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Abstract

Standard asset pricing theories treat return volatility and correlations as two intimately related

quantities, which hinders achieving a neat de�nition of a correlation premium. We introduce a

model with a continuum of securities that have returns driven by a string. This model leads to new

arbitrage pricing restrictions, according to which, holding any asset requires compensation for the

granular exposure of this asset returns to changes in all other asset returns: an average correlation

premium. We �nd that this correlation premium is both statistically and economically signi�cant,

and considerably �uctuates, driven by time-varying correlations and global market developments.

The model explains the cross-section of expected returns and their counter-cyclicality without

making reference to common factors a¤ecting asset returns. It also explains the time-series be-

havior of the premium for the risk of changes in asset correlations (the correlation-risk premium),

including its inverse relation with realized correlations.

Keywords: correlation premium, correlation-risk premium, cross-section of returns, arbitrage pric-

ing, string models, implied correlation.
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1. Introduction

The inability of the CAPM to explain the cross-section of expected returns has led to a proliferation of

models driven by factors that have recently been the focus of criticism and re-newed rigorous statistical

scrutiny (see, e.g., Harvey, Liu and Zhu, 2016). This paper proposes a new arbitrage pricing model

in which the cross-section of expected returns links to arguably one amongst the simplest concepts in

�nancial economics: correlation. The distinguishing feature of our approach is that we avoid making

reference to factors while explaining asset correlations. Instead, correlations of each asset return

with all remaining asset returns are the building block in our framework. That is, in our model,

correlations do not result from the assumption of exogenously given �pricing factors.� Rather, all

correlations are the primitives of the model, and they jointly determine the whole set of no-arbitrage

restrictions amongst all asset returns.

Correlation has a long history in asset pricing, although the typical approach has predominantly

been to model asset returns in frameworks where correlation and volatility are intimately related.

Consider, for example, the seminal Samuelson-Merton model, in which the assets correlations are

pre-determined by the assumptions made on the assets betas; that is, in that model, the price of

correlation risk is a function of the �lambdas.�Ideally, instead, we would like to disentangle the price

of correlation from these lambdas, that is, we would like to disentangle volatility from correlation.

In the Samuelson-Merton model, asset returns are driven by Brownian motions. An alternative

model is one in which asset returns are driven by shocks that enable one to separate volatility from

correlation. We rely on random �eld models, or stochastic string models, to think about correlation

as being determined in this independent way.1 Random �eld models were introduced in �nance by

Kennedy (1994, 1997) to model the term structure of interest rates, and Goldstein (2000) and Santa-

Clara and Sornette (2001) provide extensions or a more general framework in this domain. Tsoulouvi

1 If Brownian motions can be thought of as particles that move randomly over time, a two-parameter random �eld

can be thought of as the random motion of a string. A three-parameter random �eld is also known as a membrane.

This paper deals with strings.
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(2005) applies random �eld models to derivative pricing. Our paper analyzes how random �eld models

can be employed to explain the cross-section of the expected returns. Compared to other approaches,

ours proposes, then, a new way to model asset returns. Our model is not built up around factors (be

they observed or not). We direct our focus on correlations, as explained.

The model works as follows. Asset returns are driven by the realizations of a string. These

realizations lead asset returns to co-move, and these co-movements become sources of priced risk: for

any asset, the co-movements of its returns with all remaining asset returns receive a compensation.

We derive the arbitrage restrictions amongst all asset returns and characterize this compensation:

the expected excess return on each asset is the sum of the correlations of this return with all the

remaining returns, weighted by some �premium function.� The premium function is in common

within the universe of all asset returns, in that the expected returns on all assets are averages of the

assets correlations weighted with the same premium function.

Thus, the expected excess return on any asset re�ects an average premium required to compensate

for the asset returns granular exposure to all remaining returns. We term the result correlation

premium. We test whether, indeed, the cross-section of the expected returns is explained by the

cross-section of the correlation premiums. We �nd that the model provides a reasonable match

of the cross-section of the expected returns, for a number of portfolios sorted through book-to-

market, momentum and additional standard characteristics, at least comparable to the Fama-French

benchmark. Furthermore, our model displays additional properties regarding returns predictability

and the time-series of assets correlations, both realized and risk-adjusted, as we now explain.

In theory, our model does not require time-varying correlations: even if asset correlations were

all constant, the cross-section of the expected excess returns would be a set of non-zero correlation

premiums. However, in practice, correlations change over time. We model time-variation in these

correlations as being driven by a pro-cyclical state variable,2 such that correlations increase in bad

times, i.e., for low realizations of this state variable. The cross-section of correlation premiums and,

2Thus, we rely on a factor model for asset correlations. The point of the paper is that we do not rely on a factor

model for the cross-section of asset returns.
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then, the expected excess returns is predictable, driven by the state variable. We reconstruct the

dynamics of the state variable as a by-product of the model estimation method, based on moment

conditions solved in closed-form (that is, a GMM). The model predicts that the cross-section of

expected excess returns are countercyclical and asymmetrically related to market conditions: they

increase more in bad times than they decrease in bad.

Our GMM consists of moment conditions on time-series properties of realized correlations, but

also option-implied correlations. The model, then, provides additional predictions regarding the

random nature of assets correlations. In particular, the risk of changing correlations may lead,

and our empirical �ndings strongly suggest that they do lead, to a correlation-risk premium, the

di¤erence between risk-adjusted (i.e., option-implied) and realized correlations on S&P 500, a �global

correlation-risk premium.�Our model predicts realized correlations and correlation-risk premiums to

be inversely related. In other words, risk-adjusted correlations move, on average, less than realized

correlations in reaction to a changing market environment. This conclusion matches our empirical

evidence and stands in sharp contrast with the evidence available from equity volatility markets,

where volatility risk premiums are highly countercyclical. Remarkably, then, our model is able to �t

both the correlation-risk premium resulting in derivative markets (on S&P 500), and cross-sections of

asset returns that are not directly related to S&P 500. For example, the model is given a comfortable

support within the international stock universe, such as the global ME-BTM 5x5 portfolio. Therefore,

the model displays potential of being able to explain premiums for other asset classes, by just relying

on our global correlation-risk premium.

The paper is organized as follows. The next section contains high level assumptions and general

no-arbitrage restrictions. Section 3 provides model speci�cations for the purpose of empirical work.

Section 4 develops cross-equation restrictions and contains our empirical results. Section 5 concludes.

Appendix A contains technical details omitted from the main text and Appendix B develops model

extensions.
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2. Asset prices as strings

2.1. Primitives

We consider a market with a continuum of assets in (0; 1), and assume that each asset return is

exposed to all remaining asset returns through the realization of a �string.�Previous models with a

continuum of assets include those formulated by Al-Najjar (1998) in a static exact factor framework

and Gagliardini, Ossola and Scaillet (2016) in a conditional approximate factor setting, amongst

others. Our approach is novel precisely because we are not relying on any factor structure, but on

strings. Precisely, let Pt (i) be the price of the i-th asset at t and Dt (i) be its instantaneous dividend.

We assume that the realized returns on each asset-i are solutions to

dPt (i) +Dt (i) dt

Pt (i)
= E (yt; i) dt+ � (yt; i) dZt (i) ; i 2 (0; 1) ; (1)

where Zt (i), the string, is a process continuous in i and t, and such that E (dZt (i)) = 0, var (dZt (i)) =

dt, and cov (dZt (i) dZt (j)) = � (yt; i; j) dt, for some function � taking values in (�1;+1), and some

state vector yt, to be introduced below; the volatility term, � (y; i) is a continuous function of y

and i, and � (y; i; j) is also continuous; �nally, E (y; i) is the expected return, determined below (see

Proposition 1).3

Volatility, � (y; i), summarizes the asset-i return exposure to how the very same asset return

co-varies with all remaining asset returns. It, thus, plays a role similar to the standard �beta� in

factor models. The notable feature of the model is that returns are risky because the realization

of the string leads all asset returns to co-move; in standard models, instead, asset returns co-move,

driven by the realization of common factors. In the next section, we shall explain how the random

�uctuations of the string become priced sources of risk. A further important property of the model is

that volatility is disentangled from correlation: the model relies on two distinct de�nitions of volatility

and correlation. However, the two functions, � (y; i) and � (y; i; j) may correlate, potentially driven

3Appendix B considers an extension of the model where asset-i return are driven by a �compound string,� that is,

by the realization of a convex functional of the whole string (i.e., not only by dZt (i)).
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by the common state vector y. Finally, one may formulate several assumptions on the state vector

y; in our empirical work, we shall assume it is a di¤usion process, solution to

dyt = b (yt) dt+� (yt) dWt;

for some vector and di¤usion matrix b and �.

We now turn to the asset pricing implications of the assumptions we have made so far. That is,

we describe a pricing kernel for this market and, then, derive cross-sectional restrictions on each asset

expected return.

