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Cattolica for comments. Antonio Mele acknowledges financial support provided through the Swiss National Science

Foundation under grant 100018 169867. The views and opinions expressed herein are those of the authors and do not

necessarily reflect the views of Applied Academics, LLC.

1



1. Introduction

Two key milestones in modern asset pricing are the acknowledgment that capital market volatility is

random (Engle, 2004) and that dedicated portfolios of derivatives could be used to index and trade

forward-looking measures of this volatility. While asset volatility is now understood as a distinct

asset class, most of the insights into its measurement and pricing have been made in the equity space.

In comparison, relatively little is known regarding indexing and pricing interest rate volatility and

derivatives based thereupon. How do markets price uncertainty around interest rate movements?

How does benchmarking work in the fixed income volatility space? How is asset evaluation affected

in these markets by, or in anticipation of, tail events such as the Lehman’s bankruptcy or Fed rate

hikes? What type of derivative instruments would be able to mitigate losses arising from these events?

This paper addresses these questions in relation to government bond markets.

Relative to the existing literature, reviewed in more detail in Section 2, our contribution is to

construct a model with random government bond volatility and evaluate derivatives written on ex-

pected Treasury volatility, such as futures and options on futures. These instruments provide valuable

information regarding the term structure of expectations and risk premiums around uncertainty in

government bond volatility, which go well beyond the information contained by variance swap strikes,

reviewed in a moment.

Recent history provides us with an interesting laboratory where to test the predictions of our

model. Figure 1 plots the Cboe/CBOT 10-Year Treasury Note Volatility Index (TYVIX), calculated

by Cboe Exchange, Inc. (Cboe) since May 2013, which is the government bond counterpart to Cboe’s

popular VIX index for equity market volatility. Both indexes are linked to the fair value of variance

swaps, which are contracts with payoffs based directly on the volatility of the underlying assets (see

Section 3). In particular, in a government bond variance swap, one party purchases insurance from

another for protecting against exposure to realized government bond volatility over a given horizon.

To illustrate, the higher the expected uncertainty in Treasury markets in the next month, the higher

TYVIX. Figure 1 reveals that, while the two indexes sometimes display similar dynamics, there are

several episodes in which they exhibit divergent behavior. For example, TYVIX is more reactive than

VIX to the initial phases of the 2008 subprime mortgage crisis. As a second example, during Spring

2009, good signals about the U.S. economy would trigger a reverse flight-to-quality: the ensuing
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bond sell-off and equity rally would lead VIX to decrease and TYVIX to spike. As a third example,

the TYVIX almost doubles during the 2013 “taper tantrum,” when the Fed signaled the markets a

tightening in its policy stance; in this same period, the VIX is range-bounded, seemingly unaffected

by the events of the time.

As explained, our model aims to explain the value of derivatives on variance swap rates such as

TYVIX, in addition to TYVIX. The scope of our paper is practically relevant because, as we know,

indices of expected volatility such as VIX or TYVIX are not investable. Instead, VIX futures and

options are traded; and, TYVIX futures have been introduced already while options have not yet.

However, to date, there are no models available to price derivatives on expected government bond

volatility. Furthermore, the episodes in Figure 1 suggest that fixed income volatility has economic

content beyond that of equity volatility; accordingly, derivatives on fixed income expected volatility

might well exhibit different behavior than those on VIX. To illustrate, a portfolio comprised of fixed

income securities might not be adequately protected while only relying on VIX-related instruments:

fixed income volatility is likely to incorporate information on economic developments that may not

be captured by equity. Finally, it has been known for long time that it would be problematic to

price fixed income volatility only based on fixed income securities, due the incomplete nature of these

markets (Collin-Dusfresne and Goldstein, 2002).

Our model is calibrated to nearly fifteen years of data to assess the potential role of derivatives on

expected government bond volatility as both hedging instruments and sources of information. Figure

2 contains model predictions regarding market expectations and aversion to the timing of uncertainty

in Treasury markets and compares them with properties in equity markets. A well-known feature of

VIX is that its futures curve is often in contango: the VIX futures curve is often increasing, perhaps

reflecting risk aversion of the bid side of the market for volatility. Our calibrated model implies that

the U.S. Treasury market works quite differently: Figure 2 suggests that TYVIX futures markets may

be more often in backwardation, i.e., they may frequently come with an inverted future curve. A

frequent backwardation is not an arbitrage opportunity, but it is puzzling, meaning as it does that

insurance providers are not being paid for their role. The model predicts that this property results

due to the following mechanism. Interest rate uncertainty is driven by two factors: a short-term and

a long-term factor. In episodes of increased uncertainty, the term structure of government bond
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Figure 1. Indexes of equity and government bond volatility maintained by Chicago Board Options

Exchange, VIX and TYVIX. Data are sampled daily and span the period from November 2005 to

February 2016.
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Figure 2. Frequency distribution of the basis in the equity and Treasury volatility spaces. Left

panel : Distribution of the equity VIX basis, defined as the difference between 1-month future

contracts and VIX levels. Right panel : Distribution of the Treasury VIX basis, defined as the

difference between 1-month future contracts implied by the model of this paper and TYVIX

levels. Data are sampled daily and span the period from November 2005 to February 2016.
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volatility futures shifts up as a result of an increase in both uncertainty factors; however, the curve

enters and, then, remains in backwardation for a while, because the long-term uncertainty factor

mean-reverts at a very fast pace.

We rely on the model predictions and investigate how these properties may be exploited to help

protect portfolios exposed to interest rate volatility. We provide evidence that overlaying fixed in-

come portfolios with derivatives on government bond volatility may significantly mitigate drawdowns

occurring in such periods of acute volatility as those mentioned above. The model also helps un-

derstand episodes of historical importance such as the timing leading to inversions in the volatility

term structure vis-à-vis the increase in the Fed rate targets in 2015, the reaction of the volatility

curve to persistent or transitory shocks and, finally, the behavior of the “volatility of volatility,” that

is, the price of being insured against fluctuations in the volatility of Treasury markets throughout

hypothetical options on TYVIX futures. We show that the volatility of volatility may help anticipate

historically important episodes, such as the 2007 subprime crisis or the 2013 taper tantrum.

The basic assumption of our model is that the dynamics of the yield curve and volatility are

driven by three factors: the short-term rate, its instantaneous volatility and a long-run uncertainty

factor. Note that Mele and Obayashi (2015) provide a theoretical framework around the pricing of

government bond variance swaps in a “model-free” fashion that does not hinge upon any assumptions

other than absence of arbitrage and standard price dynamics based on Brownian motions. Our focus

in this paper is on modeling derivatives on the fair values of such variance swaps; we, thus, need to

rely on a parametric model that describes the random movements in the underlying risks. Our model

features two important properties. First, it accounts for the endogenous nature of government bond

volatility, as further elaborated below. Second, the model is formulated in a way that government

bond volatility futures and options can be priced and hedged while ensuring that the entire yield curve

is fitted without error. The second property is particularly appealing for the purpose of using the

model consistent with the pricing of other securities; but fitting the entire yield curve is also appealing

because it enables the very same curve to feed information regarding the direction of future volatility,

as explained in a moment.

Due to the distinct nature of interest rate volatility, our model relies on an analytical framework

that is separate from that available in the equity case. To illustrate, government bond variance swaps
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are priced under a market numéraire corresponding to the forward probability, not the risk-neutral

one. Moreover, the assets underlying our contracts are short-lived (i.e., futures on government bonds),

and this finite-horizon expiration complicates the analysis of the variance strike. The next section

reviews the state of the literature on these delicate topics. Last, but not least, we are pricing variance

swaps on futures that are, in turn, referenced to coupon bearing bonds: duration and, then, the entire

yield curve does impart information onto future volatility movements, as anticipated.

Not only do numéraires matter while pricing fixed income volatility. It is the very same concept

of volatility that needs to be carefully defined in our context. Government bond volatility needs to

satisfy no-arbitrage restrictions jointly with the underlying assets. Intuitively, bond price volatility

depends on the sensitivities of the bond price with respect to the variables that drive the whole yield

curve. Because these sensitivities are endogenous, bond price volatility cannot be modeled separately

from the underlying bond price. In the next section, we discuss two papers in which fixed income

volatility is modeled while taking into account its endogenous nature, although with a different scope

than ours. Note that equity volatility is more straightforward to model. For example, options written

on stocks with stochastic volatility can be evaluated through arbitrary specifications of volatility,

as the latter could be merely juxtaposed to the dynamics of stock returns for practical derivative

evaluation purposes (see, e.g., Heston, 1993).1 Unlike equity volatility dynamics, which may be

specified exogenously without violating no-arbitrage conditions, government bond volatility must be

consistent with the dynamics of the whole yield curve. Our model takes these features into account,

and also provides quasi-closed form solutions that can be readily implemented to evaluate futures

and options on volatility indices while also ensuring that the underlying indices are priced without

error.

The plan of the paper is as follows. The next section contrasts our paper with the existing

literature. Section 3 provides a succinct description of the basic framework underlying government

bond volatility: the dynamics of the underlying assets, the value of dedicated government bond

variance swaps, and an index of forward-looking volatility arising therefrom. Sections 4 and 5 develop

a parametric model of bond price volatility that leads to predictions on this government bond volatility

index as well as the price of futures and options referenced to the index. Section 6 contains our

1General equilibrium models of equity evaluation lead to a similar kind of endogeneity though (see, e.g., Mele, 2007).
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empirical findings. Section 7 concludes. Three Appendixes contain technical details omitted from the

main text.

2. Related literature

The literature on contingent claim theory for fixed income volatility is much more recent than in the

equity space. A well-known accomplishment in the equity literature is to have identified conditions

under which variance swaps may be priced in a model-free manner.2 In an analogous effort, Mele and

Obayashi (2015) provide a systematic account of expected volatility that spans a variety of segments

in the fixed income universe such as, for example, interest rate swaps (IRS), government bonds, time-

deposits and credit. They identify the appropriate numéraire and probability to be used to evaluate

variance swaps in each of these markets. For example, the fair value of a government bond variance

swap links to the expected variance under the forward probability; in the case of a variance swap on

IRS, the pricing probability is the annuity probability; in the credit space, the appropriate probability

is the risky annuity. To illustrate, the Cboe SRVIX index launched in 2012 is a measure of expected

basis point realized volatility in the IRS space under the annuity probability.3

This paper makes a natural step forward, and considers derivatives written on such variance swap

strikes in the government bond market. To achieve this task, we need to formulate a model for the

whole term structure of interest rates and, hence, expected volatility, which takes into account no-

arbitrage restrictions across all maturities. Note that Cieślak and Povala (2016) also model the term

structure of expected volatility of yields (a model distinct from ours), although they do not consider

the pricing of derivatives written on this volatility. To illustrate, the authors examine properties of

expected realized yield volatility under the risk-neutral probability. Their focus is certainly important

but different from ours because, as noted, we need to price a government bond variance swap rate

under the forward probability. Our focus is precisely on modeling the value of future and option

derivatives referenced to this variance swap rate. Moreover, we are interested in bond price volatility,

not yield volatility, as derivative instruments on price volatility seem to be more suited for market

adoption, as also witnessed by Cboe launch of futures on TYVIX.

2See, e.g., Demeterfi, Derman, Kamal and Zou (1999,a,b), Bakshi and Madan (2000), Britten-Jones and Neuberger

(2000), and Carr and Madan (2001).
3See Chapter 2, Section 2.5 in Mele and Obayashi (2015).
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Our paper also relates to Choi, Mueller and Vedolin (2017). The authors also consider variance

swaps in Treasury markets and, consistent with Mele and Obayashi (2015), they price them under the

forward probability. However, their formula is less general than that in Mele and Obayashi (2015), as

the authors do not model the discrepancy between the maturity of the future underlying government

debt and the maturity of the variance swap (see Proposition 1 in Section 3 of the present paper).

More fundamentally, the focus of Choi, Mueller and Vedolin is the pricing of variance swaps, which

is, instead, one of the starting points of our analysis. We actually show that futures and options on

TYVIX provide information that goes well beyond TYVIX. For example, Choi, Mueller and Vedolin

show that Treasury markets command a variance risk premium and that selling realized volatility

against a fixed strike may be profitable. In other words, gamma trading may be profitable on the sell

side. Instead, we consider vega strategies, and we show that the term structure of government bond

uncertainty matters; now, selling futures on expected volatility may be far from being a profitable

strategy, due to backwardation (see Figure 2). Furthermore, our model is also used to investigate

higher order properties of expected volatility: we predict values of European-style options written on

TYVIX futures, and investigate empirical properties of the resulting “volatility of volatility.”

Finally, our paper relates to work by Trolle and Schwartz (2014) in the IRS space. The authors

consider variance risk premiums in the IRS market and, following Mele and Obayashi (2015), evaluate

an IRS variance swap by re-scaling the variance payoff by the annuity factor. Parallel work on variance

risk premiums in the IRS market, and relying on the the SRVIX index, includes Mele, Obayashi and

Shalen (2015). Fornari (2010) is an early paper on variance risk premiums in the IRS market. To our

knowledge, there are no attempts in the literature to model the value of future and option derivatives

on SRVIX. The task of the present paper is confined to government bond markets.

