̃A2 − 1/5(p̃A1 + p̃A2 + p̃A3 + p̃A4 + p̃A5) and
p̈A3 ≡ p̃A3 − 1/5(p̃A1 + p̃A2 + p̃A3 + p̃A4 + p̃A5) in period 2 and 3, respectively. Such de-meaning is at least
analytically interpretable. However, it is apparent that the demeaning using the d fixed effect ignores the fact that
averages of prices systematically vary across trade-patterns—the price residuals thus confound changes in prices
with changes in means. Heuristically, they mix “apples” with “oranges”.

27Statistically, as shown in Proposition 2, there is no difference in the parameters estimated through our TPSFE
procedure and a statistical iterative procedure adding dD + t fixed effects. An important reason to prefer our
TPSFE procedure is that it has a clear difference-in-difference interpretation, and allows a transparent inspection
of the variation used to identify the parameter of interest.

28In Appendix B, we provide a formal discussion on how our estimator can be thought of as a control function
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place through two margins: (a) an extensive margin, where the observations associated with the

non-repeated trade patterns are dropped and (b) an intensive margin where a different and more

stringent fixed effect is applied to those observations associated with the repeated trade patterns.

We discuss how these two channels work in the following subsection.

3.3.2 The Informative Content of Trade (Selection) Patterns

To show how our approach and estimator improves upon conventional fixed effect estimators, we

consider the case in which the bilateral exchange rate is in the selection equation (11), and allow

for interactive terms in the unobserved marginal cost as specified hereafter:

mdt = ψd + εt + ξd ∗ υt (13)

Given the data generating process described by (10), (11) and (13), destination and time fixed

effects can control for ψd and εt, but not for the last term ξd ∗ υt—therefore conventional fixed

effect estimates will generally be biased. To the extent that the trade pattern reflects variation in

υt, adding destination-trade pattern fixed effects will help to reduce the bias caused by ξd ∗ υt.
This point is illustrated by the two graphs in Figure 2, drawn based on numerical simulations

using our simplified model.29 In these graphs, calendar time (in years) is on the y-axis; on the

x-axis, there are possible values of the unobserved time-varying factors, either in the additive

component εt (the graph to the left) or the destination-specific component υt (the graph to the

right). For each year and realization of the unobserved factor, we plot the trade patterns chosen by

the firm, distinguishing distinct patterns with different colors— the detailed set of destinations for

each trade pattern is in the legend. We also distinguish between repeated and non-repeated trade

patterns using, respectively, squares and circles—both shapes include the number of destinations

reached by the firm in that year.

approach (e.g., Heckman (1979) and Kyriazidou (1997)). In subsection B.1.1, we discuss a numerical example on
the indicative value of trade patterns and how it helps to reduce the selection bias.

29We simulate the data generating process described by (10), (11), and (13) for 10 destinations and 15 periods.
We draw ψd εt, ξd and υt from a standard normal distribution. To generate an exchange rate that is correlated with
marginal cost, we set edt = σe(mdt + udt) where udt is drawn from a standard normal distribution. We set σe to
be 0.5 such that the bilateral exchange rate shocks are slightly less volatile than idiosyncratic marginal cost shocks.
We set β1 = β2 = 1 such that an exchange rate appreciation of the home currency and a positive marginal cost
shock increase the border price denominated in the home currency. This also implies a positive omitted variable
bias. We set γ1 = −0.1 and γ2 = 1 such that the selection bias is also positive. The magnitude of γ1 is set to
be smaller than that of γ2 to reflect the fact that the aggregate shocks (such as bilateral exchange rates) are less
detrimental to the firm’s entry decisions compared to idiosyncratic factors (such as the unobserved marginal cost).
We set γ0 such that around 70% observations (destination-year pairs) are dropped. In the cases where εt or υt is
restricted to take a particular number of values (e.g., x), we rank all values of the variable (εt or υt) generated, put
them into x bins and set the new value of the variable to be the average of the originally simulated values in each
bin.
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Figure 2: Example of the Indicative Value of Trade Patterns
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Note: These two figures plot the key time variation of the unobserved marginal cost mdt for a firm
randomly generated according to the data generating process described in footnote 29. The left and
right figures show the relationship between the formulated trade patterns and the values of εt and υt
respectively. The trade pattern in each year is indicated by a different color with the legend on the
right hand side showing the detailed set of destinations. The empty squares indicate the trade pattern
is observed more than once in the sample. The empty circles indicate the non-repeated trade patterns.
The number in the circle/square indicates the number of destinations associated with the trade
pattern.
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Trade patterns can vary over time in our simple model for three reasons: (a) changes in the

unobserved time-varying factor εt, (b) changes in the time-varying component of destination-

specific shocks υt and (c) changes in the value of bilateral exchange rates conditional on the values

of εt and υt.
30 The graph to the left reports the trade patterns that the firm chooses over time for

different realizations of the time-varying component of the firm’s marginal costs εt. As expected,

a lower value of εt is associated with larger number of destinations—but note that the set of

destinations is more informative than the number of destinations. Both the trade patterns A-D in

year 8 and 13 and B-C in year 15 contain two destination markets—yet the underlying value of εt

is very different. The graph to the right shows how the choice of a trade pattern changes with the

underlying values of υt, which drives the destination-specific time-varying component of marginal

costs. Since the effect of υt on trade patterns depends of the realized value ξd, there is no monotonic

relationship between the number of markets and the values of υt. Nonetheless, trade patterns

remain informative because, for a given realization of the destination factors {ξA, ..., ξd, ..., ξJ}, an

increase (decrease) in υt makes the firm more likely to enter and less likely to exit those markets

with a negative (positive) ξd, forming distinct trade patterns.31

In table 3 we show the results from estimating β1 from equation (10) on simulated data from

the same model used for Figure 2—where the value of the relevant elasticity is set parametrically

to be equal to 1 in all exercises. We employ the two fixed effect models, d+ t and dD+ t, described

in propositions 1 and 2, alongside OLS as a reference benchmark.32 The two panels in the table,

(a) and (b), differ in that the estimation sample in (b) is restricted to observations whose trade

pattern repeats at least once.33

The table highlights three key properties of these estimators. First, comparing columns (3)

and (4) over each row of the table, the inclusion of dD fixed effects significantly reduces, without

necessarily eliminating completely, the bias. In general, the underlying time-varying factors that

drive selection of any specific market are unlikely to be perfectly correlated with the trade patterns.

30For part (c), you can think of the bilateral exchange rate as driven by two components: (1) a component that
is related to the unobserved marginal cost and thus εt and υt and (2) a random component that is uncorrelated
with the unobserved marginal cost.

31A positive ξd suggests that an increase in υt leads to an increase in the marginal cost specific to destination
d and reduces the probability of the destination being observed. Similarly, a negative ξd suggests that a rise in υt
reduces the marginal cost and increases the probability of the destination being observed.

32The dD + t fixed effects are estimated using our TPSFE estimator. The estimates are exactly the same if we
use iterative statistical procedures such as the Stata reghdfe program to estimate dD + t fixed effects.

33Our identification approach requires the same trade pattern to be repeated at least twice for the same firm.
In our simplified example with only one firm, the probability of a trade pattern ever being repeated may be small.
Therefore, we run 1000 simulations and compare the estimates only when the FE(dD + t) specification can be
estimated in the resulting sample. The share of simulations where we observe at least one repetitive trade pattern
remains well above 90%. We should stress that the availability of the firm dimension in large datasets significantly
improves identification; we find that allowing for 10 firms of a similar kind is in general enough to guarantee a
sufficient number of repetitive trade patterns to apply our estimator.
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Table 3: Comparison of Estimators when β1 = 1

Distinct
Values of
εt and υt

OLS
FE

(d+ t)
TPSFE

(dD)
Distinct

TPs

Reduction
in Time

Variation
of mdt

(1) (2) (3) (4) (5) (6)

Panel (a): Keeping non-repetitive trade patterns

2 1.66 1.24 1.01 4.76 0.96
(0.13) (0.12) (0.03)

5 1.81 1.42 1.12 8.01 0.60
(0.14) (0.16) (0.20)

10 1.85 1.44 1.17 8.15 0.52
(0.14) (0.17) (0.29)

15 1.86 1.45 1.15 8.23 0.53
(0.14) (0.17) (0.29)

Panel (b): Dropping non-repetitive trade patterns

2 1.66 1.21 1.01 3.47 0.94
(0.15) (0.12) (0.03)

5 1.73 1.23 1.12 2.96 0.45
(0.23) (0.22) (0.20)

10 1.74 1.23 1.17 2.81 0.33
(0.25) (0.30) (0.29)

15 1.72 1.21 1.15 2.68 0.29
(0.26) (0.30) (0.29)

Note: Estimates and standard errors are calculated from the average of 1000
simulations according to the data generating process described in footnote
29. The true value of the markup elasticity to exchange rates is set to 1.
Panels (a) and (b) show the estimation results keeping and dropping non-
repetitive trade patterns respectively. Column 1 shows the maximum number
of distinct values that the time varying factor (i.e., εt or υt) can take in the 15
periods of simulation. Column 2 gives OLS estimates obtained by regressing
prices (in logs) on bilateral exchange rates (in logs). Column 3 shows the
estimates after adding time and destination fixed effects. Column 4 shows
the estimates after adding time and destination-trade pattern fixed effects.
Column 5 shows the number of distinct trade patterns (averaged across all
simulations). Column 6 shows the reduction in the time variation of the
unobserved variable due to the trade pattern fixed effects.
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The reason why the inclusion of dD as a control variable improves estimation is that it reduces the

variation of the unobserved variable in the time dimension (reflecting the correlation, if only weak,

between the unobservable variable and the observed trade pattern). This is shown in column 6,

where we include a measure of the reduction in the time variation of mdt due to the destination-

specific trade pattern fixed effects—calculated as the time variation of mdt in a d + t fixed effect

specification minus the time variation of mdt in dD + t fixed effect specification divided by the

time variation of mdt in a d+ t fixed effect specification. This measure ranges between 50 and 96

per cent in panel (a).

Second, comparing estimates across different rows, the TPSFE(dD) estimator performs better

(i.e., the bias in column (4) is smaller) when the number of distinct values that the time-varying

factors, εt and υt, can take is fewer.34 As the number of distinct values falls, the reduction in time

variation of mdt coming from the inclusion of dD fixed effects is larger (see column (6)). This

means that the observed trade patterns can better distinguish the underlying values of εt and υt

and therefore the TPSFE(dD) approach yields estimates that are closer to the true theoretical

value.

Third, comparing panels (a) and (b) suggests that a significant share of the bias in the d + t

fixed effects estimator in column (3) is due to (the confounding effects of) including observations

with non-repetitive trade patterns in the sample.35 This is a remarkable result, illustrating how

the aforementioned extensive margin channel of our TPSFE estimator is at work. Subject to a

sample selection caveat discussed in the next subsection, it suggests that dropping those trade

patterns that only appear once in the sample (e.g., in Figure 2, these are the trade patterns G and

A-D-F-G-H-J), effectively helps control for, by reducing, the potential values that υt can take. This

purposeful reduction of the estimation sample by the removal of observations with singleton trade

patterns improves the estimation bias even when conventional fixed effect estimators are used.

Intuitively, the product prices observed in a singleton trade pattern may correspond to a very

different realization of the marginal cost compared to its values in the repeated trade patterns. To

illustrate this point, in the appendix B.1.1 we construct a numerical example and discuss in detail

how conditioning on a repeated trade pattern pins down the range of variation that unobservable

factors can take.

34It is worth noting that, given that we simulate the firm for 15 periods, the maximum number of distinct values
that the time varying factors (i.e., εt and υt) can take is 15. Therefore, the last row of each panel in Table 3
resembles the case where the time varying factors (i.e., εt and υt) are drawn from a continuous distribution.

35Since we condition on the same set of observations, the difference in the estimates of columns (3) and (4) in
panel (b) only reflects the distinctions in the “within variations” controlled for by the two sets of fixed effects (i.e.,
FE(d + t) versus TPSFE(dD)). While the difference in the estimates of columns (3) and (4) of panel (b) are
relatively small in our setting where the time span is quite short (15 periods), it can be very large in other settings
where the time span with available information is sufficiently large (e.g., 100+ periods).
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3.4 Omitted Variable Bias and Heterogeneous Markup Responses

We are now ready to evaluate the performance of fixed effect estimators, with and without the use

of the trade pattern fixed effects, using simulated data from the model introduced at the beginning

of this section. In contrast to the previous subsection, issues of selectivity and omitted variable

bias will be compounded by problems raised by the heterogeneity in the markup elasticities of

firms, for example, due to differences in the substitutability of the products they sell and/or their

size.

We compare our estimators with a variety of estimators and approaches to identification em-

ployed in leading contributions to the pricing-to-market and exchange rate pass through litera-

ture.36 In doing so, we call attention to key methodological differences in commonly implemented

estimation strategies and highlight lessons that can be drawn from comparing results across esti-

mators.

3.4.1 Model Simulations

We simulate our model with 30 ex ante symmetric countries. In each country, there are 200

industries. To introduce a realistic degree of heterogeneity across product markets, we model half

of these industries selling goods with a low elasticity of substitution (ρi = 3) and the other half

selling goods with a high elasticity (ρi = 12).37 Within each industry, the productivity of firms is

drawn from a Pareto distribution with the dispersion parameter equal to 2.5. We draw 10 firms

for every industry in each country.38 The firms make separate market decisions in all of the 30

markets depending on productivity, exchange rates, trade costs and other aggregate variables. We

calibrate the distribution cost such that the mean distribution margin is about 50%.

We solve the model in partial equilibrium, where the aggregate variables such as the total

national output, the CPI and the bilateral exchange rates are determined exogenously. In each

period, the firms receive two correlated exogenous shocks, namely a marginal cost shock that

can be destination-specific and an exchange rate shock.39 Under the non-arbitrage condition of

bilateral exchange rates, the values of the exchange rate shocks cannot be bilaterally independent.

For a model of 30 countries, only 30 (rather than 30*30) shocks can be realized. We refer to these

30 shocks as base shocks and calculate the bilateral exchange rates based on the realization of the

36For example, Berman, Martin and Mayer (2012) and Chatterjee, Dix-Carneiro and Vichyanond (2013) apply
fid + t fixed effects; Fitzgerald, Haller and Yedid-Levi (2016) apply fit + d fixed effects and Amiti, Itskhoki and
Konings (2014) apply fit+ d fixed effects with time differenced variables.

37We set the cross-industry elasticity of substitution to 1.1.
38Given we have 30 countries, the maximum number of firms for an industry in a specific market is 300.
39We assume a linear production function where labour is the only input, i.e., Y = AL. We use the nominal

wage in each country as the numeraire and set them to 1. Therefore, the productivity shock maps one-to-one to
the marginal cost shock, i.e., MC = 1/A.
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base shocks:

Ebasect = exp(σeξcυt + uct)Ebasect−1 ∀c ∈ H (14)

Eodt ≡ Ebaseot /Ebasedt = exp[σe(ξo − ξd)υt + uot − udt]Eodt−1 ∀o, d ∈ H (15)

where ξc, υt and uct are generated from a standard normal distribution and c represents one of the

30 countries; σe governs the size the systemic shock υt. We set the marginal cost shocks to be

partly correlated with bilateral exchange rate shocks:

MCfiodt = exp[σmcψfiot − σe,mc(ξo − ξd)υt]MCfiodt−1 (16)

where ψfiot is drawn from a standard normal distribution; σmc governs the size of non-destination

specific marginal cost shocks; (ξo−ξd) captures the origin-destination-specific effect of the common

shock υt and σe,mc governs the correlation between the marginal cost and the bilateral exchange

rates. Finally, to reflect the data structure of a typical customs database, we drop domestic sales

of firms in each country and run the estimation equations separately for each exporting country.40

To keep the environment as tractable as possible, in the experiment below we abstract from im-

ported inputs, as these will not affect the results as long as imported input costs are not destination

specific.41 We present a selection of simulation results from our extensive robustness checks, using

a variety of alternative calibrations of the parameters and the shocks, in the Online Appendix.

3.4.2 What Can We Learn from Comparing Fixed Effect Estimators?

Based on the simulated data from the model, Table 4 shows the estimation results of a range of

standard fixed effects estimators in the literature, together with our new estimator.42 In panel

(a), we simulate the model setting σe,mc = 0, so that marginal cost shocks are firm-product-time

specific, whereas in the simulations underlying panel (b) shocks to marginal costs are firm-product-

destination-time specific. In each panel, we show estimates of the markup elasticities for the whole

sample, but we also highlight the role of heterogeneity by reporting results for sub-samples of

goods with low and high within-industry elasticities of substitution – which, for comparison with

40In practice, we do not observe a firm that exports to all of the destinations in our sample. Therefore, in our
simulations, we drop firms exporting to all of the other 29 countries.

41A destination-specific imported input shock is similar to a destination-specific productivity shock.
42We focus on the unobserved marginal cost changes as the main confounding factor of the markup elasticity

estimation in all of our simulations. In principle, in the model, the omitted variable and selection biases can
also arise from the unobserved destination-specific trade and distribution costs. Qualitatively, shocks to trade and
distribution costs result in a similar bias compared to the shocks to marginal costs because the optimal border price
and the firm’s profit are affected in the same way by trade and distribution cost shocks as marginal cost shocks: a
rise in the trade cost or the distribution costs increases the optimal border price (see equation (7)) and reduces the
profitability of the firm (see equation (9)).
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our empirical analysis, we dub high and low differentiation goods. We should stress that, while

the exact estimates in this table are quite sensitive to our assumptions, the main takeaways we

spell out below are robust to different simulation settings.43

As a reference benchmark, the first three columns of Table 4 show the estimates from running

OLS. Column (1) shows a native OLS estimate regressing logged prices on logged bilateral exchange

rates. In column (2) the regression model includes information that can be (at least in principle)

obtained via the productivity and marginal cost estimation approach as in De Loecker, Goldberg,

Khandelwal and Pavcnik (2016)—it adds the average of a firm’s marginal cost of a product across

destinations as an additional control variable. Column (3) shows the performance of a linear

estimator relying on (hypothetical) accurate information on key unobserved variables—that is,

we include the firm-product-destination-specific marginal cost and preference shifts of demand as

additional controls. Column (4) refines (3) by adding product fixed effects—defining the best linear

estimator. In the last column, (10) we include a measure often used in the literature, taking an

unweighted average of the markup elasticities defined in expression (7).

Comparing estimates of the first three columns in panel (a), we find that adding the marginal

cost as a control significantly reduces the bias in OLS estimation relative to benchmarks in columns

(4) and (10), provided high-differentiation (HD) and low-differentiation (LD) goods are studied

separately. In panel (a), the OLS specification in column (2) already precisely recovers the theo-

retical mean for both types of goods, whereas in panel (b), the same specification suffers from a

small downward bias in the sample of HD goods. As it is clear from the richer model specification

in column (3), the downward bias in HD goods would be corrected if one could observe the true

destination-specific marginal costs. A notable and perhaps surprising finding from the “All” row

in panel (b), is that the estimation bias can be high when the heterogeneity created by different

type of products is ignored. As shown in column (3), this is the case even when the complete

information of marginal costs and preference are available.

Columns 5-9 of Table 4 show the estimates from commonly applied fixed effects approaches in

the literature and our proposed TPSFE approach. Column (5) includes the d+t fixed effects applied

by Knetter (1989).44 Columns (6) and (7) add the firm-product fixed effects to the destination

and time panel dimensions respectively. Relative to column (5), the estimator in column (6)

also accounts for the differences in prices, marginal costs and preferences that are firm-product-

destination specific, whereas the estimator in column (7) also absorbs firm-product-time specific

43See Online Appendix OA8 for robustness checks on alternative calibrations and shock structures.
44As the bilateral exchange rate only varies at the destination and time panel dimensions and is naturally inde-

pendent from the unobserved variables varying at firm and product dimensions, the Knetter (1989)’s FE(d + t)
specification is sufficient to control for firm-product-time varying unobserved marginal costs and will give unbiased
estimates if (a) the panel is balanced and (b) the markup elasticity is homogeneous in the estimation sample.
However, the firm and product panel dimensions are relevant for identifying the markup elasticity if either of the
two conditions fail, in which case the Knetter (1989) specification will be in general biased.
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shocks. In columns (8) and (9), we add firm-product fixed effects to the estimators discussed in

subsection 3.3.45 Column (8) reports estimates from the richest linear additive fixed effect model,

where we add the firm-product fixed effects to both the destination and time fixed effects. Column

(9) includes our proposed estimator with firm-product-destination-specific trade patterns.46

A first important takeaway from Table 4 is that the results of fixed effect estimators in column

(8) or (9) are either close to (in panel (a)), or not too far from (in panel (b)) the results in

column (4), obtained from rich OLS models relying on estimating marginal costs at either the firm-

product-time or the firm-product-destination-time level. This suggests that fixed effect estimators

do provide a good alternative to the estimation of markup elasticities when sufficiently accurate

information on productivity and marginal cost is not available.

A second important takeaway from the table is that, from panel (a), the (fit + fid) fixed

effects and the TPSFE(fidD) estimators produce similar results when marginal cost shocks are

not destination-specific. As established in Proposition 2 and Corollary 2, in this case the coefficients

estimated by the two models should be exactly the same when markup elasticities are homogeneous.

A final takeaway is that, from panel (b), the TPSFE(fidD) estimator outperforms (fit+fid)

fixed effects (yielding estimates that are closer to the theoretical mean) if marginal cost shocks are

destination-specific. A divergence across estimates can thus be informative about the structure of

the underlying shocks. Altogether, these findings suggest that running the TPSFE(fidD) esti-

mator in conjunction with conventional fixed effects provides a useful diagnostic test for potential

issues arising from firm-product-destination-time specific confounding factors.

4 Product Differentiation as a Proxy for Market Power: a

New Classification

Market power is an important factor underpinning pricing to market. In our model, this varies

not only with a firm size, with larger and more productive firms enjoying more market power, but

also with the type of product: exporters of a product whose substitutability with other goods is

limited, or can be limited by the inclusion of specific attributes, are better able to segment markets

in order to exploit (local) market power. In this section we propose a new product classification

that, relative to existing ones, better captures the degree of product differentiation.

Relative to the enormously popular classification of Rauch (1999), our new classification splits

Rauch’s large class of differentiated goods into two groups, high- and low-differentiation goods.

The qualifying feature of the Corsetti-Crowley-Han-Song (CCHS) classification is that it exploits

linguistics-based information uniquely available in Chinese customs data. This information allows

45We provide a formal discussion on the differences in Appendix C.2.
46We provide a formal description of our approach in Appendix A.
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us to create a general, finely defined, and comprehensive system which is applicable internationally

to all datasets that use the Harmonized System.

4.1 A Comprehensive Classification Based on Chinese Linguistics

The core principle underlying our classification is a simple one: traded goods which are discrete

items are more differentiated than traded goods which are continuous. The main value added

of our classification consists of the way it identifies discrete versus continuous goods. We rely

on a feature of Chinese linguistics present in Chinese customs reporting – the use of indigenous

Chinese measure words to record quantity for specific HS08 products. In the Chinese Customs

Database, we find quantity reported in 36 different measures, many of which exist only in Chinese.47

Linguists categorize Chinese measure words as count/discrete or mass/continuous classifiers; we

operationalize this linguistic distinction to categorize each Harmonized System product as highly

differentiated (i.e., for discrete goods) or less differentiated (i.e., for continuous goods).48

The key advantage to using Chinese linguistics to identify if a good is discrete or continuous

arises from the facts that (a) all Chinese nouns have an associated measure word that inherently

reflects the noun’s physical attributes and (b) the Chinese Customs Authority mandates the re-

porting of quantity for Chinese HS08 products in these measure words. The first fact means

that identifying discrete products from Chinese “count classifiers” is arguably more accurate and

systematic than alternatives. Specifically, Chinese measure words are more distinctive and more

precisely tied to specific nouns by Chinese grammar rules than the eleven units of measure rec-

ommended by the World Customs Organization (WCO) are linked to nouns in languages such as

English or German.49 Moreover, because the choice of the measure word used to record a product’s

quantity is predetermined by Chinese grammar and linguistics, we can set aside concerns that the

choice of a quantity measure could be endogenous.50

47Notably, the linguistic structure of other East Asian languages also requires the use of measure words. In
Appendix G.5 we explain how Japanese customs declarations integrate indigenous Japanese measure words into the
World Customs Organization quantity measurement framework.

48See Cheng and Sybesma (1998, 1999) for a discussion of mass classifiers and count classifiers in Chinese. Cheng
and Sybesma (1998) explain: “while massifiers [mass classifiers] create a measure for counting, count-classifiers
simply name the unit in which the entity denoted by the noun it precedes naturally presents itself. This acknowledges
the cognitive fact that some things in the world present themselves in such discrete units, while others don’t. In
languages like English, the cognitive mass-count distinction is grammatically encoded at the level of the noun..., in
Chinese the distinction seems to be grammatically encoded at the level of the classifier” (emphasis added).

49 See Fang, Jiquing and Connelly, Michael (2008), The Cheng and Tsui Chinese Measure Word Dictionary,
Boston: Cheng and Tsui Publishers, Inc. for a mapping of Chinese nouns to their associated measure words. In
Appendix G.5 we provide examples of how measure words are used in Chinese grammar.