2.2. The pricing kernel

In the absence of arbitrage, there exists a pricing kernel �t that prices all the assets. We assume that

it is solution to
d�t
�t
= �r (yt) dt�

Z 1

0
� (yt; i) dZt (i) di� � (yt) dWt; (2)

where r is the instantaneous interest rate, � is a vector valued function, including the unit prices of

risk related to the �uctuations of the Brownian motionWt, and � (y; i)i2(0;1) is the collection of the

unit prices of risk related to the �uctuations of the string Zt (i)i2(0;1). We assume that these prices

of risk are continuous functions of the state vector y and i. From now on, we focus on the asset

pricing implications of the pure string component. Appendix B contains extensions that allow for

the existence of a priced Brownian risk. We now turn to the cross-sectional restrictions on each asset

expected return.

2.3. Conditional CAPM and the correlation premium

In a frictionless market, the expected return on each asset-i satis�es the following standard restriction

E (yt; i) dt � E
�
dPt (i) +Dt (i) dt

Pt (i)

�
= r (yt)� cov

�
dPt (i)

Pt (i)
;
d�t
�t

�
; i 2 (0; 1) : (3)
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We have

cov

�
dPt (i)

Pt (i)
;
d�t
�t

�
= �E

�
� (yt; i) dZt (i)

Z 1

0
� (yt; j) dZt (j) dj

�
= �� (yt; i)

Z 1

0
� (yt; j)E (dZt (i) dZt (j)) dj

= �� (yt; i)
�Z 1

0
� (yt; j) � (yt; i; j) dj

�
dt: (4)

Replacing these results into Eq. (3) leaves the following cross-equation restrictions on the cross-section

of expected returns:

Proposition 1. (Correlation premium) The expected return E (yt; i) on asset-i, i 2 (0; 1), satis�es

E (yt; i)� r (yt) = C (yt; i) ; (5)

where

C (yt; i) � � (yt; i)
Z 1

0
� (yt; j) � (yt; i; j) dj: (6)

The term C (yt; i) in this proposition summarizes the evaluation of the asset-i granular exposure to

the market, and we are referring to it as the correlation premium for asset-i. The proposition provides

a novel theory of the cross-section of the expected returns, based on this correlation premium. Eq. (5)

tells us that each asset expected excess return i is the premium required to compensate an investor for

the exposure of the asset-i return to all remaining asset returns. The contribution of asset-j return

to the premium for asset-i, when the state is y, is � (y; i)� (y; j) � (y; i; j) dj. That is, � (�; i; j) is the

correlation between asset-i and asset-j returns, correlation arising from the realization of the string;

� (�; j) is the unit risk premium that compensates for any risk correlated with asset-j return; �nally,

� (�; i) de�nes the size of the overall exposure of the asset-i return to the whole string, as explained

in Section 2.1.

To illustrate Proposition 1, consider the following heuristic example based on a N -asset market.

Consider, say, asset-i. Its returns are exposed to the risk of co-movements with returns on asset-1, a
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risk summarized by the correlation, � (yt; 1; i); then, � (yt; i) � (yt; 1; i) is the risk of co-variation that

returns on asset-i have with returns on asset-1. We term this co-variation �exposure,� in analogy

with standard asset pricing terminology. Now, there are obviously N such exposures arising from

the realization of the string, including the variation of the very same asset-i returns. According to

the model, each of these exposures receives a compensation. The correlation premium is the average

premium, C, as summarized by Table 1, i.e., the counterpart to Eq. (6) in this heuristic example.

Exposure to asset-j Compensation Premium

j = 1 � (yt; i) � (yt; i; 1) �1 � (yt; i) � (yt; i; 1)�1

� � � � � � � � � � � �

j = N � (yt; i) � (yt; i; N) �N � (yt; i) � (yt; i; N)�N

C = � (yt; i) 1N
PN
j=1 � (yt; i; j)�j

Table 1: This table provides a heuristic construction of the expected return required to hold any
asset i. The second column indicates how asset-i is exposed to �uctuations of any asset j. The
second column is the unit risk premium required to bear a given exposure to any asset j. The
premium is the average of the exposures weighted by the unit risk premiums.

This example illustrates that, in the model, exposures are the counterparts to the familiar �betas�

in standard factor models. That is, betas are asset returns sensitivities to changes in common factors;

instead, in our model, exposures result from the asset returns sensitivities to changes in all the asset

returns that arise through the realization of the string. Similarly, compensations are the counterparts

to �lambdas.�But while lambdas are unit risk premiums relating to the �uctuations of common and

exogenous factors, compensations are, in our model, unit premiums relating to how each asset return

co-varies with all remaining asset returns: there exists, then, a compensation for each asset return

in the assets universe. In Section 3, we formulate assumptions that help deal with these in�nite

dimensional problems, rendering our model tractable for empirical purposes.
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3. A model with random correlations

This section provides model speci�cations that account for the salient empirical properties of (i) asset

return correlations and (ii) the premiums required to bear time-variation in these correlations.

It is well-known that asset correlations do indeed vary over time (see, e.g., Figure 1 below).

Initially, however, it is instructive to focus on our model implications in the simple case where

correlations, variances and premiums are all constant. Assume, then, that for all i; j 2 (0; 1),

� (yt; i) = �i; � (yt; i; j) = � (i; j) ; � (yt; j) = �o; � (yt) = �o;

for some constants �i, � (i; j), �o and a vector of constants �o. Given these assumptions, Proposition

1 predicts that the expected excess returns on each asset-i are

E (yt; i)� r (yt) = C (i) ; C (i) = �o�i
�Z 1

0
� (i; j) dj

�
| {z } :

��i (global correlation exposure)

(7)

We call �i global correlation exposure for asset-i, consistent with terminology in Section 2.3 (see

Table 1): the risk premium on asset-i equals the product of a risk exposure, �i�i, times the unit

price of risk, �o. We refer to �i as �global� because it is the average correlation of asset-i returns

with all other asset returns. This decomposition of the expected returns is neat, but obtains due to

the assumption that the unit prices of risk are constant in the cross-section. We now generalize the

insights from this basic model and account for both time-variation in correlations and cross-sectional

variations in the unit risk premiums.

3.1. A factor model of asset correlations

Figure 1 summarizes well-known evidence regarding time-variation in asset correlations. We construct

25 Size and Book-to-Market sorted portfolios and calculate realized correlations for each portfolio

pair through one-month rolling windows estimates. Consider the empirical counterpart to the global

correlation exposures �i in Eq. (7), �$t (i) =
1
n

Pn
j=1 �

$
t (i; j) ;where �

$
t (i; j) denotes the realized
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correlation between portfolios j and i, and n = 25. We �nd that nearly 90% of the variability in

these exposures is explained by the �rst principal component. Figure 1 plots the average correlation

exposure, de�ned as �$t =
1
n

Pn
i=1 �

$
t (i).

The fact that a large portion of the correlation exposures is driven by a single principal component

suggests that a parsimonious model may help explain time-variation in these correlations. We now

proceed with such a model while still assuming that correlation is priced in accordance with the string

model in Section 2.

Jan1995 Jan2000 Jan2005 Jan2010 Jan2015

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t$

Average correlation (25 BTM portfolios)

Figure 1. This picture depicts the average correlation exposure for 25 Size and Book-to-Market
sorted portfolios, de�ned as �$t =

1
n

Pn
i=1

Pn
j=1 �

$
t (i; j), where �

$
t (i; j) is the realized correlation

between portfolios j and i, obtained through a rolling window equal to 22 days.

We assume that the asset correlations are driven by a di¤usion process yt � yt, a scalar. To

keep the model as simple as possible, we still assume that the exposures to strings are constant and
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independent of i, i.e., � (yt; i) = �i; and we assume that the string correlation function is

� (yt; i; j) = %0 (i; j) + %1 (i; j) e
�yt ; (8)

where %0 (i; j) and %1 (i; j) are matrix coe¢ cients independent of time, and yt is solution to a square

root process

dyt = � (m� yt) dt+ �
p
ytdWt; (9)

for three positive constants �, m and �. Under standard parameter restrictions, yt stays strictly

positive, hence, this speci�cation for yt bounds � (yt; i; j) to be inside the unit circle as soon as

j%0 (i; j) + %1 (i; j)j < 1.

For the purpose of identifying the model, we need to �x the sign of %1 (i; j), and we work with

%1 (i; j) > 0. We, then, interpret yt as a pro-cyclical variable: all correlations are down when yt is up.

3.2. The correlation premium

The next corollary summarizes cross-section restrictions resulting from the assumptions formulated

in Section 3.1.

Corollary 1. (One-factor correlation premiums) Assume that the correlation function satis�es Eq.

(8), where yt is solution to Eq. (9), and that each asset return variance is constant and equal to �2i

for asset-i. Then, the expected excess returns in Proposition 1 (Eqs. (5)-(6)) are

E (yt; i)� r (yt) = C (yt; i) ; C (yt; i) = �i
Z 1

0
� (yt; j)

�
%0 (i; j) + %1 (i; j) e

�yt� dj: (10)

Thus, the cross-section of the expected excess returns is driven by a single, procyclical state

variable, yt. Moreover, under conditions on � (yt; j) discussed in a moment, expected excess returns

are decreasing and convex in yt, that is, they are countercyclical and react asymmetrically to yt:

they increase in bad times more than they lower in good, a property that is known to be empirically

pervasive at the aggregate level since at least Mele (2007).
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One simple condition leading to the previous predictions is that � (yt; j) is positive and constant,

both in time and in the cross-section. More generally, expected returns are countercyclical if � is.