3. Government bond volatility: the underlying assets

3.1. Forward bond prices

Let  (T) be the forward price at , for delivery at , of a coupon bearing bond expiring at T, with

 ≤  ≤ T. We assume the bond pays off coupons 

over the sequence of dates ,  = 1 · · ·   , where

 is the frequency of coupon payments, and T ≡  . The forward price satisfies  (T) =
 
 (T)

()
,
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where  () is the price at  of a zero coupon bond expiring at  ≥ ,  
 (T) is the price at  of the

underlying bond,

 
 (T) ≡

X
=




 () +  (T)  (1)

and  is the first available coupon payment date a bondholder would have access to.

Let  be the instantaneous short-term rate at time  and  the risk-neutral probability. It is

well-known4 that in a diffusion setting,  (T) satisfies

 (T)
 (T)

=  (T) · 
   ∈ ( )  (2)

where  (T) is the instantaneous volatility process adapted to 
 , a multidimensional Brownian

motion under  (the -forward probability), defined through the Radon-Nikodym derivative





¯̄̄̄
F

=
−

 



 ()
 (3)

and F denotes the information set at time . Note that  (T) =  (T)−  (), where 

 (T)

denotes the instantaneous volatility of the coupon bearing bond price,  
 (T), and  () is the

instantaneous volatility on a zero coupon bond expiring at . We now describe the contracts that

help investors hedge against fluctuations in the realized volatility of  (T).

3.2. Government bond variance swaps

Consider the following payoff of a bond variance swap at time   

 (T) ≡ ̄ ( T)− P (  T)   ≤ 

where ̄ ( T) ≡
R 

k (T)k2  is the bond price integrated variance up to  , and P ( T)

is the variance swap strike. At inception, time-, the value of this contract is zero, such that

P (  T) =
1

 ( )
E

∙
−
R 

 ̄ ( T)

¸
= E

 (̄ ( T)) (4)

4See, e.g., Brigo and Mercurio (2006).
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where the second equality follows by a change of probability, and E and E

 denote time- conditional

expectations under the risk-neutral probability and under the  -forward probability.

That is, the fair value of the variance swap is the expected realized variance under the  -forward

probability. It is a notable point of departure from the standard equity case in which the fair value

of a variance swap is the risk-neutral expectation assuming interest rates are constant. For the case

at hand, we obviously cannot assume constant interest rates. Moreover, we still need to evaluate the

R.H.S. of the second equality in (4), which necessitates a theoretical treatment different from that

leading to the standard equity VIX methodology. This difference is due to a “maturity mismatch”:

the expectation in Eq. (4) is taken under the  -forward probability, but the maturity of the forward

price is  ≥  .

Formally, the dynamics of  (T) under the “variance swap pricing” probability (see Eq. (4))

are those under  , not under  as in Eq. (2), such that by Girsanov theorem,

 (T)
 (T)

=  (T) ( (T)−  (T))| {z }
≡ (T)

 +  (T) · 
   ∈ (  )  (5)

where 
 is a multidimensional Brownian motion defined under  . To illustrate, a variance swap

may have a maturity equal to one month, but be referenced to a forward maturing in 2 months. The

presence of a non-zero drift in Eq. (5) leads to a theoretical issue absent in the standard literature

on equity variance swaps. In particular, Mele and Obayashi (2015; Chapter 4) prove the following

result:

Proposition 1. The fair value of the variance swap in Eq. (4) is

P (  T) = 2
³
1− E



³
̄(T) − ̄ (  T)

´´
+

2

 ( )

ÃZ (T)

0

Put ()
1

2
 +

Z ∞

(T)
Call ()

1

2


!
 (6)

where Put () and Call () denote the prices of European puts and calls, written on bond forwards,

struck at , ̄ (  T) ≡ R 

 ( T)  , and  ( T) is defined as in Eq. (5).
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A forward looking gauge of government bond volatility can then be based on the following index

GB-VI (  T) ≡
r

1

 − 
P (  T) (7)

where P (  T) is as in Eq. (6).

Note that the first term in Eq. (6) is model-dependent: in general, the term ̄ (  T) is

random and a model is needed to determine its expectation under  . Even when ̄ (  T) is

deterministic, we would need to estimate the volatilities  (· ·) while at the same time relying on a
model that ensures no arbitrage restrictions on the volatility curve,  (· ·).

Eq. (B.11) in Appendix B provides the expression for ̄ (  T) predicted by the three-factor

model with random volatility introduced in Section 3. Mele and Obayashi (2015; Chapter 4) rely

on Vasicek’s model (a special case of the model in Section 3), and document that, in practice, the

contribution of the first term on the R.H.S. of Eq. (6) is very limited when  −  is small. For

example, Cboe maintains its TYVIX index relying on near- and next-month options on quarterly

futures as underlying, which generates a negligible impact on P (  T).

Note, finally, that the TYVIX index is calculated based on American options, not European. Mele

and Obayashi (2015; Chapter 4) show that the presence of an early exercise premium might inflate

the “true” index based on Eq. (7) by no more than one relative percentage point under realistic

market conditions. We shall henceforth refer to the government bond volatility index in Eq. (7) as

TYVIX for conciseness.

4. A model of forward bond price volatility

In the equity derivative literature, it is standard to model return volatility separately from the un-

derlying stock returns, as explained in the Introduction. By contrast, government bond volatility

cannot be taken to be exogenous. To illustrate, bond volatility converges to zero as time to maturity

goes to zero, regardless of whether volatility is random. This section develops a model in which

government bond volatility is determined while taking account of no-arbitrage restrictions on bond

price dynamics. First, we provide preliminary background to evaluate the whole yield curve we refer-

ence upon in this paper (see Proposition 2). Second, we use predictions within this background and
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determine TYVIX values that are consistent with no-arbitrage restrictions across all maturities (see

Propositions 3 and 4). Section 5 relies on this outcome and provides values of futures and options

referenced to TYVIX.

4.1. Fluctuating uncertainties

We consider a three-factor extension of the Ho and Lee (1986) model: one in which the short-term rate

 at any point in time  ≥  is a mean-reverting process with mean-reverting stochastic volatility;

and we also allow the expected short-term basis point variance to be time-varying, mean-reverting,

and driven by an independent factor. That is, we assume that

⎧⎪⎪⎪⎨⎪⎪⎪⎩
 =  ( −  )  + 1

2 = 
¡
 − 2

¢
 + 

³
1 +

p
1− 22

´
 =  (−  )  + 

√
3

(8)

where  are standard Brownian motions under the risk-neutral probability.

A standard assumption in the literature is that the short-term rate is mean-reverting around

another mean-reverting long-term trend (see, e.g., Chapters 12-13 in Mele, 2019). In this model,

basis point variance, 2 , is mean-reverting around a long-term, mean-reverting uncertainty factor,

 ; finally,  is an “infinite-dimensional” parameter that one may rely upon to fit the initial yield

curve at the initial date  without errors. Remaining notation for the constant parameters should be

straightforward. Note that we are assuming that the increments  are uncorrelated with  and

2 : this assumption makes the model tractable, leading to exponential affine prices (see Proposition

2 below), which facilitates the modeling of variance contracts and the price of futures and options

based thereon.

4.2. Discussion

In Eqs. (8),  is a time-varying albeit deterministic parameter. Our model is affine, as anticipated,

and precisely because the conditional characteristic function of our state vector can be shown to be

exponential-affine in the state ( 
2
  ), as in Duffie, Filipović and Schachermayer (2003). However,
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while we rely on an affine model, pricing volatility turns out to be challenging: the instantaneous

variances are affine in the state, but values of future and options on expected volatility are not.

These complications arise not only due to the presence of non-linear payoffs (e.g., square-root, in the

futures case), but also because the very same state variables follow complicated dynamics under the

relevant pricing probability (see, e.g., Eqs. (12) below). Therefore, in Section 6, we need to rely

on approximations and numerical methods to implement our pricing models for volatility derivatives

that are contained in Section 5.

Our motivation behind the two uncertainty factors is the following. Preliminary empirical evidence

gathered while calibrating a two-factor model (described in Appendix A) suggests that fluctuations

in long-term interest rate uncertainty affect developments in near-term expected rate volatility. This

preliminary evidence is at the basis of the formulation in (8), in which interest rate volatility fluctuates

around a long-term uncertainty factor,  . Trolle and Schwartz (2014) adopt a similar formulation

while modeling the volatility of swap rates. Note that the assumption that volatility mean-reverts

around a random term parallels similar assumptions made in the equity literature (e.g., Egloff, Leip-

pold and Wu, 2010; Bates, 2012; Menćıa and Sentana, 2013). The complication in this paper is that

we price bond price volatility; while the latter is driven by both 2 and , it also links, endogenously,

to the elasticities of the bond price with respect to changes in 2 and , as we explain below.

4.3. The reference yield curve

We begin with summarizing the key properties of a zero coupon bond price predicted by the model.

Proposition 2. If the short-term rate is solution to Eqs. (8), the price at  ≥  of a zero coupon

bond expiring at  when the state is (     ), is


¡
  

2
   

¢ ≡ ()−()+()
2
+()  (9)

for three functions  (·),  (·) and  (·) defined in Appendix B (see Eqs. (B.1), (B.2) and (B.3)).

Eq. (9) holds for any value taken by the time-varying parameter  (e.g., a constant); however,
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Appendix B provides the functional form for  (see Eq. (B.4)) such that the model predictions fit

the initial yield curve without errors (see Eq. (B.5)). This feature allows us to make predictions

regarding the future yield curve and, as discussed below, expected government bond volatility, while

feeding the model with all the bond prices observed at time , not only the short-term rate. It is

standard market practice to allow a model for such a perfect fit (see, e.g., Mele and Obayashi, 2016),

a procedure we have adapted to our environment with stochastic volatilities.

An interesting property of the model is that it allows the current yield curve to affect expected

volatility. How is this property possible? Intuitively, the yield curve determines how future coupons

are discounted, thereby affecting both the coupon bearing bond price and its volatility. For this

reason, these “price feedbacks” only apply to coupon-bearing bonds, as explained next.

4.4. Forward prices and volatility

This section identifies the forward price volatility  (T) in Eq. (2) predicted by the model of this

section. Consider, first, the price of the forward on the coupon bearing bond; by Eq. (1), it is

 (T) ≡ 
¡
 

2
   T

¢ ≡ X
=




 


¡
 

2
    

¢
+  



¡
 

2
   T

¢
 (10)

where

 
 ( ) ≡  



¡
 

2
    

¢ ≡ 
¡
 

2
   

¢

¡
 

2
   

¢ (11)

is the price of a forward expiring at  ≤ , written on a zero coupon bond expiring at some ,

and 
¡
 

2
   ·

¢
is the price of a zero coupon bond predicted by Eq. (9). We now rely on Eqs.

(10)-(11) and derive model-based predictions of volatility.

4.4.1. Zero coupon bonds

We first deal with zero coupon bonds. This case allows us to derive closed-form solutions for expected

volatility, which we shall use in Section 4.4.2 while pricing the volatility of coupon bearing bonds. In
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Appendix B, we show that, under  , a forward price 

 ( ) is solution to⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

 
 ( )

 
 ( )

= 
  + 

¡
1 ( ) 


1 + 2 ( ) 


2

¢
+
√



3 ( ) 


3

2 =
¡
 − () 

2


¢
 + 

³


1 +
p
1− 2

2

´
 = (− () )  + 

√



3

(12)

where the three volatility coefficients are, with · (·)  · (·) and · (·) defined as in Proposition 2,

 ( ) =  ()−  ()   = 1 2 3

1 (X ) ≡ −X () + X ()  2 (X ) ≡ 
p
1− 2X ()  3 (X ) ≡ X () 

(13)

and  () and  () are time-varying speeds of mean-reversion of the basis point variance 
2
 and

long-term uncertainty  , and equal to

 () ≡  +  ( ()−  ())   () ≡  − 2 ()   ∈ [  ]  (14)

Finally, Appendix B provides the expression for 
 (see Eq. (B.6)).

Denote the volatility vector of the forward price in Eqs. (12) with  
 (  ; ) ≡

[1 ( )  2 ( )  3 ( )
√
 ]. The next proposition provides an expression for

the realized variance of the forward on a zero coupon bond price, and an ensuing forward looking

volatility index.

Proposition 3. Assume the short-term rate is solution to Eqs. (8). Then, the instantaneous

realized variance of the forward price in Eqs. (12) is

k 
 (  ; )k2 = 1 ( ) 

2
 + 2 ( )  (15)

and the index of percentage volatility in Eq. (7) and, hence, the time  (square-root of the) fair value

of a variance swap expiring at  , on a forward expiring at , on a government zero coupon bond
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expiring at  is, for  ≤  ≤  ≤ ,

GB-VI
¡
2  ;    

¢ ≡qB1 (   ) + B2 (   ) 2 + B3 (   ) (16)

where  ( ) are two deterministic functions of calendar time  , and B (   ) are three
constants, all given in Appendix B (Eqs. (B.7) and (B.9)).

