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1 Introduction

The theory of incentives identifies the holding of private information by economic agents

as a fundamental constraint on the allocation of resources (Hurwicz (1973)). Standard

aggregate resource constraints must accordingly be supplemented by incentive-compatibility

constraints that reflect the agents’ ability to conceal their private information (Myerson

(1979, 1982)). The problem of the optimal allocation of resources then reduces to that of

characterizing informationally constrained efficient, or second-best, allocations (Harris and

Townsend (1981)). The key finding is that a tradeoff arises between allocative efficiency and

redistribution (Mirrlees (1971)).

A crucial assumption of theories of the second-best is that, although individual types

are unobservable, individual trades can be perfectly monitored by the planning authority.

Because few, if any, economic institutions have the required ability to monitor all individual

trades, this calls for an explicit consideration of the role of side trading in the theory of

resource allocation under private information, as first pointed out by Hammond (1979). The

present paper contributes to analyzing this problem.

To this end, we consider a general trade environment in which firms can sell a divisible

good to privately informed consumers who may be of two types. Consumers’ preferences

satisfy a single-crossing condition, and there is adverse selection in that consumers who

are more eager to trade are also more costly to serve; private values arise as a limiting

case when consumers’ types are not payoff-relevant for the firms selling to them. This

framework encompasses many applications, including the standard Rothschild and Stiglitz

(1976) insurance economy as a prominent example.

In this setting, we characterize the allocations that can be achieved by a planner who

observes neither consumers’ types nor the trades they may conduct with firms. To do so,

we refine the standard notion of incentive-feasibility by focusing on allocations that are

robust to side trading. This reflects two additional constraints on resource allocation. First,

the planner cannot force consumers to trade with him. Second, he cannot prevent them

from engaging in mutually advantageous additional trades with a firm. We formalize these

constraints by requiring the planner to offer a tariff such that no firm, acting as an entrant,

can guarantee itself a positive profit by offering complementary side trades. This approach

provides us with a modified criterion of incentive feasibility which is useful for evaluating

the social costs of side trading.

Our main results show that these costs are twofold. First, second-best allocations, which

can be characterized in our setting along the lines of Prescott and Townsend (1984) and
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Crocker and Snow (1985), are typically not robust to side trading. This suggests that the

planner’s inability to monitor consumers’ trades has significant welfare implications. Second,

there actually exists only one budget-feasible allocation robust to side trading. That is, the

threat of side trading effectively deprives the planner from any capacity to redistribute

resources between different types of consumers. The allocation we characterize is thus the

natural candidate for a competitive equilibrium, but, being the only feasible one under side

trading, little, if anything, can be argued about its desirability.

A distinctive feature of our approach is that we model side trade as bilateral contracts

between a consumer and a firm. This reflects our dissatisfaction with the standard way of

representing unobservable side trades as transactions on Walrasian markets, which would

call for a centralized market institution to monitor them. Bilateral trading plays a key role

in our analysis. Our key Lemma 1, in particular, shows that budget-feasible allocations

robust to side trading have a very peculiar price structure: each marginal quantity, or layer,

is priced at the cost of serving the types who purchase it. This form of competitive pricing,

reminiscent of Akerlof (1970), implies that there are no cross-subsidies between these layers,

though there may be cross-subsidies between types. When the allocation is interior and

separating, linear pricing can emerge only in the private-value limiting case.

Lemma 1 has a simple but important implication that we state in Theorem 1: no second-

best allocation in which only one incentive compatibility-constraint binds is robust to side

trading. The reason is that, by the standard efficiency-at-the-top property, consumers for

which this constraint binds must trade at the margin at the cost of serving them. As a result,

the layer that connects the trades of the two types cannot be priced at the cost of serving the

type who is the most eager to trade. But then, by Lemma 1, there always exists some side

trade that a firm finds it profitable to conduct with at least one consumer type. For instance,

in the Rothschild and Stiglitz (1976) insurance economy, any second-best allocation in which

the high-risk type’s incentive-compatibility constraint binds can be exploited by an entrant

offering complementary coverage at a premium rate slightly higher than the high-risk fair

premium rate, which this type is willing to trade along with the coverage provided by the

allocation for the low-risk type.