In all the speci�cations of � provided below, expected excess returns are both countercyclical and

convex in yt, given the parameter estimates in Section 4.

We consider three speci�cations for the premiums that we use in our empirical work.

(I) Constant premiums. The correlation premium is constant both in time and in the cross-

section, that is, � (yt; j) � ��. In this case, the correlation premium in Eq. (10) collapses to

C (yt; i) = ���i
�
%0 (i) + %1 (i) e

�yt�| {z }
��i(yt) (dynamic GCE)

; (11)

where %q (i) =
R 1
0 %q (i; j) dj, q = 0; 1. This model speci�cation is a very minimal generalization of the

constant correlation model in Eq. (7), whereby the global correlation exposure (GCE), �i, is replaced

by its dynamic counterpart, �i (yt).

(II) Cross-sectional variation. The correlation premium for shocks on the asset return-j links

to the dynamic GCE in (11) for the same asset, �j (t), according to � (yt; j) = �0%0 (j) +�1%1 (j), for

two constants �0 and �1. The correlation premium for asset-i in Corollary 1 is

C (yt; i) = �i
Z 1

0
(�0%0 (j) + �1%1 (j))

�
%0 (i; j) + %1 (i; j) e

�yt� dj: (12)

(III) Time series and cross-sectional variation. The correlation premium for shocks on

asset-j links to �j (t), according to � (yt; j) = �v0%0 (j) + �v1%1 (j) e
�yt , for two constants �v0 and

�v1, such that the correlation premium for asset-i is

C (yt; i) = �i
Z 1

0

�
�v0%0 (j) + �v1%1 (j) e

�yt� �%0 (i; j) + %1 (i; j) e�yt� dj: (13)

The rationale behind the speci�cations in (II) and (III) is the following. A parsimonious modeling

assumption is that the premium �j (yt; j) for exposure on asset returns-j re�ects information on the
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dynamic GCE for the very same asset, �j (yt). In these formulations, then, this premium re�ects both

the unconditional part of �j (yt), i.e., %0 (j), and the exposure of �j (yt) to movements in the state

variable yt, %1 (j). The di¤erence between (II) and (III) is that the latter re�ects both cross-sectional

(i.e., %0 (j) and %1 (j)) and time series (i.e., the state of yt) information.

The following proposition gathers the expressions for the cross-section of the unconditional ex-

pected returns in the three speci�cations formulated above.

Proposition 2. (Unconditional correlation premiums) The unconditional expected returns predicted

by (I) the constant premiums model, (II) the cross-sectional variation model, and (III) the time series

and cross-sectional variation model, are

E [C (yt; i)]

=

8>>>>><>>>>>:

���i
�
%0 (i) + %1 (i) �Y(1)

�
(I)

�i

Z 1

0
(�0%0 (j) + �1%1 (j))

�
%0 (i; j) + %1 (i; j) �Y(1)

�
dj (II)

�i

Z 1

0

�
�v0A0;0 (i; j) + (�v1A1;0 (i; j) + �v0A0;1 (i; j)) �Y(1) + �v1A1;1 (i; j) �Y(2)

�
dj (III)

where Ah;q (i; j) � %h (j) %q (i; j) and

�Y(`) � E
�
e�`yt

�
=

�
2�

2�+ `�2

� 2�m
�2

; ` = 1; 2:

In Section 4, we test our string model while relying on its unconditional version predicted by

Proposition 2, similarly as with standard methodology used with the Conditional CAPM (e.g., Ja-

gannathan and Wang, 1996; Lettau and Ludvigson, 2001). We now develop additional cross-equation

restrictions that we use while estimating the model. We address the question: is yt a source of priced

risk?
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3.3. The correlation-risk premium

A key concept that has been extensively investigated in the empirical literature is the correlation-risk

premium, de�ned as the di¤erence between the expected integrated correlation under the risk-neutral

probability and the physical probability, denoted hereafter as Q and P , respectively. If correlation was

not a priced risk, this di¤erence would always be zero. Figure 2 depicts the realized correlation-risk

premium for S&P 500 stocks, de�ned as the di¤erence between option implied integrated correlations

(that is, correlations expected under Q) and realized correlations (proxies for expectations under P ).

Section 4 contains a detailed description of our input data and computations used in Figure 2.
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0.3

0.4

Realized correlation risk premium

Figure 2. This picture plots the realized correlation-risk premium for S&P 500 stocks, de�ned as
the di¤erence between (i) risk-adjusted expectations of one-month average correlations, and implied
by option prices, and (ii) realized correlations, calculated throughout a one-month window.
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Consistent with the empirical evidence, we assume that time-variation in correlations is a priced

risk. Our point of departure is the string correlation function � (yt; i; j) in Eq. (8). Let us integrate

this function twice with respect to all asset pairs, obtaining the average correlation amongst all asset

returns,

�(yt;%) =

ZZ
i;j2[0;1]2

� (yt; i; j) didj = %0 + %1e
�yt ; (14)

where we have de�ned % = [%0; %1] and %q =
R 1
0 %q (i) di, q = 0; 1. The model-implied correlation-risk

premium is de�ned as the di¤erence between the average expected integrated correlation � (yt;%) in

(14) under Q and that under P

Pt �
1

T � t

�Z T

t
EQt (� (y� ;%)) d� � Et (� (y� ;%)) d�

�
; (15)

where EQt (�) denotes the expectation under Q given information at time-t, and T � t is a given

horizon.

In words, the correlation-risk premium compensates an investor for the �uctuations in the asset

correlations. Note, also, that this de�nition is distinct from the correlation premium, i.e., C (�; i)

in Proposition 1. The correlation premium, C (�; i), compensates for any asset return exposure to

all remaining asset returns. The correlation-risk premium, Pt, compensates for randomness in this

exposure. Furthermore, note that yt, the factor driving this random exposure, is not priced in the

cross-section of the expected returns. Appendix B indicates how to proceed under the assumption

that yt is also priced in the cross-section of the expected returns. However, to keep the model as

simple as possible, we do not consider this extension.

To render Eq. (15) operational, we specify the unit risk premium for yt. We assume that � (y) =

�
p
y for some constant �, such that, under the risk neutral probability, Q,

dyt = ~� ( ~m� yt) dt+ �
p
ytd ~Wt; (16)

where ~Wt is a standard Brownian motion under Q, and

~� = �+ ��; ~m =
�m

�+ ��
:
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Because yt is interpreted as a pro-cyclical variable, we expect, empirically, that � > 0, meaning that

yt is more frequently in bad times under Q than under P (see Proposition A.1 in Appendix A).

Let # = [�; %1; �], where � = [�;m; �] denotes the parameter vector under the physical probability.

Accordingly, denote with Pt = P (yt;#) the model-based correlation-risk premium in Eq. (15) for a

given set of parameter values #. The next proposition, proved in Appendix A, provides motivation

for this notation as well as some properties of this correlation-risk premium.

Proposition 3. (Correlation-risk premium) Assume that the premium related to Brownian �uctua-

tions is � (y) = �
p
y. Then, the correlation-risk premium is

P (yt;#) =
%1
T � t

Z T

t
(u (yt; � � t;�; �)� u (yt; � � t;�; 0)) d� ; (17)

where

u (y; x;�; �) = a (x; �) e�b(x;�)y; a (x; �) =

�
2~�

2~�+ �2 (1� e�~�x)

� 2�m
�2

; b (x; �) =
2~�e�~�x

2~�+ �2 (1� e�~�x) :

(18)

Moreover, for � > 0, the correlation-risk premium is (i) strictly positive; and is (ii) increasing and

concave in yt for all yt lower than some y1; and (iii) decreasing and convex in yt for all yt higher

than some y2.

Proposition 3 tells us that, provided correlation is positively priced, � > 0, the correlation-

risk premium achieves a maximum. In good times, when the pro-cyclical variable yt is high, the

correlation-risk premium rises as yt lowers. As times deteriorate further, additional drops in yt lead

to a fall in the correlation-risk premium. This fall re�ects that fact that, in bad times, correlations

under P and under Q are already very high; because they are obviously both bounded, then, as yt

lowers, their di¤erence tends to vanish. These properties are illustrated by the left panel in Figure

3, which plots the correlation-risk premium P (yt;#) in Eq. (17), and its unconditional expectation,

based on the parameter estimates obtained in Section 4.
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The right panel of Figure 3 depicts the correlation-risk premium against the instantaneous corre-

lation predicted by the model, �(yt;%) in Eq. (14), obtained while varying the state variable yt driving

them. The descending part of the curve in this right panel does then correspond to the ascending part

of the curve in the left panel. The prediction is that, for most values of the instantaneous correlation,

correlations and the correlation-risk premium are inversely related, with the premium achieving its

maximum when correlation is at about as low as 20%. These predictions are useful because while yt

is not observed, we may estimate correlations and the correlation-risk premium based on observable

quantities. Section 4 provides additional details on the testable implications of the model in this

dimension, and evidence of a strong negative relation between correlations and the correlation-risk

premium.
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Figure 3. This picture plots the one-month correlation-risk premium P (yt;#) in Eq. (17) against
the state variable yt (left panel) and the average correlation predicted by the model, �(yt;%) in
Eq. (14) (right panel). Parameter values are set equal to their estimates obtained in Section 4
(see Table 2). The red line is the unconditional expected value of the correlation-risk premium
predicted by the model, i.e., E (P (yt;#)) in Eq. (22).
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4. Empirical analysis

4.1. Data and preparation of variables

4.1.1. Sources

For the model calibration, we require data on a wide panel of individual stocks belonging to a large

index with traded options, and also data on a smaller panel of realized returns for a set of test assets.