50Since 2011, the WCO has recommended that net weight be reported for all transactions and supplementary
units, such as number of items, be reported for 21.3% of Harmonized System products. However these recommenda-
tions are non-binding ; the adoption and enforcement of this recommendation by a country might be endogenously
determined by the value or volume of trade in a product, with high-value products subject to stricter enforcement
that counts be reported. The sophistication of a country’s border operations and tax authority could also play a
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To illustrate the variety of measures used in the Chinese Customs Dataset, table 5 reports a

selection of the most commonly used measure words, the types of goods that use the measure

word, and the percent of export value that is associated with products described by each measure

word. In this table, qiān kè (千克) and mı̌, (米) are mass/continuous classifiers; the remaining

measure words are count/discrete classifiers. The main point to be drawn from the table is that

the nature of the Chinese language means that the reporting of differentiated goods, for example,

automobiles, spark plugs and engines, takes place by reporting a number of items and the count

classifier that is linguistically-associated with that type of good. All products within an HS08 code

use the same measure word. See appendix G.5 for an example of the different Chinese measures

words used to quantify closely-related products in our dataset.

Table 5: Measure word use in Chinese customs data for exports, 2008

Quantity
Measure

Meaning Types of goods
Percent of
export
value

qiān kè, 千克 kilogram grains, chemicals 40.5
tái, 台 machines engines, pumps, fans 24.7
gè, 个 small items golf balls, batteries, spark plugs 12.8
jiàn, 件 articles of clothing shirts, jackets 6.6
shuāng, 双 paired sets shoes, gloves, snow-skis 2.6
tiáo, 条 tube-like, long items rubber tyres, trousers 2.5
mı̌, 米 meters camera film, fabric 2.1
tào, 套 sets suits of clothes, sets of knives 1.8
liàng, 辆 wheeled vehicles cars, tractors, bicycles 1.4
sōu, 艘 boats tankers, cruise ships, sail-boats 1.3
kuài, 块 chunky items multi-layer circuit boards 0.7

The second fact, that quantity must be reported on Chinese Customs forms in indigenous count

units for discrete objects, means that the Chinese Custom system will likely be quite accurate in

accounting for discrete items, relative to what can be inferred from the quantity measures actually

reported in other customs systems. By way of example, in Egyptian customs records over 2005-

2016, a mere 0.006% of export observations report the discrete unit“pieces” as the unit of quantity.

In comparison, the share of Chinese export data that uses a count/discrete measure for reporting

quantity is 40.9% of observation-weighted HS08 data and 52.8% of value-weighted HS08 data (see

the last rows of panels (a) and (b) in table 6).51

role in which measures are reported. See United Nations Statistics Division (2010).
51 Authors’ calculations from EID-Exports-2005-2016 obtained from http://erfdataportal.com. Egypt is a

useful comparator in that it had a similar per capital income to China during the midpoint of our sample, 2007,
$1667 (Egypt) versus $2693 (China), and it used a similarly large variety of quantity measures, 32, in its export
statistics over 2005-2016. See Appendix G.5.2 for a discussion of quantity reporting in other customs systems.

29



Table 6: Classification of goods: Integrating the insights from CCHS with Rauch

(a) Share of goods by classification: observation weighted

Corsetti-Crowley-Han-Song (CCHS)
Low Differentiation / High Differentiation /
(Mass nouns) (Count nouns)

Rauch (Liberal Version)
Differentiated Products 41.1 38.8 79.8
Reference Priced 6.9 0.7 7.6
Organized Exchange 0.6 0.0 0.6
Unclassified† 10.5 1.5 12.0

59.1 40.9 100.0

(b) Share of goods by classification: value weighted

Corsetti-Crowley-Han-Song (CCHS)
Low Differentiation / High Differentiation /
(Mass nouns) (Count nouns)

Rauch (Liberal Version)
Differentiated Products 24.2 47.1 71.3
Reference Priced 9.1 2.8 11.9
Organized Exchange 2.0 0.0 2.0
Unclassified† 11.9 2.9 14.8

47.2 52.8 100.0
Notes: Share measures are calculated based on Chinese exports to all countries including Hong Kong and the

United States during periods 2000-2014. †“Unclassified” refers to HS08 products that do not uniquely map to
differentiated, referenced priced, or organized exchange under the SITC Rev. 2-based classification of Rauch.
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4.2 Improvements Relative to the Rauch (1999) Industry Classifica-

tion

Table 6 demonstrates the value added of our classification system in relation to the leading industry

classification set forth by Rauch (1999). According to Rauch (1999), a product is differentiated

if it does not trade on organized exchanges and/or its price is not regularly published in industry

sales catalogues. While this principle is quite powerful in identifying commodities, a drawback is

that the vast majority of manufactured goods end up being classified as differentiated.

In Table 6, we integrate our classification of high versus low differentiation goods with that

obtained by mapping HS08 product codes from the Chinese Customs Data to Rauch’s original

4 digit SITC Rev. 2 classification of differentiated, reference priced, and organized exchange

traded goods. There are two crucial improvements from our approach. First, our classification

refines the class of differentiated goods in Rauch into two categories—high and low differentiation.

From table 6 panel (a), we observe that 79.8 percent of observations in the Chinese Customs

Database at the firm-HS08 product level are classified by Rauch as differentiated. Of these, only

48.6 percent (38.8/79.8) use count classifiers and are categorized as high differentiation under the

CCHS approach. The picture is similar in panel (b), where observations are value weighted: of the

71.3 percent of the export value classified by Rauch as differentiated, 66.1 percent (47.1/71.3) use

count classifiers. Further, table 6 confirms that every good that Rauch categorizes as a commodity

(i.e., an organized-exchange traded good) is reported in the Chinese Customs Database with a

mass classifier. This conforms with our prior that mass nouns are low differentiation goods and

serves as a useful reality check on our approach.

The second improvement from our classification system is that we are able to provide a CCHS

classification for all HS08 (and HS06) products, including those that cannot be classified under

Rauch’s system due to issues with the mapping from HS06 to SITC Rev. 2. This enables us to

expand our analysis of market power to include the 12% percent of observations (table 6 panel (a))

and 14.8% of export value (table 6 panel (b)) in the Chinese Customs Database in HS08 products

that do not uniquely map to a single Rauch category.52 In concluding this section, we would like to

emphasize that the CCHS linguistics-based product classification can be applied to the universal

6-digit Harmonized System used by all countries by categorizing as high (low) differentiation those

52To be clear, Rauch provides a classification for each SITC Rev. 2 industry as differentiated, reference priced or
organized exchange, but the SITC Rev. 2 industries in his classification are more aggregated than HS06 products.
Because the concordance of disaggregated HS06 product codes to (more aggregated) SITC Rev. 2 involves one-to-
many or many-to-many mappings for 81 percent of concordance lines, we are only able to classify HS06 products
(and even finer HS08 products) into one of the three Rauch groupings if all SITC Rev. 2 industries associated with
an HS06 product are “differentiated,” etc. under Rauch. This one-to-many and many-to-many concordance issue
implies that no unique mapping into Rauch’s three categories is possible for 12% of observations in the Chinese
Customs Database.
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HS06 categories in which all HS08 products use a count/discrete (mass countinuous) classifier.53

5 Empirical Results

In this section, we present our empirical estimates of pricing to market. To make our results

comparable with leading studies in the literature on exchange rate pass through, we apply all

estimators conditional on a price change in line with the methodology of Gopinath, Itskhoki

and Rigobon (2010).54 Our sample period includes an important change in the exchange rate

regime pursued by China. In the years 2000-2005, China pursued a fixed exchange rate regime;

after that, it switched to a managed float regime. We will show evidence that exporters’ pricing

behavior differs across the corresponding subsample periods. Throughout our analysis, to ensure

comparability of our estimates across policy regimes, we exclude exports to the US and Hong

Kong, and treat eurozone countries as a single economic entity, integrating their trade flows into

a single economic region.55

In the next subsection, we present the markup elasticities from our TPSFE estimator and CCHS

product classification. We then proceed to a thorough comparison against standard fixed effect

estimators used by leading papers in the literature. The final subsection examines and discusses

the role of quantity adjustments in relation to pricing to market.

53See Appendix G.5.4 for examples of closely-related HS08 products and the types of measure words they use.
In most cases, all HS08 products within an HS06 category use the same measure word.

54Specifically, we estimate all parameters after applying a data filter to the Chinese export data: for each product-
firm-destination combination, we filter out absolute price changes in dollars smaller than 5 percent. To be clear,
while we condition on price changes in dollars, we regress unit values denominated in renminbi on the bilateral
renminbi/local currency exchange rate. We provide an example on how the price change filter is constructed and
how trade patterns are subsequently formulated based on the price-change-filtered database in appendix G.9. The
main conclusion of our analysis remains roughly similar if we apply our estimator without conditioning on price
changes (see Online Appendix OA1) as well as if we filter out absolute price changes in renminbi smaller than 5
percent (see Online Appendix OA2).

55Qualitatively, results do not change if we include exports to the United States and Hong Kong. We aggregate
the export quantity and value at the firm-product-year level for 17 eurozone countries including Austria, Belgium,
Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Malta, Netherlands, Portugal,
Slovakia, Slovenia and Spain. Latvia and Lithuania joined the eurozone in 2014 and 2015, respectively. We treat
them as separate countries throughout our analysis. Our results are robust to the inclusion and exclusion of small
countries that adopted the euro in the later period of our sample. We performed two robustness checks. One
excludes Slovenia, Cyprus, Malta, Slovakia and Estonia from the eurozone group and treats them as separate
individual countries, resulting in an estimation sample of 157 destinations. Another excludes Slovenia, Cyprus,
Malta, Slovakia and Estonia from the eurozone group and drops these five countries from our estimation sample,
resulting in an estimation sample of 152 destinations. These two alternative estimation samples yield results very
similar to our primary estimation sample (152 destinations) which integrates the 17 eurozone countries together.
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5.1 Markup elasticities By Product Differentiation

We start our analysis by applying our TPSFE estimator to estimate markup elasticities to exchange

rates. Specifically, we run the following OLS regression on the twice demeaned variables:56

p̈fidt = β0 + β1ëfidt + ẍ′fidtβ2 + v̈fidt (17)

where p denotes the log export price denominated in the producer’s currency (i.e., in RMB), e is the

log bilateral nominal exchange rate defined as units of RMB per destination currency and x includes

destination-specific control variables including the CPI, real GDP and the import-to-GDP ratio

of the destination market. For each variable y ∈ {p, e, x}, ÿfidt denotes twice demeaned variables,

with the first demean taken at the firm-product-year level and the second demean taken at the

firm-product-destination-trade pattern level.57 Finally, β1 is the markup elasticity to bilateral

exchange rates.

Two points are worth stressing upfront. First, the estimated markup elasticity would be zero if

exporters set the same dollar (or RMB) price for their product in all destinations—irrespective of

whether these prices are sticky or move across time, and whether they are set in RMB or dollars.

Second, our estimation procedure is robust to the choice of bilateral exchange rates. For example,

we get the same estimates from using either the dollar-destination currency or the RMB-destination

currency exchange rate as the independent variable. This is because the RMB-dollar exchange rate

movement is common across destinations and thus differenced out from our procedure.

5.1.1 Baseline Results

In table 7, we show results across exchange rate regimes and according to the degree of product

differentiation. On average, we estimate an average markup elasticity to exchange rates of 5%

during the dollar peg period (2000-2005) and of 11% during the later managed floating period

(2006-2014). The finding that the markup elasticity is rising over time indicates that exporters

from China engaged more extensively in price discrimination in the later period, after China

abandoned its strict peg to the US dollar.58

In both periods, nonetheless, our econometric model detects significant differences in markup

56We discuss the detail procedures in Appendix A. We adjust the degrees of freedom when calculating the standard
errors of the estimates taking into account that dependent and independent variables have been demeaned twice
(see e.g.,Wansbeek and Kapteyn (1989), p. 346). Practically, we use the algorithm written by Abowd, Creecy and
Kramarz (2002) and adapted in reghdfe to calculate the correct degree of freedom of the demeaned data.

57See Appendix A for more details of variable construction.
58Plausibly, the differences in markup elasticities we detect across the two time periods reflect more than just

the policy reform of switching from a dollar peg to a managed float in China. They may stem from structural
changes at the firm and market level, as well as from changes in the frequency and importance of cyclical (policy
and technology) shocks at the national and global level that have occurred between the two time periods.
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Table 7: Markup elasticities to the exchange rate

All HD Goods LD Goods n. of obs

2000− 2005 0.05** 0.10*** 0.01 4,279,808
(0.02) (0.03) (0.03) [1,073,300]

2006− 2014 0.11*** 0.20*** 0.06*** 19,272,657
(0.01) (0.02) (0.01) [4,839,333]

Note: Estimates based on specification (17) and the sample of multi-destination
trade flows at the firm-product-time level to 152 destinations excluding Hong Kong
and the United States. The bilateral exchange rate is defined as RMBs per unit
of destination currency; an increase means an appreciation of the destination cur-
rency. Robust standard errors are reported in parentheses. The actual number of
observations used for identification is reported in the brackets of the last column.
Statistical significance at the 1, 5 and 10 percent level is indicated by ***, **, and *.

elasticities across high and low differentiation goods—validating the usefulness of our linguistics-

inspired product classification as a proxy for market power. Starting with the first row, the

low average estimate of the markup elasticity during the dollar-peg period conceals important

differences across types of goods. For CCHS high differentiation exports, the markup elasticity

is 10%, while for low differentiation goods it is zero. In the period of the managed float of the

renminbi (second row), markup elasticities are considerably higher. For high differentiation goods,

the markup elasticity rises from 10 to 20%. For low differentiation goods, the markup elasticity

is smaller but becomes significantly positive, at 6%. For these low differentiation goods, pricing-

to-market appears to play only a moderate role after the strict peg is abandoned. It is important

to keep in mind that, all else equal, a larger markup adjustment measured in producer’s currency

implies a smaller change in import prices measured in the currency of the destination market. This

means that firms exporting more highly differentiated goods keep their prices in local currency

more stable against bilateral currency movements relative to firms exporting low differentiation

goods.

The last column of table 7 (and all tables in this section) reports the size of the whole estimation

sample (in the same row as the parameter estimates), and the size of the sample that provides

identification to the TPSFE estimator (in square brackets [·] in the same row as the standard

errors). This smaller identification sample excludes observations corresponding to non-repetitive

trade patterns. Because the TPSFE procedure yields identical parameter estimates when applied to

either sample,59 it is important to verify that the (sometimes considerably) smaller identification

subsample is representative of the whole estimation sample. For this table and all remaining

59This occurs because, for non-repetitive trade patterns, the demeaning procedure creates entries of zeros (for
both dependent and independent variables) for those observations associated with singleton trade patterns. These
entries of zeros do not affect the point estimates of an OLS regression but may generate incorrect standard errors
if one fails to correct the true degrees of freedom. Fixed effect estimators typically correct the degrees of freedom
when estimating the standard errors (see e.g.,Wansbeek and Kapteyn (1989), p. 346). Thus, the standard errors
we report are based on the size of the identification sample rather than the full estimation sample.
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tables, we check that the identification sample is representative. We fail to detect any noticeable

differences in samples, with the exception of the sample partitioned by firm size.60

5.1.2 Combining the CCHS Classification with Firm and Product Characteristics

CCHS with Firm Ownership. The Chinese economy is widely understood to be a hybrid in

which competitive, market-oriented private firms operate alongside large, state-owned enterprises

(SOEs).61 Looking at exports, the picture is actually more complex. Quantitatively, export activity

is dominated by firms that are wholly foreign owned or are Sino-foreign joint enterprises—the

leading types in a group that we label foreign-invested enterprises (FIEs).62

A firm’s ownership type likely reflects a host of differences including cost structures, available

technologies, and the types of products made. First, SOEs and FIEs are believed to have rela-

tively easy access to capital, but are likely to differ in the extent to which they rely on imported

intermediates in production. Conversely, private firms are widely seen as facing tighter financing

constraints and, relative to FIEs, a lower level of integration with global supply chains. Second,

the average size of a firm also differs across these groups; private enterprises are smaller on average,

which likely reflects a high rate of entry by young firms. Third, being more integrated in supply

chains, FIEs may engage in transfer pricing. In light of these considerations, we might expect

SOEs, FIEs and private firms to endogenously end up producing different products, using different

production processes, and possibly targeting different markets. This prompts us to ask whether a

firm’s registration type contributes to explaining observable differences in markup elasticities.

Evidence on markup elasticities by firm type is presented in table 8, where we focus on the

period 2006-2014. Private enterprises stand out for their extremely low markup elasticity of 4%

(column 1, row 3). This suggests that these firms follow a pricing strategy that is indistinguishable

from setting a single dollar price for their output across destinations. The picture is totally different

for state-owned and foreign-invested enterprises. For these firms, more than 20% of any bilateral

exchange rate change is absorbed into markup changes—22% for SOEs and 23% for FIEs. This

is evidence that both FIEs and SOEs hold a high degree of market power which enables them

to exploit market segmentation and strategically price-to-market. Although these results may in

part capture transfer pricing motivated by profit shfiting practices, at a broad level, the pricing

strategies of SOEs and FIEs appear to be totally different from those of private enterprises. A

large divide across Chinese firms is apparent in our results.

60We report a wide range of checks on the distributions of variables in the full estimation sample versus the
identification sample in Online Appendix OA5. We only detect a small sample difference for medium and large
firms in table 9 below.

61See Hsieh and Song (2015) and Wu (2016) for analyses of the inter-relations of firms and the state in the Chinese
economy and Hale and Long (2012) on the importance of inward FDI into China.

62Over 2000-2014, about one-half of Chinese export value originated from FIEs. See appendix G.2 for details.
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Table 8: Markup elasticities by firm registration types (2006− 2014)

Category All HD Goods LD Goods n. of obs

State-owned Enterprises 0.21*** 0.41*** 0.09** 3,526,943
(0.03) (0.05) (0.04) [646,352]

Foreign Invested Enterprises 0.24*** 0.33*** 0.20*** 4,990,504
(0.03) (0.04) (0.04) [1,042,481]

Private Enterprises 0.04*** 0.10*** 0.01 9,897,091
(0.01) (0.02) (0.02) [2,996,133]

Note: Estimates based on specification (17) and the sample of multi-destination trade flows at the
firm-product-time level to 152 destinations excluding Hong Kong and the United States. The bilateral
exchange rate is defined as RMBs per unit of destination currency; an increase means an appreciation
of the destination currency. Robust standard errors are reported in parentheses. The actual number of
observations used for identification is reported in the brackets of the last column. Statistical significance
at the 1, 5 and 10 percent level is indicated by ***, **, and *.

Yet, product differentiation plays a non-secondary role in explaining differences across firm

types. The estimated markup elasticity for highly differentiated products sold by SOEs is as high

as 41% while the markup elasticity for high differentiation goods sold by FIEs is 33%. This suggests

that these firms are better able to segment markets and more actively pursue local currency price

stability than other groups of firms, although is is not incomprehensible that these large markup

adjustments are driven by tax considerations, especially for FIEs. Remarkably, even when SOEs

and FIEs export less differentiated goods, estimated elasticities are sizeable, 9% for SOEs and 20%

for FIEs. Product differentiation is also relevant for private firms with a sizeable elasticity of 10%

for high differentiation goods.

CCHS with Firm Size. Our results from table 8 show that market power is best captured by

a combination of product and firm type. We now consider a measure of firm size; a firm’s product-

level global export revenue.63 For a given firm-product-year triplet, we calculate the firm’s global

export revenue, summed over all active destinations in that year. We then rank firms within

products and years by product-level export revenue, and place them into three equally-sized bins,

labelled small, medium and large.64

Exporters’ markup elasticities to the bilateral exchange rate increase systematically with their

product-level export revenues (table 9 column 1). Regardless of the degree of product differ-

entiation, large exporters appear to command more market power and adjust their markups in

63This definition of size differs from that in papers such as Berman, Martin and Mayer (2012) and Amiti,
Itskhoki and Konings (2014) which measure firm size as total domestic and foreign revenues for all products. The
categorization we employ emphasizes that a firm’s market power could vary across distinct products.

64Our definition of firm-size categories is at the product-year level. That is, all the firms selling the same product
in the year are placed in bins containing the same number of observations. When the number of firms cannot be
divided by three, we place more firms in the lower ranked bins. For example, say we have 5 firms selling to 2
destinations each. We put two firms in the “Small” bin, two firms in the “Medium” bin and one firm in the “Large”
bin. This is why, in table 9, the number of observations in the “Small” and “Medium” categories is slightly higher
compared to the “Large” category.
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Table 9: Pricing-to-market by exporters’ product-level global revenues (2006− 2014)

Category All HD Goods LD Goods n. of obs

Small Exporters 0.05*** 0.11*** 0.02 6,639,830
(0.02) (0.03) (0.02) [2,646,437]

Medium Exporters 0.11*** 0.24*** 0.05** 6,519,743
(0.02) (0.04) (0.03) [1,448,368]

Large Exporters 0.25*** 0.37*** 0.20*** 6,113,084
(0.03) (0.05) (0.04) [744,528]

Note: Estimates based on specification (17) and the sample of multi-destination trade flows
at the firm-product-time level to 152 destinations excluding Hong Kong and the United
States. The bilateral exchange rate is defined as RMBs per unit of destination currency; an
increase means an appreciation of the destination currency. Robust standard errors are re-
ported in parentheses. The actual number of observations used for identification is reported
in the brackets of the last column. Statistical significance at the 1, 5 and 10 percent level
is indicated by ***, **, and *.

response to bilateral exchange rate movements by 25% on average. In contrast, small exporters

adjust markups by a mere 5%, suggesting that their pricing strategies are close to setting a single

global price across all destinations.

Further segmenting the sample according to the degree of product differentiation reveals striking

heterogeneity in pricing. In response to bilateral exchange rate movements, large firms adjust

markups substantially, 37% when exporting highly differentiated products. These firms appear to

command a high level of market power even when they sell low differentiation products, with an

estimated elasticity of 20%. Thus, significant price stability in local currency terms can be partially

understood as a reflection of the fact that large firms let their markups (measured in exporter’s

currency) absorb between one fifth and one third of a bilateral exchange rate movement between

the origin and destination. But even small exporters can wield market power; if they export high

differentiations goods, their markup elasticity of 10% is far from negligible.

CCHS with UN end-use categories. Firms selling directly to consumers typically engage

in branding and advertising campaigns to a much larger extent than firms selling intermediate

products. Insofar as producers of consumption goods are successful in making their products less

substitutable with other products or product varieties, markets for consumption goods should be

less competitive than markets for intermediates. Thus, we may expect destination specific markup

elasticities to be higher for consumption goods than for intermediates.

In table 10, we partition our data into four categories by integrating our CCHS classification

with the classification of consumption goods and intermediates under the UN’s Broad Economic

Categories (BEC).65 We find a clear difference in the markup elasticities for consumption versus

65The UN’s BEC classifies all internationally traded goods according to their end-use. The most disaggregated
classification available in BEC Rev. 4 maps HS06 products into end-use categories of consumption goods, interme-
diate inputs, and capital equipment. For our analysis, all HS08 products into the Chinese Customs Database are
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Table 10: Markup Elasticities by BEC Classification (2006− 2014)

Category All HD Goods LD Goods n. of obs

Consumption 0.21*** 0.33*** 0.09*** 6,133,394
(0.02) (0.02) (0.02) [1,759,243]

Intermediate 0.05*** 0.12* 0.04** 6,288,252
(0.02) (0.07) (0.02) [1,579,220]

Note: Estimates based on specification (17) and the sample of multi-destination
trade flows at the firm-product-time level to 152 destinations excluding Hong Kong
and the United States. The bilateral exchange rate is defined as RMBs per unit of
destination currency; an increase means an appreciation of the destination currency.
Robust standard errors are reported in parentheses. The actual number of observa-
tions used for identification is reported in the brackets of the last column. Statistical
significance at the 1, 5 and 10 percent level is indicated by ***, **, and *.

intermediate goods; the elasticities of exporters selling consumption goods (0.21) are roughly 4

times larger than those of exporters of intermediates (0.05). When we further refine consumption

goods into our CCHS product categories, the elasticity of high-differentiation consumption goods

becomes strikingly large (0.33).

5.2 Comparing Fixed Effect Estimators

In line with our theoretical analysis, we now turn to a comparative analysis of different fixed

effect estimators. In the first four columns of table 11, we report the estimates from our bench-

mark TPSFE estimator (column 1) alongside estimates from three alternative fixed effects that

are commonly used in the literature:66 specification (2) controls for firm-product-destination and

time varying factors; specification (3) controls for firm-product-time and destination varying fac-

tors, such as the average marginal cost of the firm’s product in the year; and specification (4),

the most stringent fixed effects among the three, controls for both firm-product-destination and

firm-product-time varying factors.67 In the last two columns of the table, we empirically verify

Proposition 1 and Corollary 1, providing some empirical insight into the relevance of trade pattern

fixed effects.68 In column (5) we implement the FE(fit + fid) in two steps: in the first step, we

demean the variables across destinations at the firm-product-year-and, inherently in an unbalanced

assigned the end-use of their corresponding HS06 code.
66Each estimating equation in table 11 includes four variables to proxy for changes in local market conditions,

namely bilateral exchange rates, local CPI, real GDP in the destination, and the import-to-GDP ratio. We report
the coefficient in front of bilateral exchanges rates in tables 11 and 12 and the coefficients in front of other control
variables in Online Appendix OA4.

67These estimates are obtained iteratively using the Stata reghdfe program written by Correia (2017). As we
discussed in subsection 3.3, while it is clear which unobserved variables can be controlled for by these fixed effects, the
variation used to identify the parameter is, generally, not clear. In most cases, the iterative demeaning procedures
and the statistical projection matrix of these approaches do not have meaningful economic interpretations.