Our second main result, Theorem 2, states that, among the allocations that feature

no cross-subsidies between layers, only one is robust to side trading, namely, the Pareto-

efficient one that maximizes the utility of the consumer type who is the less willing to trade.

To complete our characterization, we evaluate whether this allocation can be second-best,

hence considering the situations not covered by Theorem 1. Theorem 3 shows that a second-
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best allocation robust to side trading must either feature pooling of the two consumers’

types, or each type purchasing her first-best quantity. We argue that these situations can

only occur under very specific assumptions on preferences and costs.

Related Literature

While the constraints induced by private information on resource allocation are by now well

understood, less is known about the impact of side trading on feasibility and redistribution.

Starting with the early contributions of Hammond (1979, 1987), Allen (1985), and Jacklin

(1987), several authors have attempted to identify the limits to risk sharing generated by

consumers’ side trading in financial markets. Cole and Kocherlakota (2001), Golosov and

Tsyvinski (2007), Farhi, Golosov, and Tsyvinski (2009) have analyzed different private-value

environments in which the planner is constrained by the existence of Walrasian markets on

which privately informed consumers can complement their trades with the planner by trading

linearly priced commodities. Our contribution to this literature is twofold. First, we offer an

alternative representation of side trading, which we essentially regard as a bilateral, rather

than a centralized, process. Second, we focus on trade under common values, so that, in a

bilateral relationship, a firm’s profit directly depends on the types of the consumers it trades

with, an effect absent from the above literature, though arguably a prominent feature of

insurance and financial markets.

The requirement that, to be robust to side trading, an allocation has to be implementable

by an entry-proof tariff, is in line with the definition by Kahn and Mookherjee (1998) or

Bisin and Guaitoli (2004) of third-best allocations in moral-hazard environments. In any

such allocation, the planner’s tariff must prevent consumers from complementing it with

an additional profit-making contract provided by a firm. We extend this notion to private-

information environments, and, in addition, we put no restriction on the side trades a firm

can make available.

The allocation that we characterize as the only budget-feasible allocation robust to side

trading was first introduced by Jaynes (1978), and further studied by Hellwig (1988) and

Glosten (1994), in different contexts. Jaynes (1978) and Hellwig (1988) derive this allocation

in strategic frameworks in which firms can exchange information about their customers.

Glosten (1994) derives it in the context of financial markets where competitors are restricted

to offer collections of limit orders. By contrast, we allow firms to offer arbitrary tariffs, in

line with our assumption that side trades are fully bilateral.

The paper is organized as follows. Section 2 describes the model. Section 3 defines our
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concept of robustness to side trading, and shows that second-best allocations typically do

not satisfy this requirement. Section 4 discusses the relevance of our results for insurance

and financial markets. Proofs not given in the text can be found in the Appendix.

2 The Economy

Consumers There is a continuum of consumers who can purchase a divisible good in

exchange for monetary transfers. Each consumer is privately informed of her type i = 1, 2

and the proportion of type i among consumers is mi > 0. Type i’s preferences over quantity-

transfer bundles (q, t) ∈ R+×R are represented by a strictly quasiconcave and continuously

differentiable utility function ui, with ∂tui < 0. Hence the marginal rate of substitution

τi ≡ −
∂qui
∂tui

is well defined and strictly decreasing along her indifference curves. We impose the Inada

condition that τi(q, t) vanishes as q grows large along any such curve. Hence, whatever

her endowment point, type i’s demand at any price p > 0 is finite. The following strict

single-crossing condition is the key determinant of consumer demand:

For all q and t, τ2(q, t) > τ1(q, t). (1)

Thus type 2 is more willing to increase her purchases than type 1.

Firms The supply side of the economy is described by a constant-return-to-scale technology,

with unit cost ci > 0 of serving type i. Type 2 is weakly more costly to serve than type 1:

c2 ≥ c1. (2)

Together with (1), (2) typically generates adverse selection, whereas values are private in

the limiting case c1 = c2. We let c ≡ m1c1 +m2c2 be the average cost of serving a consumer.

These assumptions hold in the Rothschild and Stiglitz (1976) insurance economy: ci

is type i’s riskiness, with c2 > c1, q is the amount of coverage she purchases, and t is

the premium she pays in return. Our model encompasses many other specifications and is

relevant for a broad spectrum of insurance, financial, and labor markets.