Eq. (15) tells us that the drivers of government bond realized variance are the short-term basis

point variance 2 and the long-term uncertainty factor  . While the magnitude of 
2
 and  is

too small to explain the level of realized government bond volatility, the two “multipliers”  ( )

have the potential to increase this volatility by several orders of magnitude, depending on model

parameters. In particular, Section 6 provides evidence that a “long-run risk” mechanism underlies

these multipliers’ effects: the higher the persistence of the short-term rate, its variance and long-term

uncertainty, the higher the bond price exposures;5 the higher these exposures, the higher the values of

 ( ). These magnifying effects operate in a nearly identical way on expected volatility, notably

through the functions B (   ) in Eq. (16). Naturally, these properties extend to the coupon
bearing bond volatility case dealt with below. We shall return to these points in much more detail

while discussing the model empirical implications (see Section 6).

Finally, note that the yield curve does not provide information regarding developments in govern-

ment bond volatility: the government bond volatility index in Eq. (16) is independent of the yield

curve at time-. By contrast, we now show that the yield curve may well affect expected volatility of

forwards on coupon bearing bonds.

4.4.2. Coupon bearing bonds and volatility feedbacks

By Eq. (10), the price of the forward on a coupon-bearing bond satisfies

 (T)
 (T)

=

X
=

 (T)
 

 ( )

 
 ( )

  (T) ≡ ̄
 
 ( )

 (T)
       +1 (17)

5By Eq. (9), the bond price exposures are  (),  () and  ().
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where ̄ ≡ 

for  =  · · ·   − 1, ̄ ≡ 


+ 1, and ()


=1 denotes the series of coupons in Eq.

(1).

In Appendix B, we provide the expression for the integrated drift that the model predicts for the

forward price in Eq. (5).6 Regarding the instantaneous realized variance of the forward price in Eq.

(17), a direct calculation leaves

k (   ;T)k2 ≡
⎛⎝ 2P

=1

Ã
P
=

 (T) 

 ( )

!2⎞⎠ 2 +

Ã
P
=

 (T) 

3 ( )

!2
  (18)

where  ( ) are the zero coupon bond exposures in (13).

While summing up to one, the coupon bearing bond weights 

 (T) are random, and therefore

affect both current volatility and the whole future realized variance and its expectation under the

forward probability. This feature of the model is a price feedback: the path of government bond

volatility is driven by basis point variance and long-term uncertainty (2 and ), but also by the

entire yield curve, through the stochastic weights 

 (T).

We wish to determine the fair value of a government bond variance swap based on the path of

k (   ;T)k2 and the ensuing government bond volatility index matching the TYVIX in Eq.

(7). Because the weights 

 (T) are random, closed-form solutions are not available that match

Eq. (16) in Proposition 3. While Monte Carlo simulations could be used to approximate the model

predictions on TYVIX, this approach is computationally prohibitive, and becomes particularly so

when the objective is to price derivatives on TYVIX on a large sample period (see Section 6). We

rely on a different approximation: we replace the random weights 

 (T) with their values taken

at the evaluation time , and proceed with pricing while relying on the “frozen” weights, 

 (T).

7

Let $ () ≡ − 1 ln $ (+ ) denote the yield at time  and maturity  , where  $ (·) is the observed
counterpart zero to  (·), and let Y$T ≡ {$ ()}∈(0T−) denote the entire yield curve observed at 
and up to time to maturity T− . We have:

6That is, ̄ in Proposition 1; see Eq. (B.11).
7Similar approximations are utilized in the literature and market practice in other contexts. For example, these

approximations are known as Rebonato’s (1998) approximations in the context of the calculation of swaption volatilities

(see, e.g., Brigo and Mercurio, 2006).
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Proposition 4. Assume the short-term rate is solution to Eqs. (8), and approximate 

 (T)

in Eq. (18) with 

 (T). Then, the TYVIX index predicted by the model for time , that is, the

(square-root of the) fair value of a variance swap expiring at  , on a forward expiring at , on a

coupon bearing bond expiring at T, is

GB-VI(Y$T 
2
  ;   T) =

q
B1(Y$T  T) + B2(Y$T  T)2 + B3(Y$T  T)

(19)

where B( $T · · ·) are three functions given in Appendix B (see Eqs. (B.12)).

The model predicts that the government bond volatility index depends on the initial yield curve,

Y$T, because the instantaneous bond price realized variance at  , k (   ;T)k2, depends on
the coupon bearing bond weights 


 (T) (see Eq. (18)) and, hence, the initial position of the

yield curve. As explained, our approximation to the true government bond volatility index relies on

freezing the weights 

 (T) at 


 (T).

5. Evaluation of government bond volatility derivatives

This section derives pricing implications regarding futures and options referenced to the TYVIX index

predicted by the model (Eq. (19)). Section 6 explains that our calibration procedure is such that the

model-based index exactly matches its empirical counterpart. As a by-product of this matching, we

obtain model-implied estimates of the unobservable realized variances 2 and long-term uncertainties

, which we reconstruct through Eq. (19). These estimates are used to feed the future and option

pricing equations derived in this section.

5.1. Futures

The value at time  of a future contract, referenced to TYVIX, and expiring at time + , is

F(Y$T 2  ; +   T) ≡ E
¡
GB-VI(Y+T+ 

2
+ +; +   +   + T+ )

¢
 (20)
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where E denotes the expectation under the risk-neutral probability. The future value in Eq. (20)

depends on the initial yield curve Y$T because the model prediction on the whole yield curve at + ,

Y+T+, relies on the bond pricing model summarized by Proposition 2, and the latter pins down

Y$T exactly while predicting Y+T+. The yield curve at +  enters the TYVIX index predicted by

the model through the weights + ( + T+ ) in Eq. (17), as explained after Proposition 4.

Relying on Proposition 4, the future price in Eq. (20) is

F(Y$T 2  ; +   T)

=

ZZ q
B1(YT   T) + B2(YT   T)2+ + B3(YT   T)+ · (+)+

(21)

where B(YT   T) ≡ B(Y+T+  +   + T + ), (
0) denotes the risk-neutral joint

density of the state 0 ≡ (0 20 0) conditional on (i) the initial yield curve, Y$T, which includes the
current short-term rate, , and (ii) the basis point variance 

2
 and long-run uncertainty .

Because the model in (8) is affine, the joint density  can be calculated in closed-form, up

to the solution of a system of Riccati’s equations. However, the expression for F in Eq. (21)

can be approximated by freezing the weights 

+ ( + T+ ) at 


 (T), similarly as with the

approximations leading to Eq. (19) of Proposition 4. Accordingly, the value at  of a TYVIX future

maturing at +  can be approximated as

F̂(Y$T 2  ; +   T)

≡
ZZ q

B1(Y$T  T) + B2(Y$T  T)+ B3(Y$T  T) · 
¡
 | 2  

¢
 (22)

where the transition density 
¡
 | 2  

¢
is given in Appendix B (see Eq. (B.14)). This approxi-

mation considerably simplifies the numerical implementation of the model.

5.2. Options

The pricing of options is slightly more elaborated than that of the futures because the relevant

transition densities are needed under the forward probability, rather than the risk-neutral. Consider
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a European call option written on TYVIX, maturing at time +∆, and struck at . Its value is

C(Y$T 2  ; +∆  T)

≡  ( )E
+∆



¡
GB-VI(Y+∆T+∆ 

2
+∆ +∆; +∆  +∆  +∆T+∆)−

¢+
 (23)

Note that the expectation in Eq. (23) is now under the forward probability. Therefore, and similar

to the futures evaluation (see Eq. (21)), the time- joint density of the state (+∆ 
2
+∆ +∆) is

needed to determine C, albeit under the forward probability. It can be shown that ( 2  ) is still
an affine process under the forward probability, and so its conditional density is known in closed

form, up to the solution of Riccati’s equations. One approximation to Eq. (23) obtains while freezing

the weights 

+∆ ( +∆T+∆) at 


 (T), similarly as with the futures evaluation equation (22).

This yields the following approximation to the value at  of a TYVIX European call option maturing

at +∆ and struck at :

Ĉ(Y$T 2  ; +∆  T) ≡  ( )

×
ZZ µq

B1(Y$T  T) + B2(Y$T  T)+ B3(Y$T  T) −

¶+
∆
¡
 | 2  

¢
 (24)

where the transition density ∆
¡
 | 2  

¢
is given in Appendix B (see Eq. (B.19)).8

While modeling options on TYVIX levels leads to the previous analytical solution, options on

TYVIX futures are more likely candidates for the purpose of trading or listing. Options on futures can

also be evaluated through a representation similar to Eq. (23). However, Section 6.2.4 explains that

options on futures are computationally difficult to evaluate, and proposes an approximation scheme

that is used to implement their pricing on our dataset. Eq. (24) is only provided for completeness.

6. Model predictions

We implement the model and reconstruct an hypothetical history of TYVIX futures and option

values that could have traded on each day of our sample. We aim to shed light into a number of

characteristics in this Treasury volatility market.

8Note that, in Section 6, we estimate the price of options written on TYVIX futures. For completeness, we provide

Eq. (24), which regards option prices on TYVIX levels.
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Firstly, we explore the main properties of TYVIX futures values in light of their trading impli-

cations: how would a long position in TYVIX futures drift over time? Secondly, we investigate the

ability of TYVIX futures to hedge fixed income instruments: how would overlaying existing fixed

income portfolios help mitigate drawdowns during high volatility periods? Thirdly, we examine the

model predictions in periods marked by tail events: how would the TYVIX futures curve react to an

unanticipated monetary policy decision? Would this decision affect the whole futures curve? How

would this reaction change following smaller shocks? Finally, we explore the behavior of hypothetical

options values on TYVIX futures. We reconstruct TYVIX option values based on parameters cali-

brated to predict TYVIX futures, and analyze the behavior of this “volatility of volatility” during

important historical events.

The next subsection succinctly describes the model calibration strategy, with all technical details

left in Appendix C. Our findings are in Section 6.2.

6.1. Calibration strategy

6.1.1. Data

The ideal situation to estimate our model would be one in which data could be available regarding

both TYVIX and TYVIX derivatives (e.g., futures or options). Because futures on TYVIX were only

launched in November 2014, our calibration relies on a proxy for the expected volatility in Treasury

markets, namely at-the-money implied volatilities for CBOT’s 10-year Treasury note options (TY

options, for brevity); below, we shall explain how we use TY implied volatilities in our calibration

procedure.

We use the three-month Treasury Bill rate as a proxy for the instantaneous interest rate .

Finally, note that our government bond volatility model also relies on market data for the yield curve

up to the maturity of the underlying coupon-bearing bond;9 therefore, our dataset also comprises

the term structure of US government bonds up to the relevant maturities, which we take to equal

71
2
years, as further discussed below. Our sample, including TYVIX data, covers daily data available

from Bloomberg from January 2, 2003 to February 19, 2016.

9That is, Y$T in Eqs. (19), (22) and (24); see also Eq. (31).
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6.1.2. Risk premiums

We assume that the basis point variance of the short-term rate has square root dynamics under the

physical probability  , just as it does under the risk-neutral  (see Eqs. (8)). Precisely, we assume

that the Radon-Nikodym derivative of  against  is





¯̄̄̄
F

= −
1
2

R 

kΛk2  −

R 

Λ


 

where 

 is a vector Brownian motion under  and, by Girsanov’s theorem, its components satisfy:



 = −Λ , with Λ denoting the -th component of the risk premium vector Λ and, finally,

Λ =   + 
1

for  = 1 2, and Λ3 = 3

√
 + 3

1√

, for six constants

¡

¢
∈{123};∈{}.

This specification of the risk premiums makes the model “essentially affine” (Duffee, 2002). All

in all, the coefficients  accommodate the situation in which risk compensation relates to both the

volatility of the state variables and some constant component; for example, compensation for the

exposure to basis point volatility is Λ2 = 2 
2
 + 2 . Note that, based on assumptions made

below, our calibration strategy does not necessitate making inference on any of the risk premium

coefficients. However, this discussion is instructive for the economic interpretation of our calibrated

parameters.

Given our assumptions on risk premiums, we have that under  , the basis point variance process

2 is solution to

2 = ∗
¡
∗ − 2

¢
 + 

³



1 +

p
1− 2


2

´
 (25)

where

∗ ≡  −  ∗ ≡


∗
 +



∗
  ≡ 1 +

p
1− 22   ∈ {} (26)

The (variance) persistence parameter under the physical probability  , ∗, may differ from that

under the risk-neutral , , namely due to 
; accordingly, we interpret  as a “variance persistence

risk premium.” Similarly, the “pull of attraction” of 2 under  , 
∗
 , may well have different dynamics

under , due to risk-adjustments regarding both the short-term variance dynamics ( in (26)) and
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its own long-term expected value (∗ below), i.e.,

∗ = ∗ (
∗ − ∗ )  + ∗

p
∗


3  (27)

where

∗ ≡  − 3  ∗ ≡
µ


∗
+



∗
3

¶


∗
+



∗
 ∗ ≡ 



∗


Accordingly, we interpret  and 3 as “long-run variance risk premiums,” and 3 as a “long-term

variance persistence risk premium.”