The �rst large panel is used to estimate the correlation state variable, and the smaller panels are then

used to test our cross-sectional predictions. The data sample is daily and runs from January 1996

until April 2016.

For the smaller panels, we use returns on Fama-French portfolios and carry out estimation on 25

book-to-market and size sorted portfolios. We calculate second moments (volatilities, correlations,

and factor betas) based on daily returns, and then proceed to estimate risk premiums relying on

monthly portfolios returns.

As a broad sample of individual stocks we select all constituents of a market-wide index, namely,

S&P500. The composition of S&P500 index is obtained from Compustat and merged with CRSP

through the CCM Linking Table using GVKEY and IID to link to PERMNO, following the second

best method from Dobelman, Kang, and Park (2014). The data on daily returns and market capital-

ization are obtained from CRSP, and as a proxy for index weights on each day, we use the relative

market cap of each stock in an index from the previous day.

For the cross-sectional tests we use a number of standard portfolios, sorted one- or two-way

by characteristics like market equity (ME) , book-to-market (BTM), investments (INV), operating

pro�tability (OP), momentum (MOM), and reversal (REV). We obtain daily and monthly returns

for these portfolios from Kenneth French data library. The cross-sectional pricing results are based

on six sets of portfolios, each with 25 assets stemming from di¤erent two-way sorting procedures. We

use the following data sets: 5x5 ME-BTM, 5x5 ME-INV, 5x5 ME-MOM, 5x5 ME-REV, 5x5 ME-OP,

and 5x5 ME-BTM Global portfolios.
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Because our model should not only deliver the cross-sectional pricing performance, but also be

consistent with the price of correlation-risk, we use the options data on the S&P500 index and all its

constituents to compute the time series of the implied correlations and the respective correlation-risk

premiums as de�ned below. Implied correlations are estimated by comparing the index variance with

the variance of the portfolio of index components. Matching the historical data with options happens

through the historical CUSIP link provided by OptionMetrics. S&P500 index is directly used as

underlying for options. PERMNO is used as the main identi�er of individual stocks in the merged

database. For computing the option-based variables we rely on the Surface File from OptionMetrics,

selecting for each underlying the options with 30, 91 and 365 days to maturity and deltas in the

out-the-money range (that is, absolute delta weakly less than 0.5). While the surface data is not

suitable for testing trading rules due to extensive inter- and extrapolations of the market data, it

proved to be a valuable source of information that can be used in asset pricing tests or in generating

signals for trading.

4.1.2. Model inputs

The estimation of our model requires calibrating the string correlation function in (8) to its empirical

counterparts. We calibrate the model in a way that the correlation state variable yt reproduces model

dynamics for the average correlation in (14) and its risk-neutral equivalent (de�ned in a moment)

that match as closely as possible their empirical counterparts. As for these empirical counterparts, we

rely on average correlations obtained through the equicorrelation amongst all S&P500 components.

Equicorrelation is a useful measure of the average level of market-wide correlations and, hence, it may

reasonably be based upon for the purpose of proxying the dynamics of our state-variable. Equicorre-

lations are computed assuming that, in each day, all pairwise correlations are equal.4

4Elton and Gruber (1973) are amongst the �rst to suggest this notion of correlation under the physical probability.

Driessen, Maenhout, and Vilkov (2005) and Skinzi and Refenes (2005) extended this notion to the risk-neutral space to

measure an average option-implied correlation representative of a universe of stocks.
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Consider a basket of assets with a variance equal to �2It at time-t:

�2It =
X
i;j=1

wiwj�it�jt�ij;t;

where wi are the asset portfolio weights. Given a time-series of variances of this basket, �2It, of

its components �2it, and the index weights, wi, equicorrelations are obtained as the single number

�ij;t = �t calculated in each day t as

�t =
�2It �

P
i=1w

2
i �
2
itP

i=1

P
j 6=iwiwj�it�jt

: (19)

Note that the resulting correlation matrix of the assets in the basket is positive-de�nite, provided

the equicorrelation is non-negative, which is the case in our empirical implementation of (19). In

the sequel, we refer to �implied correlation� for the risk-neutral, and �realized correlation� for the

realized equicorrelations.

Option-implied variances are computed as model-free implied variances (Dumas, 1995; Britten-

Jones and Neuberger, 2000; Bakshi, Kapadia, and Madan, 2003). We compute realized variances

using daily returns and a window length equal to one month. Thus, after plugging the implied

or realized variances into Eq. (19), we end up with the monthly implied or realized correlations,

respectively. The correlation-risk premium is constructed similarly as in Driessen, Maenhout, and

Vilkov (2005) as an implied correlation at the end of day t minus 22-day moving averages of the

realized correlations under P calculated through (19). We denote the estimate of this premium at

time-t with P$t . Likewise, let �$t denote the realized correlation at time-t. As primary data series for

calibrating the parameters governing the dynamics of yt, we use one-month realized correlation, �$t ,

and such is, then, the horizon of the corresponding correlation-risk premium, P$t . To calibrate the

string correlation function (i.e., %0 (i; j) and %1 (i; j) in (8)), we need to �t Eq. (19) to the observed

pairwise correlations between the test assets. Pairwise correlations are computed from daily returns

by relying on standard formulas. Finally, the cross-sectional tests of our models are based on monthly

realized excess returns of test portfolios. The excess returns are computed as realized monthly returns
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minus the one-month Treasury bill rate (from Ibbotson Associates) obtained from the Kenneth French

data library.

4.2. Cross-equation restrictions and state variable estimates

We develop moment conditions that we use to estimate �, the parameter vector related to the dy-

namics of the pro-cyclical state variable yt under P (see Section 3), the correlation exposures %0 (i; j)

and %1 (i; j), and the correlation-risk premium coe¢ cient �. Finally, we explain how we proceed to

recover estimates of the pro-cyclical state variable for each date in our sample.

4.2.1. Matching correlations and correlation-risk premium

The next proposition provides moment conditions that we use to estimate (�; %1).

Proposition 4. (Correlation moment conditions) For any integer n, the n-th uncentered uncondi-

tional moment of % (yt) is

E (�n(yt;%)) =
nX
i=0

�
n

i

�
%i0%

n�i
1

�
2�

2�+ (n� i) �2

� 2�m
�2

: (20)

For any �xed �, the unconditional covariance of � (yt;%) with � (yt+�;%) is

cov (�(yt;%); �(yt+�;%)) = %
2
1

"�
4�2

(2�+ �2)2 � �4e���

� 2�m
�2

�
�

4�2

(2�+ �2)2

� 2�m
�2

#
: (21)

Provided the state variable yt is mean-reverting (� > 0), the auto-covariance of the integrated

correlation, � (yt;%), is strictly positive and vanishes to zero, eventually. The higher �, the higher the

vanishing rate, just as for the original state variable yt. Note, also, that m, the unconditional mean

of yt, can be identi�ed with enough moment conditions. Intuitively, the variance of a square root

process is level-dependent, such that the whole autocovariance function of yt is level-dependent too.
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Proposition 4 helps reconstructing the dynamics of yt under the physical probability. Moreover, we

rely on the model-implied correlation-risk premium in Proposition 3 and derive additional parameter

restrictions. In Appendix A, we show that the unconditional mean of P (yt;#) is

E (P (yt;#)) =
%1
T � t

Z T�t

0
(�u (x;�; �)� �u (x;�; 0)) dx; (22)

where

�u (x;�; �) =

�
2~��

2~��+ (�+ ��e�~�x) �2

� 2�m
�2

:

We use a moment condition based on Eq. (22) as an additional cross-equation restriction for

[�; %1], but also because it helps pinning down the level of the correlation-risk premium to its historical

average, through �. (The red line depicted in Figure 3 is the value of E (P (yt;#)) implied by our

parameter estimates.) Precisely, let � = [�; %0; %1; �] and let N denote the sample size. De�ne

hN (�) �

26666666664

EN (�
$
t )� E (�(yt;%))

varN (�
$
t )� var (�(yt;%))

EN (�
$
t
3)� E

�
�3(yt;%)

�
fcovN (�$t ; �$t+�)� cov (�(yt;%); �(yt+�;%))g�2L

EN (P$t )� E (P (yt;#))

37777777775
;

where N subscripts indicate empirical moment estimates and, �nally, L denotes the set of lags chosen

while calibrating the model-implied autocovariance function to its data counterparts: two weeks, one

month and two months. Our GMM estimator is obtained as

�̂N = argmin
�
hN (�)

|WNhN (�); (23)

where WN is a weighting matrix that minimizes the asymptotic variance of the estimator, which we

estimate, recursively, as Ŵ�1
N � hN (�̂N )|hN (�̂N ).