Incentive Feasibility and Efficiency A contract is a pair (q, t) for some q ≥ 0, and with

unit price t/q if q > 0. An allocation is a pair of contracts, one for each type. An allocation

(qi, ti)i=1,2 is budget-feasible if

m1(t1 − c1q1) +m2(t2 − c2q2) ≥ 0.
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To this aggregate resource constraint, we must add, following Myerson (1979, 1982) and

Harris and Townsend (1981), constraints reflecting that the allocation of resources takes

place under asymmetric information. An allocation (qi, ti)i=1,2 is incentive-compatible if

u1(q1, t1) ≥ u1(q2, t2) and u2(q2, t2) ≥ u2(q1, t1).

We denote these constraints by IC1→2 and IC2→1, respectively. An allocation is incentive-

feasible if it is budget-feasible and incentive-compatible. A second-best allocation is Pareto-

efficient among incentive-feasible allocations. This is the relevant notion of efficiency for a

planner who perfectly monitors trades, though not consumer types (Prescott and Townsend

(1984), Crocker and Snow (1985)).

Tariffs A tariff T is a schedule specifying a transfer T (q) to be paid in return for a quantity

q, with T (0) = 0 in case a consumer chooses not to trade along the tariff and T (q) = ∞ in

case the tariff does not allow consumers to purchase the quantity q. A tariff T implements

the allocation (qi, ti)i=1,2 if

For each i, qi ∈ arg max{ui(q, T (q)) : q ≥ 0} and ti = T (qi).

To ensure that the various maximization problems we will encounter have solutions, we

impose the mild requirement that a tariff be lower semicontinuous, with T (q)/q bounded

away from 0 as q grows large; this holds true, notably, if T has a compact domain.

3 Second-Best Allocations and Side Trading

When side trading is feasible, the planner can no longer monitor trades. This imposes two

additional constraints on resource allocation. First, the planner cannot force consumers to

trade with him. To model this constraint, we require that the planner offer a tariff T P ,

the key restriction being T P (0) = 0. Second, the planner cannot prevent consumers from

engaging in mutually advantageous additional trades with a firm. To model this constraint,

we require that T P be such that no firm, acting as an entrant, can guarantee itself a positive

profit by offering complementary side trades.

Side trades are usually assumed to take place on Walrasian markets (Hammond (1979,

1987), Allen (1985), Jacklin (1987), Cole and Kocherlakota (2001), Golosov and Tsyvinski

(2007), Farhi, Golosov, and Tsyvinski (2009)); in our context, this would amount to impose

that the entrant must post a linear tariff. We find this at odds with the idea that side

trades cannot be monitored and instead allow the entrant to post an arbitrary tariff TE; the
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taxation principle (Hammond (1979), Guesnerie (1981), Rochet (1985)) ensures that this

involves no loss of generality. Hence the following definition.

Definition 1. The planner’s tariff T P is entry-proof if, for any entrant’s tariff TE, there

exists a solution (qPi , q
E
i ) to every type i’s problem

max{Ui(q
P + qE, T P (qP ) + TE(qE)) : qP ≥ 0 and qE ≥ 0} (3)

such that entry is not profitable:

m1[T
E(qE1 )− c1qE1 ] +m2[T

E(qE2 )− c2qE2 ] ≤ 0. (4)

An allocation is robust to side trading if it can be implemented by an entry-proof tariff.

Any allocation robust to side trading is incentive-compatible. The question we ask is

whether such an allocation can also be second-best. Our argument is twofold.

On the one hand, budget-feasible allocations robust to side trading have the following

price structure.

Lemma 1. In any budget-feasible allocation (qi, ti)i=1,2 robust to side trading,

t1 = cq1 and t2 − t1 = c2(q2 − q1). (5)

Proof. Because an allocation (qi, ti)i=1,2 robust to side trading is incentive-compatible, it

satisfies q2 ≥ q1 by single crossing. Moreover,

t1 ≤ cq1. (6)

Otherwise, an entrant can supply q1 at a price slightly above c: this profitably attracts type

1 as T P (0) = 0, and remains profitable even if type 2 is attracted. Similarly,

t2 − t1 ≤ c2(q2 − q1). (7)

Otherwise, an entrant can supply q2− q1 at a price slightly above c2: this profitably attracts

type 2 along with the contract (q1, t1), and is even more profitable if type 1 is also attracted.