68Corollary 1 restates the results of Proposition 1 in a panel which includes additional firm and product dimen-
sions. See Appendix C.2.
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panel, the trade pattern level (the first step of the TPSFE procedure); then, in a second step, we

apply fid + fiD fixed effects iteratively using the reghdfe program by Correia (2017). In column

(6) we repeat the same two-step procedure as in column (5), but in the second step we remove the

firm-product-trade pattern (fiD) fixed effects.

A first important takeaway from table 11 is that the FE(fit + fid) estimator in column (4)

and the two-step implementation of FE(fit+fid) in column (5) yield exactly the same estimates,

validating our Corollary 1 in our four dimensional empirical panel. Note that, intuitively, removing

the trade pattern fixed effects in the second step of (5) is tantamount to ignoring selection entirely.

When we do so (i.e., when we remove the trade pattern from the second step of the estimator used

in column (5)) to perform the exercise in column (6), the results are strikingly different from those

in all other columns.69 The point estimates in column (6) are centered around values between 0.01

and 0.02 in all samples, failing to to detect any differences in elasticities over time and across types

of goods. We take this as evidence of the importance of controlling for trade patterns.

Turning to the first four columns of table 11, our results highlight a remarkable difference

in the relative performance of estimators across high- and low-differentiation goods. For low-

differentiation goods, the estimated markup elasticities are similar across all specifications. For

high-differentiation goods, instead, the differences in estimates across columns are sizeable. The

elasticity estimated by the TSPFE estimator is twice as large as that of the FE(fit + fid)

estimators in the 2000-2005 sample; 35% higher in the 2006-2014 sample.

A primary reason for observing a difference between estimators is that there might be unob-

served variables which vary along dimensions that are not controlled for by a particular fixed effect

specification. For example, the FE(fid + t) estimator does not control for the average marginal

cost of a firm’s product in a year; the FE(fid + fit) estimator cannot control for marginal cost

shocks that are destination-specific. These observations, corroborated by our model-based com-

parative analysis of estimators in our theoretical section, offer a key for interpreting the results in

the table.

For low differentiation goods, the lack of significant differences in the estimators’ performances

suggest that the frequent market changes observed in the data may be driven by unobserved

variables that either are not directly related to exchange rates, or do not directly affect firms’

markup decisions.70 If the firm-product-time varying marginal cost for these products were highly

correlated with exchange rates, we would expect to see a sizeable difference between the FE(fit+

fid) estimates from column (4) and the FE(fid + t) estimates from columns (2). Similarly, if

the marginal cost shocks were destination-specific, we would find a large difference between the

69After removing the trade pattern D fixed effects, the fiD fixed effects collapse to fi, which is a subset of fid
fixed effects.

70Recall that from section 3, we know if a variable, such as a preference shock, only enters the selection equation
but not the pricing equation, then there is no selection bias.
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FE(fit+ fid) and the TPSFE estimates.

In contrast, for high differentiation goods, our analysis in subsection 3.4 suggests that the

TSPFE and the FE(fit + fid) estimators would give very similar results if the underlying

shock were not destination-specific. The significant difference in estimates points to a poten-

tially non-trivial incidence of firm-product-destination-time specific shocks.71 We will see below

that a breakdown of the analysis distinguishing firms by size and ownership lends further support

to this interpretation.

In comparing estimators, attention should be paid to an issue that may arise because, to facil-

itate identification, a stringent fixed effect approach may ignore variation from some observations

in the analysis—this could introduce a sample selection bias. Specifically, our TPSFE requires

the same firm-product-destination-trade pattern to appear at least twice, in order to exploit the

time variation of price residuals.72 If the TPSFE estimator somehow ends up utilizing variation

from a sample with a higher proportion of large firms than is in the entire sample, the estimated

markup elasticity may be higher than those obtained from the other (less stringent) FE estimators.

This observation underscores the need to check systematically for differences in the distribution of

key variables in the subsamples used for identification by TPSFE and FE(fid+ fit) estimators.

Encouragingly, when we do so in our data, in all but one case we fail to find significant differ-

ences, which leads us to conclude that there is little evidence that the TPSFE estimator obtains

identification form a non-representative subsample in our study.73

Table 12 shows a breakdown of the sample by firm and product characteristics, focusing on the

2006-2014 sample. The upper and lower panels show estimates for high- and low-differentiation

goods, respectively. In each panel, the first three rows give a breakdown by the global export sales

of the exporter; the next three rows give a breakdown by the registration type of the firm. The last

two rows show a breakdown of products from an integration of the CCHS and BEC classifications.

Consider first the upper panel of table 12 for high differentiation goods. Comparing the

FE(fit + fid) and the TPSFE estimators across size and type of firms shows that most of

the difference detected in table 11 is driven by FIEs and SOEs. These are typically large firms,

integrated in complex supply chains, that likely employ complicated production processes relying

on a large share of destination-specific components; hence they may more exposed to destination-

71We should note that we calibrated the simulated model in panel (b) of table 4 so that we would obtain estimates
of the same magnitude and ranking as the ones estimated in the data. Conditional on the model, this allows us to
have an idea of the relative incidence of the shocks we use in the model calibration.

72As discussed in subsection 3.3.2, removing the singleton firm-product-destination-trade pattern is a key step to
control for unobserved confounding variables moving at the firm-product-destination-time dimensions.

73See Online Appendix OA5. We should mention here another model-based result potentially relevant to the
comparison. If the markup elasticities are heterogeneous across firms, products, destinations and time, each esti-
mator may weight the markup elasticity slightly differently due to the different statistical procedures applied to
identify the parameters of interest. See Appendix D for a thorough discussion. However, our model simulations
suggest that the difference in estimation driven by weighting tends to be relatively small.
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Table 11: Comparison across Estimators

(1) (2) (3) (4) (5) (6)

TPSFE FE (fid+ t) FE (fit+ d)
FE

(fit+ fid)

FE
(fit+ fid)

in Two
Steps

(5) in Two
Steps

without
Trade

Pattern D
in the

second step

n. of obs

Destination Demean Yes No No No Yes Yes
Fixed Effects fidD fid+ t fit+ d fid+ fit fid+ fiD fid

2000-2014

All Products 0.10*** 0.09*** 0.06*** 0.08*** 0.08*** 0.02*** 23,552,465
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

High Differentiation 0.18*** 0.14*** 0.09*** 0.12*** 0.12*** 0.01*** 10,185,981
(0.02) (0.00) (0.00) (0.00) (0.00) (0.00)

Low Differentiation 0.06*** 0.05*** 0.04*** 0.05*** 0.05*** 0.02*** 13,366,484
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

2000-2005

All Products 0.05** 0.02*** 0.04*** 0.02*** 0.02*** 0.02*** 4,279,808
(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

High Differentiation 0.10*** 0.04*** 0.07*** 0.05*** 0.05*** 0.02*** 1,922,739
(0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

Low Differentiation 0.01 0.00 0.01** 0.00 0.00 0.02*** 2,357,069
(0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

2006-2014

All Products 0.11*** 0.11*** 0.08*** 0.09*** 0.09*** 0.02*** 19,272,657
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

High Differentiation 0.20*** 0.16*** 0.11*** 0.13*** 0.13*** 0.01*** 8,263,242
(0.02) (0.01) (0.00) (0.01) (0.01) (0.00)

Low Differentiation 0.06*** 0.07*** 0.06*** 0.07*** 0.07*** 0.02*** 11,009,415
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

Note: Each cell reports the estimated markup elasticity from the estimation method specified on top of each column. Columns (5)
and (6) empirically verify Proposition 1 and Corollary 1. Column (5) implements the FE(fit+ fid) in two steps: in the first step,
we demean the variables across destinations at the firm-product-year-and, inherently in an unbalanced panel, the trade pattern level
(the first step of the TPSFE procedure); then, in a second step, we apply fid+ fiD fixed effects iteratively using the reghdfe pro-
gram by Correia (2017). Column (6) repeats the same two-step procedure as in column (5), but in the second step we remove the
firm-product-trade pattern (fiD) fixed effects. Each row indicates a different subsample. Within in a row, all methods are applied
based on the same sample. The number of observations in the last column corresponds to Stage 7 of the data cleaning procedure
specified in appendix G.9. Robust standard errors are reported in parentheses. Statistical significance at the 1, 5 and 10 percent
level is indicated by ***, **, and *.
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Table 12: Comparison across Estimators: Further Breakdown

(1) (2) (3) (4) (5) (6)

TPSFE FE (fid+ t) FE (fit+ d)
FE

(fit+ fid)

FE
(fit+ fid)

in Two
Steps

(5) in Two
Steps

without D
in the

second step

n. of obs

Destination Demean Yes No No No Yes Yes
Fixed Effects fidD fid+ t fit+ d fid+ fit fid+ fiD fid

2006-2014, High Differentiation

SOEs 0.41*** 0.25*** 0.20*** 0.22*** 0.22*** 0.01*** 1,617,483

(0.05) (0.01) (0.01) (0.01) (0.01) (0.00)

FIEs 0.33*** 0.18*** 0.13*** 0.15*** 0.15*** 0.02*** 2,267,880

(0.04) (0.01) (0.01) (0.01) (0.01) (0.00)

PEs 0.10*** 0.09*** 0.06*** 0.07*** 0.07*** 0.01*** 3,988,833

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

Small Exporters 0.09*** 0.10*** 0.08*** 0.09*** 0.09*** 0.00*** 2,839,781

(0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

Medium Exporters 0.26*** 0.17*** 0.11*** 0.13*** 0.13*** 0.01*** 2,795,992

(0.04) (0.01) (0.01) (0.01) (0.01) (0.00)

Large Exporters 0.47*** 0.20*** 0.14*** 0.17*** 0.17*** 0.03*** 2,632,132

(0.06) (0.01) (0.01) (0.01) (0.01) (0.00)

Intermediate 0.12* 0.13*** 0.06*** 0.08*** 0.08*** 0.02*** 580,037

(0.07) (0.03) (0.02) (0.02) (0.02) (0.00)

Consumption 0.33*** 0.26*** 0.16*** 0.22*** 0.22*** 0.02*** 3,581,291

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

2006-2014, Low Differentiation

SOEs 0.09** 0.04*** 0.05*** 0.06*** 0.06*** 0.02*** 1,909,460

(0.04) (0.01) (0.01) (0.01) (0.01) (0.00)

FIEs 0.20*** 0.17*** 0.13*** 0.15*** 0.15*** 0.01*** 2,722,624

(0.04) (0.01) (0.01) (0.01) (0.01) (0.00)

PEs 0.01 0.02*** 0.03*** 0.03*** 0.03*** 0.02*** 5,908,258

(0.02) (0.01) (0.00) (0.01) (0.01) (0.00)

Small Exporters 0.03 0.02** 0.03*** 0.04*** 0.04*** 0.02*** 3,807,296

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

Medium Exporters 0.09*** 0.04*** 0.04*** 0.05*** 0.05*** 0.02*** 3,723,759

(0.03) (0.01) (0.01) (0.01) (0.01) (0.00)

Large Exporters 0.27*** 0.14*** 0.09*** 0.12*** 0.12*** 0.03*** 3,480,952

(0.04) (0.01) (0.01) (0.01) (0.01) (0.00)

Intermediate 0.04** 0.08*** 0.06*** 0.06*** 0.06*** 0.02*** 5,712,115

(0.02) (0.01) (0.00) (0.01) (0.01) (0.00)

Consumption 0.09*** 0.09*** 0.05*** 0.08*** 0.08*** 0.02*** 2,553,583

(0.02) (0.01) (0.01) (0.01) (0.01) (0.00)

Note: See the footnote of table 11 and the description in the text for an explanation of the columns.
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specific marginal costs shocks.

Similar considerations may help rationalize the large differences in estimates observed in the last

two rows of the upper panel; the differences across estimators are more pronounced for consumption

goods, i.e., the product which might contain a destination-specific component.

Looking at the bottom panel of table 12, which reports estimates for low-differentiation goods,

we find that the differences between the FE(fit + fid) and the TPSFE estimates are generally

much smaller, in line with table 11.74 The notable exceptions are, again, for products supplied by

FIEs and large firms.75

5.3 Quantities and Markups

Thus far, we have presented evidence that some groups of firms exporting from China, particularly

larger firms selling highly differentiated goods, discriminate across countries when changing their

prices in response to bilateral exchange rate changes. Consistent with theory, we may expect

them to systematically charge higher markups where, relative to other destinations, market (i.e.,

demand) conditions are more favorable. In this section we show how to use our framework to shed

light on this point.

Our key observation is that, from the vantage point of a firm, holding production costs constant,

changes in the exchange rates act as demand shifters. Thus, to the extent that our TPSFE

estimator controls for cost-side factors, the predicted values from a projection of prices on exchange

rates using (17) can be interpreted as changes in relative markups in response to changes in relative

demand across destinations driven by currency movements. Under this interpretation, an increase

in the relative markup charged in a market, raising the revenue per sale accruing to the firm,

should be systematically associated with an increase in the relative quantity sold in that market.

In table 13, we report the results from running the following regression:

q̈fidt = γ0 + γ1
̂̈pfidt + ẍ′fidtγ2 + üfidt, (18)

74A theoretical result from section 3 may help to refine the lessons from comparing estimators. The theoretical
model is calibrated with a negative correlation between the exchange rate and marginal cost which generates a
downward omitted variable bias; this omitted variable bias results in a positive difference between the estimates
from the TPSFE and FE(fit+fid) estimators. In light of this model-based result, the positive difference between
the empirical estimates from the TPSFE and FE(fit+fid) estimators suggests the presence of an omitted variable
bias that the TPSFE can reduce, but not necessarily entirely eliminate. Hence, the true markup elasticities might
be even higher than estimates suggest.

75As a caveat, we should note that for large firms exporting low-differentiation goods, the estimate of the markup
elasticity may in part reflect the fact that the mean firm size in the sample used by the TPSFE for identification
is larger than the mean firm size in the estimation sample. This is the only case in which we are able to detect
evidence that may suggest a bias from obtaining identification from a non-representative subsample with the TPSFE
estimator.
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where q̈fidt is the residual obtained by twice demeaning quantities using our TPSFE procedure,

applying firm-product-time and firm-product-destination-trade pattern fixed effects, and ̂̈pfidt are

the predicted values of relative markups from (17).76 We will refer to the coefficient of interest,

γ1, as the Quantity/Markup Elasticity (QME).77 Table 13 also includes the results from a useful

comparison model (labelled Cor(q̈, p̈)). This is a regression of relative quantities directly on relative

prices in which both variables have been demeaned twice as in the TPSFE procedure; that is, in

this model the relative prices are not projected on the exchange rate.78

Table 13: Quantity-Markup Elasticity QME by CCHS Classification

All High Differentiation Low Differentiation

(1) (2) (3) (4) (5) (6)
Cor(q̈, p̈) QME Cor(q̈, p̈) QME Cor(q̈, p̈) QME n. of obs

2000− 2005 -0.71*** 6.18*† -0.75*** 4.07** -0.68*** 19.72† 4,279,808
(0.01) (3.18) (0.01) (1.72) (0.01) (55.14) [1,073,300]

2006− 2014 -0.70*** 1.53*** -0.72*** 0.72*** -0.69*** 2.72*** 19,272,657
(0.00) (0.28) (0.00) (0.20) (0.00) (0.80) [4,839,333]

Note: Estimates based on the sample of multi-destination trade flows at the firm-product-time level to 152 destina-
tions excluding Hong Kong and the United States. The “Cor(q̈, p̈)” column is estimated using specification (A7) in the
Appendix. The QME column is estimated based on equations (A5) and (18). Robust standard errors are reported in
parentheses. Statistical significance at the 1, 5 and 10 percent level is indicated by ***, **, and *. † indicates that the
t-statistic of the bilateral exchange rate in the first stage is smaller than 2.58.

To appreciate the contribution of our QME, note that, in columns (1), (3) and (5), the sign

of the regression coefficient from the model including relative prices is consistently negative. For

example, in column (1), a 1% increase in relative prices is statistically associated with a 0.7%

decline in relative quantities. When twice demeaned prices are not projected on bilateral exchange

rate movements, the coefficient seems to simply reflect that firms export relatively less in markets

where they set prices relatively high.

In contrast, our estimates of QMEs all have positive signs, consistent with our idea that pro-

jections of prices on the exchange rate can be used to obtain a statistical measure of how relative

quantities move with shifts in the demand for a firm and product driven by currency movements.

In the managed float regime in the 2006-2014 period (table 13, row 3), our estimated QME

is positive and equal to 1.53 (row 3, column (2)): a one percent increase in the relative markup

(driven by the exchange rate) is associated with 1.53 percent change in the relative quantity

76Because ̂̈pfidt is an estimate, we correct the standard errors as in a standard two-step least squares approach.
77As is well known, holding the relative supply curve fixed, a shift in relative demand induces a movement along

the relative supply curve. Heuristically, γ1 is related to the slope of the relative supply curve; it is a statistical
measure of the extent to which firms change their export supply in relation to markup adjustments to destination-
specific demand changes. In the appendix, we explain how our approach relates to the quantity elasticities analyzed
in the literature, e.g., by Berman, Martin and Mayer (2012).

78Appendix A describes in more detail the demeaning of variables for the TPSFE procedure.
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across destinations. Table 13 further documents sharp differences in estimates across high and low

differentiation goods. Over the same 2006-2014 period, the QME estimate is very low for high-

differentiation goods, 0.72 (row 3, column 4): a one percent increase in the markup charged in a

market is associated with a mere 0.72% increase in the export quantities supplied to that market.

The estimated QME for low-differentiation goods is instead quite high, 2.72%. Recall that high-

and low-differentiation goods feature, respectively, a high and a low markup elasticity; there is

more pricing to market in high-differentiation exports. Our evidence thus lends empirical support

to the view that firms with market power, such as those exporting high-differentiation products,

respond to destination-specific exchange rate movements by adjusting markups substantially while

keeping the relative quantity supplied across destinations relatively stable.

Our results pick up an interesting evolution of Chinese exporters over time and across exchange

rate regimes. We have seen above that Chinese exporters’ engagement in pricing-to-market was

modest during the years of the fixed exchange rate regime (with the notable exception of exporters

of high differentiation goods). Correspondingly, the QME estimates shown in the table for the

period of the fixed exchange rate regime are quite high, ranging from 4.07 to 19.72 for high- and

low-differentiation goods. Altogether, these results may suggest that, during the strict peg period,

those firms that responded to bilateral exchange rate movements with modest markup adjustments

were pursuing more aggressively any openings for expanding their market shares abroad.

The pattern highlighted in table 13, that goods and firms for which we estimate a higher

relative markup adjustment tend to display a lower QME, is confirmed by table 14. From this

table, once again, the divide between private firms, on the one hand, and FIEs and SOEs, on the

other, is apparent. For private firms, a one percent increase in the relative markup in a market is

associated with a 5.23 percent increase in the relative quantity sold in that destination (2.59 for

exporters of high differentiation goods, 10.57 for exporters of low-differentiation goods). This is

evidence that, on average, private Chinese firms keep their relative markups in check in response

to currency movements; they price-to-market less and let relative export quantities move with

demand conditions (possibly to gain market share). Relative to private firms, the opposite pattern

emerges for SOEs and FIEs. Corresponding to their much higher markup elasticities, the estimated

QMEs are very small and not significantly different from zero (0.34 for SOEs and 0.28 for FIEs).

The results in the table underscore the extent and importance of international market segmenta-

tion and market power. At one extreme we have SOEs, FIEs and exporters of highly differentiated

consumption goods: the low estimate of quantity substitution across destinations (statistically

indistinguishable from zero) suggests that the markets served by these firms and exporters of these

goods are highly segmented. At the other extreme, for exporters of low-differentiation intermedi-

ates, quantity substitution is quite high (3.84) and markets appear quite integrated.
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Table 14: Quantity-Markup Elasticity QME by Product and Firm Types (2006− 2014)

All High Differentiation Low Differentiation

(1) (2) (3) (4) (5) (6)
Category Cor(q̈, p̈) QME Cor(q̈, p̈) QME Cor(q̈, p̈) QME n. of obs

State-owned Enterprises -0.70*** 0.46 -0.67*** 0.11 -0.71*** 1.26† 3,526,943
(0.01) (0.31) (0.01) (0.23) (0.01) (1.19) [646,352]

Foreign Invested Enterprises -0.70*** 0.19 -0.70*** 0.31 -0.70*** -0.11 4,990,504
(0.00) (0.21) (0.01) (0.24) (0.01) (0.32) [1,042,481]

Private Enterprises -0.70*** 5.23*** -0.75*** 1.99*** -0.67*** 16.87† 9,897,091
(0.00) (1.88) (0.00) (0.72) (0.00) (19.58) [2,996,133]

Small Exporters -0.65*** 3.48** -0.69*** 1.85** -0.63*** 9.93† 6,639,830
(0.00) (1.56) (0.01) (0.81) (0.00) (14.35) [2,646,437]

Medium Exporters -0.72*** 1.58*** -0.74*** 0.51 -0.71*** 3.53† 6,519,743
(0.00) (0.60) (0.01) (0.35) (0.01) (2.33) [1,448,368]

Large Exporters -0.77*** 0.44* -0.77*** 0.06 -0.77*** 0.77* 6,113,084
(0.01) (0.26) (0.01) (0.26) (0.01) (0.44) [744,528]

Consumption -0.71*** 0.47** -0.77*** 0.16 -0.63*** 1.68** 6,133,394
(0.00) (0.19) (0.00) (0.16) (0.01) (0.79) [1,759,243]

Intermediate -0.71*** 3.34** -0.73*** 1.04† -0.71*** 3.84*† 6,288,252
(0.00) (1.55) (0.01) (1.39) (0.00) (1.98) [1,579,220]

Note: Estimates based on the sample of multi-destination trade flows at the firm-product-time level to 152 destinations excluding Hong Kong
and the United States. The “Cor(q̈, p̈)” column is estimated using specification (A7) in the Appendix. The QME column is estimated based
on equations (A5) and (18). Robust standard errors are reported in parentheses. Statistical significance at the 1, 5 and 10 percent level is
indicated by ***, **, and *. † indicates that the t-statistic of the bilateral exchange rate in the first stage is smaller than 2.58.

5.4 Discussion

We have seen that the trade pattern fixed effect helps improve estimates of pricing to market by

obtaining identification from observations which are associated with repeated trade patterns. We

conclude our empirical analysis with an exercise, in which we run conventional estimators on the

subsample of observations that identify the TPSFE estimator (see Appendix G.7), i.e., a dataset

that excludes singleton trade patterns. In our dataset, the results from these estimators become

close and in some case almost indistinguishable from TPSFE estimates. This finding provides

valuable insights into how our estimator works in the Chinese Customs data.

When applied to a dataset including only observations with repeated trade patterns, conven-

tional fixed effect and the TPSFE estimators are bound to yield similar results if the number of

distinct trade patterns per product is small. Intuitively, at the limit, only one repeated trade

pattern per product would iron out the difference in the variation used by the TPSFE estimator

and the alternative (because destination and trade pattern variation would be equivalent in this

case).79 In line with this insight, in our Chinese Customs data, we find that the vast majority of

79For any given distribution of the unobserved fundamental shocks driving a firm’s behavior, the number of
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observations contain only one repeated trade pattern. This feature of our data implies that most

of the bias reduction from applying the TPSFE estimator comes from eliminating the confounding

variation of singleton trade patterns.

A natural question is whether the reduction in bias associated with the removal of confounding

variation (associated with singleton trade patterns) outweighs the potential cost of information

loss from excluding these observations.80 In this respect, we should note that much can be learned

from a systematic comparison of estimators through the lens of a model. If the systematic behavior

in these singleton trade patterns is explained by factors that move additively along the dimensions

of the panel, both the TPSFE and the FE(fit+fid) estimators should yield very similar estimates

(regardless whether observations associated with singleton trade patterns are included in the sam-

ple). In our empirical findings, similar estimates across estimators are obtained for the cases of

exporters of low differentiation goods and private firms. In contrast, if the systematic behavior in

trade patterns is explained by factors varying in complex ways, the observations associated with

singleton trade patterns would confound conventional fixed effects estimators, as shown in table

3. The TPSFE and the FE(fit+ fid) estimators would yield very different estimates in this case.

In our empirical analysis, we find large differences in estimates for the exporters of high differen-

tiation goods, SOEs and FIEs. We take these results as evidence of an additional benefit of using

the TPSFE estimator in conjunction with other fixed effect estimators; together, these different

estimators can act as a tool to gain insight into the variation of unobservable factors driving firms’

exporting and pricing choices.

6 Concluding Remarks

We close our study with two observations highlighting the significance of our contributions on

methodological and policy grounds. Methodologically, a notable conclusion of our study is that,

at fine levels of disaggregation (i.e., firm-product-destination), appropriately specified fixed effect

estimators may actually perform quite well in relation to alternative, powerful methods that rely

on the direct estimation of productivity and (unobservable) marginal costs at the firm level. The

development of productivity- and cost-estimation methods has clearly enabled firm-level studies to

break important new ground, shedding light on the level and time variation in firms’ markups. Yet,

applying these methods to our question of interest, concerning the time variation of markups at the

(different) repeated trade patterns can be expected to grow in the length of the sample (over time) and the average
lifespan of traded products – as similar combinations of shocks would have a higher chance of reappearing over
time and generating identical repeated trade patterns. Thus, variation associated with destinations within trade
patterns would increase, leading the difference between the two estimators to grow.