Therefore, we rely on 7 moment conditions to estimate 6 parameters. Table 2 contains parameter

estimates and associated t-statistics. All parameter estimates are highly statistically signi�cant.
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Estimate t-stat

%0 0.2046 39.47

ln %1 �0.9970 �17.36

� 2.0151 3.71

m 5.7994 2.51

� 7.4182 5.43

� 3.6167 31.65

Table 2: GMM estimates and t-stats obtained relying on the moment conditions (23).

4.2.2. Estimates of correlation exposures

To implement cross-sectional estimates of the model in (10), we need to estimate the asset return

correlation exposures in Eq. (8), %0 (i; j) and %1 (i; j) and, thus, to build up estimates of the state.

We rely on estimates of yt obtained while minimizing a distance of the model predictions to the data

proxies �$t and P$t ,

ŷt = argmin
yt

 
(�$t � �(yt; %̂N ))

2

var(�$t )
+
(P$t � �P(yt; #̂N ))2

var(P$t )

!
; (24)

where �P(yt; #̂N ) denotes the model counterpart to P$t . Estimates of the correlation exposures, say

%̂0 (i; j) and %̂1 (i; j) are, then, obtained while regressing data proxies, �
$
t (i; j) say, onto a constant

and e�ŷt , under the restriction that the coe¢ cient estimates sum up to the GMM estimates in (23),

viz

%̂q =

ZZ
i;j2[0;1]2

%̂q (i; j) didj; q 2 f0; 1g :

Finally, we use %̂0 (i; j) and %̂1 (i; j) in Eq. (10) and implement cross-sectional estimates of the

prices of risk � (�) while �tting the unconditional version of the model predicted by Proposition 2 in

its three versions, as implied by (11)-(12)-(13).
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Figure 4 depicts the estimates of the state obtained through (24) as well as a comparison of the

average correlations predicted by the model with those in the data. The model tracks all the episodes

of spikes in correlations that occurred in 1998, 2003, 2008 and 2011, albeit in a way less pronounced

than in the data.
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Figure 4. The top panel depicts estimates of the pro-cyclical state variable, yt, obtained by
matching the model predictions on realized correlations and correlation-risk premium, as in Eq.
(24). The bottom panel depicts the average correlation in the data (dashed line) and the average
correlation predicted by the model (solid line).

4.3. Cross-sectional pricing

We test the asset pricing model from (10) in its unconditional version implied by the three speci�ca-

tions of the correlation-risk premium predicted by Proposition 2: (I) constant premium �(yt; j) = ��
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both in time and cross-sections, (II) premium with cross-sectional variation � (yt; j) = �0%0 (j) +

�1%1 (j), for two constants �0 and �1, and (III) premium with both time and cross-sectional variation

� (yt; j) = �v0%0 (j) + �v1%1 (j) e
�yt , again for two constants �v0 and �v1.

Portfolio set �� � Slope Data �t, R2

5x5 ME-BTM -0.032 0.008 1.999 0.082

-0.164 2.555 1.770 �

5x5 ME-INV -0.013 0.008 2.848 0.014

-0.066 2.800 1.159 �

5x5 ME-MOM -0.027 0.008 -0.927 0.027

-0.114 2.476 -1.291 �

5x5 ME-REV 0.064 0.005 0.571 0.006

0.299 1.794 1.070 �

5x5 ME-OP -0.064 0.009 2.799 0.140

-0.319 3.309 2.215 �

5x5 ME-BTM Global -0.283 0.011 0.974 0.176

-1.573 3.586 2.477 �

Table 3: This table provides parameter estimates of the constant risk premium �� for Model I
(with t-stats below), and the pricing performance expressed as the average pricing error (� per
month) across a given set of portfolios, slope in the regression of average realized portfolio returns
on the model-based unconditional returns (Slope), and the �t of the model (adjusted R2) from
this regression.

We follow a standard two-pass Fama-MacBeth (1973) procedure by �rst estimating the parame-

trized correlation risk premium � (�) each month, and then making a statistical inference about the

signi�cance of the risk premium parameters based on the estimated time series. The overall �t of the

model is evaluated based on the comparison of the unconditional model-based average returns with

the realized returns for the whole sample period.

For each asset i in a given set of test portfolios at the end of each month t, we compute the model-
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Portfolio set �0 �1 � Slope Data �t, R2

5x5 ME-BTM 13.704 -10.775 0.016 1.106 0.495

3.236 -3.148 4.440 4.949 �

5x5 ME-INV 17.635 -13.092 0.013 1.001 0.482

2.746 -2.637 3.179 4.835 �

5x5 ME-MOM 16.458 -12.434 0.014 0.912 0.714

2.596 -2.464 3.204 7.801 �

5x5 ME-REV 18.120 -13.544 0.013 0.848 0.459

3.388 -3.228 3.592 4.619 �

5x5 ME-OP 28.101 -20.796 0.018 0.982 0.779

4.124 -4.050 5.182 9.264 �

5x5 ME-BTM Global 23.567 -17.975 0.018 0.916 0.855

4.356 -4.438 6.495 11.945 �

Table 4: This table provides parameter estimates of the coe¢ cients �0 and �1 in the risk premium
for Model II (with t-stats below) and the pricing performance expressed as the average pricing error
(� per month) across a given set of portfolios, slope in the regression of average realized portfolio
returns on the model-based unconditional returns (Slope), and the �t of the model (adjusted R2)
from this regression.

based unconditional expected return for the next month using as inputs 60-month historic-window

volatility �i, the unconditional moments of the correlation level �Y(`); ` = 1; 2, and the respective

matrix correlation exposures %0 (i; j) and %1 (i; j). To obtain the correlation-risk premium parameters

for models I through III, we minimize the sum of squared errors between model-based and observed

returns for a given month. Tables 2 to 4 show the parameter estimates for the correlation premium

and demonstrate the unconditional pricing performance of the three models for six sets of test assets.

The helicopter view at the models tells us that the constant risk premium in both cross-sectional

and time-series dimensions does not do a good pricing job: the estimate of the string risk premium is

not signi�cant and comes with a counterintuitive negative sign; moreover, for half of the test portfolio

26



Portfolio set �v0 �v1 � Slope Data �t, R2

5x5 ME-BTM 5.091 -9.917 0.014 0.939 0.420

3.241 -3.037 3.948 4.288 �

5x5 ME-INV 5.752 -9.996 0.011 0.822 0.255

2.991 -2.576 2.799 3.035 �

5x5 ME-MOM 5.586 -10.108 0.013 0.838 0.553

3.040 -2.687 3.308 5.541 �

5x5 ME-REV 6.526 -11.727 0.012 0.795 0.394

4.090 -3.658 3.582 4.076 �

5x5 ME-OP 8.501 -15.362 0.016 0.939 0.537

4.315 -4.087 4.749 5.369 �

5x5 ME-BTM Global 6.605 -13.996 0.018 0.849 0.766

4.516 -4.877 6.396 8.929 �

Table 5: This table provides parameter estimates of the coe¢ cients �v0 and �v1 in the risk
premium for Model III (with t-stats below), and the pricing performance expressed as the average
pricing error (� per month) across a given set of portfolios, slope in the regression of average
realized portfolio returns on the model-based unconditional returns (Slope), and the �t of the
model (adjusted R2) from this regression.

sets, there is an insigni�cant or even negative relation between predicted and realized returns. The

R2 revealing the accuracy of the cross-sectional prediction is between 10% and 18% for the best three

sets of portfolios.

Allowing for variation in the premium in the cross-sectional dimension turns out to be very

important, and in most cases produces signi�cant parameter estimates of �0 and �1. For all the test

portfolios, the model has a reasonable pricing �t, with cross-sectional R2 varying from 44% to 83%,

with the best �t displaying at the level of the global ME-BTM portfolios. Extending to Model III

by allowing time-variation in the string risk premium, does not seem to improve the unconditional

pricing performance, producing results that are very similar to those of Model II. To see how well
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the unit risk premium tracks the risk premium on each portfolio, we also compute the unconditional

expected returns predicted by the model and, for each portfolio, we plot it against the average realized

returns in Figure 5. For space reasons, we only consider Model II in this exercise, as Model III delivers

similar results.
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Figure 5. This picture depicts average excess returns and Model II predictions on the uncondi-
tional expected excess returns for 5x5 ME-BTM, 5x5 ME-INV, 5x5 ME-MOM, 5x5 ME-REV, 5x5
ME-OP, and 5x5 ME-BTM Global portfolios.

Finally, to disentangle exposure and pricing component in the correlation-risk premium, we isolate

the pricing component � (�), which is plotted in Figure 6. While there is, on average, a positive relation
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between unit string risk premium and asset expected return, some unit risk premiums are negative.

