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“It’s not a bank large enough to cause systemic crisis,” said Lorenzo Codogno, a

former chief economist at Italy’s treasury who operates LC Macro Advisors, a consul-

tancy in London. “But,” he added, “we have seen that even small banks can cause huge

problems.” – E.C.B. Takes Reins of Italian Bank to Prevent Wider Crisis, New York

Times, January 2, 2019.

1 Introduction

Does financial network structure matter for financial stability? A seminal theoretical literature

(Acemoglu, Ozdaglar & Tahbaz-Salehi 2015, Elliott, Golub & Jackson 2014, Cabrales, Gottardi &

Vega-Redondo 2017) suggests that contractual links between banks’ balance sheets shape a net-

work structure that affects aggregate stability above and beyond what is captured by standard

aggregate and bank-level prudential ratios. Elliott et al. (2014) shows that a moderate increase in

diversification increases network connectivity and amplifies the propagation of defaults, while more

complete diversification makes financial networks more resilient to bi-lateral default transmission.

On the empirical side, a key challenge is the development of identifiable and micro-founded endoge-

nous network formation models that (i) allow for the endogenous emergence and transformation of

financial ties, (ii) match the large heterogeneity of institution- and security-level holdings, (iii) test

the empirical relevance of theoretical network mechanisms.

This paper addresses these three challenges. First, it puts forward a model of heterogeneous

banks and securities where financial linkages form endogenously, shaping a network of interlinked

banks’ balance-sheets through trade in securities. The network is shaped by bank-specific beliefs

about future payoffs, combined with their risk-aversion and cost of equity; as well as by the cost of

trading financial instruments. Individual banks’ decisions to form bilateral ties makes a network of

banks emerge out of a structural general equilibrium model of trade in financial assets and liabil-

ities. Second, beliefs about payoffs, risk aversions, and costs of equity are structurally estimated1

using disaggregated balance sheet information on assets and liabilities across a number of financial

instruments for the entire universe of the 303 French banks. Third, estimated parameters enable

1In that sense, the paper follows the literature sparked by Ross (2015), which aims at identifying the market’s
subjective probabilities of future events from prices. Here we back out each institution’s forecast from the time
variation of demands.
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a comparative statics prediction of the network response to financial shocks such as the ECB’s

quantitative easing programs. In particular, this large policy shock affects network topology, with

consequences for asset prices, banks’ distance to insolvency and their influence on key parts of the

economy.

The microfounded model is one of a competitive equilibrium in incomplete markets and incom-

plete information, where heterogeneous banks agree to disagree about the future payoff and price

and cannot fully learn other institutions’ beliefs from the observation of equilibrium prices. Under

such market and information structure, trade occurs in contrast with the typical no-trade result

(Merton 1987, Milgrom & Stokey 1982). At general equilibrium, banks form bilateral ties with

each other by either buying assets or supplying liabilities. Trading occurs, and ties form, for two

reasons: first, because banks are heterogenous in their beliefs, and second, for risk-sharing purposes

as they differ in risk aversion.

The network emerges from its ability to turn partial equilibrium shocks into general equilib-

rium impacts. Indeed, partial equilibrium shocks propagate through ties by causing shifts in the

diversification of assets and liabilities. Hence, the propagation of shocks across banks in general

equilibrium provides the micro-foundation of a weighted network of banks whose edges weights

represent the partial equilibrium adjustment in returns for any pair of equity, and whose adjacent

matrix represents the general equilibrium response of the partial equilibrium change in equity re-

turn on the entire network. The combination of banks’ rebalancing of their assets and liabilities

for all financial instruments, and each market’s adjustment of prices to achieve partial equilibrium,

implies a sequence of propagation of shocks that brings markets back to a general equilibrium. This

general equilibrium framework yields a network, which is based on the final impact of a change in

the equity price of a bank on the equity prices of the other banks.

Such network is amenable to typical measures of bank influence and bank sensitivity to network

shocks. We derive measures of bank’s influence and sensitivity which capture the chain sequence

of balance sheet rebalancing; such complex propagation mechanism can be measured with a simple

transform of the array of general equilibrium equity response. Any parameter change or shock alters

the structure of the network itself, resulting in time-varying shifts in influence and sensitivity, and

thus shifts in the propagation of future shocks.