80Specifically, singleton trade patterns could capture circumstances/shocks which, although rare in the sense that
they do not translate into repeated trade patterns in the sample, contain useful information to ascertain elasticities.
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product-destination level, gives rise to a key issue. Even if one could obtain the required data for the

universe of firms in our sample, information on production inputs would generally be available only

at the firm level, not at the firm-product level.81 Estimates of marginal cost at the firm-product-

destination level could still be obtained under some assumptions on how inputs are allocated across

products and destinations; e.g., by positing that the production functions of single-product, single-

destination firms are representative of those of multi-product multi-destination firms. However,

in this paper we have shown that, under the identification assumptions of De Loecker, Goldberg,

Khandelwal and Pavcnik (2016), well-defined fixed effect estimators would also give unbiased

estimates of the markup elasticity to exchange rates. Future research may integrate these different

approaches as complementary tools, with application to a wide range of topics including the effects

of taxes and tariffs at the international and regional levels.

Concerning policy, the rising importance of China as a global exporter has spawned research into

how enhanced competitive pressures worldwide have influenced corporates’ decisions to upgrade

their product mix (Bernard, Jensen and Schott (2006)), innovate (Bloom, Draca and Van Reenen

(2016)), lay off workers (Autor, Dorn and Hanson (2013), Pierce and Schott (2016)), and outsource

to lower wage countries (Pierce and Schott (2016)). Business people and economists routinely speak

of the problem of “the China price,” the low price of Chinese merchandise that exporters from

other markets and domestic import-competing firms must match if they want to survive. Our

contribution is to offer a more detailed and refined account of the nature of competitive pressures

originating in China, one that cautions against overplaying the role of exchange rates in the policy

debate. Our estimated markup elasticities imply that, for roughly 50% of the value of exports from

China, a renminbi appreciation would not yield a uniform impact on Chinese prices. Because of the

strategic response of Chinese firms that hold market power, the impact would vary considerably

in different destinations and product markets. The effectiveness of a renminbi appreciation in

reducing China’s competitive pressure globally is far from certain.

81In addition, as it is well understood, the mapping between customs databases and industrial-survey data is
incomplete in most countries, raising issues of the representativeness of data in the matched sample. Additionally,
balance sheet data is typically only available at annual frequencies.
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A The TPSFE Estimator: A Three-step Procedure for

Application to Customs Databases

As discussed in subsection 3.3, our proposed TPSFE approach consists of sequentially applying

controls that reduce the variation of unobserved confounding variables.1 To elaborate on our

approach, in the first step of the sequential procedure, for every product in every firm, we strip out

the component of the price that is common across the collection of foreign destinations reached

in period t. We calculate the destination residual of each dependent and independent variable by

subtracting the mean value of each variable (across destinations) over all active destinations for a

firm’s product in a period:

x̃fidt ≡ x− 1

nDfit

∑
d∈Dfit

x ∀x ∈ {pfidt, qfidt, edt,xdt} (A1)

where nDfit is the number of active foreign destinations of firm f selling product i in year t and

Dfit denotes the set of destinations of this firm-product pair in year t; edt is the bilateral exchange

rate defined as the units of RMB per units of destination market currency and xdt is a vector of

destination-specific macro variables including local CPI, real GDP and import-to-GDP ratio.

Our second step applies firm-product-destination-trade pattern (fidD) fixed effects to the

residual prices, exchange rates, and other explanatory variables obtained in the first step. That is,

we subtract the mean of the x̃fidt variables for all time periods associated with the firm-product-

destination-trade pattern fidD, i.e., t ∈ TfidD:

ẍfidt ≡ x̃fidt −
1

nTfidD

∑
t∈TfidD

x̃fidt ∀x ∈ {pfidt, pfidt, edt,xdt} (A2)

where ẍfidt are the twice-differenced variables. Note that the aggregate variables which normally

vary along only two dimensions d and t may “become” firm and product specific, i.e., ëfidt and

ẍfidt due to the unbalancedness of the panel.

Using these twice-differenced variables, in the final step, we run an OLS regression that identifies

how markups respond to the bilateral exchange rate; this approach exploits cross-destination

variation in prices within a firm-product’s trade pattern as well as intertemporal variation in

1The key contribution of our approach is to use trade patterns to construct better fixed effects. As long as
the correct fixed effect specification is applied, the proposed method can be estimated in various ways, i.e., not
necessarily using the sequential procedure above. For example, an equivalent approach is to directly specify two set
of fixed effects, i.e., the firm-product-time fit and the firm-product-destination-trade pattern fidD fixed effects,
and use standard iterative estimation procedures such as reghdfe to directly estimate the coefficients of interest.
A key advantage of our sequential approach compared to alternative statistically iterative procedures is that each
step gives a well defined economic object to interpret, which enables us to clearly state the underlying variation of
the variables used for identification.
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prices within a time pattern of export participation at the destination and trade pattern level for

a firm-product pair:

p̈fidt = β0 + β1ëfidt + ẍ′fidtβ2 + v̈fidt. (A3)

We refer to the above procedure as the trade pattern sequential fixed effects (TPSFE) estimator.

β1 is the markup elasticity to bilateral exchange rates.

Quantity Elasticity. The same estimator can be applied to study destination specific adjust-

ment in quantities, corresponding to adjustment in markups. Substituting the dependent variable

described in the procedures above with the quantity sold, we obtain an estimator of the quantity

elasticity to bilateral exchange rates:

q̈fidt = ζ0 + ζ1ëfidt + ẍ′fidtζ2 + v̈fidt (A4)

in which q̈fidt is the residual quantity sold, that is, demeaned according to equations (A1) and (A2).

This approach is comparable to the estimation strategy of Berman, Martin and Mayer (2012). It

captures the overall effects of changing bilateral exchange rates on quantities—direct and indirect,

i.e., via markup adjustment.

Quantity-Markup Elasticity: A Two-Step Approach. Based on our approach, however,

we can also build a two-step statistical procedure to estimate the quantity responses specifically

driven by markup adjustments to exchange rate movements. This consists of deriving the predicted

prices, ̂̈pfidt from the TPSEF estimator (A3) in the first step:

̂̈pfidt = β̂0 + β̂1ëfidt + ẍ′fidtβ̂2. (A5)

In the second step, the predicted prices replace the exchange rate among the explanatory variables

in the relative quantity regression:

q̈fidt = γ0 + γ1
̂̈pfidt + ẍ′fidtγ2 + üfidt. (A6)

The coefficient γ1 is a projection of changes in relative quantities on changes in relative prices driven

by changes in the relative market condition measure, ëfidt, while controlling for other aggregate

variables. Statistically, as in all two-step least square approaches, the relationship among the

three elasticities (markup elasticity, quantity elasticity and quantity-markup elasticity) is given by

γ̂1 ≈ ζ̂1/β̂1.

The Cor(q̈, p̈) estimator. For comparison purposes, we estimate the general relationship

between the cross-market adjustments of prices and quantities by regressing the twice-differenced

quantities directly on twice-differenced prices (labelled Cor(q̈, p̈)) without projecting the price

2



changes on bilateral exchange rates, i.e.,

q̈fidt = λ0 + λ1p̈fidt + ẍ′fidtλ2 + üfidt (A7)

where λ1 captures the general correlation between the relative quantity changes and the relative

price changes across markets.

B The TPSFE Estimator in View of the Control Function

Approach

As stated in the text, the TPSFE estimator is designed to address unobserved factors in an

environment where firms endogenously select the set of destination markets for their product, i.e.,

firms’ participation in a given market is endogenous. The idea is that the realized selection of

markets (the trade patterns) conveys useful information about the unobservable factors that drive

the selection process. By controlling for these patterns, we restrict the variation of unobservables

in the selection equation. In this appendix, we discuss how our approach relates to the classical

control function approach (e.g., Heckman (1979)) and the first difference approach pursued by

Kyriazidou (1997).2

We start by rewriting the problem addressed by Heckman (1979) in his seminal work on selection

in cross-sectional data. In what follows, think of pt as the price of a product, as a function of a set

of controls x′t, observed if the firm decides to enter the market:

pt = x′tβ + εt (B1)

= x′tβ + E(εt|xt, st) + νt

st = 1{w′tγ + ut} (B2)

where st is an indicator variable that equals one if pt is observed; E(εt|xt, st) is the selection bias

and νt ≡ [εt − E(εt|xt, st)] is an error term that is uncorrelated with the vector of observed vari-

2Our estimation approach is related to three strands of the panel data literature. The first strand focuses on
estimating the parameter of interest in a panel data model with selection. Existing discussions are restricted to
selection equations with one dimensional fixed effects or those that can be combined into one dimensional fixed
effects (see recent handbook chapters Verbeek and Nijman (1996), Honoré, Vella and Verbeek (2008) and Matyas
(2017) for a complete literature review). The second strand constructs methods of estimating selection equations
with unobserved heterogeneity along two dimensions (e.g., Fernández-Val and Weidner (2016) and Charbonneau
(2017)). Our approach differs from theirs in that we do not need to estimate the selection equation, but instead,
we rely on the realized patterns and a third panel dimension to address the selection problem. A few papers have
examined multi-dimensional fixed effects in unbalanced panels (e.g., Wansbeek and Kapteyn (1989) and Balazsi,
Matyas and Wansbeek (2018)). However, they do not discuss the type of selection rules for which their fixed effect
estimators are consistent.
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ables xt and the selection bias. wt is a vector of observed variables in the selection equation which

can overlap with the elements in xt. As is well known, selection is a problem if E(εt|xt, st) 6= 0.

The solution of Heckman (1979) is to estimate the function of E(εt|xt, st) under some parametric

assumptions and then add the predicted value ̂E(εt|xt, st) as a control variable in the main esti-

mating equation. The essence of this approach is to estimate the parameter of interest conditional

on the probability of an observation being observed.

Closer to our problem where the firm chooses among possible export destination markets,

Kyriazidou (1997) studies selection in a two dimensional panel with one fixed effect:

pdt = x′dtβ +Md + εdt (B3)

= x′dtβ +Md + E(Md|xdt, sdt) + E(εdt|xdt, sdt) + νdt

sdt = 1{w′dtγ +Wd + udt} (B4)

where Md and Wd are unobserved variables varying along the destination d dimension (i.e. des-

tination fixed effects). E(Md|xdt, sdt) and E(εdt|xdt, sdt) represent the selection biases caused

by the unobserved destination-specific heterogeneity and other omitted variables, respectively.

νdt ≡ [εdt − E(εdt|xdt, sdt) − E(Md|xdt, sdt)] is an error term that is uncorrelated with the ob-

served explanatory variables and the selection biases. pdt denotes the price and sdt is an indicator

variable that takes a value of one if the firm exports to destination d in period t and zero other-

wise.3 Kyriazidou (1997) notes that E(Md|xdt, sdt) and E(εdt|xdt, sdt) no longer vary along the

time dimension when w′d1γ = w′d2γ under the following conditional exchangeability condition:

F (εd1, εd2, ud1, ud2|ψd) = F (εd2, εd1, ud2, ud1|ψd) (B5)

where ψd ≡ (xd1,xd2,wd1,wd2,Wd,Md) is a destination specific vector containing information on

observed and unobserved variables. Condition (B5) states that (εd1, εd2, ud1, ud2) and (εd2, εd1, ud2, ud1)

are identically distributed conditional on ψd. As noted by Kyriazidou (1997), the main term caus-

ing the selection bias, E(εdt|xdt, sdt), is no longer time-varying when w′d1γ = w′d2γ under condition

3Kyriazidou (1997) discusses a case in which the number of time periods is small (nT = 2). Therefore, a Heckman
(1979) style estimator cannot be applied as it will suffer from the incidental parameters problem due to the limited
time dimension.
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(B5):

E(εd1|sd1 = 1, sd2 = 1|ψd)

≡ E(εd1|ud1 < w
′
d1γ +Wd, ud2 < w

′
d2γ +Wd,ψd)

= E(εd1|ud1 < w
′
d2γ +Wd, ud2 < w

′
d1γ +Wd,ψd) (B6)

= E(εd2|ud2 < w
′
d2γ +Wd, ud1 < w

′
d1γ +Wd,ψd) (B7)

≡ E(εd2|sd2 = 1, sd1 = 1|ψd)

where the first equality (B6) holds because w′d1γ = w′d2γ and the second equality (B7) holds be-

cause of the conditional exchangeability condition (B5). Since the selection bias is no longer time

varying, i.e., E(εd1|sd1 = 1, sd2 = 1|ψd) = E(εd2|sd2 = 1, sd1 = 1|ψd), it can be absorbed by desti-

nation fixed effects. Kyriazidou (1997) proposes a two-step estimator: the first step consistently

estimates γ̂ and the second step differences out the fixed effect and the selection terms conditional

on destinations for which w′d1γ̂ = w′d2γ̂.

Our problem is specified in (B8) and (B9) below:

pfidt = x′dtβ +Mfid + Cfit + εfidt (B8)

sfidt = 1{w′dtγ +Wfid +Qfit + ufidt} (B9)

This problem differs from Kyriazidou (1997)’s in two crucial respects. On the one hand, our

problem adds unobserved firm-product-time-varying variables Cfit to equation (B3) and Qfit to

equation (B4). In the presence of these time-varying unobserved factors, the conditional exchange-

ablitiy condition no longer holds. On the other hand, many aggregate-level economic indicators of

interest in our study—e.g., exchange rates—vary along the destination and time dimensions, but

not at the firm or product dimensions. This is actually helpful. As discussed below, the fact that

key variables vary along dimensions that are a subset of the dimensions of the dependent variable

facilitates the control of selection biases.

While the method we propose to address the above problem is conceptually close to Kyriazidou

(1997), the approach we take is fundamentally different. Specifically, if we were to follow Kyriazidou

(1997)’s approach, we would require all variables driving Qfit to be observed and controlled for.

For our purposes, however, this condition cannot be satisfied—if only because the marginal cost is

unobserved and cannot be generally estimated at product-firm level. Rather, we need to rely on a

method that avoids direct estimation of the selection equation and works in a multi-dimensional

panel where more than one fixed effect is present in both the structural equation and the selection

equation. Our main innovation is to use the realized selection pattern in a panel dimension, instead

of the observed variables in the selection equation, to control for selection biases.
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Before analyzing how our method addresses the general problem characterized in equations (B8)

and (B9), we find it useful to provide insight by focusing on a two-dimensional panel, tracking the

choices of a single firm selling one product across a set of endogenous destinations.

B.1 A two dimensional panel case

Consider the following for a firms’ destination choices with two panel dimensions, destination d

and time t:

pdt = x′dtβ +Md + Ct + εdt (B10)

sdt = 1{udt} (B11)

where Md and Ct are unobserved destination and time specific factors, respectively, which are

potentially correlated with the explanatory variables contained in the vector xdt. The price pdt is

observed only if sdt equals one or equivalently, if udt > 0.

The first two steps in our approach involve transforming the variables in (B10) to eliminate the

unobserved destination and time specific factors. Specifically, in the first step, we demean variables

at the time (t) dimension. In the second step, we demean variables at the destination-trade pattern

(dD) dimension. After applying these two transformations,

p̈dt = ẍ′dtβ + ε̈dt (B12)

where

ẍdt = xdt −
1

nDt

∑
d∈Dt

xdt −
1

nTdD

∑
t∈TdD

xdt +
1

nTdD

∑
t∈TdD

1

nDt

∑
d∈Dt

xdt (B13)

ε̈dt = εdt −
1

nDt

∑
d∈Dt

εdt −
1

nTdD

∑
t∈TdD

εdt +
1

nTdD

∑
t∈TdD

1

nDt

∑
d∈Dt

εdt, (B14)

Dt is the set of destinations the firm serves at time t; and nDt ≡ |Dt| the number of export

destinations at time t. Similarly, TdD denotes the set of time periods in which a destination-specific

trade pattern dD is observed, and nTdD represents the corresponding number of time periods in

which the destination-specific trade pattern emerges. For our proposed approach to work in a two
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dimensional panel, we need4

F (εdD1, εdD2, udD1, udD2|ψdD) = F (εdD2, εdD1, udD2, udD1|ψdD), (B16)

where we use εdD1 to indicate the first error within the destination-specific trade pattern dD. We

provide an example of the formulation of dD in table B1. Given (B16), it is straightforward to see

that the selection bias can be differenced out over two time periods within a destination-specific

trade pattern dD, since the following relationship holds:

E (εdDt|udD1 > 0, udD2 > 0,ψdD) = E (εdDτ |udD1 > 0, udD2 > 0,ψdD) ∀τ ∈ TdD (B17)

Condition (B16) can be viewed as the analog of the conditional exchangeability assumption

imposed by Kyriazidou (1997). Instead of controlling for the relationship among the observed

variables in the selection process (i.e., w′d1γ = w′d2γ), we control for the realised patterns of

selection in a panel dimension (i.e., the pattern of d conditional on t). That is, as long as the

distribution of errors is the same for all time periods satisfying a destination-specific trade pattern

dD, our approach produces unbiased and consistent estimates.5

B.1.1 The indicative value of trade patterns: a numerical example

As an illustration of how conditioning on the realized trade patterns D reduces selection bias,

consider the numerical example in Table B1. This table reports the realization of trade flows to

four destinations (d = A,B,C,K) over four time periods (t = 1, 2, 3, 4) with udt ≡ Wd+Qt, where

Wd and Qt are destination-specific and time-specific variables in the selection process, respectively.

The third and fourth columns in each panel in table B1 show the realized values of Wd and Qt
and the fifth column shows the corresponding outcomes, sdt = 1 if the firm exports to destination

d at time t, sdt = 0 otherwise. Only the dimensional indicator d and the selection outcome sdt are

observable to the researcher, whereas Wd and Qt are unobservable.

4Note that Kyriazidou (1997)’s original conditions (and proofs) only cover the case when the number of time
periods is equal to two. For a more general case with more than two time periods, we impose a condition as follows

E
(
εdDt|udD1 > 0, ..., udDnT

dD
> 0, ψdD

)
= E

(
εdDτ |udD1 > 0, ..., udDnT

dD
> 0, ψdD

)
∀τ ∈ TdD (B15)

As will be discussed later, our estimator works under a much weaker condition than (B15) if another panel dimension
is available.

5It is straightforward to see the condition for consistency, i.e., E(sdtẍdtε̈dt) = 0, is satisfied under (B15). First,
note that 1

nD
t

∑
d∈Dt

εdt − 1
nT
dD

∑
t∈TdD

1
nD
t

∑
d∈Dt

εdt = 0. This is because the expression 1
nD
t

∑
d∈Dt

εdt is moving

at the dD dimension only. As there is no variation left after conditioning on the dD dimension, the demeaning
process naturally gives zero. Second, demeaning conditional on the same trade pattern is zero under assumption

(B15), i.e., E
(
εdt − 1

nT
dD

∑
t∈TdD

εdt

∣∣∣sdD1, sdD2, sdD3, ..., ψdD

)
= 0.
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Table B1: A Numerical Example of the Indicative Value of Trade Patterns

d t Wd Qt sdt Dt

A 1 1.5 1 1 A-B-C
B 1 0.5 1 1 A-B-C
C 1 -0.5 1 1 A-B-C
K 1 -1.5 1 0 A-B-C
A 2 1.5 0 1 A-B
B 2 0.5 0 1 A-B
C 2 -0.5 0 0 A-B
K 2 -1.5 0 0 A-B
A 3 1.5 1 1 A-B-C
B 3 0.5 1 1 A-B-C
C 3 -0.5 1 1 A-B-C
K 3 -1.5 1 0 A-B-C
A 4 1.5 -1 1 A
B 4 0.5 -1 0 A
C 4 -0.5 -1 0 A
K 4 -1.5 -1 0 A

Original

⇒

dD t Wd Qt sdt
A-A-B-C 1 1.5 1 1
B-A-B-C 1 0.5 1 1
C-A-B-C 1 -0.5 1 1
K-A-B-C 1 -1.5 1 0
A-A-B 2 1.5 0 1
B-A-B 2 0.5 0 1
C-A-B 2 -0.5 0 0
K-A-B 2 -1.5 0 0
A-A-B-C 3 1.5 1 1
B-A-B-C 3 0.5 1 1
C-A-B-C 3 -0.5 1 1
K-A-B-C 3 -1.5 1 0
A-A 4 1.5 -1 1
B-A 4 0.5 -1 0
C-A 4 -0.5 -1 0
K-A 4 -1.5 -1 0

Transformed based on the
realized trade pattern

⇒

dD t Wd Qt sdDt
1 1 1.5 1 1
2 1 0.5 1 1
3 1 -0.5 1 1
4 1 -1.5 1 0
5 2 1.5 0 1
6 2 0.5 0 1
7 2 -0.5 0 0
8 2 -1.5 0 0
1 3 1.5 1 1
2 3 0.5 1 1
3 3 -0.5 1 1
4 3 -1.5 1 0
9 4 1.5 -1 1
10 4 0.5 -1 0
11 4 -0.5 -1 0
12 4 -1.5 -1 0

Relabelled

The trade pattern Dt in each period can be constructed based on realized values of the observed

selection indicator in each destination, i.e., {sAt, sBt, sCt, sKt}. The last column of the first panel

(“original”) in table B1 shows the constructed trade patterns. In this specific example, there are

three unique realized trade patterns, i.e., D1 = D3 = {1, 1, 1, 0} ≡ “A-B-C”, D2 = {1, 1, 0, 0} ≡
“A-B”, and D4 = {1, 0, 0, 0} ≡ “A”.

As illustrated in the example, the trade pattern formulated in each period is reflective of the

values of Qt. Intuitively, in an estimation procedure without conditioning on the trade pattern,

the comparisons (or the within variation) are made for each destination in all time periods. For

example, the price of destination A in period 1 is compared to that of periods 2, 3 and 4. After

controlling for the trade pattern, the comparisons are made within the same trade pattern so that

the price of destination A in period 1 is only compared to that of period 3 where the underlying

value of Qt is the same.6 Therefore, by separating observations by their corresponding trade

patterns, we effectively control for the variation of unobserved variables. As part of this process,

we drop those observations with no repeated trade pattern, i.e., observations in periods 2 and 4.

Empirically, given that we have a very limited number of time periods (i.e., 15 years), the number

of repeated trade patterns is quite small for each firm. Therefore, most of the bias reduction is

6More precisely, our approach exploits variation in the dependent and independent variables in the dD and t
panel dimensions, rather than in the d and t panel dimensions.
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done by dropping those observations associated with non-repetitive patterns.

In this numerical example, by construction, the unobserved time-varying factors are exactly

the same for the identical trade pattern in periods 1 and 3, i.e., Q1 = Q3. Therefore, taking

time differences after conditioning on the trade pattern completely eliminates the selection bias,

i.e., condition (B17) is satisfied. In general, however, the underlying time-varying factors in the

selection equation need not be restricted to be exactly the same for identical trade patterns. To

see why, observe that Qt take very similar values in those periods where the same pattern emerges:

Wd +Qt > 0 if sdt = 1

Wd +Qt ≤ 0 if sdt = 0
(B18)

In other words, given a trade pattern, the range of values that Qt can take is limited. Conditioning

on a trade pattern is therefore useful as it pins down the range of variation in Qt. By way of

example, given the realized values of Wd specified in table B1, the conditions that Qt needs to

satisfy to be in the pattern {1, 1, 1, 0} are:

1.5 +Qt > 0, 0.5 +Qt > 0, −0.5 +Qt > 0, −1.5 +Qt ≤ 0 (B19)

Since the equations in (B19) must be simultaneously satisfied, the range of values Qt can take is

0.5 < Qt ≤ 1.5. Similarly, we can derive the condition for being in the patterns of {1, 1, 0, 0} and

{1, 0, 0, 0} to be −0.5 < Qt ≤ 0.5 and Qt ≤ −0.5.

Since conditioning on the realized trade pattern restricts the variability of the unobserved Qt,
our approach in general reduces the selection bias relative to conventional fixed effect approaches.

B.2 General Setting

We now discuss the general multi-dimensional setting specified in (B8) and (B9).7 With an addi-

tional dimension,8 we can write the condition for identification as follows:

E
[
E (εfidDt|sfidD,ψfidD)

∣∣∣dt] = E
[
E (εfidDτ |sfidD,ψfidD)

∣∣∣dt] ∀ τ ∈ TfidD (B20)

where sfidD ≡ (w′d1γ +Wfid +Qif1 + ufidD1 > 0, ...,w′
dnT

fidD
γ +Wfid +QifnT

fidD
+ ufidDnT

fidD
> 0),

ψfidD ≡ (xdD1, ...,xdDnT
fidD

,wdD1, ...,wdDnT
fidD

,Wfid,Mfid) and E(.|dt) means taking the expecta-

tion over the firm (f) and product (i) panel dimensions while keeping the destination and time

panel dimensions fixed.

7Note that table B1 represents the observed trade pattern of a particular firm selling a particular product. In
the customs data, we observe realized trade patterns of many firm-product pairs.

8In the following discussions, we consider firm and product as one combined panel dimension fi.
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As can be seen from (B20), we no longer need the error to be zero conditional on the observed

pattern (E (εfidDt − εfidDτ |sfidD,ψfidD) = 0) as in the two dimensional case. Instead, it is sufficient

to have the expectation of E (εfidDt − εfidDτ |sfidD,ψfidD) to be zero, once it is aggregated at the

firm and product dimension. For example, if E (εfidDt − εfidDτ |sfidD,ψfidD) consists of random

errors for each firm and product, the mean of these random errors converges to zero when the

number of firm-product pairs increases.