This feature of the string is in stark contrast to standard models with risk factors expressed as scalar

random variables.
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Figure 6. This picture depicts average excess returns and the unit risk premiums for each for each
portfolio, with the latter estimated from Model II. The estimates are performed for 5x5 ME-BTM,
5x5 ME-INV, 5x5 ME-MOM, 5x5 ME-REV, 5x5 ME-OP, and 5x5 ME-BTM Global portfolios.

4.4. Correlation-risk premium

Next, we examine the model predictions on the correlation-risk premium. Proposition 3 (see Section

3) suggests a theoretical relation between realized correlation and correlation-risk premium. Given our
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parameter estimates, in Section 3 we explained that this relation is, statistically, roughly inverse for

most of the time (see Figure 3). We calculate data counterparts to this relation. We approximate the

correlation-risk premium with realized correlation-risk premium, de�ned as the di¤erence between

average correlations (implied and historical) over the last 22 days. We also compute the model-

implied realized correlation-risk premium, estimating P -correlations through the average correlations

� (yt; i; j) calculated over the last 22 days, and relying on the previously extracted yt.

Figure 7 plots the results. The model predicts that the correlation-risk premium is statistically

inversely related to realized correlations, as in the data. In terms of the explanations of Proposition

3 in Section 3, in bad times, when implied and realized correlations are both high, the correlation-

risk premium decreases: implied correlations are obviously bounded and, then, a further increase in

both correlations may translate into a decreasing di¤erence between implied and realized correlations.

Figure 7 shows that this e¤ect is so strong to make the correlation-risk premium negatively related

to realized correlations at any value for the realized correlations.

Because implied correlations are on average higher than realized, we might, then, also expect that

implied correlations move less than one-to-one with realized correlations. It is indeed the case. Table

6 reports regression estimates that reveal this property both in the data and for the model. These

properties seem to be in contrast with the empirical evidence in the equity volatility space, where

volatility risk-premiums do actually increase in bad times (see Corradi, Distaso and Mele, 2013).5

a b Adj-R2

Data 0:1845
(0:0030)

0:6209
(0:0083)

52%

Model 0:3321
(0:0011)

0:3015
(0:0026)

72%

Table 6: This table provides estimates (with standard errors in parenthesis) for the coe¢ cients a
and b in the linear regression �Q = a + b�P , where �Q is the one-month expected correlation for
S&P 500 stocks under the risk-neutral probability, Q, and �P is the one-month realized correlation.
The �gures in parenthesis are standard errors, and R2 denotes the adjusted-R2.

5Corradi, Distaso and Mele (2013) (Section 4.2.5) provide such evidence relying on ex-ante volatility risk-premiums,

within a no-arbitrage model for equity volatility. In the interest rate volatility space, Mele, Obayashi and Shalen (2015)

and Mele and Obayashi (2015) study some properties of the volatility risk-premium, without addressing the issue of

premium sensitivity to market conditions.
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Figure 7. This picture depicts the realized correlation-risk premium for S&P 500 stocks against
one-month realized correlations in the data (left panel) and predicted by the model (right panel).

Finally, we examine the model implications on the term structure of unconditional correlation-

risk premiums. Our GMM in (23) contains a moment conditions that only regards the unconditional

expectation of one-month correlation-risk premium. Yet our model allows us to consider any arbitrary

horizon. Figure 8 plots the average correlation-risk premium estimated from data along with the

expression for E (P (yt;#)) in (22), calculated with parameter values based on our GMM estimates.

The model reproduces the upward sloping curve in the data and comes close to quantitatively match

the unconditional correlation-risk premiums at all considered horizons.
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Figure 8. This picture depicts the unconditional correlation-risk premiums calculated for horizons
equal to 1, 3, 6, 9, and 12 months. The circles are data estimates, computed as described in the
main text. The solid curve depicts model predictions, obtained while �xing parameter values at the
GMM estimates in (23), which rely on one moment condition based on one-month unconditional
premium.

5. Conclusion

This paper introduces an arbitrage pricing model where asset returns are not driven by a pre-

determined set of factors. Rather, in this model, asset returns are driven by the realization of a

string, which, then, determines the asset returns co-movements and the whole set of correlations

amongst asset returns. In this setup, �risk� is, thus, determined by the joint returns �uctuations

in a given universe of securities, and the cross-section of equity returns re�ect the exposures of any

given asset price �uctuations to the �uctuations of the remaining asset prices. The cross-section of
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expected returns are simply these exposures, weighted through a common premium functional.

Within this theoretical framework, we specify a number of models that we may use in empirical

work. We assume that the assets correlations in the string are random, and use the cross-section

of options on individual S&P500 components, the S&P500 index, and the corresponding stock and

index returns to extract information on the unobservable state underlying realized correlations at

any given point in time. We develop method-of-moments conditions that we employ to estimate our

model. With our estimates of the state, we reconstruct the dynamics of average correlations and

correlation-risk premiums, and, naturally, the cross-section of expected returns that are predicted by

the model. The model predicts the empirical patterns of correlation-risk premiums, but also explains

cross-sectional pricing in a number of portfolios, both in the U.S. and in the international stock

universe. Our framework o¤ers opportunities for developing additional cross-sectional asset pricing

while moving from a standard factor structure to a granular methodology, whereby the focus is to

directly model and quantify risks that any individual portfolio may have in common with all others.
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Appendices

A. Proofs

Proof of Proposition 2. Consider, �rst, the following preliminary result: for any given `,

Et
�
e�`yT

�
= �a` (T � t) e�

�b`(T�t)`yt ; (A.1)

where

�a` (x) =

�
2�

2�+ `�2 (1� e��x)

� 2�m
�2

; �b` (x) =
2�e��x

2�+ `�2 (1� e��x) :

Eq. (A.1) follows by a mere change in notation in a result to be stated below (see Eq. (A.5)). Taking the
limits leaves

E
�
e�`yt

�
= lim

T!1
Et
�
e�`yT

�
= �Y(`);

where �Y(`) is de�ned in the proposition. The expressions for the unconditional expected returns in Proposition
2 immediately follow.

Before providing the proof of Proposition 3, we prove a statement given in the main text regarding the
dynamics of the state variable yt under the risk-neutral probability.

Proposition A.1. (Dynamics of y under Q) Consider two di¤usion processes, xit, i = 1; 2, solutions to Eq.
(16), viz

dxit = (�m� (�+ �i�)xit) dt+ �
p
xitd ~Wt;

where �1 > �2. Then, x1t � x2t a.s.

Proof. The drift of x1t is strictly less than the drift of x2t, and the proposition follows by a comparison
theorem (e.g., Karatzas and Shreve (1991, p. 291-295)).

Proof of Proposition 3. We provide details regarding the function w (yt; T � t) � u (yt; � � t;�; 0) =
Et (e

�yT ) in Eq. (18), as those regarding EQt (e
�yT ) follow through a change in notation. The function

w (y; T � �) satis�es the following partial di¤erential equation

0 = �w2 (y; T � �) + � (m� y)w1 (y; T � �) +
1

2
�2yw11 (y; T � �) ; for all � 2 [t; T );

where subscripts denote partial derivatives. The boundary condition is w (y; 0) = e�y. Conjecture that
w (yt; T � t) = e�(T�t)�b(T�t)yt and plug this suggested function into the previous partial di¤erential equation.
The result is that � and b satisfy the following ordinary di¤erential equations: for all x 2 (0; T � t],�

0 = _b (x) + �b (x) + 1
2�

2b2 (x)
0 = _� (x) + �mb (x)
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subject to the boundary conditions � (0) = 0 and b (0) = 1. The solution for b and � follow by standard
integration arguments and details are available upon request. Eq. (18) and, then, Eq. (17) follow by taking
the exponential, a = e�, and noting that �m = ~� ~m.

Next, we show that, for � > 0, P is (i) strictly positive, (ii) increasing and concave in y for low y, and
(iii) decreasing and convex in y for high y. (Note, also that the arguments below would equally go through if
%1 < 0 and � < 0.)

The �rst property directly follows by Proposition A.1. However, we provide an alternative proof based
on an argument that will be used to deal with the other proofs of the proposition. Note that the function
�u (y; T � t) � u (y; � � t;�; �)� u (y; � � t;�; 0) is solution to the following partial di¤erential equation

0 = L�u (y; T � �)� ��yu1 (y; T � �) ; for all � 2 [t; T ); (A.2)

where Lf (y; T � t) = @
@tf (y; T � t)+� (m� y)

@
@yf (y; T � t)+

1
2�

2y @2

@y2 f (y; T � t), and subject to the bound-
ary condition �u (y; 0) = 0. Therefore, by the maximum principle for partial di¤erential equations, we have
that the sign of �u (y; T � t) is the same as the sign of ���yu1 (y; � � t). Since u (y; � � t) is strictly decreasing
in y for any �nite T , it follows that �u (y; T � t) is strictly positive, and so is P.