The influence of a bank may not be driven by its size: the strength of the financial network
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links crucially depends on the economy-wide elasticity of substitution between financial instruments

rather than on the size of holdings, or the size of the balance sheets. Indeed, we highlight the

presence of small banks (in terms of equity or total assets) that have a sizable influence on other

banks. The elasticity of substitution is central in workhorse models of the industrial organization

literature (Berry, Levinsohn & Pakes 1995), yet has been so far absent in both the theoretical

financial network literature which focuses primarily on the number of links in incomplete networks,

and in policy discussion which focuses on the size of the banks and that of asset holdings to detect

sources of systemic risk. Micro-foundations of the network reveal an important tension between

the bank’s balance-sheet size, bank’s decision to diversify and the effects of such diversification

on the system-wide fragility. In particular, we show while the more risk-averse banks reduce the

variance of their returns by diversifying their portfolio, they increase their influence in the network.

An increase in a bank’s risk-aversion increases both the influence and the sensitivity of its equity.

This novel finding which derives from the endogeneity of the network to individual asset demand

and supply decisions runs in vast contrast with two common “rules of thumb” approach: first, the

largest banks may not be the most systemic ones; and second, portfolio diversification may increase

influence and systemicness rather than reduce it.

The key topological characteristics of the financial network are pinned down by the trade costs,

risk aversion and beliefs of the underlying banks. This approach enables us to understand the evo-

lution of the financial network over time and to derive out-of-sample predictions for asset prices,

net asset demand, banks balance-sheet, for any shock or policy shift. Such counterfactual anal-

ysis captures both network propagation and network transformation and derives implications for

measures of systemicness and financial fragility of individual institutions. This paper is to the best

of our knowledge the first to provide a direct structural link between net financial asset trade in

general equilibrium, network structure, and network effects.

The model is identified under the framework that each bank is using its own factor model of

return forecasting. Such factors also explain institutions’ asset and liability diversification. Under

rather standard assumptions, a key result is that the mapping is one-to-one: from the structural

parameters (beliefs, risk aversion, cost of equity) into the optimal portfolio of assets and liabilities.

Hence the model is identified by mapping available time-varying security-level holding information

from banks’ longitudinal balance-sheet into structural parameters. Identifying the factor model
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of net demands yields the identification of the factor model used to predict returns, as well as

each institution’s risk aversion and cost of equity. As each set of factors has a specific correlation

structure, this yields the first two moments and comoments, i.e. banks’ beliefs about returns and

correlations. This process then identifies the financial network implied by the partial and general

equilibrium response to any change in the model’s parameters.

The model is estimated on disaggregated information for the universe of French banks. The

banking sector is disaggregated at the individual bank level for 303 banks using balance-sheet

data that includes cross-holdings of each bank’s equity and detailed instrument holdings. Ties of

banks with other sectors are observed using a quarterly dataset of whom-to-whom sector-level and

instrument-level information for seven sectors of the French economy and the rest of the world.

Sectoral balance sheets provide the bilateral ties of 20 financial instruments, which includes traded

securities, non-traded financial assets (e.g. loans), and real assets.

The model’s estimation starts by estimating each bank’s factor model. A small number of

factors is able to explain the bulk of the variance in net demands. The factors exhibit a close

correspondence with drivers of the Global cycle and the Eurozone cycle that correlate with US and

Euro policy rates, global GDP growth and global trade growth, the VIX measure of implied global

risk aversion, or interest rates on government securities for the countries that were subject to the

sovereign crisis of 2011 (Greece, Ireland, Italy, Portugal and Spain). Return beliefs are consistent

with realized returns: they explain up to 39 percent of the variance of ex-post returns depending

on the sector and instrument. The factor structure on return beliefs is rather similar across sectors,

up to a few changes in the ordering of the factors (e.g banking being more sensitive to short-run

factors and insurance to long run factors). Return beliefs are generally in line with ex-post returns.

They tend to be correlated across sectors and especially so for the banking, mutual funds, and

corporate sectors. The belief model fails, however, to predict returns in one key instance: during

the 2007-2008 crisis when some institutional sectors made counter-cyclical net asset purchases, i.e.

buying assets whose returns are declining. Such misperception right before the financial crisis is

akin to Gennaioli & Shleifer (2018). Such crisis led to a broad reassessment of beliefs, yet not all

banks reacted in the same way: more risk-averse banks (but not larger and more leveraged banks)

revised their beliefs more aggressively following these forecasting errors.

The paper simulates the propagation of the ECB’s quantitative easing policy: how such propa-
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gation affects asset prices, banks’ balance sheets, and the shape of the network itself. One quarter

of quantitative easing in the Euro area leads to a reduction of the French long term government

yield by 44 bps along with a flattening of the yield curve and an increase in the equity premium.