Rewriting the resource constraint as

t1 − cq1 +m2[t2 − t1 − c2(q2 − q1)] ≥ 0

and taking advantage of (6)–(7) yields (5). The result follows. �

Hence pricing is competitive, in the sense that the prices of the layers q1 and q2 − q1

reflect the costs of serving the types who purchases them. However, if c2 > c1 and q1 > 0,
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then the quantities q1 and q2 are not priced competitively: as q1 is sold at the average cost

c > c1, type 1 subsidizes type 2.

On the other hand, second-best allocations satisfy the following efficiency-at-the-top

property.

Lemma 2. In any second-best allocation (qi, ti)i=1,2,

(i) If IC2→1 is slack, then τ1(q1, t1) ≤ c1, with equality if q1 > 0.

(ii) If IC1→2 is slack, then τ2(q2, t2) = c2.

Proof. If IC2→1 or IC1→2 is slack, then q2 > q1 by incentive compatibility and single

crossing. If IC2→1 is slack and τ1(q1, t1) > c1, then ((q1 + ε, t1 + c1ε), (q2, t2)) is incentive-

feasible for ε > 0 small enough and Pareto-dominates (qi, ti)i=1,2, a contradiction. Thus

τ1(q1, t1) ≤ c1. Moreover, if q1 > 0 and τ1(q1, t1) < c1, then ((q1 − ε, t1 − c1ε), (q2, t2)) is

incentive-feasible for ε > 0 small enough and Pareto-dominates (qi, ti)i=1,2, once again a

contradiction. This proves (i). The proof of (ii) is similar, using q2 > 0, and is therefore

omitted. The result follows. �

Combining Lemmas 1 and 2 yields our first main theorem.

Theorem 1. A second-best allocation in which only one incentive-compatibility constraint

binds is not robust to side trading.

Proof. Suppose first that only IC1→2 binds. Then q2 > q1 by incentive compatibility and

single crossing, and τ1(q1, t1) ≤ c1 by Lemma 2(i). Moreover, because type 1’s preferences

are strictly convex and IC1→2 binds, we have t2 − t1 < c1(q2 − q1) ≤ c2(q2 − q1). By Lemma

1, (qi, ti)i=1,2 is not robust to side trading.

Suppose next that only IC2→1 binds. Then q2 > q1 by incentive compatibility and single

crossing, and τ2(q2, t2) = c2 by Lemma 2(ii). Moreover, because type 2’s preferences are

strictly convex and IC2→1 binds, we have t2 − t1 > c2(q2 − q1). By Lemma 1, (qi, ti)i=1,2 is

not robust to side trading. Hence the result. �

Theorem 1 covers most cases emphasized in the literature. For instance, in the Rothschild

and Stiglitz (1976) insurance economy, either IC1→2 or IC2→1 bind in all but the pooling

second-best allocation (Crocker and Snow (1985)), and Theorem 1 implies that none of these

allocations is robust to side trading.

This leaves only two cases in which a second-best allocation may be robust to side trading:

when both IC1→2 and IC2→1 bind, which corresponds to a pooling allocation, or when both
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IC1→2 and IC2→1 are slack. Both cases can arise, as we show below, but only under very

specific assumptions on preferences and costs.

To study these cases, we strengthen Lemma 1 by establishing that a unique allocation

is budget-feasible and robust to side trading. In this allocation, the first layer is optimal

for type 1 at price c, while the second layer is optimal for type 2 at price c2, conditional on

her purchasing the first layer. This allocation is thus Pareto-efficient—maximizing type 1’s

utility—among those satisfying (5).

Theorem 2. The JHG allocation defined by

q∗1 ≡ arg max{u1(q, cq) : q ≥ 0}, (8)

t∗1 ≡ cq∗1, (9)

q∗2 ≡ q∗1 + arg max{u2(q∗1 + q, t∗1 + c2q) : q ≥ 0}, (10)

t∗2 ≡ t∗1 + c2(q
∗
2 − q∗1), (11)

is the only budget-feasible allocation robust to side trading.