Regarding the second property (increasing and concave for low y) and the third (decreasing and convex for
high y), di¤erentiate Eq. (A.2) two times with respect to y, and denote with �u1 (y; T � t) and �u11 (y; T � t)
the �rst and the second partial of �u (y; T � t) with respect to y. The result is that �u1 (y; T � t) and
�u11 (y; T � t) are solutions to the following partial di¤erential equations

0 = L�u1 (y; T � �) + ��b (T � �)u (y; T � �) (1� b (T � �) y) ; for all � 2 [t; T ); (A.3)

and
0 = L�u11 (y; T � �)� ��b2 (T � �)u (y; T � �) (2� b (T � �) y) ; for all � 2 [t; T ); (A.4)

subject to the boundary conditions �u1 (y; 0) = 0 and �u11 (y; 0) = 0.
Eq. (A.3) can be rearranged to yield

�u1 (yt; T � t) = ��
Z T

t

b (T � �)Et [u (y� ; T � �) (1� b (T � �)) y� ] d�

= ��Et [u (y� ; T � �)]
Z T

t

b (T � �)E�t [1� b (T � �) y� ] d�

= ��Et [u (y� ; T � �)]
Z T

t

b (T � �) [1� b (T � �)E�t (y� )] d�;

where E�t (�) denotes the expectation is taken under the probability P �, de�ned as

dP �

dP

����
F�
=

u (y� ; T � �)
Et [u (y� ; T � �)]

:

By the no-crossing property of a di¤usion, the expectation E�t (y� ) is increasing in the initial condition yt
and, thus, there exists a threshold yA (resp., yB) such that for all yt < yA (resp., yt > yB), �u1 (yt; T � t)
is positive (resp., negative). Based on Eq. (A.4), we can make a similar argument and conclude that there
exists a threshold yC (resp., yD) such that for all yt < yC (resp., yt > yD), �u11 (yt; T � t) is negative (resp.,
positive).
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Proof of Proposition 4. The n-th conditional moment of � (yT ;%) is

Et (�
n (yT ;%)) = Et

�
%0 + %1e

�yT
�n

= Et

�
nP
i=0

�
n

i

�
%i0%

n�i
1 e�(n�i)yT

�
=

nX
i=0

�
n

i

�
%i0%

n�i
1 Et

�
e�(n�i)yT

�
;

where the second line follows by the binomial formula. Now, by Itô�s lemma, zi;t � (n� i) yt is solution to

dzi;t = � (mi � zi;t) dt+ �i
p
zi;tdWt;

where mi = (n� i)m and �i =
p
n� i�. Therefore, by the expression for the conditional expectation of e�yT

in Proposition 4,

Et

�
e�(n�i)yT

�
= ai (T � t) e�bi(T�t)(n�i)yt ; (A.5)

where, and using the fact that mi=�
2
i = m=�

2,

ai (x) =

�
2�

2�+ �2i (1� e��x)

� 2�m
�2

; bi (x) =
2�e��x

2�+ �2i (1� e��x)
:

Eq. (20) follows by taking the limit E (�n (yt;%)) = limT!1Et (�
n (yT ;%)).

Next, we determine the following unconditional uncentered covariance

c��1 � lim
T!1

Et (� (yT ;%) � (yT+�;%)) : (A.6)

We have

Et (� (yT ;%) � (yT+�;%)) = %
2
0 + %0%1

�
Et
�
e�yT

�
+ Et

�
e�yT+�

��
+ %21Et

�
e�(yT+yT+�)

�
:

By the Law of Iterated Expectations, and the expression for the conditional expectation of e�yT in Proposition
3,

Et

�
e�(yT+yT+�)

�
= Et

�
e�yTET

�
e�yT+�

��
= a�Et

�
e�(1+b�)yT

�
;

where a� = a (�; 0) and b� = b (�; 0) and a (x; �) and a (x; �) are as in Eqs. (18) of Proposition 3. Applying
again the expression for the conditional expectation of e�yT+� in Proposition 4 and relying on arguments nearly
identical to those used to derive the conditional moment in Eq. (A.5),

Et

�
e�(1+b�)yT

�
= a� (T � t) e�b

�(T�t)(1+b�)yt ;

where

a� (x) =

�
2�

2�+ (1 + b�) �2 (1� e��x)

� 2�m
�2

; b� (x) =
2�e��x

2�+ (1 + b�) �2 (1� e��x)
:
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Hence,

Et

�
e�(yT+yT+�)

�
= a�a

� (T � t) e�b
�(T�t)(1+b�)yt :

Therefore, the limit in (A.6) is obtained as

c��1 = %20 + 2%0%1 lim
x!1

a (x; �) + %21a� lim
x!1

a� (x)

= %20 + 2%0%1

�
2�

2�+ �2

� 2�m
�2

+ %21

�
4�2

4�2 + 4��2 + �4 (1� e���)

� 2�m
�2

:

Eq. (21) follows by rearranging terms in

cov (� (yt;%) ; � (yt+�;%)) = c�
�
1 � E (� (yt;%))2 ;

where the expression for E (� (yt;%)) is obtained through Eq. (20) of the proposition.

Proof of Eq. (22). We have, for l > t, and for �xed �t � T � t,

E (P (yt;#)) = lim
l!1

Et (P (yl;#)) =
%1
�t

Z �t

0

lim
l!1

Et (u (yl; x;�; �)� u (yl; x;�; 0)) dx: (A.7)

By Proposition 4, and arguments similar to those leading to Eq. (A.5),

Et (u (yl; x;�; �)) = a (x; �)Et

�
e�b(x;�)yl

�
= a (x; �) aB (l � t; �) e�bB(l�t;�)b(x;�)yt ;

where

aB (l � t; �) �
 

2�

2�+ b (x; �) �2
�
1� e��(l�t)

�! 2�m
�2

; bB (l � t; �) �
2�e��(l�t)

2�+ b (x; �) �2
�
1� e��(l�t)

� :
Eq. (22) follows by calculating the limits in (A.7), using the de�nition of a (x; �) and b (x; �) in Proposition 4,
and rearranging terms.

B. Extensions

B.1. A string-and-factor model of asset returns

We extend the model in Section 2 to a market in which asset returns are strings, but they are also a¤ected by
systematic factors driven by Brownian motions, assuming that

dPt (i) +Dt (i) dt

Pt (i)
= E (yt; i) dt+ � (yt; i) dZt (i) + �M (yt; i) dWt; i 2 (0; 1) ; (B.1)

where Wt is a standard multidimensional Brownian motion, �M (y; i), is a continuous function, in y and i,
and represents the asset returns exposures to the systematic factors, the �betas.�Remaining notation is as in
Eq. (1).
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The pricing kernel is still as in Eq. (2), such that repeating the arguments leading to Proposition 3, but
relying on Eq. (B.1), leaves the following expression for the expected excess returns on any asset-i 2 (0; 1)

E (yt; i)� r (yt) = C (yt; i) + �M (yt; i)� (yt) ; (B.2)

where C (y; i) is as in Eq. (6). Compared to Proposition 1, this formulation adds a standard factor-risk premium
to the explanation of the cross-section of asset returns, �M (y; i)� (y).

B.2. Compound strings

We consider the following extension to Eq. (1)

dPt (i) +Dt (i) dt

Pt (i)
= Et (yt; i) dt+ � (yt; i) dZt (i) + w (yt; i) dZt (Z;yt) ; (B.3)

where

dZt (Z;yt) =

Z 1

0

n (yt; j) dZt (j) dj;

for some functions w (yt; i) and n (yt; i). The additional term, dZt (Z;yt), is a linear functional of the whole
string, and will be referred to as compound string in the sequel.

This extension accounts for economies in which each asset return reacts to shocks in the fundamentals
pertaining to all remaining asset returns, that is, not only to �its own�string dZt (i), but also to dZt (j) for
all j, directly. For example, in the illustrative model of Appendix B.3, each asset return is driven by a shock
on its dividend and, due to market clearing, on those a¤ecting all the dividend shares (i.e., the proportions of
aggregate dividends paid by each asset), leading to price dynamics that are a special case of Eq. (B.3).

By arguments similar to those leading to Proposition 1, the expected excess returns on each asset are now
given by

Et (yt; i)� r (yt) = � (yt; i)
Z 1

0

� (yt; j) � (yt; i; j) dj

+ w (yt; i)

ZZ
u;v2[0;1]2

� (yt; u)n (yt; v) � (yt; u; v) dudv: (B.4)

The �rst term on the R.H.S. of Eq. (B.4) is the expected return predicted by Proposition 1. The second
term captures the premium due to the compound string in Eq. (B.3). In our empirical work, we rely on the
simple speci�cation of the model that gives rise to Proposition 1. However, we now provide an example of
a Consumption-based CAPM that leads to the assumptions underlying the predictions of both Proposition 1
and Eq. (B.4).

B.3. Example: a consumption-based CAPM

We consider an in�nite horizon economy with a continuum of long-lived securities in i 2 (0; 1). Each of these
securities delivers an instantaneous dividend Dt (i) at time-t, solution to

dDt (i)

Dt (i)
= gt (i) dt+ �dt (i) dZt (i) ; (B.5)
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where dZt (i) is a string, and gt (i) and �dt (i) are some functions described below. We assume that there is a
single agent with instantaneous utility and constant relative risk aversion equal to 
, and subjective discount
rate equal to �. The model may well be extended throughout more general speci�cations of preferences,
including habit formation.