Banks rebalanced their balance sheet holdings from debt to equity, and, in parallel, increased (de-

creased) their equity (bond) liabilities, and increased their distance to insolvency (according to the

first order variation of Atkeson, Eisfeldt & Weill (2017) in general equilibrium). Effects are strongly

heterogeneous across banks. Less risk averse and more influential banks reshuffle their their balance

sheets less. The financial network becomes less fragile and systemic after the policy shock: mean

influence and mean sensitivity goes down. Such reduction is larger for more influent and/or more

sensitive banks but, importantly, is uncorrelated with their asset size.

The paper contributes to the theoretical and the empirical literatures. First, the paper follows

the theoretical research program laid out by Elliott et al. (2014), who stated that “a fully endogenous

study of the network of cross-holdings and of asset holdings is a natural next step.” The paper

endogenizes the network structure by using a general equilibrium model of asset trade. Second,

the paper estimates the network structure using disaggregated data on bank’s balance-sheets. This

builds a bridge between the empirical literature on asset demand among heterogeneous institutions

(Koijen & Yogo 2019, Miranda-Agrippino & Rey 2015), extending it to endogenous asset supply

and asset demand, and the theoretical network literature.

The paper contributes to the theory literature by providing a model that sits on a continuum

between non-tradable contracts and costlessly tradable securities. The higher the trade costs,

the more persistent the bilateral ties formed between institutions. The financial network forms

endogenously as linkages are constrained by financial instruments’ trade costs, yet securities can be

traded on the secondary market. Highly tradable instruments (e.g. listed equity, with lower trade

costs) lead to more volatile links and more price-elasticities. A periphery of fairly static, hard-to-

trade instruments, forms around a set of highly tradable instruments. As such our network differs

with networks with non-tradable bilateral contracts in which ties remain as initially formed until a

default occurs, as in Acemoglu et al. (2015). The two types of networks (trade-based v. contract-

based) differ both in terms of network formation and in terms of network propagation. Attempts

to endogenize the second type of network relies on network formation games as in Cabrales et al.

(2017) and in Farboodi (2014), while endogenizing the first type of network relies on a general
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equilibrium model of asset trade as in this paper. Propagation in bi-lateral networks occurs when

a negative shock to a debtor party makes him unable to honor a contract with a creditor, which

in turn lack the funds needed to deliver on its on its obligations to third parties. By contrast,

propagation in our network results from prices changes and balance sheet reshuffling and can occur

even across seemingly unrelated assets and across seemingly unrelated institutions. Our paper

provides micro-level foundations to the propagation mechanism among vulnerable banks analyzed

by Greenwood, Landier & Thesmar (2015).

Our market-implied endogenous weighted network provides a novel perspective on insolvency

risk due to the propagation of shocks through the financial network structure (Acemoglu et al.

2015, Elliott et al. 2014, Farboodi 2014, Cabrales et al. 2017, Greenwood et al. 2015) . Whether a

shock is amplified or mitigated through network propagation can be simply measured by the ratio

between the general equilibrium and the partial equilibrium response to the shock. The measure

of conductance proposed by Cheeger (1969) suggests that a higher conductance, i.e. a more tightly

connected weighted network, exhibits less amplification. This is reminiscent of Elliott et al. (2014):

beyond some threshold, a more diversified network reduces default contagion. Furthermore, by

estimating the response of banks’ entire balance-sheets to shocks, we can measure how the financial

network amplifies or mitigates default risk – as measured by distance to insolvency -- even in absence

of a realized default. Such a measure is especially relevant for regulators that would like to assess

the risk of capital shortfalls and the potential need for recapitalization or forced deleveraging in a

bank. In that dimension, our paper proposes both micro-foundations and empirical estimation.

By using a general equilibrium model of asset trade among heterogenous agents, this paper

follows a finance tradition that goes back to Merton (1987) and includes seminal contributions such

as Berrada (2006), Gandhi & Serrano-Padial (2015), Coimbra & Rey (2017). The contribution of

the paper to this literature is to show how to use observable net demands for financial instruments

to structurally estimate a model with a large dimension of heterogeneity (risk-aversion, beliefs,

cost of equity, trading costs, regulatory constraints). By backing out beliefs in a framework with

heterogeneous agents, the model follows the precedent set by Ross (2015) in the case of a repre-

sentative agent. The paper shares with Koijen & Yogo (2019) the objective of a structural model

that simultaneously matches asset demands and imposes market clearing but our approach differs

in two dimensions. First, we simultaneously model the demand and supply of assets, which is key
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to derive the network of linkages between bank’s balance sheets. Second, rather than estimating a

discrete choice model to understand portfolio shares, we are using the observed structure and size

of net demands for financial instruments to reveal the factor structure of beliefs about asset returns

and explain institution size and leverage.