Proof. (Uniqueness) Because an allocation (qi, ti)i=1,2 robust to side trading is incentive-

compatible, it satisfies q2 ≥ q1 by single crossing. Moreover,

u1(q1, t1) ≥ max{u1(q, cq) : q ≥ 0}. (12)

Otherwise, an entrant can offer a contract with unit price slightly above c that profitably

attracts type 1 as T P (0) = 0, and remains profitable even if type 2 is attracted. Similarly,

u2(q2, t2) ≥ max{u2(q1 + q, t1 + c2q) : q ≥ 0}. (13)

Otherwise, an entrant can offer a contract with unit price slightly above c2 that profitably

attracts type 2 along with the contract (q1, t1), and is even more profitable if type 1 is also

attracted. Finally, if (qi, ti)i=1,2 is budget-feasible, then (5) holds, so that (12)–(13) are

equalities. Thus (qi, ti)i=1,2 is the JHG allocation defined by (8)–(11).

(Existence) By (8)–(11), the piecewise-linear convex tariff

T P (q) ≡ 1{q≤Q∗
1}cq + 1{q>Q∗

1}[cq
∗
1 + c2(q − q∗1)] (14)

implements the JHG allocation. Now, suppose that an entrant posts a tariff TE. The

following monotonicity property is established in the Appendix.

Lemma 3. There exists a solution ((qPi , q
E
i ))i=1,2 to (3) such that qE2 ≥ qE1 .
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Let us fix such a solution in what follows. As T P allows type 1 to purchase her optimal

quantity q∗1 at price c, we must have

TE(qE1 ) ≤ cqE1 . (15)

Moreover, because qE2 ≥ qE1 , type 2 could alternatively obtain the same aggregate quantity

qP2 +qE2 as in her best response by purchasing qE1 from the entrant and qP2 +qE2 −qE1 from the

planner, paying overall T P (qP2 + qE2 − qE1 ) +TE(qE1 ). As she chooses to pay T P (qP2 ) +TE(qE2 )

instead, we must have

TE(qE2 )− TE(qE1 ) ≤ T P (qP2 + qE2 − qE1 )− T P (qP2 ). (16)

Because T P is convex with slope at most c2 and qE2 ≥ qE1 ,

T P (qP2 + qE2 − qE1 )− T P (qP2 ) ≤ c2(q
E
2 − qE1 ). (17)

Collecting (15) and (16)–(17) yields

TE(qE1 )− cqE1 +m2[T
E(qE2 )− TE(qE1 )− c2(qE2 − qE1 )] ≤ 0,

which is (4). This shows that T P is entry-proof. Hence the result. �

The uniqueness of a budget-feasible allocation robust to side trading contrasts with the

multiplicity of second-best allocations, which form a nondegenerate frontier. The planner is

thus severely constrained by his inability to monitor trades, which effectively prevents any

kind of redistribution between different types of consumers.

The existence of such an allocation for any distribution of types is also noteworthy.

Nonexclusivity, or consumers’ ability to combine the contracts offered by an entrant with

those offered by the planner, is key to this result. While this enlarges the set of contracts

an entrant can use to attract consumers, this also gives the planner more instruments to

deter entry. These take the form of latent contracts, which are not meant to be traded but

only to make entry unprofitable. Of course, the planner must make sure that, by offering

latent contracts, he does not create new profitable entry opportunities. The JHG tariff (14)

strikes a balance between these two requirements.

In the adverse-selection case c2 > c1, type 1’s and type 2’s marginal rates of substitution

at the JHG allocation are ordered, τ1(q
∗
1, t
∗
1) < τ2(q

∗
2, t
∗
2). In particular, τ1(q

∗
1, t
∗
1) = c < c2 =

τ2(q
∗
2, t
∗
2) if the JHG allocation is interior and separating. This contrasts with private-value

models where side trades take place on Walrasian markets, which calls for an equalization of
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marginal rates of substitution (Hammond (1979, 1987)). Yet incentive-compatible gains from

trade between types 1 and 2 are exhausted at the JHG allocation, subject to the side-trading

constraint. Indeed, supposing that consumers have access to the same constant-return-to-

scale technology as firms, the minimum price at which type 1 would be willing to sell a small

additional quantity to type 2 is c2, and at this price type 2 is not willing to buy. In that

sense, the JHG allocation is the only candidate for a competitive equilibrium.