We now show that our proposed approach gives unbiased estimates under condition (B20). Let

vfidt ≡ Mfid + Cfit + εfidt. The underlying independent variables and the error term under our

estimation approach can be written as

ẍfidt = xdt −
1

nDfit

∑
d∈Dfit

xdt −
1

nTfidD

∑
t∈TfidD

xdt +
1

nTfidD

∑
t∈TfidD

1

nDfit

∑
d∈Dfit

xdt (B21)

v̈fidt = vfidt −
1

nDfit

∑
d∈Dfit

vfidt −
1

nTfidD

∑
t∈TfidD

vfidt +
1

nTfidD

∑
t∈TfidD

1

nDfit

∑
d∈Dfit

vfidt. (B22)

The independent variable of interest now varies along four dimensions because it embodies selection

that varies across firms and products, even if the variable is specified for only two dimensions, i.e.,

xdt or edt.

First, it is straightforward to verify that our estimator controls for firm-product-destination

and firm-product-time fixed effects in the main estimation equation.

v̈fidt =Mfid + Cfit + εfidt −
1

nDfit

∑
d∈Dfit

(Mfid + Cfit + εfidt)

− 1

nTfidD

∑
t∈TfidD

(Mfid + Cfit + εfidt) +
1

nTfidD

∑
t∈TfidD

1

nDfit

∑
d∈Dfit

(Mfid + Cfit + εfidt)

= εfidt −
1

nDfit

∑
d∈Dfit

(Mfid + εfidt)−
1

nTfidD

∑
t∈TfidD

(Cfit + εfidt)

+
1

nTfidD

∑
t∈TfidD

1

nDfit

∑
d∈Dfit

(Mfid + Cfit + εfidt)

= εfidt −
1

nDfit

∑
d∈Dfit

εfidt −
1

nTfidD

∑
t∈TfidD

εfidt +
1

nTfidD

∑
t∈TfidD

1

nDfit

∑
d∈Dfit

εfidt

= ε̈fidt

Second, note that the exchange rate depends on the firm and product dimensions only through

trade and time patterns. To see this, it is useful to rewrite the variables in expressions (B21) and

10



(B22) in terms of their corresponding variability:

ẍfidt = xdt − xDt − xdT + xDT

v̈fidt = vfidt − vfiDt − vfidT + vfiDT

= εfidt − εfiDt − εfidT + εfiDT

= ε̈fidt.

Rearranging these expressions, we can show that our main variables of interest x (including ex-

change rates) in the following expression no longer depend on firm and product dimensions:

1

nFIDT

∑
fidt

ε̈fidtẍfidt =
1

nFIDT

∑
fidt

(εfidt − εfiDt − εfidT + εfiDT )xdt (B23)

=
1

nFIDT

∑
fidt

(εfidt − εfidT )xdt. (B24)

As a result, the identification condition, E(ε̈fidtẍfidtsfidt) = 0, can be rewritten as

E(ε̈fidtẍfidtsfidt)

= E [(εfidt − εfidT )xdtsfidt]

= E
{
xdtE

[
E (εfidt − εfidT |sfidD,ψfidD)

∣∣∣dt]}
= E

xdtE
E

εfidDt − 1

nTfidD

∑
τ∈TfidD

εfidDτ |sfidD,ψfidD

∣∣∣dt


= 0 (B25)

where the first equality follows from using (B24) under our proposed “within transformation”; the

second equality from applying the law of iterated expectations; and the last equality from using

condition (B20).

Two remarks are in order to clarify the implications of our identification condition and place

our approach in the literature. First, note that the condition (B20) is trivially satisfied if ε is

always zero. For example, if goods sold to different destinations by the same firm under the

same product category are identical, the marginal cost is only firm-product-time specific and

therefore absorbed by Cfit, leaving no additional residual term. It is worth stressing that the

maintained assumption that marginal costs are non-destination-specific is implicit in studies aimed

at estimating productivity (as these do not try to distinguish the marginal cost at the destination

level)—see, e.g., Olley and Pakes (1996), Levinsohn and Petrin (2003), Wooldridge (2009) and

11



De Loecker, Goldberg, Khandelwal and Pavcnik (2016).9

Second, an important instance in which condition (B20) is satisfied is when the distribution

of the destination-specific component does not change over time, e.g., when the composition of

shipments is such that high quality varieties of a product are consistently sold to high-income

destinations. From this perspective, the condition clarifies that the existence of destination-specific

marginal cost components in ε does not automatically lead to a violation of identification.

In the sections to follows, we reinterpret the identification implied by (B20) through the lens

of two strands of the literature. In Section C we compare our estimator to alternative fixed effect

estimators. In Section E, we give a structural interpretation of the identification condition. In

Section F we show the theoretical relationship among the markup and quantity elasticities.

C The TPSFE and Fixed Effect Estimators: a Compara-

tive Analysis of Identification

In this section, we carry out a comparative analysis of identification across estimators of markup

elasticities in unbalanced panels. Subsection C.1 focuses on a two-dimensional panel to discuss

how fixed effect and trade-pattern augmented fixed effect estimators can help address selection

and/or omitted variable biases. In Subsection C.2 we extend the discussion to a three dimensional

panel.

9Olley and Pakes (1996), Levinsohn and Petrin (2003) and Wooldridge (2009) estimate firm-level productivity and
thus can infer the average marginal cost over all products and destinations at the firm level. De Loecker, Goldberg,
Khandelwal and Pavcnik (2016) estimate the average marginal cost over destinations at the firm-product level. As
an exercise, in appendix E, we explore an extension of De Loecker, Goldberg, Khandelwal and Pavcnik (2016) in
which we add a destination dimension to production costs. We discuss the assumptions that would be required in a
structural framework for (B20) to be satisfied. Specifically, we allow the functional form of the production function
to be firm-product specific with a log-additive productivity term that is firm-product-destination specific. Note that
De Loecker, Goldberg, Khandelwal and Pavcnik (2016) would not be identifiable under these assumptions as their
identification strategy requires some degree of separability in the functional form in which they have assumed the
production function to be product-specific and the Hicks-neutral productivity to be firm-specific. In this extended
framework, we show that our identification strategy recovers an unbiased estimate of the markup elasticity even
when the marginal cost at the firm-product level varies across destinations, but only if the production function is
constant returns to scale. It is only when changes in relative demand across destinations lead to relative changes
in quantities (which are associated with changes in destination-specific marginal cost) that condition (B20) will be
violated. This is only the case if the production function is destination-specific. Under the standard assumptions
of De Loecker, Goldberg, Khandelwal and Pavcnik (2016) where the production function is not destination-specific,
our estimator yields unbiased estimates with constant returns to scale (CRS), increasing returns to scale (IRS) and
decreasing returns to scale (DRS) production functions.

12



C.1 Identifying the Markup Elasticity in a Two-dimensional Unbal-

anced Panel

In this subsection, we discuss the identification of the markup elasticity in a two-dimensional

unbalanced panel. We offer the proofs of Propositions 1 and 2, showing, first, that an estimator

adding destination and time fixed effects tackles the selection problem by implicitly applying trade

pattern fixed effects; second, compared to an estimator with destination and time fixed effects,

the scope of bias that can be effectively addressed by a fixed effect approach is extended by our

TPSFE estimator.

As a reference, we write the following data generating process:

pdt = x′dtβ +Md + Ct + εdt (C1)

sdt = 1{w′dtγ +Wd +Qt + udt} (C2)

where d (d = 1, . . . , nD) denotes the destinations of an exporter, and t (t = 1, . . . , nT ), the years;

xdt and wdt are vectors of observed variables including bilateral exchange rates; and β and γ

are vectors of unknown parameters. Md and Wd, and Wt and Qt are unobserved confounding

components varying at the destination and the time dimension, respectively, that are correlated

among themselves and with xdt and wdt; udt and εdt are unobserved variables that vary at both

destination and time dimensions.

An important observation is that, given the above process, an estimator adding both destination

and time fixed effects gives unbiased estimates if εdt and udt are not correlated.10 That is, if the

unobserved variables (e.g., marginal costs) can be broken into additive variation in the destination

and time panel dimensions, adding fixed effects simultaneously addresses both the omitted variable

bias and the selection bias as E(εdt|xdt,wdt,Md, Ct,Wd,Qt,w′dtγ +Wd +Qt + udt > 0) = 0.

As is well known, a fixed effect estimator can be implemented in various ways. One way is to

include dummy variables for each destination and time and run an OLS estimation with all of the

dummy variables and the independent variables xdt. However, this approach becomes infeasible

when the set of dummies is very large. An alternative and commonly-used way is to avoid directly

estimating the fixed effects by demeaning variables.11

We are now ready to consider the proofs of our propositions.

10Note that our TPSFE estimator allows for a less stringent condition than the uncorrelatedness between εdt and
udt. For example, if the correlation between εdt and udt is caused by unobserved factors that are destination-trade
pattern specific, our TPSFE estimator also gives unbiased estimates. We compare our proposed estimator with
a conventional fixed effect estimator adding destination and time fixed effects in Subsection C.1.2. A numerical
example is given in Subsection C.1.3. The exact identification condition of our estimator is given by (B20).

11There are several interactive algorithms based on the demeaning logic, such as Guimaraes and Portugal (2011),
Rios-Avila (2015), and Correia (2017).
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C.1.1 Proof of Proposition 1

The proof proceeds with two steps. In the first step, we construct a demeaned fixed effect esti-

mator following Wansbeek and Kapteyn (1989). In the second step, we show that the constructed

estimator implicitly applies trade pattern fixed effects.

Step 1: Let nDt
(
nDt ≤ nD

)
be the number of observed destinations for year t. Let nDT ≡∑

t n
D
t . Let At be the

(
nDt × nD

)
matrix obtained from the (nD × nD) identity matrix from which

rows corresponding to destinations not observed in year t have been omitted, and consider

Z ≡

(
Z1, Z2

nDT × nD nDT × nT

)
≡


A1 A1ιnD

...
. . .

AnT AnT ιnD

 (C3)

where ιx is a vector of ones with length x, e.g., ιnD is a vector of ones with length nD. The

matrix Z gives the dummy-variable structure for the incomplete-data model. (For complete data,

Z1 = ιnT ⊗ InD , Z2 = InT ⊗ ιnD .) Define

P2 ≡ InDT − Z2 (Z ′2Z2)
−1
Z ′2 (C4)

Z̄ ≡ P2Z1. (C5)

Wansbeek and Kapteyn (1989) show P is the projection matrix onto the null-space of Z:

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′ (C6)

where ‘–’ stands for a generalized inverse. It follows that the model described in (C1) and (C2)

can be estimated using OLS with the demeaned data obtained by pre-multiplying the data matrix

(Y,X) by the projection matrix P .

Step 2: We now show the projection matrix P can be decomposed into two projection matrices

with the second projection matrix applying destination and trade pattern fixed effects in additive

terms. We begin by noting that the following relationship holds:

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′ = (InDT − Z̄(Z̄ ′Z̄)−Z̄ ′)P2 ≡ P1P2 (C7)

where P1 ≡ InDT − Z̄(Z̄ ′Z̄)−Z̄ ′ and the equality of (C7) uses the fact that P2 is idempotent (i.e.,

P2Z1 = P2P2Z1 = P2Z̄). Therefore, applying the projection matrix P to the data matrix (Y,X)

is equivalent to first pre-multiplying (Y,X) by the projection matrix P2, and then pre-multiplying

(P2Y, P2X) by the projection matrix P1. The projection P2 applied in the first step is essentially
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a destination-demean process (the same first step as our TPSFE estimator).12 The projection P1

applied in the second step is, by definition, a “demeaning” process at the Z̄ level. To see the exact

dummy structure based on which the second “demeaning” process is applied, note that Z̄ can be

rewritten as

Z̄ = P2Z1 = Z1 − Z2 (Z ′2Z2)
−1
Z ′2Z1 (C8)

where Z1 is a set of destination dummies as defined in (C3) and Z2 (Z ′2Z2)−1 Z ′2Z1 is a set of trade

pattern dummies.

To see that Z2 (Z ′2Z2)−1 Z ′2Z1 follows a trade pattern structure, note that Z2 (Z ′2Z2)−1 Z ′2 is a

block diagonal matrix with its diagonal blocks equal to a matrix of ones multiplied by (the inverse

of) the number of destinations in each period, i.e.,

Z2 (Z ′2Z2)
−1
Z ′2 = diag

(
1

nD1
A1ιnDι′nDA

′
1, ...,

1

nD
nT

AnDιnDι′nDA
′
nD

)
= diag

(
1

nD1
ιnD

1
ι′nD

1
, ...,

1

nD
nT

ιnD
nT
ι′nD

nT

)
(C9)

where the first equality holds by the definition of Z2 in (C3) and by virtue of the fact that

(Z ′2Z2)−1 is a diagonal matrix, with its elements indicating (the inverse of) the number of observed

destinations in each period, i.e.,

(Z ′2Z2)
−1

= diag

(
1

nD1
,

1

nD2
, ...,

1

nD
nT

)
; (C10)

and the second equality in (C8) holds by the definition of the A matrices in (C3). Pre-multiplying

to Z1 by Z2 (Z ′2Z2)−1 Z ′2 and using the definition of Z1, we have

Z2 (Z ′2Z2)
−1
Z ′2Z1 =


1
nD
1
ιnD

1
ι′
nD
1
A1

...
1

nD
nT
ιnD

nT
ι′
nD
nT
AnD

 (C11)

where ι′
nD
t
At gives the trade pattern in year t and pre-multiplying it by ιnD

t
repeats the same trade

pattern nDt times—resulting in the trade pattern matrix for all destinations in period t.13

Therefore, the second “demeaning” projection matrix P1 ≡ InDT − Z̄(Z̄ ′Z̄)−Z̄ ′ is applied on

Z̄ that consists of two additive parts: (a) the destination dummies Z1 and (b) the trade pattern

dummies Z2 (Z ′2Z2)−1 Z ′2Z1. QED.

12See the numerical example in subsection C.1.3.
13See Appendix C.1.3 for an numerical example of the matrices.
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C.1.2 Proof of Proposition 2

The key difference between our proposed TPSFE estimator and a conventional fixed effect estimator

adding destination and time fixed effects lies in the way the trade patterns are applied in the

second step. While the conventional approach applies the destination and trade pattern fixed

effects additively (as can be seen from (C8) and (C11)), our estimator applies the trade pattern

fixed effect multiplicatively.

We start our proof introducing notation and definitions. Denote the set of exporting destina-

tions in year t as Dt.
14 Let T P be the set of unique trade patterns in all years, i.e.,

T P ≡ {D1, ..., DnT }6= (C12)

and nT P ≡ |T P| be the number of unique trade patterns. Let T Px denote the x’th element of

T P . We create destination-specific trade patterns by combining the destinations in a trade pattern

with the trade pattern itself, i.e., {(d, T Px) : d ∈ T Px}. Let DT P be the set of destination-specific

trade patterns, i.e.,

DT P ≡ {(d, T P1) : d ∈ T P1, ..., (d, T PnT P ) : d ∈ T PnT P} . (C13)

Let nDT P ≡ |DT P| be the number of unique destination-trade pattern pairs observed in the data.

The dummy structure of destination-specific trade patterns is given by the following (nDT ×
nDT P) matrix:

Z3 ≡


B1

...

BnT

 ≡


K11 · · · K1nT P

...
. . .

...

KnT 1 · · · KnTnT P

 (C14)

where Bt is a nDt × nDT P matrix indicating the destination-specific trade patterns in period t.

Each Bt can be decomposed into nT P block matrices with its y’th block being equal to an identity

matrix if the trade pattern of period t, Dt, is the same as the y’th trade pattern, T Py, and a

matrix of zeros otherwise. That is, ∀x ∈ {1, ..., nT}, y ∈ {1, ..., nT P},

Kxy ≡

InD
x

if Dx = T Py
0nD

x ×nD
T P (y) if Dx 6= T Py

(C15)

where InD
x

is an identity matrix of size nDx ; 0nD
x ×nD

T P (y) is a matrix of zeros of size nDx ×nDT P(y); and

nDT P(y) ≡ |{d : d ∈ T Py}| is the number of destinations in the y’th unique trade pattern T Py.
Let the projection matrix be P3P2, where P3 ≡ InDT − Z3 (Z ′3Z3)−1 Z ′3. The first projection P2

14In a vector form, ι′
nD
t
At indicates the set of destinations in year t.
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is the same destination-demean progress, whereas the second projection P3 applies demeaning at

the destination-trade pattern level. As discussed in previous sections, the interactive construction

of trade pattern fixed effects enables us to handle interactive error terms and reduce the time

variation of the unobserved confounding variables.

To formally prove proposition 2, we need to show that

P3P2Z1 = 0,

P3P2Z3 = 0,

P3P2Z2 = 0.

(C16)

We begin by noting that the second relationship holds by definition (of P2):

P3P2Z2 = [InDT − Z3 (Z ′3Z3)
−1
Z ′3][InDT − Z2 (Z ′2Z2)

−1
Z ′2]Z2 = 0. (C17)

We prove P3P2Z1 = 0 and P3P2Z3 = 0 by relying on two relationships that we state here

and prove later in the text. First, the two projection matrices T3 ≡ Z3 (Z ′3Z3)−1 Z ′3 and T2 ≡
Z2 (Z ′2Z2)−1 Z ′2 commute:

T3T2 = T2T3. (C18)

Second, T3 projects Z1 to itself:

T3Z1 = Z1. (C19)

Given (C18) and (C19), it follows that

P3P2Z1 = [InDT − T3][InDT − T2]Z1

= Z1 − T3Z1 + T3T2Z1 − T2Z1

= T3T2Z1 − T2Z1

= T2T3Z1 − T2Z1

= T2Z1 − T2Z1

= 0 (C20)

where the second equality is due to (C19); the third equality holds due to the commutativity

(C18); the fourth equality applies (C19) one more time. Following the same procedure, it can be

shown that P3P2Z3 = 0.

We complete our proofs showing that (C18) and (C19) hold.
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Proof of (C18):

Proof. We want to prove that the two projection matrices Z3 (Z ′3Z3)−1 Z ′3 and Z2 (Z ′2Z2)−1 Z ′2 com-

mute. We do so by proving that the product of these two matrices Z3 (Z ′3Z3)−1 Z ′3Z2 (Z ′2Z2)−1 Z ′2

is symmetric.

Z3 (Z ′3Z3)−1 Z ′3 can be written as:

Z3 (Z ′3Z3)
−1
Z ′3 =


B1 (Z ′3Z3)−1B′1 · · · B1 (Z ′3Z3)−1B′nT

...
. . .

...

B1 (Z ′3Z3)−1B′nT · · · BnT (Z ′3Z3)−1B′nT

 (C21)

The blocks of Z3 (Z ′3Z3)−1 Z ′3 can be further simplified using the following two observations.

First, (Z ′3Z3)−1 is a nDT P ×nDT P diagonal matrix with its elements indicating (the reverse of) the

number of repetitions for each destination-trade pattern pair, i.e.,

(Z ′3Z3)
−1

=

(∑
t

B′tBt

)−1

=


∑

tK
′
t1Kt1 · · ·

∑
tK
′
t1KtnT P

...
. . .

...∑
tK
′
tnTKt1 · · ·

∑
tK
′
tnT PKtnT P


−1

=


rT P1 InD

T P (1)

. . .

rT PnT PInD
T P (nT P )


−1

= diag

(
1

rT P1

InD
T P (1), ...,

1

rT P
nT P

InD
T P (nTP )

)
(C22)

where rT Pz ≡ |{t : Dt = T Pz}| is the number of periods that the trade pattern T Pz is observed

for z ∈
{

1, ..., nT P
}

. The third equality holds as K ′thKtj = 0 ∀h 6= j and K ′thKtj = InD
h
∀h = j by

definitions of (C14) and (C15).

Second, the (h, j) block of Z3 (Z ′3Z3)−1 Z ′3, i.e., Bh (Z ′3Z3)−1B′j, is equal to a matrix of zeros if

the trade pattern of period h is different from that of period j and is equal to an identity matrix

multiplied by a scalar if the trade pattern of the two periods is the same:

Bh (Z ′3Z3)
−1
B′j =

∑
z∈{1,..,nT P}

1

rT Pz
KhzInD

T P (z)K
′
jz =


1
rDh
InD

h
if Dh = Dj

0nD
h ×n

D
j

if Dh 6= Dj

(C23)
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where rDz ≡ |{t : Dt = Dz}| is the number of periods that the trade pattern Dz is observed.

Finally, from (C21) and (C9), Z3 (Z ′3Z3)−1 Z ′3Z2 (Z ′2Z2)−1 Z ′2 can be decomposed into nT × nT

blocks:

T ≡ Z3 (Z ′3Z3)
−1
Z ′3Z2 (Z ′2Z2)

−1
Z ′2

=


B1 (Z ′3Z3)−1B′1

1
nD
1
ιnD

1
ι′
nD
1
· · · B1 (Z ′3Z3)−1B′nT

1
nD
nT
ιnD

nT
ι′
nD
nT

...
. . .

...

B1 (Z ′3Z3)−1B′nT
1
nD
1
ιnD

1
ι′
nD
1
· · · BnT (Z ′3Z3)−1B′nT

1
nD
nT
ιnD

nT
ι′
nD
nT

 (C24)

where block (x, y) of T is given by

T (x, y) = Bx (Z ′3Z3)
−1
B′y

1

nDy
ιnD

y
ι′nD

y
. (C25)

From (C23), it is straightforward to see that T (x, y) = T (y, x)′. That is, if the trade pattern of

period x is the same as that of period y, then T (x, y) = T (y, x)′ = 1
rDx n

D
x
ιnD

x
ι′nD

x
= 1

rDy n
D
y
ιnD

y
ι′nD

y
; if

the trade pattern of period x is different from that of period y, then T (x, y) = T (y, x)′ = 0nD
x ×nD

y
.

Now, given that Z3 (Z ′3Z3)−1 Z ′3, Z2 (Z ′2Z2)−1 Z ′2, and T are all symmetric, it follows that

T = Z3 (Z ′3Z3)
−1
Z ′3Z2 (Z ′2Z2)

−1
Z ′2 = T ′ = Z2 (Z ′2Z2)

−1
Z ′2Z3 (Z ′3Z3)

−1
Z ′3. (C26)

Proof of (C19):

Proof. From (C21) and the definition of Z1 in (C3), we can write T3Z1 as

T3Z1 =


∑

tB1 (Z ′3Z3)−1B′tAt
...∑

tBnT (Z ′3Z3)−1B′tAt

 . (C27)

Using (C23), we have

Bx (Z ′3Z3)
−1
B′yAy =


1
rDx
Ax = 1

rDy
Ay if Dx = Dy

0nD
x ×nD if Dx 6= Dy

(C28)
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With (C28), it follows that

T3Z1 =


∑

t:Dt=D1

1
rD1
A1

...∑
t:Dt=DnT

1
rD
nT
AnT

 =


A1

...

AnT

 = Z1. (C29)

C.1.3 A numerical example with the projection matrices to visualize differences

across estimators

To clarify how the estimator works, we now spell out all the key matrices from above discussions

and provide a numerical example. We use the data generating process discussed in subsection 3.3.2

of our paper, reproduced below for convenience:15

pdt = β0 + β1edt + β2mdt (C30)

pdt =

{
observed if γ0 + γ1edt + γ2mdt < 0

missing if γ0 + γ1edt + γ2mdt ≥ 0
(C31)

mdt = ψd + εt + ξd ∗ υt (C32)

edt = σe(mdt + udt) (C33)

We reduce the number of destinations to 5 and the number of years to 4 to keep the size of the

matrices tractable. To keep the example clean, we only allow for two distinct values of the factors

affecting the time variation of the unobserved marginal cost (i.e., εt and υt). We set γ0 such that

half of the observations (destination-year pairs) are dropped.

Table C1 shows one particular realization of such a data generating process. The firm exports

in all four periods, and its decisions generate two unique trade patterns. In the first two years, the

firm exports to destinations 2, 4 and 5. In the last two years, the firm exports only to destinations

4 and 5.

15We restate the simulation setting here: ψd, εt, ξt, υt and udt are simulated from a standard normal distribution.
We set σe to be 0.5 such that the bilateral exchange rate shocks are slightly less volatile than idiosyncratic marginal
cost shocks. We set β1 = β2 = 1 such that an exchange rate appreciation of the home currency and a positive
marginal cost shock increase the border price denominated in the home currency. This also implies a positive
omitted variable bias. We set γ1 = −0.1 and γ2 = 1 such that the selection bias is also positive. The magnitude
of γ1 is set to be smaller than that of γ2 to reflect the fact that the aggregate shocks (such as bilateral exchange
rates) is less detrimental for the firm’s entry decisions compared to idiosyncratic factors (such as the unobserved
marginal cost).
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Table C1: Simulated Data

Year Destination Trade Pattern pd,t ed,t md,t εt υt

1 2 2 4 5 -0.072 0.155 -0.227 0.843 0.277

1 4 2 4 5 0.178 -0.092 0.270 0.843 0.277

1 5 2 4 5 -1.138 -1.252 0.114 0.843 0.277

2 2 2 4 5 0.455 0.682 -0.227 0.843 0.277

2 4 2 4 5 0.636 0.366 0.270 0.843 0.277

2 5 2 4 5 0.068 -0.046 0.114 0.843 0.277

3 4 4 5 -0.313 0.689 -1.002 -0.191 1.117

3 5 4 5 -0.315 0.071 -0.387 -0.191 1.117

4 4 4 5 -1.099 -0.097 -1.002 -0.191 1.117

4 5 4 5 -0.747 -0.360 -0.387 -0.191 1.117

Z1 is the matrix that contains the destination dummies. To economize on the matrix size,

we only create dummies for destinations that are observed, i.e., we do not create dummies for

destinations 1 and 3. For example, the first column of Z1 reports the observations in which the

firm sells to destination 2. From the matrix, we can see that the firm sells to destination 2 two times.