6.1.3. Model implementation

We calibrate the model using a sample period covering nearly fifteen years of daily data and we do

then make a few simplifying assumptions. Namely, we assume that  = 0 and that the variance

persistence risk premiums are zero (i.e.,  = 3 = 0), implying that  = ∗ and  ≡ ∗. We,

then, create rolling window estimates ̂2 (say) of the basis point variance 
2
 of the short-term rate,

relying on the 3-month Treasury Bill rate as a proxy of the short-term rate. We calibrate  and

, by treating ̂2 as if it were the true basis point variance, and by matching the first and second

moments of ̂2 to the theoretical counterparts implied by the model. Table 1 reports our calibrated

values for , annualized, and . The parameters  and  are calibrated similarly as  and , but

are based on model-implied values of .

Table 1. Calibrated parameter values and model-implied basis point uncertainties

   avg
¡
2
¢

avg ()   

0.0500 1.6057 0.0200 0.01322 0.02362 40.0235 0.01412 0.0759

We calibrate  and daily values of  to ensure that the model (i) matches the TYVIX with-

out errors, (ii) fits the term structure of short positions in unhedged calendar spreads, a proxy for

hypothetical futures values calculated on ATM option values, (iii) generates a basis point interest

rate variance that has minimum distance from the sample average of ̂2 . The proxies for the futures

values in (ii) are calculated throughout a non-parametric procedure known in the equity space since

at least Carr and Wu (2006) and Dupire (2006): for the approximation to a future value as of day 
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and expiring on day + , we have

F$ () ≡
q
( + 1) · atm2 ( + 1)−  · atm2 () (28)

where atm () is the TY option ATM implied volatility for maturity  (see Eq. (C.6) in Appendix

C). Regarding the model prediction on TYVIX, we assume that the coupon bearing bond has time-

to-maturity equal to 71
2
years and pays $3 semi-annually; that is, in terms of Eq. (1),  = $6,  = 2,

and T−  = 75.

We set  equal to the average estimates of long-run uncertainties, , obtained calibrating a two-

factor version of the model in which  is treated as a constant that is calibrated every day to produce

minimum distance between the model-implied future values and the non-parametric estimates in Eq.

(28) (see Eq. (C.4) in Appendix C). Finally, the parameter values in Table 1 are used to calibrate

the three factor model-implied uncertainties 2 and  for each day, which then feed the model to

produce predictions regarding future and option values.

Note that, in the model,  is the ergodic mean of both 2 and  under the risk-neutral probability

. Precisely, and based on Eqs. (25) and (27), the ergodic means under the physical probability are



∞
¡
2
¢
= ∗ and 

∞ () = ∗− 

.10 Given the average values of the model-implied times series

of 2 and  in Table 1, we have the following estimates: 

∞
¡
2
¢ ≈ 001322 and 


∞ () ≈ 002362;

this situation is consistent with risk premium coefficients satisfying 3  0 and   0.

Table 1 reports the parameter values for  and summary statistics for the model-implied short-

term variance 2 and the model-implied expected basis point variance, . The model matches the

data when the short-term rate under the risk-neutral probability is quite persistent, i.e., when  is

small. The main reason underlying this finding is that our model is calibrated over a sample period

in which unprecedented monetary policy interventions occurred in response to the 2007-2009 global

financial crisis, which kept both interest rates and interest rate volatility extraordinarily low. In this

context, a persistent short-term rate helps our model predict relatively high values for risk-adjusted

expected Treasury volatility on long-term bonds, acting as a risk for the “long run,” in analogy with

similar mechanisms put forward in the equity literature (see, e.g., Bansal and Yaron, 2004).

10That is, for example, 
∞ () ≡ lim→∞ ( |0), where  ( ·| ·) denotes conditional expectation taken under

the physical probability.
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Note that the model-implied basis point realized variance (2 from Eq. (C.7) in Appendix C) is

001322 on average, which is higher than its statistical counterpart, avg(̂2 ) = 00101
2, i.e., an average

volatility of about 100 basis points. Importantly, the model-implied realized basis point variance is

on average only slightly lower than its long-term value under , i.e., the difference  − avg(̂2) is
positive but small. This feature of the calibrated model leads to predictions of markets that are likely

to experience frequent oscillations between contango and backwardation depending on the specific

values taken by the realized short-term variance compared to its long-term risk-neutral expectation,

. This property leads to a variety of important implications, as we now explain.

6.2. Model implications

This section contains our empirical results. Sections 6.2.1 and 6.2.2 discuss our finding on backwar-

dation of the futures volatility curve, assess properties of futures on expected volatilty as hedging

instruments for a variety of portfolios and, finally, provide comparisons with alternative outcomes,

resulting while relying on VIX futures. Section 6.2.3 studies the effects of transitory and permanent

shocks on the futures volatility curve, and analyzes details regarding the persistent inversion of this

curve that occurred when the Fed raised interest rates in 2015. Finally, Section 6.2.4 contains model

predictions on option evaluation—the volatility of volatility.

6.2.1. The calibrated futures term structure

The top panel of Figure 3 plots historical TYVIX levels against one-month futures prices based on the

calibrated parameters and filtered values for both the short-term and long-term basis point variance,

2 and . The two series track each other closely as one would reasonably expect for a short-dated

futures price, while still exhibiting rich dynamics. For a closer examination of the difference, the

bottom panel shows the future value minus the index level, or “TYVIX basis.” It indicates that

the market oscillates between contango and backwardation with sustained periods of backwardation.

This observation stands in contrast to the analogous basis in equity markets, as measured by VIX

and traded one-month VIX futures prices, which displays persistent contango during the same time

period (see Figure 2 in the Introduction). In particular, our model suggests that hypothetical markets

for TYVIX futures would have spent more time in backwardation than in contango, especially during
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the period 2007-2012.

The frequent backwardation is largely driven by the fact that we calibrate the model to fit the

option-implied non-parametric estimate F$ () in Eq. (28). By design, the model-implied one-month
TYVIX futures closely track the non-parametric estimate based on ATM volatilities of TY options.

This aspect of the calibration strategy is especially material when generating hypothetical historical

futures prices as it imparts information on the volatility term structure from the TY options market

to the shape of the estimated futures curve.11

Based on conversations with interest rate derivatives traders and strategists at numerous major

dealer banks, the backwardation in the non-parametric estimates may be explained by the richness of

the nearest month options that are often bid up going into scheduled macroeconomic announcements,

such as non-farm payroll, GDP, and Federal Open Market Committee (FOMC) rate decisions.12

Note that these features of the non-parametric estimates is not a possible artifact of how Bloomberg

calculates generic one-month ATM implied volatilities for TY. Indeed, when options become extremely

short-dated, e.g., within one week to expiry, traders cease to think in terms of implied volatilities

and instead solely think in terms of prices because even one tick may correspond to large differences

in implied volatilities. If the one-month implied volatilities are based in part on such short-dated

options, it could then upwardly bias the one-month TY implied volatility data. However, Bloomberg

does not use short-dated options while calculating implied volatilities in our dataset.

Section 6.2.3 provides explanations of this property based on the relative speed of mean-reversion

in the short-term and long-term volatility factors, 2 and . Intuitively, the higher the speed of mean

reversion of  (relative to 
2
 ), the higher the impact of adverse economic shocks on the short-end of

the futures volatility curve.

How does backwardation translate in terms of hypothetical P&L exercises from being long futures

on expected government bond volatility? The blue line in Figure 4 shows non-compounded cumulative

returns from being long the TYVIX index as if one could trade the index like a stock. In practice,

however, one cannot trade the index like a stock and futures do not have constant maturity. Assuming

a monthly futures listing schedule, the green line shows non-compounded cumulative returns from

11Section 6.2.3 provides more intuition regarding conditions under which the model leads to backwardation.
12We have conducted a separate event study of the behavior of TYVIX around major macroeconomic announcements,

and found the results consistent with this anecdotal explanation. Our results are available upon request.
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always being long the nearest-month futures contract that has at least five days to expiry; similarly,

the red line shows returns from being long the near- and next-month contracts with weights set such

that the weighted time to maturity is always 21 trading days. There is a pronounced upward drift in

the P&L for being constantly long volatility using the simple rolling strategies, which is consistent with

the frequent backwardation observed in Figure 3, and highlights the significant trading implications

of the futures term structure.

2006 2008 2010 2012 2014 2016
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14

TYVIX and hypothetical TYVIX futures

TYVIX
1m TYVIX futures

2006 2008 2010 2012 2014 2016
-1

-0.5

0

0.5
TYVIX Basis

Contango

Backwardation

Figure 3. Top panel : Cboe-CBOT TYVIX index of Treasury volatility and model-based cali-

brated one month TYVIX futures. Bottom panel : TYVIX basis, defined as the difference between

one month future values and TYVIX values.

Table 2 provides more precise details on this drifting properties of the rolling strategies, while

zooming the period beginning from 2008. In this period, near-and-next month hedge strategies have

comparable average returns, although the former have better performance, due to lower performance

variability and lower drawdowns. Below, we use near-term strategies to hedge various ETFs both in

the fixed income and the equity space.
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Figure 4. Cumulative returns from being long government bond volatility based on model-implied

futures on the Cboe-CBOT TYVIX index of Treasury volatility. Red and green lines depict the

P&L of strategies based on trading futures: the green is the P&L from holding the nearest-month

future up to five days to expiry, and the red is the P&L from holding a portfolio of the near- and

next-month futures with time-varying weights ensuring the average portfolio position is 21 trading

days. The blue line tracks returns from being long the TYVIX as it was a tradeable asset.

Table 2. Performance of two volatility rolling strategies, the near-and-next and the near-month

displayed in Figure 4. Mean and vol columns are the average returns and standard deviations of

the strategies, annualized; Sharpe is the Sharpe ratio defined as the ratio of annualized means to

standard deviations; Skewn. is the coefficient of skewness calculated on the strategies’ returns;

Drawdn. is the maximum drawdown on the strategies. Sample period is from January 2, 2008 to

February 19, 2016.

Rolling strategies

mean vol Sharpe Skewn. Drawdn.

near-next 0.2169 0.2252 0.9634 1.5527 0.1814

near 0.2299 0.3415 0.6733 0.9587 0.2831
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6.2.2. Applications to hedging bond portfolios

Given the prevalent use of equity volatility derivatives as equity portfolio hedging tools, a natural

question that arises is whether interest rate volatility derivatives may be used for hedging bond

portfolios. To address this question, we first examine the relation between returns on the near-term

rolling hedging strategy explained in the previous section (the 21 day fixed maturity strategy depicted

as the red line in Figure 4) and returns on the iShares Core U.S. Aggregate Bond ETF (ticker AGG),

which is one of the most commonly-used diversified bond portfolio benchmarks.

Figure 5 shows adjusted-2 statistics from rolling OLS weekly regressions (and regression window

equal to three years), with AGG returns on the left-hand-side and the TYVIX log-changes on the

right-hand side. We include analogous results for VIX for the sake of comparison. The plot reveals

two spikes in the correlation between the bond portfolio and TYVIX futures that correspond to

the US debt rating downgrade in 2011 and the “QE Taper Talk” in mid-2013; to the contrary, the

correlation was nearly zero at the depth of the financial crisis. One interpretation is that bond

portfolio performance and interest rate volatility become tighter linked when interest rate risk is

a significant concern in the market; the correlation during the 2008-2009 period was low because

interest rate risk did not play a key role in the crisis.

Naturally, TYVIX and VIX are not investable. For example, it is well-known that log changes in

the VIX index cannot necessarily be replicated by log changes on traded VIX futures due to effects

relating to the volatility term structure: the VIX future curve is in contango more often than not,

as explained in the Introduction. Therefore, we re-calculate rolling regressions using AGG returns

on the left-hand-side and the rolling near-term TYVIX futures strategy depicted in Figure 4 on the

right-hand-side. We perform the same regressions relying on a similar rolling near-term VIX future

strategy. Then, we overlay AGG returns based on the sign and magnitude of the coefficient estimates

in these regressions.
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Figure 5. Adjusted-2 statistics calculated through weekly rolling regressions of the returns on

the iShares Core U.S. Aggregate Bond ETF onto returns on model-implied one-month futures on

TYVIX (blue line), returns on one-month futures on VIX (red), and returns on both TYVIX and

VIX one-month futures (green). Estimation window is 3 years. One-month future returns on VIX

and TYVIX are calculated through a portfolio of near- and next-month futures with time-varying

weights ensuring the average portfolio position is 21 trading days (as in the TYVIX case depicted

through the red line in Figure 4).

Figure 6 depicts unhedged and overlayed returns during the period comprising the QE Taper Talk

events in 2013, from February 12, 2013 to February 18, 2014. The blue line shows the TYVIX hedged

returns, which outperform the unhedged (in grey), by smoothing out two pronounced drawdowns.

Figure 6 shows that the VIX-hedged returns generally outperform the unhedged returns. The reason

for this outperformance is that in this sampling period, VIX futures returns and AGG are positively

correlated, and the hedging portfolio then prescribes selling VIX futures, which leads to monetizing

a contango premium that is typical in VIX futures market. Note, however, that it would be quite

unusual to protect a portfolio from spikes in market volatility while being short VIX futures. In fact,

the VIX-hedged strategy is not as effective as the TYVIX-hedged strategy during the 2013 rate-driven

events. Hedging AGG with VIX futures does lead indeed to one quite pronounced drawdown in this
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period.