Regarding the proof of Theorem 2, an interesting duality is that the JHG allocation is

the only candidate for a budget-feasible allocation robust to side trading even if the entrant

can only offer a single contract, while the JHG tariff is entry-proof even if the entrant can

post an arbitrary tariff. This differs from Glosten (1994), who in his analysis of limit-order

markets requires the entrant’s tariff to satisfy a property he dubs single crossing and that

generalizes convexity. Another difference is that Theorem 2 does not require consumers’

preferences to be quasilinear.

We are now ready to address the remaining cases not covered by Theorem 1.

Theorem 3. If a second-best allocation is robust to side trading, then it coincides with the

JHG allocation and one of the following conditions holds:

(i) The JHG allocation is pooling, that is, τ2(q
∗
1, t
∗
1) ≤ c2.

(ii) The JHG allocation is separating and first-best, that is, c1 = c2 or τ1(0, 0) ≤ c1.

Proof. By Theorem 2, if a second-best allocation is robust to side trading, then it coincides

with the JHG allocation. By Theorem 1, we only need to consider two cases.

(i) If IC1→2 and IC2→1 bind, then q∗2 = q∗1 by incentive compatibility and single crossing.

Hence the JHG allocation is pooling, which amounts to τ2(q
∗
1, t
∗
1) ≤ c2 by (10)–(11).

(ii) If IC1→2 and IC2→1 are slack, then q∗2 > q∗1 by incentive compatibility and single

crossing. Hence the JHG allocation is separating. Two cases can arise. If q∗1 > 0, then

τ1(q
∗
1, t
∗
1) = c1 by Lemma 2(i) and τ1(q

∗
1, t
∗
1) = c by (8)–(9), so that c1 = c2. If q∗1 = 0, then

τ1(0, 0) ≤ c1 by Lemma 2(i). In either case, each type i trades efficiently at cost ci, so that

the JHG allocation is first-best. Hence the result. �

Condition (i) is clearly extreme. It cannot hold in a Rothschild and Stiglitz (1976)

insurance economy, because the optimal coverage of type 1 at the average premium rate c is

only partial, while type 2 is willing to purchase additional coverage at the fair premium rate c2

until she reaches full insurance. In the case of quasilinear preferences, condition (i) together

with the condition τ1(q
∗
1, t
∗
1) ≤ c implied by (8)–(9) entails that type 1’s first-best quantity
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is at least as large as type 2’s, and strictly larger if q∗1 > 0, a case of nonresponsiveness

(Caillaud, Guesnerie, Rey, and Tirole (1988)).

Condition (ii) is also extreme. Indeed, the JHG allocation is then first-best, and the

JHG tariff is linear with slope c2. In the knife-edged private-value case, each type trades

efficiently at cost c1 = c2. In the adverse-selection case c2 > c1, a separating second-best

allocation is robust to side trading only if type 1 is not willing to trade at cost c1 and hence

is in some sense irrelevant.

This answers the question we raised in this section: second-best efficiency and robustness

to side trading are irreconcilable requirements, except in very special cases. Overall, our

results suggest that the threat of side trading constitutes a serious obstacle to efficiency and

redistribution in private-information economies. In the limiting case of private values, side

trading poses no threat to efficiency, as it leads to a first-best allocation; yet the requirement

that there be no cross-subsidies between layers precludes the planner from redistributing

resources between different consumer types. By contrast, under adverse selection, the social

costs of side trading are twofold: first, the threat of side trading moves the economy away

from the second-best efficiency frontier; second, it precludes redistribution.

4 Policy Implications

On a more positive note, our analysis also yields novel insights for the design of public

programs when agents can complement them by resorting to the private sector. We discuss

this issue in the context of insurance and financial markets.

Insurance Markets In modern health-insurance systems, public insurance schemes for

the provision of basic coverage do not prevent an active role for the private sector. Indeed,

consumers may have the choice to opt out from the public-insurance scheme to buy basic

coverage designed and priced by private insurance companies, as in Germany. Alternatively,

they may have the option to complement basic coverage with additional privately provided

coverage, such as mutuelles in France. At the same time, different forms of mandatory health

insurance, whereby consumers are not allowed to remain uninsured, are in place in several

systems, as in France, Germany, Japan, Netherlands, and Switzerland.1 From a theoretical

viewpoint, the design and the enforcement of a public-insurance scheme in the presence of

such constraints appears to be a delicate task.