Z2 is the matrix that contains the year dummies. Z3 gives our proposed destination-specific trade

pattern dummies. As defined in (C14) and (C15), it is constructed by interacting the destination

dummies with the trade pattern dummies. For example, the first three columns represent the

dummy structure for the destinations related to the 2 4 5 trade pattern, i.e., 2− 2 4 5, 4− 2 4 5

and 5− 2 4 5. Similarly, the last two columns represent the dummy structure for the destinations

related to the 4 5 trade pattern, i.e., 4− 4 5 and 5− 4 5.

Z1 =



1 0 0

0 1 0

0 0 1

1 0 0

0 1 0

0 0 1

0 1 0

0 0 1

0 1 0

0 0 1



Z2 =



1 0 0 0

1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1



Z3 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 1 0

0 0 0 0 1



(C34)
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From these, we can see clearly that P2 is a destination demean process.

P2 =



0.67 −0.33 −0.33 0 0 0 0 0 0 0

−0.33 0.67 −0.33 0 0 0 0 0 0 0

−0.33 −0.33 0.67 0 0 0 0 0 0 0

0 0 0 0.67 −0.33 −0.33 0 0 0 0

0 0 0 −0.33 0.67 −0.33 0 0 0 0

0 0 0 −0.33 −0.33 0.67 0 0 0 0

0 0 0 0 0 0 0.50 −0.50 0 0

0 0 0 0 0 0 −0.50 0.50 0 0

0 0 0 0 0 0 0 0 0.50 −0.50

0 0 0 0 0 0 0 0 −0.50 0.50



(C35)

By way of example, for the first observation, 2/3p11 − 1/3p21 − 1/3p31 = p11 − 1
3
(p11 + p21 + p31).

As discussed in subsection C.1.1, Z2 (Z ′2Z2)−1 Z ′2Z1 follows a trade pattern structure and Z̄ sug-

gests an additive relationship between the destination dummies Z1 and the trade pattern dummies

Z2 (Z ′2Z2)−1 Z ′2Z1.

Z2 (Z ′2Z2)
−1
Z ′2Z1 =



0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0.33 0.33 0.33

0 0.50 0.50

0 0.50 0.50

0 0.50 0.50

0 0.50 0.50



Z̄ = Z1 − Z2 (Z ′2Z2)
−1
Z ′2Z1 =



0.67 −0.33 −0.33

−0.33 0.67 −0.33

−0.33 −0.33 0.67

0.67 −0.33 −0.33

−0.33 0.67 −0.33

−0.33 −0.33 0.67

0 0.50 −0.50

0 −0.50 0.50

0 0.50 −0.50

0 −0.50 0.50


(C36)

As we can see from (C37), the projection P does not follow a particular structure. Therefore, our

two-step decomposition P = P1P2 discussed in subsection C.1.1 helps to unveil the key economic
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mechanisms behind the statistical projection.

P =



0.46 −0.29 −0.17 −0.21 0.04 0.17 −0.13 0.13 −0.13 0.13

−0.29 0.46 −0.17 0.04 −0.21 0.17 0.13 −0.13 0.13 −0.13

−0.17 −0.17 0.33 0.17 0.17 −0.33 0 0 0 0

−0.21 0.04 0.17 0.46 −0.29 −0.17 −0.13 0.13 −0.13 0.13

0.04 −0.21 0.17 −0.29 0.46 −0.17 0.13 −0.13 0.13 −0.13

0.17 0.17 −0.33 −0.17 −0.17 0.33 0 0 0 0

−0.13 0.13 0 −0.13 0.13 0 0.38 −0.38 −0.13 0.13

0.13 −0.13 0 0.13 −0.13 0 −0.38 0.38 0.13 −0.13

−0.13 0.13 0 −0.13 0.13 0 −0.13 0.13 0.38 −0.38

0.13 −0.13 0 0.13 −0.13 0 0.13 −0.13 −0.38 0.38



(C37)

Let Y = [−0.072, 0.178,−1.138, 0.455, 0.636, 0.068,−0.313,−0.315,−1.099,−0.747]′ and X =

[0.155,−0.092,−1.252, 0.682, 0.366,−0.046, 0.689, 0.071,−0.097,−0.360]′. The OLS estimator is

given by (X ′X)−1X ′Y , which gives an estimate of β̂1 = 0.745. The estimator applying d and t

fixed effects is given by (X ′P ′PX)−1X ′P ′Y , which gives β̂1 = 1.508. The estimator applying dD

and t fixed effects is given by (X ′P ′2P
′
3P3P2X)−1X ′P ′2P

′
3P3P2Y , which gives the calibrated value of

β̂1 = 1.000.

C.2 Identifying Markup Elasticities in Unbalanced Panels: Adding the

Firm Dimension

Our discussions in the previous subsection generalise to more panel dimensions. We now allow for

a third, firm (or firm-product) dimension.16 The data structure can be viewed as a collection of

two dimensional settings as previously presented in (C3). For a given firm f , let nDf denote the

total number of export destinations by the firm and nDft
(
nDft ≤ nDf

)
be the number of observed

destinations in year t. Let nTf denote the maximum number of exporting years and the nDTf ≡∑
t n

D
ft be the number of observed transactions by firm f . Let Aft be the

(
nDft × nDf

)
matrix

obtained from the (nDf × nDf ) identity matrix from which, for each firm f , rows corresponding to

destinations not observed in year t have been omitted. Consider

Zf ≡

(
Zf,1, Zf,2

nDTf × nDf nDTf × nTf

)
≡


Af1 Af1ιnD

f

...
. . .

AfnT
f

AfnT
f
ιnD

f

 (C38)

16We focus on the firm rather than the firm and product panel dimensions to simplify our notation, but all of
the discussions here trivially generalize to the firm and product dimensions.
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where ιj is a vector of ones with length j. The matrix Zf gives the dummy-variable structure for

firm f . Let

Z1 ≡


Z1,1

. . .

ZnF ,1

 , Z2 ≡


Z1,2

. . .

ZnF ,2

 (C39)

Z ≡

(
Z1, Z2

nFDT × nFD nFDT × nFT

)
(C40)

where nFD ≡
∑

f n
D
f and nFT ≡

∑
f n

T
f . Define

P2 ≡ InFDT − Z2 (Z ′2Z2)
−
Z ′2 (C41)

Z̄ ≡ P2Z1. (C42)

Using the properties of block diagonal matrices, it is straightforward to show that P is the projec-

tion matrix onto the null-space of Z

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′. (C43)

In a panel with firm (or firm-product) panel dimensions, the following two corollaries corre-

sponding to propositions 1 and 2 hold:

Corollary 1. In a three dimensional panel, factors varying at the fd+ft panel dimensions can be

eliminated using a two-step procedure in which, in the first step, all variables are demeaned across

observed destinations within each firm-time pair and, in the second step, firm-destination (fd) and

firm-trade pattern (fD) fixed effects are applied additively, i.e., fd+ fD.

Corollary 2. In a three dimensional panel, factors varying at the fdD + ft panel dimensions

can be eliminated using a two-step procedure in which all variables are demeaned across observed

destinations within each firm-time pair in the first stage and firm-destination specific trade patterns

(fdD) are applied in the second stage. This procedure also eliminates all confounding factors that

the fd+ ft fixed effects can address.

C.2.1 Proof of Corollary 1

As in the two dimensional panel case (see (C7)), the projection matrix P can be decomposed into

two projection matrices, which can be applied sequentially as a two-step estimator.

P ≡ P2 − Z̄(Z̄ ′Z̄)−Z̄ ′ = (InFDT − Z̄(Z̄ ′Z̄)−Z̄ ′)P2 ≡ P1P2 (C44)
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where P1 ≡ InFDT − Z̄(Z̄ ′Z̄)−Z̄ ′ and the second projection matrix P1 implicitly applies trade

pattern fixed effects as

P2Z1 = Z1 − Z2 (Z ′2Z2)
−1
Z ′2Z1. (C45)

To see that Z2 (Z ′2Z2)−1 Z ′2Z1 follows a trade pattern structure, note that the following relationships

hold:

Z2 (Z ′2Z2)
−1
Z ′2Z1 =


Z1,2

(
Z ′1,2Z1,2

)−1
Z ′1,2Z1,1

. . .

ZnF ,2

(
Z ′nF ,2ZnF ,2

)−1

Z ′nF ,2ZnF ,1

 (C46)

Zf,2
(
Z ′f,2Zf,2

)−1
Z ′f,2Zf,1 =


1
nD
f1
ιnD

f1
ι′
nD
f1
Af1

...
1

nD

fnT
f

ιnD

fnT
f

ι′
nD

fnT
f

AfnD
f

 (C47)

As in the two panel dimension case, Zf,2
(
Z ′f,2Zf,2

)−1
Z ′f,2Zf,1 follows a trade pattern structure.

C.2.2 Proof of Corollary 2

The proposed method eliminates potential confounding fixed effects in the conventional fixed effect

model. Let Zf,3 be the destination-specific trade pattern dummies of firm f defined as in (C14) and

(C15), and Z3 be the matrix that represents the firm-destination specific trade pattern dummies

which can be constructed as a block diagonal matrix of Zf,3’s:

Z3 ≡


Z1,3

. . .

ZnF ,3

 (C48)

Using the properties of block diagonal matrices and firm level relationships (C18) and (C19),

it is straightforward to show the following relationship holds:

Z3 (Z ′3Z3)
−
Z ′3Z1 =


Z1,1

. . .

ZnF ,1

 (C49)
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Z3 (Z ′3Z3)
−
Z ′3Z2 (Z ′2Z2)

−1
Z ′2Z1 =


Z1,2

(
Z ′1,2Z1,2

)−1
Z ′1,2Z1,1

. . .

ZnF ,2

(
Z ′nF ,2ZnF ,2

)−1

Z ′nF ,2ZnF ,1

 .
(C50)

It follows that

[InFDT − Z3 (Z ′3Z3)
−
Z ′3][InFDT − Z2 (Z ′2Z2)

−1
Z ′2]Z1 = 0. (C51)

Similarly, it is straightforward to show that [InFDT −Z3 (Z ′3Z3)− Z ′3][InFDT −Z2 (Z ′2Z2)−1 Z ′2]Z2 = 0

and [InFDT − Z3 (Z ′3Z3)− Z ′3][InFDT − Z2 (Z ′2Z2)−1 Z ′2]Z3 = 0.

D Estimating Markup Elasticities with Heterogeneous Re-

sponses

In this subsection, we extend the results in sections B and C and discuss the estimated object

captured by the OLS and fixed effect approaches when the markup elasticity is different across

firms, products, destinations and time. We highlight two interrelated issues. The first issue arises

because linear OLS or fixed effect estimators treat the heterogeneous coefficients as if they were

homogeneous. The second issue which arises due to inaccurate first-order log approximations of

nonlinear theoretical relationships.

D.1 The implicit weight of observations

To introduce this issue, consider the following simple specification:

pfidt = βfidtedt + vfidt (D1)

where pfidt is the log price and edt is the log bilateral exchange rate and βfidt as the markup

elasticity, which is a function of the bilateral exchange rate as shown in (7); vfidt is an iid error.

26



The OLS estimate of β is given by

βOLS =

∑
f

∑
i

∑
d

∑
t(pfidt − p)(edt − e)∑

f

∑
i

∑
d

∑
t(edt − e)2

=

∑
f

∑
i

∑
d

∑
t(βfidtedt + vfidt)(edt − e)∑

f

∑
i

∑
d

∑
t(ed,t − e)2

=
1

nFnI

∑
f

∑
i

[∑
d

∑
t(βfidtedt + vfidt)(edt − e)∑

d

∑
t(edt − e)2

]
=

1

nFnI

∑
f

∑
i

[∑
d

∑
t βfidtedt(edt − e)∑
d

∑
t(edt − e)2

+

∑
d

∑
t vfidt(edt − e)∑

d

∑
t(edt − e)2

]

=
1

nFnI

∑
f

∑
i

[∑
d

∑
t

βfidtwdt +

∑
d

∑
t vfidt(edt − e)∑

d

∑
t(edt − e)2

]
(D2)

where nF , nI , nD, nT represent the number of firms, products, destinations, and time periods re-

spectively; wdt ≡ edt(edt−e)∑
d

∑
t(edt−e)2

; p ≡ 1
nFnInDnT

∑
f

∑
i

∑
d

∑
t pfidt; e ≡

1
nDnT

∑
d

∑
t edt.

17 Now, the

second term in the bracket of (D2) is close to 0 under the assumption of no selection and omitted

variable bias. Let’s abstract from these biases, and focus on the first term in the bracket.

From this term in (D2), it is apparent that, when the markup elasticity is heterogeneous, βOLS

is the exchange rate-deviation weighted sum of the βfidt’s.

βOLS ≈ 1

nFnI

∑
f

∑
i

∑
d

∑
t

βfidtwdt 6=
1

nFnInDnT

∑
f

∑
i

∑
d

∑
t

βfidt (D3)

As can be seen from the definition of wdt, the OLS estimator gives a larger weight to high exchange

rate values, that is, foreign currency appreciations. The result is different, for instance, from an

observation weighted average of the βfidt’s.

In general, with multiple regressors, the weights of an OLS estimator also depend on the

variation of other independent variables and the coefficients in front of these variables. The OLS

estimates capture

βOLS ≈ (X ′X)−1X ′(X ◦B) (D4)

where X is a nFIDT × k matrix that stores the values of the k independent variables; B is a

nFIDT × k matrix that stores the heterogeneous coefficients for each of the independent variables;

◦ is the Hadamard (element-by-element) product. Similarly, the estimates of a FE estimator and

17We have assumed a balanced panel in the discussions of (D2) and (D3) for clarity. We discuss the general case
in (D4), (D5) and (D6).
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our TPSFE estimator captures

βFE ≈ (X ′P ′PX)−1X ′P ′(PX ◦B) (D5)

βTPSFE ≈ (X ′P ′2P
′
3P3P2X)−1X ′P ′2P

′
3(P3P2X ◦B) (D6)

where P is the projection matrix that is required to perform the conventional FE estimator; P2

represents a projection matrix that performs a destination demeaning operation and P3 represents

the second demeaning step of the TPSFE estimator at the firm-product-destination-trade pattern

level.

For our purposes, there are at least two relevant takeaways from (D4), (D5) and (D6). First,

even without the omitted variable and selection biases, the estimated coefficients from the three

estimators can differ slightly due to the different weighting matrices applied to the coefficient matrix

B. Second, in general, the estimated coefficients for all of the three estimators do not necessarily

equal the unweighed average of the coefficients, i.e., 1
nFIDT ι

′
nFIDTB, or any other average that an

econometrician may take as the reference benchmark to assess estimation biases. When elasticities

are heterogeneous, the assessment of the performance of an estimator may vary with the choice of

the benchmark.

D.2 Approximation bias

The second issue arises when non-linear relationships are approximated using log-linear equations.

In the open marco literature, first order log approximations are widely used to derive theoretical

relationships between variables. For example, in equation (6), we have shown a log linearised

equation of the markup response as

Γ̂fiodt =
ωfiodt

ρi + ωfiodt

(
Êodt − M̂Cfiodt + P̂N

dt

)
+

ρi
ρi + ωfiodt

τ̂odt.

Log-linearisation is obviously convenient here, as the coefficient in front of the exchange rate

changes,
ωfiodt

ρi+ωfiodt
, directly gives the key parameter of interest, the markup elasticity to exchange

rates. However, as is well known, estimating the relationship using logged variables can lead to a

non-trivial bias even if all variables are directly observable and there is no selection bias. Concretely,

when we regress the logged markup on the logged exchange rate, the logged marginal cost, the

logged non-tradable price and the logged trade cost, we do not get the average of the markup elastic-

ity to exchange rates even after accounting for the weighting issue analyzed in the previous subsec-

tion. A specific bias arises due to the fact that the high order terms of the approximation Ofiodt are
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correlated with the variables in the estimation equation (i.e., ln(Eodt), ln(MCfiodt), ln(PN
dt ), ln(τodt)).

ln(Γfiodt) = ΓApproxfiodt +Ofiodt (D7)

ΓApproxfiodt ≡
ωfiodt

ρi + ωfiodt

[
ln(Eodt)− ln(MCfiodt) + ln(PN

dt )
]

+
ρi

ρi + ωfiodt
ln(τodt) (D8)

To be clear, if we could estimate equation (D8) directly by regressing ΓApproxfiodt on ln(Eodt), ln(MCfiodt),
ln(PN

dt ) and ln(τodt), then the estimates would only reflect the weighing problem discussed in the

previous subsection—the estimated coefficients would be consistent with the formulas described

by (D4), (D5) and (D6). However, the literature usually estimates markup elasticity by regressing

ln(Γfiodt) on the logged independent variables (ln(Eodt), ln(MCfiodt), ln(PN
dt ) and ln(τodt)). The

estimates are bound to suffer from an approximation bias, as the higher order terms are in general

correlated with the first order terms.

Notably, in all simulations of the CD model, the weighting issue and the approximation biases

always go in opposite directions and partially offset each other. If we take the unweighed mean

of the theoretical markup elasticities as a reference benchmark, the difference between this and

our estimated markup elasticities to exchange rates remains reasonably small after splitting the

sample into high and low differentiation goods.

E The TPSFE Estimator Relative to De Loecker, Gold-

berg, Khandelwal and Pavcnik (2016)

In this subsection, we extend the framework of De Loecker, Goldberg, Khandelwal and Pavcnik

(2016) to add a destination dimension, and discuss the structural assumptions that would be

required for our main identification condition (B20) to be satisfied in this new framework.

E.1 Structural Interpretation of Assumptions Required by Our Esti-

mator

We start by writing the production function as follows:

Qfidt = Ffi(Vfidt,Kfidt)ΩfitΨfid (E1)

where Qfidt represents the quantity of exports for product i from firm f to destination d at

time t; Vfidt denotes a vector of variable inputs, {V 1
fidt, V

2
fidt, ..., V

v
fidt}; Kfidt denotes a vector

of dynamic inputs; a firm-product pair make decisions on allocating its dynamic inputs across

destinations in each time period, {K1
fidt, K

2
fidt, ..., K

k
fidt}. We stress that the above function allows
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for destination-specific inputs {Vfidt,Kfidt} as well as destination-specific productivity differences,

Ψfid, at the firm and product level. In addition, we allow for the production function and Hicks-

neutral productivity to be firm-product specific.

Specifically, we posit the following:

1. The production technology is firm-product-specific.

2. Ffi(.) is continuous and twice differentiable w.r.t. at least one element of Vfidt, and this

element of Vfidt is a static (i.e., freely adjustable or variable) input in the production of

product i.

3. Ffi(.) is constant return to scale.

4. Hicks-neutral productivity Ωfit is log-additive.

5. The destination specific technology advantage Ψfid takes a log-additive form and is not time

varying.

6. Input prices Wfit are firm-product-time specific.

7. The state variables of the firm are

sfit = {Dfit,Kfit,Ωfit,Ψfid,Gfi, rfidt} (E2)

where Gfi includes variables indicating firm and product properties, e.g., firm registration

types, product differentiation indicators. rfidt collects other observables including variables

that track the destination market conditions, such as the bilateral exchange rate and desti-

nation CPI.

8. Firms minimize short-run costs taking output quantity, Qfidt, and input prices, Wfit, at time

t as given.

The assumptions 1, 2, 4, 8 are standard in the literature. De Loecker, Goldberg, Khandelwal

and Pavcnik (2016) also posit them, but in our version we allow the production function to be firm

specific and the Hicks-neutral productivity to be product-specific. Compared to the conditions

assumed in the literature, assumption 5 is a relaxation: it allows for the possibility that (log-

additive) productivity be destination-specific.

Assumptions 6 and 7 allow prices of inputs to be firm and product specific. These two conditions

indicate that firms source inputs at the product level, and then allocate these inputs into production

for different destinations. Note that the firm can arrange different quantities of inputs and have

different marginal costs across destinations for the same product.
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The assumption that is crucial to our identification is that the production technology is constant

returns to scale (condition 3). This condition implies that the marginal cost at the firm-product-

destination level does not depend on the quantity produced. If changes in relative demand and

exports across destinations were systematically associated to changes in relative marginal costs,

condition (B20) would be violated. As discussed in the next subsection, looking at the solution to

the firms’ cost minimization problem, condition 3 ensures that the difference in the marginal costs

across destinations only reflects technology differences varying at the destination dimension.

E.2 The cost minimization problem by firm-product pair

Write the cost function

L(Vfidt,Kfidt, λfidt) =
V∑
v=1

W v
fit

∑
d∈Dfit

V v
fidt +

K∑
k=1

Rk
fit

 ∑
d∈Dfit

Kk
fidt −Kk

fit


+
∑
d∈Dfit

λfidt[Qfidt − Ffi(Vfidt,Kfidt)ΩfitΨfid]

where Kk
fit is the accumulated capital input k in the previous period; Kk

fidt stands for the corre-

sponding allocation for destination d; Rk
fit is the implied cost of capital.18

The F.O.C.s of the cost minimization problem are

∂Lfit
∂V v

fidt

= W v
fit − λfidtΩfitΨfid

∂Ffi(.)

∂V v
fidt

= 0, (E3)

∂Lfit
∂Kk

fidt

= Rk
fit − λfidtΩfitΨfid

∂Ffi(.)

∂Kk
fidt

= 0. (E4)

Conditions (E3) and (E4) need to hold across inputs and across destinations, which implies the

following:

W 1
fit

W v
fit

=

∂Ffi(.)

∂V 1
fi1t

∂Ffi(.)

∂V v
fi1t

=

∂Ffi(.)

∂V 1
fi2t

∂Ffi(.)

∂V v
fi2t

= ... =

∂Ffi(.)

∂V 1
fidt

∂Ffi(.)

∂V v
fidt

∀v = 1, ..., V ; d ∈ Dfit, (E5)

W v
fit

Rk
fit

=

∂Ffi(.)

∂V v
f,i,1,t

∂Ffi(.)

∂Kk
fi1t

=

∂Ffi(.)

∂V v
fi2t

∂Ffi(.)

∂Kk
fi2t

= ... =

∂Ffi(.)

∂V v
fidt

∂Ffi(.)

∂Kk
fidt

∀v, k; d ∈ Dfit. (E6)

Note that the production function is assumed to be firm-product specific and constant return to

scale. Together with equations (E5) and (E6), these assumptions imply that the allocation of

18The assumption that the production function Ffi(.) is firm-product-specific ensures the implied cost of capital
Rkfit is not destination-specific.
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variable inputs is inversely proportional to the ratio of the productivity deflated outputs across

destinations, i.e.,

Qfidt

ΩfitΨfid

= c · Qfid′t

ΩfitΨfid′
→ cV ∗fidt = V ∗fid′t and cK∗fidt = K∗fid′t. (E7)

Utilizing the relationship of (E7) and the assumption that Ffi(.) is constant return to scale, it is

straightforward to see

∂Ffi(V
∗
fidt,K

∗
fidt)

∂V v
fidt

=
∂Ffi(cV

∗
fidt, cK

∗
fidt)

∂(cV v
fidt)

=
∂Ffi(V

∗
fid′t,K

∗
fid′t)

∂V v
fid′t

. (E8)

Rearranging (E3) and (E8) yields:

λfidt =

(
ΩfitΨfid

W v
fit

∂Ffi(V
∗
fidt,K

∗
fidt)

∂V v
fidt

)−1

=

(
ΩfitΨfid

W v
fit

∂Ffi(V
∗
fid′t,K

∗
fid′t)

∂V v
fid′t

)−1

. (E9)

Therefore, the relative marginal cost across destinations is static, depending on the relative pro-

ductivity difference across destinations, i.e.,

λfidt
λfid′t

=
Ψfid′

Ψfid

(E10)

Although the marginal cost is firm-product-destination specific and time-varying, the relative

marginal cost is not. Therefore, condition (B20) is satisfied.

E.3 An alternative approach

An alternative approach to reconcile our work with De Loecker, Goldberg, Khandelwal and Pavcnik

(2016) consists of directly redefining what a product variety is in their model. Namely, if one

redefines a product-destination pair as a variety, i.e., j = {i, d}, then the original setting and

assumptions will go through without any change.

We argue that this approach is not very useful, for two reasons. The first one is practical.

De Loecker, Goldberg, Khandelwal and Pavcnik (2016) define a product variety as a two-digit

industry. The need to define a product at the industry level is mainly due to data limitations. If

one adopts a more refined product definition, for instance, the estimator by De Loecker, Goldberg,

Khandelwal and Pavcnik (2016) would suffer from a small sample problem—there would not be

enough power to estimate. The small sample problem will be much more severe if one defines a
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product-destination pair as a variety. This is due not only to the smaller number of observations

in each cell, but also to the frequent changes in the set of destinations a firm exports a product to.

The second reason is related to conceptual assumptions regarding production functions. De Loecker,

Goldberg, Khandelwal and Pavcnik (2016) rely on the assumption that the production function is

the same for single- and multi-product firms. When redefining a product-destination pair as a va-

riety, the identification condition would require the production function to be product-destination

specific and invariant along the firm dimension. In the context of our problem, controlling for

firm-product level marginal cost is the primary concern. We think that keeping the flexibility of

the production function at the product level is extremely valuable.