The bottom panels of Figure 6 show how AGG returns are hedged reasonably well when we rely

on both TYVIX and VIX rolling strategies, evidencing the role the TYVIX hedging strategy plays

while insuring against rate-driven events. These very simple hedging results suggest that TYVIX

futures may be an effective hedging tool for bond portfolios, given the tendency of implied volatilities

to spike more than usual during pronounced bond market sell-offs.

Table 3 contains a quantitative assessment of our findings that relate to the whole sampling period.

We find that, while TYVIX futures help improve the performance of AGG in terms of Sharpe ratios,

VIX futures compare better in this dimension; at the same time, VIX futures would not help avoid the

large AGG drawdowns occurred during the QE Taper Talk episode, as already noted. Importantly,

overlaying AGG with VIX futures leads to a pronounced skewness, a measure of the overall sensitivity

of the overlayed portfolio to drawdowns.

Table 3 reports results regarding additional ETFs and assets. Overall, TYVIX derivatives may

help mitigate drawdowns on fixed income related instruments, especially when used in conjunction

with VIX derivatives. Note that a systematic use of VIX derivatives might even lead to deteriorate

performance in the equity space: in this space, the overlay strategy prescribes to be long VIX futures,

implying, then, large insurance costs arising through contango. The last two pieces of Table 3

reveal that a systematic use of TYVIX might slightly improve the overall performance, although the

differences with the unhedged equity returns appear to be both economically and statistically very

negligible.
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Figure 6–Continued on the next page.
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Figure 6–Continued from the previous page. Overlays with equity and interest rate volatility
derivatives during the Taper Talk. Volatility derivatives are one-month future returns on VIX and
TYVIX, and are calculated through portfolios that have an average position of 21 trading days
(as in the TYVIX case depicted through the red line in Figure 4). Positioning into derivatives is
determined through the coefficient of weekly rolling regressions of AGG returns onto derivative
returns, with a fixed window equal to 3 years. Top panels: Cumulative returns from being long
the iShares Core U.S. Aggregate Bond ETF, unhedged (grey line) and hedged with one month
TYVIX futures (blue). Middle panels: Cumulative returns are as in the top panels, but hedging
ratios calculated based on one month VIX futures. Bottom panels: Cumulative returns are as in
the top panels, with hedging ratios regarding both one-month TYVIX futures and one-month VIX
futures.
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Table 3. Overlay performance on selected ETFs achieved through equity (vix) and interest rate

(tyvix) volatility derivatives, or both (tyvix & vix). Volatility derivatives are one-month future

returns on VIX and TYVIX, and are calculated through portfolios that have an average position

of 21 trading days. Mean and vol columns are the average returns and standard deviations of the

investment strategies, annualized; Sharpe is the Sharpe ratio defined as the ratio of annualized

means to standard deviations; Skewn. is the coefficient of skewness calculated on the strategies

returns; Drawdn. is the maximum drawdown on the investment strategies. Sampling period is

from January 2, 2003 to February 19, 2016.

AGG.US.Equity: Treas, gvt, corp, MBS, ABS and CMBS

mean vol Sharpe Skewn. Drawdn.

unhedged 0.0026 0.0398 0.0671 -0.9144 -0.0477

tyvix 0.0059 0.0303 0.1972 -0.4082 -0.0313

vix 0.0136 0.0405 0.3363 -0.9712 -0.0444

tyvix & vix 0.0208 0.0279 0.7464 -0.6265 -0.0260

LQD.US.Equity: Investment-grade corporate bonds

mean vol Sharpe Skewn. Drawdn.

unhedged 0.0162 0.0729 0.2227 -1.2645 -0.0844

tyvix 0.0217 0.0559 0.3881 -0.8243 -0.0481

vix 0.0166 0.0731 0.2281 -1.2655 -0.0844

tyvix & vix 0.0308 0.0543 0.5664 -0.9050 -0.0478

TIP.US.Equity: Inflation protected T-notes

mean vol Sharpe Skewn. Drawdn.

unhedged -0.0609 0.0704 -0.8637 -0.9247 -0.0986

tyvix -0.0603 0.0551 -1.0929 -0.5730 -0.0885

vix -0.0482 0.0725 -0.6648 -0.9264 -0.0944

tyvix & vix -0.0422 0.0547 -0.7702 -0.6413 -0.0752

TY1.Comdty: Ten Year T-note

mean vol Sharpe Skewn. Drawdn.

unhedged -0.0396 0.0573 -0.6925 -1.5188 -0.0797

tyvix -0.0342 0.0473 -0.7214 -1.3031 -0.0729

vix -0.0126 0.0588 -0.2148 -1.5298 -0.0624

tyvix & vix -0.0026 0.0434 -0.0602 -1.6840 -0.0487

TLT.US.Equity: Treasury bonds (20 years)

mean vol Sharpe Skewn. Drawdn.

unhedged -0.0503 0.1257 -0.4003 -0.3346 -0.1666

tyvix -0.0321 0.1067 -0.3007 -0.1014 -0.1408

vix 0.0505 0.1305 0.3870 -0.3681 -0.1403

tyvix & vix 0.0797 0.0904 0.8810 -0.1783 -0.0805

SHY.US.Equity : Treasury bonds (∈ [1 3] years)
mean vol Sharpe Skewn. Drawdn.

unhedged 0.0040 0.0049 0.8151 -0.5283 -0.0031

tyvix 0.0049 0.0044 1.1254 -0.5862 -0.0021

vix 0.0060 0.0052 1.1626 -0.6315 -0.0030

tyvix & vix 0.0072 0.0045 1.5924 -0.8048 -0.0020
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Table 3 continued

PZA.US.Equity : Muni bonds (20 years)

mean vol Sharpe Skewn. Drawdn.

unhedged -0.0409 0.0786 -0.5210 -0.9045 -0.1187

tyvix -0.0385 0.0742 -0.5187 -0.8962 -0.1027

vix -0.0288 0.0795 -0.3621 -0.9568 -0.1153

tyvix & vix -0.0214 0.0736 -0.2913 -1.0031 -0.0948

MUB.US.Equity : Investment grade muni bonds

mean vol Sharpe Skewn. Drawdn.

unhedged -0.0238 0.0749 -0.3173 -1.5570 -0.0846

tyvix -0.0212 0.0641 -0.3298 -1.3012 -0.0632

vix -0.0221 0.0751 -0.2945 -1.5702 -0.0844

tyvix & vix -0.0137 0.0636 -0.2162 -1.3119 -0.0633

IEI.US.Equity : Treasury bonds (∈ [3 7] years)
mean vol Sharpe Skewn. Drawdn.

unhedged -0.0010 0.0310 -0.0322 -0.8102 -0.0383

tyvix 0.0040 0.0245 0.1657 -0.3682 -0.0240

vix 0.0133 0.0321 0.4160 -0.8825 -0.0336

tyvix & vix 0.0213 0.0228 0.9332 -0.6697 -0.0167

IEF.US.Equity: Treasury bonds (∈ [7 10] years)
mean vol Sharpe Skewn. Drawdn.

unhedged -0.0181 0.0653 -0.2768 -0.7270 -0.0875

tyvix -0.0090 0.0505 -0.1791 -0.2550 -0.0650

vix 0.0186 0.0677 0.2741 -0.7824 -0.0755

tyvix & vix 0.0339 0.0444 0.7639 -0.5026 -0.0385

SPX.Index : S&P 500 index

mean vol Sharpe Skewn. Drawdn.

unhedged 0.1911 0.1131 1.6891 -0.3388 -0.0545

tyvix 0.1801 0.1021 1.7630 -0.3443 -0.0501

vix 0.0327 0.0514 0.6358 -0.3224 -0.0490

tyvix & vix 0.0232 0.0563 0.4115 -0.5482 -0.0556

DIA.US.Equity: Dow Jones Industrial Average

mean vol Sharpe Skewn. Drawdn.

unhedged 0.1640 0.1097 1.4945 -0.5932 -0.0657

tyvix 0.1539 0.1014 1.5176 -0.5753 -0.0623

vix 0.0289 0.0607 0.4766 -0.3859 -0.0553

tyvix & vix 0.0205 0.0638 0.3220 -0.4650 -0.0604
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6.2.3. Scenarios

This section describes a number of hypothetical developments in the government volatility curve that

follow the occurrence of shocks affecting both interest rate and interest rate volatility. A prominent

instance of an event leading to such shocks is the Fed decision on December 16, 2015 to raise interest

rates for the first time in nearly a decade. We investigate two issues. Firstly, we examine the model

predictions regarding the reaction of the TYVIX future curve to hypothetical interest rate volatility

shocks; this type of analysis is useful for the purpose of stress-testing the model in risk-management

experiments, but also for evaluating trading theses. Secondly, we examine the model predictions on

the TYVIX future curve at dates of particular historical interest; our objective is to use our model

and reverse-engineer from the data the magnitude of the economic shocks underlying interest rate

volatility developments occurring on such dates of interest as that in December 2015.

As for the futures curve reaction to given shocks, we consider experiments in which changes in

current volatility might be either transitory or permanent. For example, we study how a permanent

monetary policy shift may affect market expectations, by assessing how the TYVIX futures curve

reacts to a permanent higher volatility of the short-term rate. We implement the experiments while

feeding the model with information available up to December 4, 2015, about two weeks before the

Fed announced an increase in the target range for the federal funds rate. In all the experiments, we

assume that there is a 1% upward parallel shift in the yield curve accompanied by shocks of various

nature that we will describe in a moment.13

The left panel of Figure 7 shows the impact of shocks to short-term basis point volatility while

long-term expected volatility is kept constant and equal to the estimate of  in Table 1. We interpret

this shock as being a “transitory” one. We consider 25%, 50% and finally 75% increases in short-term

volatility. In these scenarios, the shorter end of the futures curve is the most affected, while the

longer end reverts to the long-term mean. In times of extreme uncertainty, volatility curves have

been known to flatten or even invert, and this experiment shows the model predictions are consistent

with such dynamics of the term structure. The right panel shows how the model futures curve reacts

when we also change  upwards by the same amount as the shock in the realized variance. This

scenario may be interpreted as one of a significant change in long-term monetary policy uncertainty.

13We repeat the experiments while assuming that no shifts occur in the yield curve, and find that results are quali-

tatively the same as those reported below.
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The model predicts that, in this case, changes in the futures curve resemble parallel shifts with a

slight counterclockwise twist.
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Figure 7. Changes in the TYVIX futures curve in reaction to shocks in the current short-

term volatility of 25%, 50% and 75%. Left panel : Reaction to transitory shocks, i.e., shocks in

short-term volatility that are not accompanied by changes in long-term expected volatility. Right

panel : Reaction to permanent shocks, i.e., shocks in short-term volatility accompanied by a same

magnitude change in long-term expected volatility.

The left panel of Figure 8 summarizes how the future curve reacts to a steepening or flattening

of the volatility skew. We simulate such changes in the volatility skew by increasing or decreasing

TYVIX while keeping ATM volatility constant, and calculating futures values through our calibration

procedure (see Eqs. (C.4)-(C.5) in Appendix C). We consider three scenarios: a TYVIX reduction by

25%, and two increases of 25% and 50%. We interpret a steepening of the skew as a transitory shock,

which corresponds to a “fear wave” hitting the markets: we interpret it to be transitory precisely

because it merely affects out-of-the money options while keeping at-the-money option markets intact.

The implications are indeed qualitatively the same as those in the left panel of Figure 7. In contrast,

consider the right panel of Figure 8, in which we assume that at-the-money options are also affected
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by a fear wave, in that ATM volatilities now increase by the same percentage amount experienced

by TYVIX: we interpret this experiment as one illustrating how a permanent fear in option markets

translates in terms of the TYVIX futures curve. The effects are qualitatively similar as those depicted

in the right panel of Figure 7, with effects on the futures curve that increase with the futures expiry.
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Figure 8. Changes in the TYVIX futures curve in reaction to shocks in the option skew. Left

panel : Reaction to a steepening of the option skew, defined as an increase in TYVIX by −25%, 25%
and 50% occurring while the ATM volatility remains constant. Right panel : Reaction to a parallel

shift of the option skew, defined as an increase in TYVIX by −25%, 25% and 50% occurring while

the ATM volatility changes by the same percentage amount.

Our second objective is to analyze the model predictions around December 16, 2015, when the

Fed announced to modify its targets for the federal funds rates after almost a decade of inaction.

While anecdotal evidence suggests that the outcome of this decision seemed to be largely anticipated

by the market, Figure 9 shows that the TYVIX curve predicted by the model goes from contango

to a sharp backwardation in a matter of a few days (from the 4th of December to just two days

before the announcement). What is the order of magnitude of the shocks in the midst of such highly
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volatile market conditions? During these days, the model-implied short-term variance (2 ) rose by

44% whereas long-term uncertainty () went through a 4-fold increase. Yet the model predicts

a volatility market in backwardation, a situation persisting for several weeks in January 2016 (as

exemplied by the TYVIX curve on January 19), a month marked by additional concerns on the

weakening of data in emerging countries, oil prices and the stability of the global banking sector.