We describe: (i) aggregate consumption and dividend shares, and, based on standard assumptions on
the representative agent�s preferences, the pricing kernel; (ii) volatilities, correlations and the cross-section of
expected returns.

Aggregate consumption and pricing kernel. Denote the aggregate dividends with Dt �
R 1
0
Dt (i) di,

which satisfy
dDt
Dt

=

�Z 1

0

gt (i) st (i) di

�
dt+

Z 1

0

�dt (i) st (i) dZt (i) di; (B.6)

where st (i) � Dt(i)
Dt

denotes the �dividend share�of asset-i. In equilibrium, aggregate dividends equal aggregate
consumption, Ct say. Below, we show that

dst (i)

st (i)
= �st (i) dt+ �dt (i) dZt (i)�

Z 1

0

�dt (j) st (j) dZt (j) dj; (B.7)

for some drift coe¢ cient �st (i).
The stochastic discounting factor �t is, thus, �t = e

��tC�
t and satis�es

d�t
�t
= �rdt�

Z 1

0

� (st (j)) dZt (j) dj; � (st (j)) = 
�dt (j) st (j) : (B.8)

Note that � (st (j)) in Eq. (B.8) is the compensation received for holding any asset that is exposed to
co-movements with the dividends paid by a given asset-j. Eq. (B.8) predicts that this compensation increases
with the relative weight of asset-j in the economy, st (j).

Asset returns. Asset prices do in general depend on the realization of the whole share process, a complication
well understood since previous work on consumption based models (see, e.g., Menzly, Santos and Veronesi, 2004;
MSV, in the sequel). We make a few simplifying assumptions to render the model analytically tractable. We
assume that the representative agent has log-utility, 
 = 1, and that the drift of each share process in (B.7) is
linear in st (i). These assumptions lead to an a¢ ne model for the price-dividend ratio, p (st (i)) say, similar as
in MSV. Asset returns are, then, shown to equal

dPt (i) +Dt (i) dt

Pt (i)
= Et (i) dt+ �dt (i)

�
1 +

p0 (st (i))

p (st (i))
st (i)

�
| {z }

��t(i)

dZt (i)�
p0 (st (i))

p (st (i))
st (i)| {z }

��wt(i)

dZt (Z; st) ; (B.9)

where dZt (Z; st) �
R 1
0
�dt (j) st (j) dZt (j) dj.

The volatility of asset-i returns has two components. The �rst is the volatility of the asset dividend growth,
�dt (i). The second stems from �uctuations in its price-dividend ratio, p (st (i)), which, in turn, originate from
those in the dividend share, st (i): the higher the semi-elasticity of p (st (i)), the more signi�cant is this second
source of volatility. The term �t (i) re�ects both dividend volatility and price-dividend ratio volatility. Instead,
wt (i) only re�ects price-dividend volatility.
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Eq. (B.9) is then a special case of Eq. (B.3): the state vector is st = yt, the compound string is dZt (Z; st),
and all other coe¢ cients are independent of st, with nt (i) = �dt (i) st (i). That is, while each asset return
depends on its own share process, each share process is driven by the realization of the whole string (see Eq.
(B.7)). Therefore, in equilibrium, asset returns are also driven by a compound string.

Expected returns on each asset, Et (i), can now be determined through correlations and volatility, based
on Eq. (B.4), which collapses to Eq. (B.9) in the case of the model in this appendix. These details are in
Proposition B.1 below, and in its proof. First, we provide details regarding the price-dividend ratios in this
economy given the assumptions formulated so far as well as additional ones.

Price-dividend ratios. The price-dividend ratio on each asset is

p (st; i) �
Pt (i)

Dt (i)
= Et

�Z 1

t

�u
�t

Du
Dt

su (i)

st (i)
du

�
;

where st = (st (i))i2(0;1) denotes the collection of all the share processes: the price-dividend ratio of any asset
depends on the future paths of aggregate dividends, which, in turn, depend on all the shares process. This
dimensionality problem simpli�es when 
 = 1, in which case, the price-dividend ratio on asset-i only depends
on the asset relative share. Under the additional assumption that, in (B.7), �st (i) st (i) = � (�si � st (i)), for
some (�si)i2(0;1) and �, we have that p (st (i)) � p (st; i), where

p (st (i)) =
1

� + �
+

�

� (� + �)

�si
st (i)

: (B.10)

The constants (�si)i2(0;1) satisfy
R 1
0
�sjdj = 1, and � is constant in time and across assets, such that the shares

sum up to one for all t. Note that the price-dividend ratio has the same functional form as in MSV. However,
the model implications on the correlation of asset returns and the cross-section of expected returns are distinct,
as we now explain.

We have:

Proposition B.1. (Correlation and expected returns) We have

Et (st; i)� r (st) = �2ct +
1

1 + �
�

�si
st(i)

Z 1

0

�dt (j) st (j) � (si; dj) dj; (B.11)

where �2ct denotes the instantaneous variance of aggregate consumption, which, in equilibrium, equals �
2
dt �

vart

�
dDt

Dt

�
, and

� (si; dj) � cov
�
dst (i)

st (i)
;
dDt (j)

Dt (j)

�
= �dt (i) � (i; j)�

Z 1

0

� (j; u)�dt (u) st (u) du:

The �rst term on the R.H.S. of Eq. (B.11), �2dt, is the standard single Lucas�tree prediction. The second
term can take either sign. For any asset-i such that the values of � (si; dj) across j make this second term
positive, the expected excess returns are increasing in st (i). Intuitively, asset-i is not a good hedge if its share
is positively correlated with a su¢ ciently large set of the assets�dividends� for example, if � (si; dj) is positive
for all dividends j. In this case, the expected return on asset-i is increasing in st (i), as this asset pays a larger
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portion of consumption. This conclusion is reversed when � (si; dj) is such that the second term in the R.H.S.
in (B.11) is negative.

These predictions are peculiar to this model, due to our granular account of the asset returns. In our
model, returns and volatility are clearly disentangled: by Itô�s lemma, the dynamics of the price-dividend ratio
for any asset-i is

dp (st (i))

p (st (i))
= (� � � ) dt+ p

0 (st (i))

p (st (i))
st (i)

�
�dt (i) dZt (i)�

Z 1

0

�dt (j) st (j) dZt (j) dj

�
;

such that the correlation of the price dividend ratios on any two assets i and j is

E

�
dp (st (i))

p (st (i))

dp (st (j))

p (st (j))

�
=
p0 (st (i))

p (st (i))

p0 (st (j))

p (st (j))
st (i) st (j) covsisj ;

where

covsisj � cov
�
dst (i)

st (i)
;
dst (j)

st (j)

�
= cov (�dt (i) dZt (i)� dZt (Z; st) ; �dt (j) dZt (j)� dZt (Z; st))
= �2dt � �dt (i)�dt (j) � (i; j) + �dt (j) � (si; dj) + �dt (i) � (sj ; di) :

Moreover, expected returns in Eq. (B.11) are determined by how all shares correlate with aggregate consump-
tion, but with all the asset dividends weighted by the relative shares.

We now provide proofs of two results stated in this appendix.

Proof of Eq. (B.7). By Itô�s lemma, we have that st (i) � Dt(i)
Dt

satis�es

dst (i)

st (i)
=
dDt (i)

Dt (i)
� dDt
Dt

+

�
dDt
Dt

�2
� dDt (i)
Dt (i)

dDt
Dt

:

Using Eq. (B.5) and Eq. (B.6) leaves Eq. (B.7), with

�st (i) = gt (i)�
Z 1

0

gt (i) st (i) di+ vardt � covdi;d;t;

where

�2dt �
ZZ

i;j2[0;1]2
�dt (i) st (i) � (i; j)�dt (j) st (j) didj; covdid;t � �dt (i)

Z 1

0

�dt (j) st (j) � (i; j) dj:

Proof of Proposition B.1. By Eq. (B.4), and the expression for the unit prices of risk, � (st (j)) =
�dt (j) st (j), the cross-section of expected excess returns is

Et (st; i)� r (st) = �t (i)
Z 1

0

�dt (j) st (j) � (i; j) dj

+ wt (i)

ZZ
u;v2[0;1]2

�dt (u) st (u)nt (v) � (u; v) dudv| {z }
=�2dt

; (B.12)
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where the term indicated in the brackets coincides with �2dt due to the expression of nt (v) given in the main
text. Replacing the expressions for �t (i) in the main text into (B.12), leaves

Et (st; i)� r (st)

= (1� wt (i))�dt (i)
Z 1

0

�dt (j) st (j) � (i; j) dj + (1 + wt (i)� 1)�2dt

= �2dt + (1� wt (i))
�
�dt (i)

Z 1

0

�dt (j) st (j) � (i; j) dj � �2dt
�

= �2dt + (1� wt (i))
�Z 1

0

�dt (j) st (j)

�
�dt (i) � (i; j)�

Z 1

0

� (j; u)�dt (u) st (u) du

�
dj

�
;

where the last line follows by the expression for �2dt. Eq. (B.11) follows by the de�nition of wt (i) and by a
direct calculation.
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