F General Model-Free Relationships

F.1 The separation of the marginal cost and the markup

We start by deriving a general expression of a firm’s profit-maximizing price. Please note that

variables in the following derivation are in levels rather than logarithms. Write:

max
p
q(p, ξ)p− c[q(p, ξ), ζ]. (F1)

The firm takes its demand function, q(p, ξ), and cost function, c[q(p, ξ), ζ], as given and maximises

its profit by choosing its optimal price p. ξ and ζ are exogenous demand and supply function

shifters respectively.

The first order condition of the firm is given by

∂q(p, ξ)

∂p
p+ q(p, ξ) =

∂c[q(p, ξ), ζ]

∂q(p, ξ)

∂q(p, ξ)

∂p
(F2)

From this equation, we can derive the optimal price as

p∗ =
ϑ(p∗, ξ)

ϑ(p∗, ξ)− 1
mc[q(p∗, ξ), ζ]. (F3)

where ϑ(p, ξ) ≡ −∂q(p,ξ)
∂p

p
q(p,ξ)

, mc[q(p, ξ), ζ] ≡ ∂c[q(p,ξ),ζ]
∂q(p,ξ)

.
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F.2 The equilibrium relationship between quantity and price under

pure supply versus demand shocks

Proposition 3. If changes in the equilibrium price and quantity are solely driven by shocks to the

supply side, the following expression holds

d log(q∗)

d log(p∗)
= −ϑ(p∗, ξ) (F4)

Proof.

d log(q(p∗(ξ, ζ), ξ)) =
1

q(p∗(ξ, ζ), ξ)
dq(p∗(ξ, ζ), ξ)

=
1

q(p∗(ξ, ζ), ξ)

(
∂q(p∗(ξ, ζ), ξ)

∂p∗(ξ, ζ)
dp∗(ξ, ζ) +

∂q(p∗(ξ, ζ), ξ)

∂ξ
dξ

)
(F5)

d log(p∗(ξ, ζ)) =
1

p∗(ξ, ζ)
dp∗(ξ, ζ) (F6)

Substituting equation (F6) into (F5) and applying the condition dξ = 0 completes the proof.

Proposition 4. If changes in the equilibrium price and quantity are solely driven by shocks to the

demand side, the following expression holds

d log(q∗)

d log(p∗)
=
ϕq(p

∗, ξ)

ϕp(ξ, ζ)
− ϑ(p∗, ξ) (F7)

where ϕq(p
∗, ξ) ≡ ∂q(p∗,ξ)

∂ξ
ξ

q(p∗,ξ)
and ϕp(ξ, ζ) ≡ ∂p∗(ξ,ζ)

∂ξ
ξ

p∗(ξ,ζ)

Proof.

d log(q(p∗(ξ, ζ), ξ)) =
1

q(p∗(ξ, ζ), ξ)

(
∂q(p∗(ξ, ζ), ξ)

∂ξ
dξ +

∂q(p∗(ξ, ζ), ξ)

∂p∗(ξ, ζ)
dp∗(ξ, ζ)

)
= (ϕq(p

∗, ξ)− ϑ(p∗, ξ)ϕp(ξ, ζ))
dξ

ξ
(F8)

d log(p∗(ξ, ζ)) =
1

p∗(ξ, ζ)
dp∗(ξ, ζ)

=
1

p∗(ξ, ζ)

(
∂p∗(ξ, ζ)

∂ξ
dξ

)
=ϕp(ξ, ζ)

dξ

ξ
(F9)

34



G Data

G.1 Chinese Customs Data

China’s export growth exploded over 2000-2014 (see table G1). Statistics from customs data on

firms, HS08 products, and firm-products highlight the growth at the extensive margin, including

both net entry of firms, and net entry of firm-products. The total number of active exporters

almost quintupled over our sample period, from 62,746 in 2000 to 295,309 in 2014. The number

of annual transactions at the firm-HS08 product level increased at roughly the same pace as the

number of exporters, from about 904 thousand in 2000 to 4.56 million in 2014. The value of total

exports measured in dollars increased ten-fold from 2000 to 2014.

Table G1: Chinese exports: firms, products and values, 2000-2014

HS08
Products

Firms
Firm-HS08

Product Pairs
Observations

Value
(billions US$)

2000 6,712 62,746 904,111 1,953,638 249
2001 6,722 68,487 991,015 2,197,705 291
2002 6,892 78,607 1,195,324 2,672,837 325
2003 7,013 95,683 1,475,588 3,328,320 438
2004 7,017 120,567 1,826,966 4,125,819 593
2005 7,125 142,413 2,277,801 5,252,820 753
2006 7,171 171,169 2,907,975 6,312,897 967
2007 7,172 193,567 3,296,238 7,519,615 1,220
2008 7,213 206,529 3,244,484 7,995,266 1,431
2009 7,322 216,219 3,363,610 8,263,509 1,202
2010 7,363 234,366 3,847,708 9,913,754 1,577
2011 7,404 254,617 4,153,534 10,645,699 1,898
2012 7,564 266,842 4,171,770 11,057,899 2,016
2013 7,579 279,428 4,140,897 11,643,683 2,176
2014 7,641 295,309 4,555,912 12,297,195 2,310

2000-2014 10,002 581,141 22,820,644 108,465,375 17,453

G.2 The evolution of exports by private, state-owned and foreign-

invested firms in China

In figure G1, we lay out some basic facts about the evolution of different types of firms among

Chinese exporters. In the Chinese Customs Database, firms report their registration type in one

of the following eight categories: state-owned enterprise, Sino-foreign contractual joint venture,
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Figure G1: The changing face of Chinese exporters, 2000-2014

Note: Calculations based on the universe of all exporters from the customs database of China. Three
types of foreign invested enterprises are reported in our dataset, namely wholly foreign owned
enterprises (coded as “4”), sino-foreign joint ventures by jointed equity (coded as “3”) and by
contractual arrangements that specify the division of tasks and profits (coded as “2”). The last type is
quantitatively small in firm number and trade values.
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Sino-foreign equity joint venture, wholly foreign owned enterprise, collective enterprise, private

enterprise, individual business, and “other” enterprise. We combine Sino-foreign contractual joint

ventures, Sino-foreign equity joint ventures, and wholly foreign owned enterprises into a single

category - foreign invested enterprises (FIEs). Firms with other ownership structures, including

collectives, individual businesses, and “other” enterprises, are lumped together under the descriptor

“Other” enterprises.

A well-known fact is the extraordinary rate of entry into export activity by private enterprises.

This is apparent in the top panel of the figure. From being a small and neglectable group in 2000,

the number of private enterprises directly exporting goods from China to the rest of the world rose

to over 200,000 by 2014.19 Perhaps less known and understood, however, is the economic weight of

a different category of exporters from China, the foreign-invested enterprises (FIEs). After a slow

and steady rise between 2000 and 2006, their number stabilized at about 75,000 firms—dwarfing

the presence of state-owned enterprises (SOEs). Indeed, in spite of the attention paid to them by

the media, there were only 10,000 registered SOEs at the start of our sample period. This number

gradually fell over time, as successive policy initiatives favored their privatization, or led some of

them to exit from foreign markets (top panel, figure G1).

The key message from the top panel of figure G1 is reinforced by the evidence on export values

and shares by different types of firms, shown in the bottom panel. By export value and share of

total exports, the most important single group of exporters from China is that of foreign-invested

enterprises. In 2014, the value of their exports was over US $1 trillion (bottom left panel of figure

G1). Over the period, exports from China that originated from firms that are wholly or partially

owned by foreigners fluctuated between 45 and 58% of China’s total exports.20

Conversely, the weight of SOEs, which were essentially at par with FIEs in 2000, declined

dramatically from 2000 to 2007 and then settled into a slow and steady negative trend (bottom

left panel, figure G1). This is clear evidence that the role of SOEs in foreign trade has been far

less dynamic than that of other types of firms. However, the diminishing weight of SOEs in foreign

trade has been more than made up by private firms—reflecting both entry of new firms into export

markets and privatization of SOEs. By the end of the sample, private firms account for a striking

40% of Chinese exports. We stress nonetheless that this large shift in export shares between SOEs

19At the start of our sample period, export activity was highly regulated in China with most rights to export
held by SOEs—only a very limited number of private enterprises were able to export directly. The result of this
was that in the earlier years post-2000 private enterprises desiring to export their merchandise exported through
SOEs.

20The importance of foreign involvement in Chinese exports has previously been documented by Koopman, Wang
and Wei (2014). Based on an accounting framework methodology and product-level trade flows, they show that
29.3 percent of Chinese export value comes from foreign, rather than domestic Chinese, value-added. This is not
inconsistent with our estimates; our complementary contribution is to document foreign engagement based on
ownership of exporting firms, rather than through the origin of the value-added content of exported goods.
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and private firms has not (so far at least) dented the share of exports by FIEs, which has remained

quite stable over our sample.

The question is whether, against this evolution in the number of exporters and export shares

by ownership, there are significant differences in strategic pricing.

G.3 Macroeconomic Data

Macroeconomic variables on nominal bilateral exchange rates, CPI of all destination countries

(normalized so that CPI=100 in 2010 for all series), real GDP in constant 2005 US dollars, and

the import to GDP ratio come from the World Bank. We construct the nominal bilateral exchange

rate in renminbi per unit of destination currency from China’s official exchange rate (rmb per US$)

and each destination country’s official exchange rate in local currency units per US$ (all series are

the yearly average rate). These variables are available for 152 destination countries in our sample.

For the 17 eurozone countries which we aggregate into a single economic entity, we use the CPI

index, bilateral exchange rate and import-to-GDP ratio for the euro area from the World Bank.

We construct a measure of real GDP in local currency for the eurozone using the reported GDP

in constant US dollars (2010) variable and the 2010 euro-dollar rate.

In our empirical analysis, we focus on nominal rather than real bilateral exchange rates. Esti-

mation using real exchange rates implicitly imposes a one-to-one linear relationship between each

nominal bilateral exchange rate and the ratio of CPI indices (i.e., destination CPI/origin CPI).

Real exchange rate series which embed this restriction are highly correlated with nominal exchange

rates. Since nominal exchange rate series are significantly more volatile over time than the ratio

of CPI indices, movements in the real exchange rate are primarily driven by fluctuations in nom-

inal exchange rates. It is not clear if restricting these two variables with significantly different

volatilities into a one-to-one linear relationship is justified in exchange rate pass through studies.

Throughout our analysis, we enter nominal bilateral exchange rates and destination CPI index as

two separate variables.

In all regressions, we enter variables in logged levels. A problem arising from using logged

levels rather than time differences is that nominal series, such as exchange rates and CPI indices,

cannot be compared directly across countries. To address this compatibility problem, note that the

nominal series can be re-written as a comparable measure plus an unobserved destination specific

drift, i.e.,

enominaldt = ecomparabledt + µd.

Under trade pattern fixed effects, the time-invariant destination-specific drift is absorbed into

the fixed effects, which enables us to correctly disentangle the effect of nominal exchange rate
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fluctuations from destination CPI movements.
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G.4 Trade Pattern Statistics by Product Differentiation

We calculate the trade pattern statistics reported in table 2 separately for high- and low-differentiation goods defined by our

CCHS classification. Inspecting Tables G2 and G3, we do not find significant differences in the statistics of market changes for

high- and low-differentiation goods in our sample.

Table G2: Number of Unique Trade Patterns - High Differentiation Goods

Total Number of Exporting Years (x)

Number of Unique
Trade Patterns (y)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Share

1 35.6 26.6 22.1 19.1 16.4 13.9 11.6 10.7 9.3 8.1 6.5 5.7 5.8 5.1 22.8
2 64.4 23.7 16.4 12.9 10.7 8.9 7.6 7.0 6.2 5.5 4.7 4.8 4.5 4.4 27.7
3 49.7 20.3 14.1 10.9 8.8 6.9 6.2 5.3 4.8 3.8 3.8 3.4 3.4 14.6
4 41.2 17.7 12.2 9.2 7.0 6.0 5.1 4.4 3.7 3.2 2.7 3.1 9.1
5 36.2 15.8 11.2 8.3 6.4 5.0 4.4 3.7 3.0 2.7 2.4 6.3
6 34.0 14.7 9.9 7.6 6.1 4.8 3.5 3.0 2.4 2.3 4.7
7 33.3 13.6 9.2 7.1 5.4 4.6 3.6 3.0 2.3 3.7
8 35.1 13.7 9.1 7.0 5.3 4.5 3.3 2.3 3.1
9 33.1 13.3 9.2 6.5 5.0 3.7 2.8 2.2
10 33.5 13.1 9.0 6.8 4.8 3.1 1.7
11 33.2 12.9 9.1 6.0 3.5 1.3
12 35.6 13.6 7.8 5.3 1.0
13 33.9 13.2 6.6 0.7
14 36.5 11.8 0.5
15 41.5 0.5

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: We start from the whole sample of all firms selling high differentiation goods and drop firm-product pairs that only exported once in their lifetime. For
each firm-product pair, we calculate its total number of exporting years and the number of unique trade patterns in its lifetime and then put it into the relevant
cells of the table. The last column gives the share of firm-product pairs with y number of unique trade patterns.
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Table G3: Number of Unique Trade Patterns - Low Differentiation Goods

Total Number of Exporting Years (x)

Number of Unique
Trade Patterns (y)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 Share

1 36.1 26.6 22.6 19.5 16.9 14.1 12.0 10.0 8.3 7.3 5.9 5.3 4.4 4.4 23.9
2 63.9 23.0 16.5 13.1 10.9 9.2 7.7 6.5 5.8 5.2 4.4 3.8 3.1 3.3 29.1
3 50.4 20.3 14.1 11.1 8.9 7.2 6.3 5.4 4.6 3.9 3.2 2.7 2.8 15.4
4 40.6 17.6 12.2 9.4 7.4 6.3 5.1 4.3 3.4 2.6 2.6 2.4 8.8
5 35.7 15.9 11.1 8.4 6.7 5.4 4.6 3.8 2.8 2.6 2.3 6.0
6 33.1 15.0 10.2 7.7 6.2 5.2 3.9 3.0 2.4 2.1 4.4
7 32.3 14.0 9.9 7.3 5.6 4.5 3.8 2.8 2.1 3.3
8 33.0 13.7 9.6 7.0 5.2 3.9 3.2 2.3 2.6
9 32.9 13.6 9.0 6.8 5.1 3.7 2.5 1.9
10 33.1 13.2 8.7 6.8 5.3 3.3 1.4
11 33.9 13.2 8.9 6.9 3.5 1.1
12 36.2 13.7 8.9 5.0 0.8
13 37.1 14.0 7.5 0.6
14 37.3 12.4 0.4
15 44.2 0.4

Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: We start from the whole sample of all firms selling low differentiation goods and drop firm-product pairs that only exported once in their lifetime. For
each firm-product pair, we calculate its total number of exporting years and the number of unique trade patterns in its lifetime and then put it into the relevant
cells of the table. The last column gives the share of firm-product pairs with y number of unique trade patterns.
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G.5 Additional Information on the CCHS Classification

G.5.1 The use of measure words in Chinese grammar

To illustrate how measure words encode meaning in Chinese, consider the problem of counting

three small objects. Chinese grammar requires the use of a measure word between the number

and the noun being counted. Thus, to say “three ballpoint pens,” or “three kitchen knives,”

one would say the English equivalent of “three long-thin-cylindrical-objects [zh̄ı, 支] ballpoint

pens” and “three objects-with-a-handle [bă,把] kitchen knives.”21 Both of these objects, ballpoint

pens and kitchen knives, are measured with count/discrete classifiers (zh̄ı and bă, respectively)

and are, in our classification, high differentiation goods. In contrast, products reported with

mass/continuous classifiers including kilograms (cereal grains, industrial chemicals), meters (cotton

fabric, photographic film), and cubic meters (chemical gases, lumber) are low differentiation goods.

Because measure words encode physical features of the object being counted, they allow us to

identify when statistical reporting is for a high versus low differentiation good. According to Cheng

and Sybesma (1999), “...the distinction between the two types of classifiers is made with explicit

reference to two different types of nouns: nouns that come with a built-in semantic partitioning

and nouns that do not – that is, count nouns and mass nouns.”

G.5.2 Comparison to quantity-reporting in other customs systems

While the proposed CCHS classification of goods could lead to some amount of mis-classification

because there are some count nouns which exhibit low levels of differentiation and some mass nouns

which are quite differentiated, a Chinese-linguistics-based approach to goods classification is still

valuable for several reasons. First, nouns with built-in semantic partitioning such as televisions,

microscopes and automobiles are high differentiation goods regardless of whether their trade is

reported in metric tonnes or units. This is a key advantage of relying on Chinese measure words to

classify tradeable goods: measure words clearly identify objects that inherently are semantically

partitioned (i.e. are distinct objects), relative to goods that exist as partitionable masses. Second,

the use of reported quantity data in other countries’ customs systems to identify discrete objects

could be less accurate or consistent for a number of reasons discussed below. Finally, the choice

of the measure word is predetermined in the minds of Chinese speakers by grammatical rules that

have existed for centuries. This choice is clearly exogenous to and predates modern statistical

reporting systems.

Like Chinese, Japanese requires the use of measure words between a number word and a

21English uses measure words; “two dozen eggs” and “a herd of cattle” are two examples. The difference lies
in the extent to which unique measure words exist for Chinese nouns and the fact that proper Chinese grammar
always requires the use of the appropriate measure word when counting.
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noun when counting. Documentation for Japanese trade declarations instructs that the WCO

measurement unit “NO” (the English abbreviation for number of items) subsumes 11 indigenous

Japanese measure words used with discrete nouns (個、本、枚、頭、羽、匹、台、両、機、

隻、着). We interpret these instructions from Japanese customs declarations as a validation

of our approach of using count classifiers in the Chinese Customs Database to identify discrete

products in the Harmonized System. However, because the official measure of discrete items used

in Japanese customs data is an English word, we cannot build a linguistics-based classification of

discrete and continuous goods directly from measure words in Japanese data. This is one reason

why we prefer to build the classification from Chinese rather than Japanese trade data.22

Although goods are inherently discrete (e.g., televisions, automobiles) or continuous (e.g., grain,

liquid industrial chemicals), in some customs datasets, discrete products might only be reported

by net weight rather than by net weight AND countable units, or quantity reporting could be

inconsistent. While the WCO has recommended since 2011 that net weight be reported for all

transactions and supplementary units, such as units/pieces, be reported for specific Harmonized

System products, these recommendations are non-binding. At one end of the spectrum, EU mem-

ber states follow their own variation of the WCO guidelines and report net weight as well as a

supplemental quantity unit for specific CN products. At the other end, administrative customs

data for Egyptian exports over 2005-2016 lists 32 distinct measures of quantity with Egyptian

statistics reporting only one measure of quantity per transaction, rather than the two, net mass

and supplementary unit, recommended by the WCO. Overall, 87% of Egyptian export observations

report net mass (net pounds) as the unit of quantity, only 0.006% report “pieces” as the unit of

quantity, and the remainder are scattered across official WCO and alternative measures. Authors’

calculations from EID-Exports-2005-2016 obtained from http://erfdataportal.com.

G.5.3 The dispersion of prices for high and low differentiation goods: A telling

example

To provide intuitive evidence about the relevance of our classification in studies of pricing to

market, we offer a case study of price adjustments by firms producing two different products – one

low differentiation good and one high differentiation good. We select, respectively, canned tomato

paste (measured in kilograms) and wheeled tractors (measured with liàng, 辆).

In figure G2, we plot the dispersion of price residuals across destinations for the top three

exporters of tomato paste (upper panel) and wheeled tractors (lower panel) in 2007 and 2008. For

each annual observation of a sale to a destination, we calculate the deviation of the sales price

from its mean across all destinations within the firm-product-year triplet (where sales price is the

22We thank Taiji Furusawa, Keiko Ito, and Tomohiko Inui for answering our questions about the use of measure
words in Japanese trade data.
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Figure G2: Price dispersion across destinations for top three firms in 2007 and 2008

Example 1: Canned Tomato Paste (a low differentiation product)

Example 2: Wheeled Tractors (a high differentiation product)

Note: Firm-level price dispersion for tomato paste (HS20029010) and wheeled tractors (HS87019011) is calculated
as the deviation from the mean log unit value, denominated in RMB, across destinations at the firm-product-year
level, i.e., uvifdt − uvift. For this figure, we begin with a balanced panel of firm-product-destination observations
for two consecutive years, 2007 and 2008, and plot the observations of residual price dispersion for the top three
firms based on the number of observations in the constructed balanced panel. Red observations are for
destinations whose currency appreciated relative to the renminbi between 2007 and 2008 while blue observations
are for destinations whose currencies depreciated.
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log unit value in renminbi), i.e. uvfidt−uvfit, and plot these deviations using different shapes (i.e.,

triangle, square, and circle) for each firm. The x-axis measures positive and negative deviations

of the sales price from the mean value in 2007; the y-axis measures the deviations from the mean

in 2008.23 Any observation on the 45 degree line is a product whose relative premium or discount

in its destination d did not change between 2007 and 2008. Thus, a point lying on the 45 degree

line at 0.2 represents a product that was sold in some destination d at a 20% premium over the

firm’s mean price in both 2007 and 2008. An observation plotted above the 45 degree line depicts

a product-destination whose price residual increased between 2007 and 2008 relative to the firm’s

sales of the good in other destinations. Conversely, an observation plotted below the 45 degree

line represents a product-destination that saw its relative price fall.

We color-code each point representing a firm-product-destination triplet according to whether

the destination’s currency appreciated or depreciated over 2007-2008 relative to the other desti-

nations the firm was selling to. Red indicates relative appreciation, blue relative depreciation.

Above and below the 45 degree line, we report the number of observations marked by red dots,

corresponding to bilateral appreciations, in ratio to the number of observations marked by blue

dots corresponding to depreciations.

As apparent from these graphs, first, the relative price residuals for many firm-product-destination

triplets, measured in the producer’s currency, change from year to year. Second, the low differen-

tiation good, tomato paste, exhibits less dispersion in price residuals across destinations than the

high differentiation good, wheeled tractors. Third and most importantly, for high differentiation

goods, appreciation of the destination market currency relative to the renminbi is associated with

an increase in relative price residuals (red dots are denser above the 45 degree line), while depre-

ciation of the destination market currency is associated with a decrease in relative price residuals.

No such clear pattern emerges between relative price changes and relative currency changes for

the low differentiation good, tomato paste.

G.5.4 An example of the fine detail in Chinese measure words

To illustrate the variety of count classifiers used for similar objects, note that “Women’s or girls’

suits of synthetic fibres, knitted or crocheted” (HS61042300) and “Women’s or girls’ jackets &

blazers, of synthetic fibres, knitted or crocheted” (HS61043300) are measured with two distinct

Chinese count classifiers, “tào, 套” and “jiàn, 件,” respectively. Further, table G4 documents

the intrinsic information content of the measurement units for HS04 product groups 8211 and

8212. The Chinese language descriptions of all of these HS08 products conveys the similarity

23The magnitude of price dispersion within a year across destinations for wheeled tractors is of the same order of
magnitude as that found in European automobile prices in an important study of international market segmentation
by Goldberg and Verboven (2001).
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across products; each Chinese description contains the Chinese character ‘dao’ (刀), which means

‘knife’ and is a part of longer compound words including table knife and razor. Interestingly,

three different Chinese count classifiers, “tào, 套,” “bă, 把,” and “piàn, 片,” are used to count

sets of knives (HS82111000), knives and razors (HS82119100 - HS82121000), and razor blades

(HS82122000), respectively.

Two further points can be drawn from this table. First, this table illustrates that while Chinese

customs statistics are reported for eight digits, in many cases, the final two digits of Chinese

customs codes are 00, indicating that the eight digit code is identical to the corresponding six-

digit code in the universal Harmonized System. This exemplifies a wider observation that only

a single Chinese measure word is used to report quantity for all products in most six-digit HS

code. By extension, Chinese measure words can be used to develop a universal classification for

the Harmonized System at the six-digit product level. Second, the discrete noun “knife” or ‘dao’

(刀) appears in the description of every product reported below. This suggest that it would be

theoretically possible to develop a binary classification system of Harmonized System products as

discrete versus continuous through the use of natural-language processing software that is trained

to recognize discrete nouns in any language. In this light, the use of Chinese measure words to

identify discrete nouns can be seen as a shortcut in which the linguistic classification of Chinese

measure words replaces the data training step.

Table G4: Examples of count classifiers in the Chinese Customs Database

Quantity
Measure

HS08
Code

English Description Chinese Description

tào, 套 82111000 Sets of assorted knives 成套的刀

bă, 把 82119100 Table knives having fixed blades 刃面固定的餐刀

bă, 把 82119200 Other knives having fixed blades 其他刃面固定的刀

bă, 把 82119300
Pocket & pen knives & other
knives with folding blades

可换刃面的刀

bă, 把 82121000 Razors 剃刀

piàn, 片 82122000
Safety razor blades, incl razor
blade blanks in strips

安全刀片, 包括未分
开的刀片条

The most frequently used mass classifier is kilograms. Examples of other mass classifiers include

meters for “Knitted or crocheted fabric of cotton, width ≤ 30cm” (HS60032000), square meters for

“Carpets & floor coverings of man-made textile fibres” (HS57019010), and liters for “Beer made

from malt” (HS22030000).
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G.5.5 Integrating the CCHS classification with UN Broad Economic Categories

In table G5, we provide a breakdown of our CCHS classification within the UN’s Broad Economic

Categories (BEC) of intermediate, consumption and other goods. The majority of intermediate

goods are low differentiation and the majority of consumption goods are high differentiation, but

all BEC groups include both high differentiation and low differentiation goods.