50 100 150 200 250

Calendar days

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

G
ov

er
nm

en
t v

ol
at

ili
ty

 fu
tu

re
 c

ur
ve

 (
%

)

Baseline (4 Dec 2015)
(14 Dec 2015)
(19 Jan 2016)

Figure 9. Model-based TYVIX futures curve on selected dates: (i) the baseline date, December

4, 2015; (ii) December 14, 2015, i.e., two days prior to the Fed announcement regarding decisions

on interest rates; (iii) January 19, 2016.

Why does the model predict backwardation during these episodes? The intuitive reason is that

long-run Treasury uncertainty, , is also a mean-reverting process, and, according to our calibrated

model, a low-persistent one: even large shocks on  are short-lived. With shocks on  absorbed rela-

tively rapidly, the short- and medium-term future curve increases more than the long-term, producing

backwardation in the volatility market during these months of heightened volatility.

To illustrate these properties throughout a simple case, consider a one-month future on the fair

value of a hypothetical variance swap on the basis-point short-term rate. The fair value of this

39



contract is

VS ( ) ≡ 1

 − 

Z 



E
¡
2
¯̄
2  

¢


Assume for simplicity that  =  −  = ∆ = 1
12
; it can be shown that the “variance basis” at

time-0 is

B0 ≡ 0 −VS0 () = ̄
¡
E0
¡
2
¢− 20

¢| {z }
≡E0(∆2 )

+ ̄ (E0 ()− 0)| {z }
≡E0(∆)

 (29)

where 0 = E0 (VS ( )) denotes the value of a variance future, and

̄ =


∆
 ̄ =



 − 

µ


∆
− 

∆

¶


with  = 1− −∆  ∈ { }.
Eq. (29) tells us that, in this market, backwardation and contango are driven by mean-reversion

in the short-term (2) and long-term (2) uncertainties. For example, the market is in contango

when both current variances are “anemic” (i.e., lower then their conditionally expected values for the

expiry date), and is in backwardation when they are both higher than their conditionally expected

values.

Now, consider a large and positive shock in both the current 20 and 0, similarly as in the Treasury

volatility market subsequent to the Fed decisions in December 2015. It is possible to show that

E0
¡
∆2

¢
= 

¡
− 20

¢−  ( − )

 − 
(− 0)  E0 (∆) =  (− 0)  (30)

The first terms of both the R.H.S. in the previous expressions capture a standard mean-reversion

effect. For example, E0
¡
∆2

¢
tends to be negative as 0 gets larger. Eqs. (30) also show that a

large positive shock in the long-term uncertainty (i.e., one that drives 0 above ) has two effects:

(i) it leads E0 (∆) to negative values, thereby being a source of backwardation (see Eq. (29)); (ii)

it raises expected realized variance, E0
¡
∆2

¢
, thereby acting as a source of contango. Therefore, the

ultimate effect of a shock in 0 on the variance basis B0 is parameter dependent. In a market hit by

large and positive volatility shocks (both short-term and long-term), as during December 2015 and

January 2016, the effects of 0 are less important than those in 20 when  is not persistent, as in
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the case of our calibrated model.14

Naturally, the market we analyze in this paper is more complex than the variance market on

the short-term rate conveyed in this example, especially due to the endogenous nature of bond price

volatility. But the mechanism is similar: due to mean-reversion, our model predicts that because  is

a low persistent process, the TYVIX curve enters in backwardation even when long-term uncertainty,

, raises more than the short-term, 
2
 .

6.2.4. Option evaluation and the volatility of volatility

We use the calibrated model and predict hypothetical values for European-style options on TYVIX

futures. Note that the option pricing model in Section 5 is referenced to options written on TYVIX,

not TYVIX futures (see Eq. (24)). However, options on TYVIX futures seem to be more natural

candidates than options on TYVIX as potential listed products. Their pricing is more complex,

though: by standard arguments, the TYVIX future option price counterpart to the TYVIX option

in Eq. (24) is

Ĉ ( 2  ; +∆  T)

≡  ( )

ZZ ³
F̂(Y+∆T+∆  ; +   T)−

´+
∆
¡
 | 2  

¢
 (31)

where F̂(·) (and remaining notation) is as in Eq. (22) and ∆ is as in (24). In particular, Eq. (31)

reveals that, in addition to the double integration needed to determine F̂(·) at time  + , one needs

to integrate twice again to obtain the option value. It is computationally prohibitive, because the

densities  and ∆ are also only known up to the solution to Riccati’s equations. Appendix C.2

described an approximation to Ĉ ( 2  ; +∆  T), which we employ in this section (see Eq.

(C.8)).

We consider options maturing in one month, with underlying futures expiring in two months.

Figure 10 depicts estimates of the at-the-money Black’s implied volatility on these TYVIX future

option values, where the at-the-money prices are taken to be the benchmark future values (i.e., F$
in Eq. (C.6) of Appendix C.1).

14To illustrate based on the parameter values in Table 1, the two loadings on (− 0) in Eqs. (30) are −
(−)
− =

−35073 · 10−2 and  = 09644. The former is one order of magnitude lower than the latter.
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Volatility of volatility: implied volatility on TYVIX futures options vs. TYVIX

Figure 10. Solid line: Implied volatilities calculated on hypothetical at-the-money one-month

options on TYVIX futures, with futures maturing in two months. Dashed line: TYVIX Index.

The dynamics of this volatility of volatility (vol-of-vol) provide useful information. Note that the

vol-of-vol is a proxy for expected volatility in TYVIX corrected by risk, that is, a price for being

insured against imminent (one month) volatility in TYVIX. Figure 10 contrasts this vol-of-vol with

the dynamics of TYVIX. According to the model, the market evaluation of this type of insurance had

anticipated the occurrence of the subprime mortgage turmoil erupting in 2007: signs of future distress

could be read in the sudden increase of the vol-of-vol since 2006, an increase likely driven by a rapid

succession of increases in the Fed funds rate targets. Remarkably, the vol-of-vol also spikes during

episodes of acute uncertainty such as the Lehman’s bankruptcy, although with limited persistence.

Episodes of high and persistent vol-of-vol occur during the taper tantrum of 2013: not only does

TYVIX increase during this episode, the vol-of-vol fluctuates quite considerably around and prior to

statements of Fed officials in May 2013. Finally the Fed increase in the target is preceded by one of

the most dramatic increases in the vol-of-vol since its inception. Our model, albeit only calibrated to

match expected interest rate volatility, suggests that the volatility of fixed income market volatility

may contain useful information on important market developments.
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7. Conclusions

Fixed income volatility is being the focus of renewed interest in recent literature reviewed in Section

2. How would this uncertainty be mitigated by dedicated hedging instruments? While both literature

and market practice have identified models and methods to monitor and assess realized and market-

adjusted gauges of fixed income volatility, our contribution aims to a natural step forward. We develop

a model to evaluate dedicated instruments referenced to market-adjusted expectations of volatility

in government bond markets. Our model makes predictions regarding both expected volatility and

hedging instruments such as futures and options written on this volatility.

Our model predicts that futures markets on U.S. Treasury expected volatility are likely to experi-

ence frequent oscillations between backwardation and contango. This property is in stark contrast to

dynamics known in the equity space. In our model, volatility is driven by a short-term and a long-term

factor. Mean-reversion in the long-term factor is rather quick; then, bad times raise the whole future

volatility curve, but the long-term raises less, and this backwardation persists because the long-term

factor mean-reverts relatively quickly. Due to frequent and persistent backwardation, our model sug-

gests that hedging fixed income portfolios with government volatility futures leads to mitigate the

occurrence of drawdowns while avoiding large insurance costs. We also use our model to ask whether

derivatives on expected government bond volatility may help summarize or anticipate short-term or

long-term uncertainty in monetary policy and other macroeconomic developments. Consistent with

backwardation, we find that shocks on the government volatility curve tend to affect the short-end of

the curve more than the long-term, just as it happened at the time the Federal Reserve raised interest

rates in December 2015, the first time after many years of inaction. These conclusions obtain while

calibrating our model to derivative data on interest rate volatility. Moreover, we use the very same

calibrated model to predict the behavior of the volatility of volatility, that is, the implied volatility

of hypothetical options referenced to government bond volatility futures. We provide evidence that

this volatility of volatility has anticipatory power regarding market distress, being then a potential

candidate for monitoring adverse market movements. Important topics for future research include

the use of our model predictions to understand how government bond volatility connects to broader

macroeconomic developments.
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Appendix A: Preliminary results regarding a two-factor model

Our analysis relies on the three-factor model in Sections 3 and 4, but it is useful to initially base our

derivations on a simpler, two-factor model. This two-factor model helps illustrate properties of the

three-factor, and does actually play an auxiliary role in our calibration strategy (see Appendix C).

Consider the following dynamics of the short-term rate:(
 =  ( −  )  + 1

2 = 
¡
− 2

¢
 + 

³
1 +

p
1− 22

´ (A.1)

These dynamics are easily seen to be special case of Eqs. (8) in the main text (notably when the

long-term uncertainty factor  is constant and equal to ). We have:

Proposition A.1. Assume that the short-term rate is as in Eqs. (A.1). Then, the price at time

 ≥  of a zero coupon bond expiring at time , when the state is (   ), is


¡
  

2
  

¢ ≡ ()−()+()
2
  (A.2)

where

 () = −
Z 



 ()+ 

Z 



 ()   () =
1− −(−)


 (A.3)

and  () is the solution to the following Riccati’s equation,

̇ () = ( +  ()) ()− 1
2

¡
2 () + 22 ()

¢
  () = 0 (A.4)

and the dot indicates differentiation with respect to time  . Finally, set the parameter  to

 =
$ ( )


+

µ
$ ( ) +

 ()


2 + 

Z 



 ()




¶
+
2 ()

2
2 +

Z 



2 ()

2
 (A.5)

where $ ( ) denotes an hypothetically observed instantaneous forward rate at time  for maturity

 . Then, the price predicted by the model matches the yield curve observed at , viz


¡
 

2
  

¢
= −

R 

$ ( )  ≡  $ () for all 

where  $ () denotes the market price of a zero coupon bond at  and expiring at .

Proof of Proposition A.1. By standard arguments, the pricing function in Eq. (A.2) holds

with the three functions,  (·),  (·) and  (·) given in the proposition. To determine the infinite
dimensional parameter  in Eq. (A.5), we match the instantaneous forward rate predicted by the
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model at , say 
¡
 

2
  

¢ ≡ − ln(
2
 )


, to $ ( ), leaving

$ ( ) = 
¡
 

2
  

¢
= − ()


+

 ()


 −  ()


2 

= 

Z 



−(−)− 

Z 



 ()


+ −(−) −  ()


2  (A.6)

where the last equality follows by differentiating the expressions for  () and  () in Eqs. (A.3).

Let us differentiate both sides of Eq. (A.6) with respect to , leaving,

$ ( )


= 

µ
 − 

Z 



−(−)
¶
− 

Z 



2 ()

2
− 

−(−) − 2 ()

2
2 

(A.7)

By replacing Eq. (A.6) into the R.H.S. of Eq. (A.7), and rearranging terms, leads to Eq. (A.5).

Next, we verify  in Eq. (A.5) is indeed the infinite dimensional parameter we are searching for.

Replacing Eq. (A.5) into the first term on the R.H.S. of Eq. (A.6),Z 



−(−) =
Z 



−(−)
µ
$ ( )


+ $ ( )

¶
| {z }

= $()−−(−)$()

+ 2

Z 



−(−)
µ


 ()


+

2 ()

2

¶


+ 

Z 



−(−)
µ


Z 



 ()


+

Z 



2 ()

2


¶
 (A.8)

where the equality below the first term of the R.H.S. of Eq. (A.8) follows by integrating by parts.

By plugging Eq. (A.8) into Eq. (A.7), using that $ ( ) = , and rearranging terms,


¡
 

2
  

¢
= $ ( ) +

µZ 



−(−)
µ


 ()


+

2 ()

2

¶
−  ()



¶
2

+ 

µZ 



−(−)
µ


Z 



 ()


+

Z 



2 ()

2


¶
−

Z 



 ()




¶


(A.9)

We show that the second and the third terms of Eq. (A.9) are zero. As for the second term, we

have that by an integration by parts,Z 



−(−)
µ


 ()


+

2 ()

2

¶
 =

∙
−(−)

 ()



¸=
=

=
 ()


 (A.10)
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because by evaluating the Riccati’s equation (A.4) in  =  delivers
()


≡ ̇ ()

¯̄̄
==

= 0 for

all . As for the third term,Z 



µZ 



−(−)
µ


 ()


+

2 ()

2

¶


¶


=

Z 



µZ 



−(−)
µ


 ()


+

2 ()

2

¶


¶


=

Z 



 ()




where the first equality follows by Fubini, and the second by Eq. (A.10). ¥

An Internet Appendix provides reports theoretical and observed yield curves on selected dates of

our sample. Next, we derive results on the volatility predicted by the model based on Proposition

A.1. By Eq. (1), the price of a forward on a coupon bearing bond is

 (T) ≡ 
¡
 

2
  T

¢ ≡ X
=




 


¡
 

2
   

¢
+  



¡
 

2
  T

¢
 (A.11)

where

 
 ( ) ≡  



¡
 

2
   

¢ ≡ 
¡
 

2
  

¢

¡
 

2
  

¢  (A.12)

We develop predictions regarding the volatility of this two-factor model based on Eqs. (A.11)-

(A.12). First, we focus on the zero coupon bond case and determine its realized variance and a

forward looking volatility index (see Eqs. (A.17) and (A.21)); and second, we deal with the coupon

bearing case (see Eq. (A.26)).