1We refer to the surveys of Thomson and Mossialos (2009) and Thomson, Osborne, Squires, and Jun
(2013) for institutional details and cross-country evidence.
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In this respect, our analysis suggests a simple intervention that achieves a mix of public

and private insurance, with no need for observability requirements. It consists in letting

the State offer any amount of basic coverage up to q∗1 at the average premium rate c. As

private insurance companies are willing to provide any amount of complementary coverage

at the high premium rate c2, the State together with any insurance company make the JHG

tariff available. Because this tariff is entry-proof, no insurance company has an incentive to

deviate and entry is impossible. Implementing the JHG allocation is therefore compatible

with letting consumers free to choose their preferred level of coverage. This is reminiscent of

the universal health-care vouchers advocated by Emanuel and Fuchs (2005, 2007), whereby

universal coverage is provided while letting consumers free to purchase additional services

or amenities on private insurance markets.

Financial Markets In the aftermath of the recent crisis, the opportunity for agents to

opt out of a public program and trade in private markets has been acknowledged as a key

constraint for the design of financial institutions in the presence of adverse selection. In

this respect, recent works have suggested a rationale for liquidity-injection programs that

provide a credible signal to uninformed lenders by rejuvenating the relevant markets. An

optimal intervention then typically consists in attracting only the least profitable borrowers,

either through direct lending (Philippon and Skreta (2012)), or by repurchasing low-quality

assets (Tirole (2012)). By participating in a bailout program, a borrower may however end

up signalling her financial weakness to the market, creating a stigma effect with potentially

perverse implications (Gorton (2015)).

While bailout policies are derived under the assumption that public and private liquidity

are mutually exclusive, our approach offers a general theoretical framework for evaluating

public interventions in situations where privately informed borrowers may complement a

public program with additional funds raised on private markets. A possible intervention

would require public liquidity provision to involve a price sufficiently low, c, so as to attract

all borrowers, and a borrowing limit q∗1 such that no overborrowing by the least profitable ones

is possible. Further borrowing may then take place on private markets at price c2. Overall,

such an intervention would implement the JHG allocation, thereby achieving budget balance,

unlike those proposed by Philippon and Skreta (2012) and Tirole (2012), and inducing all

types of borrowers to participate. This in turn would make it harder to infer their individual

financial conditions, mitigating the impact of the stigma effect. Finally, the corresponding

allocation of funds is the only one that can be reached under a budget-balanced program

under the threat of side trading.
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Appendix

Proof of Lemma 3. Each type i evaluates any contract (qE, tE) she can trade with the

entrant through the indirect utility function

z−Pi (qE, tE) ≡ max{ui(qP + qE, T P (qP ) + tE) : qP ≥ 0}. (A.1)

Because ui is strictly quasiconcave and T P is convex, the maximum in (A.1) is attained at

a unique q̂Pi (qE), and (q̂Pi (qE), qEi ) is a solution to (3) if and only if

qEi ∈ arg max{z−Pi (qE, TE(qE)) : qE ≥ 0}. (A.2)

According to Attar, Mariotti, and Salanié (2019, Lemma 1), the convexity of the tariff T P

and the strict single-crossing condition for the functions ui imply the following single-crossing

condition for the functions z−Pi :

For all qE < qE, tE, and tE, z−P1 (qE, tE) < z−P1 (qE, tE) implies z−P2 (qE, tE) < z−P2 (qE, tE).

To conclude, suppose that qE2 < qE1 at some solution ((qPi , q
E
i ))i=1,2 to (3). By (A.2),

z−P2 (qE2 , T
E(qE2 )) ≥ z−P2 (qE1 , T

E(qE1 )).

Because qE2 < qE1 , the above single-crossing condition then implies

z−P1 (qE2 , T
E(qE2 )) ≥ z−P1 (qE1 , T

E(qE1 )).

Thus (q̂P1 (qE2 ), qE2 ) is also a solution to (3) for type 1. The result follows. �
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