Table G5: Classification of differentiated goods: CCHS vs. BEC

(a) Share of goods by classification: observation weighted

Corsetti-Crowley-Han-Song (CCHS)

Low Differentiation / High Differentiation /

(Mass nouns) (Count nouns)

BEC

Intermediate 29.8 2.7 32.5

Consumption 14.3 20.1 34.4

Other† 15.0 18.1 33.1

59.1 40.9 100.0

(b) Share of goods by classification: value weighted

Corsetti-Crowley-Han-Song (CCHS)

Low Differentiation / High Differentiation /

(Mass nouns) (Count nouns)

BEC

Intermediate 26.0 3.9 29.9

Consumption 8.6 14.0 22.6

Other† 12.6 34.9 47.5

47.2 52.8 100.0

Notes: Share measures are calculated based on Chinese exports to all countries including Hong

Kong and the United States during periods 2000-2014. †: The “Other” category refers to capital

goods and unclassified products by BEC classification, such as nuclear weapons.

G.5.6 Variation in the CCHS classification across industrial sectors

For twenty industrial sectors, Table G6 reports the share of products in each sector that are

classified as high differentiation according to the Corsetti, Crowley, Han, and Song (CCHS) classi-

fication. For the 36 measure words in our estimation dataset, we categorize goods measured with

the 24 count classifiers as high differentiation, while goods measured with 12 mass classifiers are
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Table G6: CCHS product classification across sectors

Sector (HS chapters)
Sector’s share of

total exports

Value share of
CCHS high

differentiation
products within

sector

1-5 Live animals; animal products 0.8 4.0
6-14 Vegetable products 1.0 0.6
15 Animal/vegetable fats 0.0 0.0
16-24 Prepared foodstuffs 1.4 0.0
25-27 Mineral products 2.1 0.0
28-38 Products of chemical and allied industries 4.6 0.2
39-40 Plastics/rubber articles 3.4 15.0
41-43 Rawhides/leather articles, furs 1.6 58.6
44-46 Wood and articles of wood 0.8 0.5
47-49 Pulp of wood/other fibrous cellulosic material 0.8 0.0
50-63 Textile and textile articles 13.2 68.4
64-67 Footwear, headgear, etc. 2.9 43.5
68-70 Misc. manufactured articles 1.8 3.2
71 Precious or semiprec. stones 1.4 0.0
72-83 Base metals and articles of base metals 7.7 1.9
84-85 Machinery and mechanical appliances, etc. 42.2 73.1
86-89 Vehicles, aircraft, etc. 4.7 66.1
90-92 Optical, photographic equipment etc. 3.5 79.7
93 Arms and ammunition 0.0 82.5
94-96 Articles of stone, plaster, etc. 6.0 65.0
97 Works of art, antiques 0.1 60.8

Source: Compiled by the authors from exports of Chinese Customs Database, 2000-2014, using the
Corsetti, Crowley, Han and Song (CCHS) classification.

treated as low differentiation.24 Column one lists the HS chapters that define the sector. The

second column provides the sector’s share in China’s total exports over 2000-2014. Quantitatively,

important export sectors with large shares of high differentiation goods include optical and pho-

tographic equipment (79.7 percent), machinery and mechanical appliances (73.1 percent), textiles

and apparel (68.4 percent), vehicles and aircraft (66.1 percent), stone and plaster articles (65.0

percent), leather goods (58.6 percent), and plastics and rubber articles (15.0 percent). The share

of high differentiation products across sectors varies widely, but lines up with our prior Machinery

and mechanical appliances and vehicles and aircraft are dominated by CCHS high differentiation

goods while virtually all chemicals and base metal products are low differentiation.

24We thank Prof. Lisa Lai-Shen Cheng for her feedback on our classification of measure words from the Chinese
Customs Database into count and mass classifiers.
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G.5.7 Applying Rauch’s classification to Chinese exports

In order to provide a Rauch classification for HS08 products in the Chinese Customs Database,

it was first necessary to concord the SITC Rev. 2 product codes from Rauch’s classification to

universal HS06 product codes. At the HS06 level, 80% of products map into a unique category –

differentiated, reference priced or organized exchange – but 20% of products have no unique map-

ping and are left unclassified. As noted in table 6, when applied to the universe of Chinese exports

at the HS08 level, the 1-to-many and many-to-many concordance issue means approximately 12%

of firm-product observations cannot be classified into Rauch categories.

Table G7: Mapping HS06 (2007) products to Rauch categories (Rauch’s liberal classification)

Number of HS06
codes

Percent of HS06
codes

HS06 codes with a unique Rauch classification 4,386 79.98
HS06 codes with multiple Rauch classifications 1,098 20.02

Total 5,484 10.00

G.5.8 Integrating the CCHS and Rauch classification systems

According to the Rauch classification system, products traded on organized exchanges are generally

regarded as commodities whose prices are expected to fluctuate with global supply and demand.

Reference price products are list-price goods: firms producing them compete somewhat directly

by supplying at the price published in an industry trade publication. These goods are thought to

offer a very limited scope for market power in pricing. Conversely, differentiated goods are defined

as goods for which prices are not publicly negotiated—which indicates limited direct competition

among firms and greater scope for charging markups. As argued above, our linguistics based

classification allows us to refine the Rauch classification by distinguishing differentiated goods

using two finer categories, and by classifying goods unclassified under Rauch.

To highlight the contribution of our product-feature-based classification system relative to

Rauch (1999)’s market-structure based classification, we now integrate the two in our empirical

analysis. Results are shown in table G8.
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Table G8: Markup Elasticity by Rauch Classification

Category All HD Goods LD Goods n. of obs

2000− 2005

Differentiated Products 0.07*** 0.10*** 0.04 3,339,574

(0.02) (0.03) (0.03) [812,719]

Organized Exchange 0.05 - 0.06 36,656

(0.09) (0.09) [11,945]

Reference Priced -0.01 0.28 -0.03 332,678

(0.08) (0.22) (0.08) [88,809]

2006− 2014

Differentiated Products 0.12*** 0.20*** 0.07*** 15,722,023

(0.01) (0.02) (0.02) [3,927,425]

Organized Exchange 0.00 - 0.00 99,373

(0.09) (0.09) [28,086]

Reference Priced 0.14*** 0.10 0.13*** 1,537,937

(0.04) (0.18) (0.04) [364,723]

Note: Estimates based on specification (17) and the sample of multi-destination trade flows at

the firm-product-time level to 152 destinations excluding Hong Kong and the United States. The

bilateral exchange rate is defined as RMBs per unit of destination currency; an increase means

an appreciation of the destination currency. Robust standard errors are reported in parentheses.

The actual number of observations used for identification is reported in the brackets of the last

column. Statistical significance at the 1, 5 and 10 percent level is indicated by ***, **, and *.

The most important takeaway from table G8 is that the estimated markup elasticity of “differ-

entiated” goods according to the Rauch classification, 12% in the later period, is an average of very

different elasticities for high and low differentiation goods, 20% and 7% respectively. Unsurpris-

ingly, our estimates of markup elasticities are zero for goods traded in organized exchanges, which

in our classification are treated as low differentiation goods. Note that for organized exchange-

traded goods we can expect prices in renminbi to change with their international market prices,

whose movements may be correlated with bilateral exchange rates. For reference-priced goods, con-

sistent with our hypothesis, we find no markup adjustment for the subset of high differentiation

goods in this set. Results are less straightforward however for the low-differentiation goods—we

find some degree of markup adjustment, although only in the later period.
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G.6 Quantity elasticities: alternative measures

In Table G9, we estimate the quantity elasticity to bilateral exchange rates by directly regressing

quantities on exchange rates, i.e., by using estimation equation A4 specified in Appendix A. This

specification of our TPSFE estimator is very close to the specification (2) in Berman, Martin and

Mayer (2012). Based on our data, we cannot estimate firm-level productivities (as these authors

do) to include in the analysis as regressors. We can nonetheless rank firms according to their

total export revenue at the product level, and based on this ranking divide firms in three bins—

small, medium, large. Further, we can refine this classification distinguishing firms by product

differentiation and end-use. As shown in the Table G9, we find that the larger exporters tend to

adjust quantity less to exchange rate movements, in line with the results in Berman, Martin and

Mayer (2012). The difference across estimates for small, medium and large firms is admittedly less

clear cut, compared to Berman, Martin and Mayer (2012)—possibly due to the difference in the

information used to classify firms (our is export-revenue-based, rather than value-added based),

and the fact that we do not have a proxy for productivity to include in the regressions. Yet, we

consistently find more muted quantity responses to exchange rates for consumption goods and

high differentiation goods, compared to intermediates and low-differentiation goods. Contrasting

results for high versus low differentiation goods, we find stark differences in the quantity elasticities

by firm size for the first group of goods only. Conversely, for low differentiation goods, whose

markets can be expected to be more competitive, quantity elasticities tend to remain relatively

high and significant for all firms, independent of their size. The last six rows of the table confirm

that, in most cases, quantity elasticities are higher for low differentiation goods relative to high

differentiation goods.
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Table G9: Quantity Elasticities by Firm and Product Types (2006 – 2014)

Firm Size

Product Category All Small Medium Large n. of obs

All 0.16*** 0.17*** 0.17*** 0.11* 19,272,657

(0.02) (0.03) (0.04) (0.06) [4,624,185]

High Differentiation (HD) 0.14*** 0.20*** 0.12 0.02 8,263,242

(0.03) (0.05) (0.07) (0.10) [1,849,755]

Low Differentiation (LD) 0.17*** 0.16*** 0.19*** 0.16** 11,009,415

(0.03) (0.04) (0.05) (0.07) [2,774,430]

Intermediate 0.17*** 0.13** 0.20*** 0.19* 6,288,252

(0.03) (0.06) (0.07) (0.10) [1,519,759]

— HD 0.13 0.08 0.13 0.27 577,029

(0.13) (0.19) (0.26) (0.36) [129,561]

— LD 0.17*** 0.13** 0.21*** 0.19* 5,711,223

(0.04) (0.06) (0.08) (0.11) [1,390,198]

Consumption 0.10*** 0.12* 0.11 0.02 6,133,394

(0.04) (0.06) (0.08) (0.10) [1,675,480]

— HD 0.05 0.15* 0.04 -0.14 3,580,469

(0.05) (0.09) (0.11) (0.14) [982,799]

— LD 0.15*** 0.10 0.20* 0.17 2,552,925

(0.05) (0.09) (0.11) (0.14) [692,681]

Note: Estimates based on specification (A4) and the sample of multi-destination trade flows at the firm-

product-time level to 152 destinations excluding Hong Kong and the United States. The bilateral ex-

change rate is defined as RMBs per unit of destination currency; an increase means an appreciation of

the destination currency. Robust standard errors are reported in parentheses. The actual number of ob-

servations used for identification is reported in the brackets of the last column. Statistical significance at

the 1, 5 and 10 percent level is indicated by ***, **, and *.

G.7 Comparison of estimators after dropping the singleton trade pat-

terns

In Table G10, we repeat our comparison of estimators in Table 12 using the stage 8 sample,

excluding the non-repetitive trade patterns. We report the statistics associated with the Stage 8

sample in Table G12 and conduct a wide range of checks on the distribution of relevant variables

across the Stage 7 and Stage 8 samples in our Online Appendix. In G11, we report the number of

unique trade patterns associated with the estimation sample of Stage 8.
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Table G10: Comparison across Estimators after Dropping the Singleton Trade Patterns

(1) (2) (3) (4) (5) (6)

TPSFE
HDFE

(fid+ t)
HDFE

(fit+ d)
HDFE

(fit+ fid)

HDFE
(fit+ fid)

in Two
Steps

(5) without
Trade

Pattern D
in the

second step

n. of obs

Destination Demean Yes No No No Yes Yes
Fixed Effects fidD fid+ t fit+ d fit+ fid fid+ fiD fid

2006-2014, HD

SOE 0.41*** 0.35*** 0.35*** 0.41*** 0.41*** 0.02*** 284,677

(0.05) (0.04) (0.04) (0.05) (0.04) (0.01)

FIE 0.33*** 0.38*** 0.26*** 0.33*** 0.33*** 0.02*** 445,035

(0.04) (0.03) (0.03) (0.04) (0.03) (0.01)

PE 0.10*** 0.13*** 0.07*** 0.11*** 0.11*** 0.02*** 1,149,655

(0.02) (0.02) (0.01) (0.02) (0.02) (0.00)

Small 0.05 0.07** 0.08*** 0.04 0.04 0.01 682,355

(0.04) (0.03) (0.02) (0.04) (0.03) (0.01)

Medium 0.18*** 0.23*** 0.14*** 0.18*** 0.18*** 0.02*** 654,521

(0.04) (0.03) (0.02) (0.04) (0.03) (0.01)

Large 0.34*** 0.44*** 0.21*** 0.34*** 0.34*** 0.03*** 613,937

(0.03) (0.03) (0.02) (0.03) (0.03) (0.01)

Intermediate 0.12* 0.09 0.07 0.11 0.11** 0.02* 137,328

(0.07) (0.07) (0.05) (0.07) (0.06) (0.01)

Consumption 0.33*** 0.38*** 0.24*** 0.35*** 0.35*** 0.04*** 1,040,714

(0.02) (0.02) (0.02) (0.02) (0.02) (0.00)

2006-2014, LD

SOE 0.09** 0.09*** 0.10*** 0.09** 0.09*** 0.03*** 361,675

(0.04) (0.03) (0.03) (0.04) (0.03) (0.01)

FIE 0.20*** 0.29*** 0.17*** 0.22*** 0.22*** 0.01 597,446

(0.04) (0.03) (0.02) (0.04) (0.03) (0.01)

PE 0.01 -0.01 0.02 0.01 0.01 0.02*** 1,846,478

(0.02) (0.01) (0.01) (0.02) (0.01) (0.00)

Small 0.05 0.04* 0.02 0.04 0.04 0.01* 1,025,635

(0.03) (0.02) (0.02) (0.03) (0.02) (0.01)

Medium 0.04 0.04 0.05*** 0.05* 0.05** 0.02*** 970,470

(0.03) (0.02) (0.01) (0.03) (0.02) (0.01)

Large 0.13*** 0.19*** 0.08*** 0.13*** 0.13*** 0.02*** 899,710

(0.03) (0.02) (0.01) (0.03) (0.02) (0.01)

Intermediate 0.04** 0.08*** 0.04*** 0.04** 0.04*** 0.02*** 1,445,816

(0.02) (0.01) (0.01) (0.02) (0.01) (0.00)

Consumption 0.09*** 0.13*** 0.05*** 0.09*** 0.09*** 0.02*** 720,020

(0.02) (0.02) (0.02) (0.02) (0.02) (0.01)

Note: Each cell reports the estimated markup elasticity from the estimation method specified on top of each column. Each row
indicates a different subsample. Within in a row, all methods are applied based on the same sample. The number of observations
in the last column corresponds to Stage 8 of the data cleaning procedure specified in appendix G.9. Robust standard errors are
reported in parentheses. Statistical significance at the 1, 5 and 10 percent level is indicated by ***, **, and *.
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Table G11: Number of Unique Trade Patterns Associated with the Firm-product Pairs in the
Stage 8 Sample (2006-2014)

No. of Unique Trade Patterns Observations % Cumulative %

1 4,420,003 91.33 91.33
2 376,796 7.79 99.12
3 40,301 0.83 99.95
4 2,192 0.05 100.00
5 41 0.00 100.00

Total 4,839,333 100.00

Note: After removing observations associated with singleton trade patterns, we are left with a sam-
ple of approximately 4.8 million observations. We calculate the number of unique trade patterns for
each firm-product pairs in this sample. The table reports the number of observations of firm-product
pairs associated with 1, 2, etc. unique trade patterns.

G.8 In which currency do exporters from China invoice?

The Chinese Customs Authority reports the value of export shipments in US dollars, but does not

provide any information about whether the trade was invoiced in US dollars, renminbi, another

vehicle currency or the currency of the destination. We turn to the customs records of Her Majesty’s

Revenue and Customs (HMRC) in the United Kingdom, one of China’s major destination markets,

to shed light on this issue.

We interpret the widespread prevalence of dollar invoicing for a country that issues its own

vehicle currency as suggestive that Chinese exports to other countries, including those that do not

issue vehicle currencies, are likely predominately invoiced in US dollars.

Since 2010, HMRC has recorded the invoicing currency for the vast majority of import and

export transactions between the UK and non-EU trading partners.25 Figure G3 presents the shares

of import transactions and import value into the UK from China by invoicing currency.26 Results

are reported for three currencies, the euro (EUR), pound sterling (GBP), and the US dollar (USD).

All transactions that use other currencies of invoice, for example, the Swiss franc, Japanese yen or

25The reporting requirements for invoice currency are described in UK Non-EU Trade by declared currency of
Invoice (2016), published 25 April 2017. See page 7: “Only data received through the administrative Customs
data collection has a currency of invoice declared... For Non-EU import trade, businesses must submit the invoice
currency when providing customs declarations. However, 5.0 per cent of Non-EU import trade value [in 2016] did
not have a currency... This was accounted for by trade reported through separate systems, such as parcel post and
some mineral fuels. For Non-EU export trade, businesses are required to declare invoice currency for declarations
with a value greater than £100,000. As a result of this threshold and trade collected separately (reasons outlined
above) 10.1 per cent of Non-EU export trade [in 2016] was declared without a currency.”

26 To construct this figure, we begin with the universe of UK import transactions for goods originating from China
over 2010-2016. Then, we aggregate all transactions within a year that are reported for a firm-CN08product-quantity
measure-currency quadruplet to an annual observation for that quadruplet. The variable “quantity measure” records
whether a transaction for a CN08 product is reported in kilograms or a supplementary quantity unit like “items”
or “pairs.” This leaves us with 2.004 million annual transactions which we use to construct figure G3.
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Figure G3: Invoicing currencies for UK imports from China
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Chinese renminbi, are aggregated into the category “Other.”27 In each graph, the dark bar refers

to the share of transactions and the light grey bar refers to the share of import value reported in

the relevant currency.

The first point to note is that virtually all of the UK’s imports from China are invoiced in one

of three major currencies: the pound sterling (GBP), the US dollar (USD), or the euro (EUR).

Very little trade is invoiced in any other currency, including the Chinese renminbi.

The second striking point is that the most important currency for Chinese exports to the UK

is the US dollar. The dollar’s prominence as the invoicing currency of choice for Chinese exports

to the UK rose over 2010-2016 with the share of import value growing from 71.1% to 77.7%. The

share of transactions invoiced in US dollars was stable at around 83% throughout the 2010-2016

period.28 Over this same period, the pound’s importance as an invoicing currency for imports

from China fell. While the share of transactions invoiced in sterling held steady at 10-12% over

the period, the share of import value fell from a high of 21.9% in 2010 to a low of 16.0% by

27 We do not report the number of transactions for which the currency is not reported; the number of transactions
with no currency reported falls below HMRC Datalab’s threshold rule of firms in at least one year and is, for
confidentiality reasons, omitted from the figure.

28See also Goldberg and Tille (2008) and Goldberg and Tille (2016) who document relatively large shares of
exports invoiced in dollars for many countries.
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2016. The importance of the euro as an invoicing currency for Chinese exports to Britain was low

throughout the 2010-2016 period.

This evidence is relevant to our empirical analysis insofar as a firm that invoices in a vehicle

currency, say dollars, also prices its good in that currency. Suppose that the firm sets one single

price for its product in dollars: this practice (arguably maximizing the markup relative to global

demand) would rule out destination specific adjustment in markups. In this case, our TPSFE

estimation should yield insignificant results. The same would be true if firms set different dollar

prices across markets (in line with evidence of deviations from the law of one price), but do not

adjust them in response to fluctuations in the exchange rate.

This suggests that our TPSFE estimator of markup elasticities can provide evidence on a

relevant implication of what Gopinath has dubbed the ‘International Price System.’ Specifically,

our empirical findings can inform us about the possibility of dollar invoicing translating into a

‘reference price system’ in which firms do not exploit market-specific demand elasticities, but price

in relation to global demand. If a reference price system dominates, we would expect to observe

firms setting one prevailing price in the global market for manufactured goods as they do for

commodities.

G.9 Price Changes and Trade Pattern Dummies

In this subsection, we show how we build our (unbalanced) panel. We will rely on an example

to explain how we identify price changes at the firm-product destination level and trade patterns

across destinations at the firm-product level in the data.

Consider a firm exporting a product to five countries, A through E, over 6 time periods. In the

following matrix, t = 1, 2, 3, ... indicates the time period and A, B, C, D, E indicates the country.

Empty elements in the matrix indicate that there was no trade.

t = 1 A B

t = 2 A B C E

t = 3 A B C D

t = 4 A C D E

t = 5 A B C

t = 6 A B C D

The following matrix records export prices by destination country and time:
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

pA,1 pB,1 . . .

pA,2 pB,2 pC,2 . pE,2

pA,3 pB,3 pC,3 pD,3 .

pA,4 . pC,4 pD,4 pE,4

pA,5 pB,5 pC,5 . .

pA,6 pB,6 pC,6 pD,6 .


Suppose the pricing currency is the dollar and we want to identify price changes in dollars. First,

we compare export prices denominated in dollars over time and at the firm-product-destination

level as illustrated in the following figure. Price changes less than 5% are marked with “x”.

t = 1 A B

t = 2 A B C E

t = 3 A B C D

t = 4 A C D E

t = 5 A B C

t = 6 A B C D

x
x

x

x
x

We then set the batch of individual prices associated with a price changes below±5% (pB,5, pC,4, pD,4, pE,4)

to missing. This gives 

pA,1 pB,1 . . .

pA,2 pB,2 pC,2 . .

pA,3 pB,3 pC,3 pD,3 pE,3

pA,4 . . . .

pA,5 . pC,5 . .

pA,6 pB,6 pC,6 pD,6 .


Note that we did not treat pC,5 as missing at this stage. This is because |pC,5 − pC,3| could be

> 5% even if both |pC,4 − pC,3| < 5% and |pC,5 − pC,4| < 5%.29 Rather, we repeat the above step

using the remaining observations as illustrated below.

29Variables are in logs.
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t = 1 A B

t = 2 A B C E

t = 3 A B C D

t = 4 A

t = 5 A C

t = 6 A B C D

In this example, we indeed find |pC,5−pC,3| > 5% and the remaining pattern is given as follows.

As no prices are sticky, we can stop the iteration.30 Note that as no price changes can be formulated

for the single trade record pE,2, this observation is dropped from our sample.

pA,1 pB,1 . . .

pA,2 pB,2 pC,2 . .

pA,3 pB,3 pC,3 pD,3 .

pA,4 . . . .

pA,5 . pC,5 . .

pA,6 pB,6 pC,6 pD,6 .


Now we have identified the universe observations with price changes. The next step is to formulate

the trade pattern dummy.

t = 1 A B

t = 2 A B C

t = 3 A B C D

t = 4 A

t = 5 A C

t = 6 A B C D

In this example, we find 5 trade patterns, i.e., A−B, A−B − C, A−B − C −D, A, A− C,

but only one pattern, A− B − C −D, which appears at least two times. To compare the change

in relative prices across destinations, we require the same trade pattern be observed at least two

times in the price-change-filtered dataset. Essentially, by formulating trade pattern fixed effects,

30In the real dataset, the algorithm often needs to iterate several times before reaching this stage.
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we are restricting the comparison within a comparable environment. Firms switch trade patterns

for a reason. Restricting the analysis to the same trade pattern also controls for other unobserved

demand factors affecting the relative prices.
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G.10 Data cleaning process and the number of observations

Table G12: Key Statistics for Our Data Cleaning Process

Number of Unique Values

Stage Observations Value (Billions US$) Destinations Products (HS06) Products (HS08) Products (Refined†) Firms

0 108,465,375 17,453 246 5,899 10,002 - 581,141
1 92,308,538 11,553 244 5,880 9,959 - 545,175
2 92,177,750 11,546 243 5,875 9,954 20,472 545,133
3 83,439,493 11,546 227 5,875 9,954 20,472 545,133
4 76,662,842 10,878 155 5,867 9,929 20,334 531,505
5 72,025,441 9,004 155 5,867 9,929 20,334 531,505
6 49,722,707 7,228 155 5,445 9,040 17,232 355,843
7 23,552,465 5,980 152 5,041 8,076 14,560 237,933
8 5,912,633 1,213 152 5,000 7,955 14,111 209,003

† A refined product is defined as 8-digit HS code + a form of commerce dummy. More precisely, this could be described as a variety but we used the term
product throughout the paper.

Stage 0: Raw data
Stage 1: Drop exports to the U.S. and Hong Kong
Stage 2: Drop if the destination identifier, product identifier or value of exports is missing; drop duplicated company names
Stage 3: Collapse at the firm-product-destination-year level; integrating 17 eurozone countries into a single economic entity
Stage 4: Drop observations if bilateral exchange rates or destination CPI is missing
Stage 5: Filtering price changes (in logs, denominated in dollar) < 0.05 at the firm-product-destination level following the method described by G.9
Stage 6: Drop single-destination firm-product-year triplets
Stage 7: Drop single-year firm-product-destination triplets
Stage 8: Formulating trade pattern; Drop single-year firm-product-trade-pattern triplets

(Finally, we drop “single-year firm-product-trade-pattern triplets.” Including these observations will not change the estimates obtained from the TPSFE
estimator because they do not provide the within firm, product and destination intertemporal variation upon which the estimator relies.)
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