Dynamics of forwards on zero coupon bonds. Below, we show that⎧⎪⎨⎪⎩
 

 ( )

 
 ( )

= 2Ψ (  )  + 
¡
1 ( ) 


1 + 2 ( ) 


2

¢
2 =

¡
− () 

2


¢
 + 

³


1 +
p
1− 2

2

´ (A.13)

where 
1 and 

2 are two independent Brownian motions under the forward probability  ,

Ψ (  ) is a deterministic function (see Eq. (A.23) below), and

 ( ) =  ()−  ()   = 1 2 (A.14)
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and for a generic X ,

1 (X ) ≡ −X () + X ()  2 (X ) ≡ 
p
1− 2X ()  (A.15)

and, finally,  () is a time-varying speed of mean-reversion of basis point variance 
2
 under  ,

 () ≡  +  ( ()−  ())   ∈ [  ]  (A.16)

Realized and risk-adjusted expected variance on zero coupon bonds. Next, define

the volatility vector of the forward price in Eqs. (A.13),  
 ( ; ) ≡ [1 ( ) 2 ( )] · 2 .

By a direct calculation,

k 
 ( ; )k2 =  ( ) · 2  (A.17)

where

 ( ) ≡ ( ()− ())
2 + 2 ( ()−  ())

2 − 2 ( ()− ()) ( ()−  ()) 

(A.18)

which follows by calculating the instantaneous variance of the forward price in Eq. (A.13).

Next, by taking expectations of the basis point variance process 2 in the second of Eqs. (A.13),

we obtain that for all  ,

E



¡
2
¢
= 

Z 



−
R 

 () + −

R 

 ()  · 2 

Replacing the previous expectation into the expectation of the annualized integrated variance

under  leaves,

1

 − 

Z 



E


³
k 

 ( ; )k2
´
 = A

1 (   ) +A
2 (   ) · 2  (A.19)

where we have used Eq. (A.17) to evaluate k 
 ( ; )k2, and

A
1 (   ) ≡

1

 − 

Z 



µZ 



−
R 

 () 

¶
 ( ) 

A
2 (   ) ≡

1

 − 

Z 



−
R 

 ()  ( ) 

(A.20)

Therefore, in this two-factor model, the index of percentage volatility in Eq. (7) predicted by
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Proposition 3 specializes to

GB-VI
¡
2 ;    

¢ ≡qA
1 (   ) +A

2 (   ) · 2   ≤  ≤  ≤  (A.21)

where  ( ) and 
 (   ) are the two constants given in Eqs. (A.18) and (A.20).

Proof of Eqs. (A.13). By Eq. (A.2), and Itô’s lemma, the price of a zero coupon bond expiring

at any fixed X ,  (X ) ≡  (   X ), satisfies

 (X )
 (X ) =  +  (1 (X ) 1 + 2 (X ) 2 ) 

where 1 (X ) and 2 (X ). By a standard argument, we can define two standard Brownian motions
under the forward probability  , 


 =  −  ( )  ,  = 1 2, such that by Girsanov

theorem, one has that under  ,

 (X )
 (X ) =

¡
 + 2 (1 (X )1 ( ) + 2 (X )2 ( ))

¢
 + 

¡
1 (X ) 

1 + 2 (X ) 
2

¢


(A.22)

where the two functions,  , are as in Eqs. (A.15). Applying Itô’s lemma to the forward price

predicted by the model,

 
 ( ) =

( 
2
 X )

¯̄
X=

( 
2
 X )

¯̄
X=



and utilizing Eq. (A.22), yields the first of Eqs. (A.13), with

Ψ (  ) ≡
2X

=1

 ( ) 

 (  )  (A.23)

Finally, the second of Eqs. (A.13) follows by a change of probability in Eq. (A.1), leading to the

time-varying speed of mean-reversion in Eq. (A.16). ¥

Government bond volatility index. Next, we determine the government bond index based

on the two-factor model. By Eqs. (17) and (A.13), the instantaneous variance of the forward returns

is

k ( ;T)k2 ≡
⎛⎝Ã P

=

 (T) 

1 ( )

!2
+

Ã
P
=

 (T) 

2 ( )

!2⎞⎠ · 2  (A.24)
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where the functions  ( ) are defined as in Eq. (A.14). Set 

 (T) ≈ 


 (T) in Eq. (A.24),

or,

k ( ;T)k2 ≈  (Y
$
T T) · 2  (A.25)

where

 (Y
$
T T) ≡

Ã
P
=



 (T) 


1 ( )

!2
+

Ã
P
=



 (T) 


2 ( )

!2


and the dependence on Y$T arises through the weights 

 (T) in Eq. (17).

Based on (A.25), we can now determine the government bond volatility index by calculations

similar to those leading to Eq. (A.19):

GB-VI(Y$T 
2
 ;   T) =

q
A1(Y$T  T) +A2(Y$T  T)2  (A.26)

where

A1(Y$T  T) =
1

 − 

Z 



µZ 



−
R 

 () 

¶
 (Y

$
T T)

A2(Y$T  T) =
1

 − 

Z 



−
R 

 ()  (Y

$
T T)

Evaluation of derivatives. Similarly as in the three-factor model in the main text, we

approximate the value at  of a TYVIX future maturing at  +  by freezing 

+ ( + T+ ) at



 (T), obtaining

F̂(Y$T 2 ; +   T) ≡
Z ∞

0

q
A1(Y$T  T) +A2(Y$T  T) · ̄

¡
| 2

¢
 (A.27)

where ̄
¡
2+

¯̄
2
¢
is the transition density of 2+ given 

2
 under . It is well-known by Eqs. (A.1),

this transition density is a non-central chi-square with 2 ( + 1) degrees of freedom and non-centrality

parameter 21, viz

̄
¡
2+

¯̄
2
¢
= −1−2

µ
2

1

¶2

 (2
√
12) 

where

 ≡ 2

2 (1− −)
 1 ≡ −2  2 ≡ 2+  ≡ 2

2
− 1

and  (·) is the modified Bessel function of the first kind of order .
Next, we approximate the value at  of a TYVIX European call option maturing at  + ∆ and

struck at , by freezing 

+ ( + T+ ) at 


 (T), obtaining

Ĉ(Y$T 2 ; +∆  T)
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≡  ( )

Z ∞

0

µq
A1(Y$T  T) +A2(Y$T  T)−

¶+
· ̄∆

¡
| 2

¢
 (A.28)

where ̄∆
¡
2+∆

¯̄
2
¢
denotes the transition density of the basis point variance under the forward

probability +∆, determined as follows. Consider, first, the conditional characteristic function of

2+∆ given 2 under the forward probability +∆, viz

∆
¡
 2 ;

¢
= E+∆



³
i

2
+∆

´
= 1(∆)+2(∆)2  (A.29)

for two functions 1 (∆ ) and 2 (∆ ) to be determined below (see Eqs. (A.30)-(A.31)).

Note that by Eq. (A.13), and under +∆, the basis point variance 
2
 is solution to

2 =
¡
−+∆ () 

2


¢
 + 

³
 +∆

1 +
p
1− 2 +∆

2

´
  ∈ [ +∆] 

where +∆ () is the time-varying persistence parameter defined in Eq. (A.16). By standard

arguments, we find that the two functions 1 (∆ ) and 2 (∆ ) in Eq. (A.29) satisfy, for

 ∈ [ +∆), (
0 = ̇1 ( ∆ ) + 2 ( ∆ )

0 = ̇2 ( ∆ )−+∆ ()2 ( ∆ ) +
1
2
222 ( ∆ )

(A.30)

with boundary conditions

1 (+∆∆ ) = 0 and 2 (+∆∆ ) = i (A.31)

The transition density ̄∆
¡
2+∆

¯̄
2
¢
is the Fourier’s inverse transform of ∆

¡
 2 ;

¢
in Eq.

(A.29):

̄∆
¡
2+∆

¯̄
2
¢
=
1

2

Z ∞

−∞
−i

2
+∆∆

¡
 2 ;

¢
 (A.32)

Appendix B: Analysis of the three-factor model

This appendix extends results in Appendix A and provides analytical details regarding the three-

factor model of the main text.

Proof of Proposition 2. Follows by generalizing the arguments made to prove Proposition

A.1. In particular, the functions  (·),  (·) and  (·) in the pricing function of Proposition 2 (see
Eq. (9)) are

 () = −
Z 



 ()+ 

Z 



 ()   () =
1− −(−)


 (B.1)
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where  () and  () are solutions to the following Riccati’s equations

̇ () = ( +  ()) ()− 1
2

¡
2 () + 22 ()

¢
  () = 0 (B.2)

and

̇ () =  ()−
µ
 () +

1

2
22

 ()

¶
  () = 0 (B.3)

and the dot indicates differentiation with respect to time  . Moreover, set the parameter  equal to

 =
$ ( )


+ 

µ
$ ( ) +

 ()


2 +

 ()


 + 

Z 



 ()




¶
+

2 ()

2
2 +

2 ()

2
 + 

Z 



2 ()

2
 (B.4)

where $ ( ) denotes an hypothetically observed instantaneous forward rate at time  for maturity

 . Then, the price predicted by the model matches the yield curve observed at , viz


¡
 

2
   

¢
= −

R 

$ ( )  ≡  $ () for all  (B.5)

where  $ () denotes the market price of a zero coupon bond at  and expiring at .

Note that the functions  and  in (B.1) and (B.2) are the same as  and  in the two-factor

model (see (A.3) and (A.4)). Moreover, if  is constant (i.e.  =  = 0) and equal to  ≡ ,

the function  in Eq. (B.3) is solution to ̇ () = − (), such that  () + () in (9)

collapses to  () in (A.2). Likewise, the infinite dimensional parameter  in Eq. (B.4) collapses

to that in the two-factor model in Eq. (A.5) under the same conditions ¥

Proof of Eqs. (12) and Proposition 3. First, we generalize Eq. (A.22) in Appendix A and

determine the dynamics of a zero coupon bond price  (X ) ≡  (     X ). Second, we apply
Itô’s lemma to  

 ( ) in Eq. (11) and obtain Eqs. (12) relying on the thusly determined dynamics

of  (X ). We find that the drift of  


 

in Eq. (12) is


  ≡ 

 ( )  = E



µ
 

 ( )

 
 ( )

¶
=
¡
2Ψ (  ) + Ψ (  )

¢
 (B.6)

where

Ψ (  ) = Ψ (  )  Ψ (  ) = 3 ( ) 

3 (  ) 

and Ψ (  ) is as in Eq. (A.23). The Brownian motions under  are defined as 
 =

 −  ( )   = 1 2, and 
3 = 3 −√3 ( )  . Note that the two exposures in

(13), 1 ( ) and 

2 ( ), are the same as those in the two-factor version of the model (see Eqs.
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(A.14)), and that the function  in (14) is the same as in Eq. (A.16)).

The expression for the realized variance in Eq. (15) in Proposition 3 follows by a direct calculation,

and the two functions  ( ) are given by

1 ( ) =  ( )  2 ( ) ≡ 2 ( ()− ())
2  (B.7)

where  ( ) is as in Eq. (A.18).

Finally, we derive Eq. (16) in Proposition 3. Note that by Eq. (15), the expectation of the

annualized integrated government bond variance under  is

1

 − 

Z 



E


³
k 

 (   ; )k2 
´

=
1

 − 

Z 



³
1 ( ) · E



¡
2
¢
+ 2 ( ) · E

 ( )
´
 (B.8)

The expectations under  of the basis point variance 
2
 and long-term uncertainty  in (12)

are, for all  , ⎧⎪⎪⎨⎪⎪⎩
E



¡
2
¢
= 

Z 



−
R 

 () E

 () + −
R 

 ()  · 2

E
 ( ) = 

Z 



−
R 

 () + −

R 

 ()  · 

Replacing the previous expectations into Eq. (B.8), and rearranging, yields Eq. (16), where the

functions B (   ) are given by

B1 (   ) ≡
1

 − 

Z 



(1 (  )

1 ( ) + 2 (  )


2 ( )) 

B2 (   ) ≡
1

 − 

Z 



−
R 

 () 1 ( ) 

B3 (   ) ≡
1

 − 

Z 



µ
3 (  )


1 ( ) + −

R 

 () 2 ( )

¶


(B.9)

and

1 (  ) ≡
Z 



−
R 

 () 

µZ 



−
R 

 () 

¶


2 (  ) ≡
Z 



−
R 

 () 

3 (  ) ≡
Z 



−
R 

 () −

R 

 () 

(B.10)

and the two functions  and  are as in Eqs. (14). ¥
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Coupon bearing bonds: The integrated drift ̄ (  T) predicted by the model.

By setting  ≡  and plugging the first of Eqs. (12) into Eq. (17) leaves

 (T)
 (T)

=

X
=

 (T)

 ( ) 

+

X
=

 (T)
¡

¡
1 ( ) 


1 + 2 ( ) 


2

¢
+
√



3 ( ) 


3

¢


where 
 ( ·) is defined as in Eq. (B.6),


 ( ) = 2Ψ (  ) + Ψ (  ) 

such that by the definition of ̄ in Proposition 1, the integrated drift predicted by the model is

̄ (  T) =
Z 



X
=

 (T)

 ( )  ¥ (B.11)

Proof of Proposition 4. Eq. (19) follows by setting 

 (T) ≈ 


 (T) in Eq. (18), such

that

k (   ;T)k2 ≈ 1 (Y
$
T T)

2
 + 2 (Y

$
T T) 

where

1 (Y
$
T T) ≡

Ã
P
=



 (T) 


1 ( )

!2
+

Ã
P
=



 (T) 


2 ( )

!2


2 (Y
$
T T) ≡

Ã
P
=



 (T) 


3 ( )

!2


The expressions for the three functions in Eq. (19) follow by the same arguments made to derive

(B.9). They are

B1(Y$T  T) ≡
1

 − 

Z 



³
1 (  )1 (Y

$
T T) + 2 (  )2 (Y

$
T T)

´


B2(Y$T  T) ≡
1

 − 

Z 



−
R 

 () 1 (Y

$
T T)

B3(Y$T  T) ≡
1

 − 

Z 



µ
3 (  )1 (Y

$
T T) + −

R 

 () 2 (Y

$
T T)

¶


(B.12)

where the three function  (  ) are as in Eqs. (B.10) and the two functions  and  are as in

53



Eqs. (14).

Derivation of the transition densities in (22) and (24). We first determine 
¡
 | 2  

¢
in (22)–the transition density

¡
2+∆ +∆

¢
given

¡
2  

¢
under the risk-neutral probability . De-

fine the conditional characteristic function of
¡
2+∆ +∆

¢
given

¡
2  

¢
under ,

̄
¡
 2  ;1 2

¢
= E

³
i1

2
+

+i2+∆

´
= 1(12)+2(12)

2
+3(12)  (B.13)

where the three functions  (∆ 1 2) satisfy⎧⎪⎨⎪⎩
0 = ̇1 (  ·) + 3 (  ·)
0 = ̇2 (  ·)− 2 (  ·) + 1

2
222 (  ·)

0 = ̇3 (  ·) + 2 (  ·)− 3 (  ·) + 1
2
223 (  ·)

subject to the boundary conditions

1 (+  ;1 2) = 0 and +1 (+  ;1 2) = i   = 1 2

The transition density ∆
¡
2+∆ +∆

¯̄
2  

¢
is obtained as the Fourier’s inverse transform of

̄
¡
 2  ;1 2

¢
in (B.13), viz


¡
2+∆ +∆

¯̄
2  

¢
=

1

(2)2

Z ∞

−∞

Z ∞

−∞
−i1

2
+−i1+ ̄

¡
 2  ;1 2

¢
12 (B.14)

Next, we determine ∆
¡
 | 2  

¢
in (24)–the transition density of

¡
2+∆ +∆

¢
given

¡
2  

¢
under the forward probability +∆. The conditional characteristic function under +∆ is defined

as

̄∆
¡
 2  ;1 2

¢
= E+∆



³
i1

2
+∆+i2+∆

´
= 1(∆12)+2(∆12)

2
+3(∆12)  (B.15)

for three functions  (∆ 1 2) to be determined below (see Eqs. (B.16)-(B.17)). By the last two

equations of (12), we know that
¡
2  

¢
satisfy(

2 =
¡
 −+∆ () 

2


¢
 + 

³
 +∆

1 +
p
1− 2 +∆

2

´
 = (−+∆ () )  + 

√


+∆
3

where  +∆
 are standard Brownian motions under +∆, and the two functions  () and  ()

are defined in Eqs. (14). By standard arguments, similar to those leading to Eqs. (A.30) in the
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two-factor case, we find that the three functions  (∆ ) in Eq. (B.15) satisfy, for  ∈ [ +∆),⎧⎪⎨⎪⎩
0 = ̇1 (  ·) + 3 (  ·)
0 = ̇2 (  ·)−+∆ () 2 (  ·) + 1

2
222 (  ·)

0 = ̇3 (  ·) + 2 (  ·)−+∆ () 3 (  ·) + 1
2
223 (  ·)

(B.16)

subject to the boundary conditions

1 (+∆∆;1 2) = 0 and +1 (+∆∆;1 2) = i   = 1 2 (B.17)

The transition density ∆
¡
2+∆ +∆

¯̄
2  

¢
is the Fourier’s inverse transform of ̄∆

¡
 2  ;1 2

¢
in Eq. (B.15):

∆
¡
2+∆ +∆

¯̄
2  

¢
=

1

(2)2

Z ∞

−∞

Z ∞

−∞
−i1

2
+∆−i1+∆ ̄∆

¡
 2  ;1 2

¢
12 (B.19)

Appendix C: Details regarding model calibration

C.1. Futures

The model calibration relies on TY option implied volatilities. We use these implied volatilities

to implement nonparametric estimates of hypothetical TYVIX future values, the benchmark in our

optimization procedures. Accordingly, firstly, we provide a comprehensive derivation of these bench-

marks as well as the approximations involved into them; and secondly, we provide details regarding

the calibration of our model.

Non-parametric estimates of futures values. We derive non-parametric benchmarks for

our model-based TYVIX futures values that rely on calendar spreads, which are originally proposed

by Carr and Wu (2006) and Dupire (2006) in the equity case. Consider a generic ∆-forward looking

variance gauge (e.g., ∆ = 1
12
) for a generic risk:

Vx2∆ ≡ E∗
µ
1

∆

Z +∆



2

¶


where 2 denotes the instantaneous variance of this risk, and the conditional expectation E
∗
 is taken

under some numéraire probability (Mele and Obayashi, 2015).

Consider the price of a future on Vx expiring at + :

+ ≡ E (Vx+∆) 
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where now E denotes the expectation under the risk-neutral probability. Let us, first, determine the

expected squared Vx at + ,

E
¡
Vx2+∆

¢
= E

µ
E∗+

µ
1

∆

Z ++∆

+

2

¶¶
≈ E

µ
E+

µ
1

∆

Z ++∆

+

2

¶¶
= E

µ
1

∆

Z ++∆

+

2

¶
=
1

∆
E

µZ ++∆



2 −
Z +



2

¶
=

 +∆

∆
Vx2+∆ −



∆
Vx2 (C.1)

The second line is only an approximation because the risk-neutral probability and the numéraire

probability are generically not the same. For example, in our context, the numéraire probability is

the forward probability.

Next, fix ∆ = 1
12
, and set the futures month maturity equal to  = ∆, for integer , such that

the approximation in (C.1) is:

E
¡
Vx2+∆∆

¢ ≈ ( + 1)Vx2(+1)∆ − Vx2∆ (C.2)

Note that +∆+∆ = Vx+∆∆, such that:

E (+∆+∆)
2 = E

¡
Vx2+∆∆

¢−  (+∆+∆)

≈ ( + 1)Vx2(+1)∆ − Vx2∆ −  (+∆+∆) 

where the second line follows by the approximation in (C.2). Therefore, we have the following

approximations:

+∆ = E (+∆+∆)

≈
q
( + 1)Vx2(+1)∆ − Vx2∆ −  (+∆+∆)

≈
q
( + 1)Vx2(+1)∆ − Vx2∆ (C.3)

In the calibration, we use the CBOT 10-Year Treasury Note option ATM implied volatility at day

 for maturity , atm (), as a proxy for Vx, to calculate the previous expression and use it as a

non-parametric estimate of hypothetical TYVIX future values; see Eq. (C.6) below.
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Calibration and other optimization procedures. Consider the following estimate of the

basis point variance 2 of the short-term rate on each day  in our sample:

̂2 ≡
252

30

30X
=1

(−+1 − −)2 

where  is the 3-month Treasury Bill rate as of day . We calibrate  in (8) while assuming ̂
2
 has

the same autocovariance function as the true basis point variance, thereby estimating  while fitting

an autoregressive model to the ̂2 series. Likewise, we calibrate the volatility of variance parameter

 in (8) to match the average volatility of changes in the basis point variance,

r
∆−1var(∆̂2)

avg(̂2)
, where

∆−1 = 1
252
, and var(∆̂2) and avg(̂

2
) denote the sample variance of the daily changes in ̂2 and

the sample average of ̂2, respectively. As explained in the main text,  and  are calibrated in the

same way, based on model-implied values of  (see Steps 1 to 3 below).

To estimate TYVIX future values, we proceed through four steps. In the first three steps, we

calibrate the two-factor model in Appendix A and obtain model-implied values of the long-term basis

point parameter  for each day of the sample. We utilize these values to calibrate the parameters ,

 and . In the fourth and last step, we use all the parameter estimates in Table 1 and re-calibrate

the full three-factor model to estimate TYVIX futures values. In the following, V denotes the value
of the TYVIX index as of day , and  is the sample size.

Step 1 Fix  at some value ̂.

Step 2 For each day , calibrate  in the two-factor model so as to fit the two-month term structure

of the non-parametric estimate of TYVIX futures based on Eq. (C.3):

̂ini (̂) ≡ argmin


2X
=1

³
F̂(Y$T ̂2ini;+    T; ̂)−F$ ()

´2
 (C.4)

under the constraint that

̂2ini = ̂2ini () ≡
V2 − A1(Y$T  T)

A2(Y$T  T)
 (C.5)

where F̂(Y$T ̂2ini;+    T; ̂) is F̂ (·) in Eq. (A.27) when the parameter  = ̂, and

F$ () =
q
( + 1) · atm2 ( + 1)−  · atm2 () (C.6)

is a non-parametric estimate of the future value at day , expiring at day +  , with  equal

to one and two months. The constraint (C.5) guarantees that the two-factor model prediction
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(Eq. (A.26)) exactly matches the TYVIX. The rationale underlying the non-parametric estimate

F$ () relies on the derivations leading to Eq. (C.3). The next step describes how values ̂ in
Step 1 are updated given the calibration of  in this step.

Step 3 Iterate on ̂ and the calibrated values (̂)

=1 in Steps 1 and 2, to ensure that

̂((̂)

=1) ≡ argmin



¡
avg

¡
̂2ini

¡
̂ini ()

¢¢− avg ¡̂2¢¢2 
Step 4 Estimate  by fitting an autoregressive model to the calibrated values of (̂ini)


=1 obtained

in the previous steps, and set  = avg
¡
̂ini

¢
and  =

r
∆−1var(∆̂ini)

avg(̂ini)
. Revise the estimates

of the series (̂2ini ̂ini)

=1 while minimizing the distance of model-implied TYVIX futures

to their non-parametric counterparts:

̂ ≡ argmin


2X
=1

³
F̂(Y$T ̂2 ;+    T; ̂)− F$ ()

´2


under the constraint that the model-implied realized variance makes the three-factor model-

implied TYVIX equal to TYVIX for each day, relying on Eq. (19),

̂2 =
V2 − B1(Y$T  T)− B3(Y$T  T)̂

B2(Y$T  T)
 (C.7)

and where F̂(Y$T 2  ; +   T) is F̂ (·) in Eq. (22).

C.2. Options

We approximate Ĉ ( 2  ; +∆  T) in Eq. (31) as follows. Given the history of calibrated

futures values obtained in Section 6.2.1, we perform a non-parametric regression of these calibrated

values on to the model-implied 2 and  and B ≡ B(Y$T  T), so as to learn about the functional
relation linking these variables to the calibrated one. This functional relation is model-based, thereby

leading to small error margins. Denote with F̂
¡
2  B1B2B3; +   T

¢
the predictive part

of this non-parametric regression. We approximate the price Ĉ in Eq. (31) using this estimate, and
freezing YT at Y

$
T, thereby freezing B at B:

Ĉ (Y$T 
2
  ; +∆  T)

≡  ( )

ZZ ³
F̂ ( B1B2B3; +   T)−

´+
∆
¡
 | 2  

¢
 (C.8)

Note that, while Ĉ in (31) depends on a generic , Ĉ in (C.8) now only depends on Y$T.
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Internet Appendix

Figure A.1 reports theoretical and observed yield curves on selected dates of our sample. Theoretical values
are obtained with the parameter values in Table 1 of the main text (see Section 6), and relying on Eq. (A.5)
of Proposition 2. By design, the infinite-dimensional parameter  allows an exact fit of the yield curve on any
given date as illustrated by Figure A.1, ensuring internal consistency between market-observed yields and the
instantaneous variance of coupon-bearing government bond returns.

Figure A.1. Yield curves on selected days and model’s reconstructions based on the calibration
of the infinite dimensional parameter  through Eq. (A.5).
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