The paper contributes to the literature on the evaluation of the effects of shocks on both

individual banks and the stability of the financial system by providing an empirical framework that

is (i) immune from the Lucas’ critique, (ii) jointly takes into account the propagation of shocks in

the network and the transformation of the network, (iii) yields bank-level prediction of balance-

sheets, asset prices, and network-based measures of financial fragility. The paper addresses these 3

challenges by bridging the gap between the theoretical literature on the effect of monetary policy

on risk-taking by heterogenous banks (Coimbra & Rey 2017), and the empirical literature. Our

structural approach complements the reduced-form empirical approaches of Dell’Ariccia, Laeven &

Suarez (2017) for the US, and of Koijen & Yogo (2019) for the Euro Area, on the risk-exposure and

asset prices consequences of large-scale asset purchases. It does so by micro founding the demand

and price responses to shocks affecting bank’s balance-sheets and by using the tools of network

analysis to characterize the evolution of financial fragility.

The paper proceeds as follows. Section 2 describes the endogenous diversification of assets and

liabilities of each bank at market equilibrium. The Section makes the financial network emerge

endogenously from such institution-level arbitrage. Section 3 introduces the identification and

estimation of return beliefs using the time varying cross-correlation of security holdings. Section 5

takes the model to the data and estimates beliefs at the security and sector levels. Section 6

uses such structurally estimated beliefs and risk aversions to simulate the impact of quantitative

easing interventions by the European Central Bank on key asset prices, balance-sheets, and network

properties.

2 The Financial Network

This Section presents the model of endogenous network formation between firms who trade in

both liquid and illiquid assets. The relative illiquidity of a subset of financial instruments leads

to a persistent yet evolving network in which firms’ balance-sheet are connected by both liquid
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assets and by costly-to-trade assets. Firms form ties between firms by either purchasing assets or

supplying liabilities. Trading occurs, and ties form, for two reasons: first, as firms are heterogeneous

in their beliefs, and second, for risk-sharing purposes. Yet, trading costs, due to transaction costs,

lack of market clearing mechanisms (over-the-counter securities), or other drivers, limit the ability

of firms to engage in the full set of profitable trades. This leads to a network structure whose ability

to respond to shocks is affected by the magnitude of trading costs.

This Section presents such constrained general equilibrium framework, which provides the micro-

level foundations for the network of banks. The network of banks measures the response of firms’

equities to partial equilibrium shocks. Such partial equilibrium shocks propagate as they cause a re-

diversification of assets and liabilities. Key measures summarize respectively each firm’s influence

and exposure, which respectively characterize a firm’s systemicness and financial fragility.

2.1 Balance-Sheet Diversification and Size

Firms i = 1, 2, . . . , N trade j = 1, . . . , J financial instruments over time periods indexed by t. In

such period t, financial instrument j delivers an observable payoff πjt and has a market price pjt.

In period t, firm i’s belief about the payoff of financial instrument j in t + 1 is represented

by a firm- and instrument-specific random variable π̃ijt+1. While the beliefs about end-of-period

returns are firm-specific (each firm estimates a forecast of returns), the asset price pjt is public

information. In that sense, the law of one price implies that the uncertainty lies in the projection

of future dividends and future security values.

r̃ijt =
π̃ijt
pjt

=
E
[
p̃jt+1 + d̃jt+1|Ωit

]
pjt

(1)

where p̃jt+1 is the price in period t+1, d̃jt+1 the dividend in period t+1 and Ωit the information set

of firm i in period t. Firm i’s beliefs about returns are represented in vector form as r̃it = π̃it/pt.

Each firm i forms such beliefs based on (i) on a firm-specific information set and (ii) a firm-

specific forecasting model.2 Model and information are not directly observable by the econome-

trician. The firm’s joint distribution of instrument-level returns r̃ is a continuous function of RJ

noted fi(r̃).

2Both the information set and the model are parameterized and estimated in Section 3.3.
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Firm i seeks to maximize the return on its equity Eit by raising funds on the market, through

the emission of liabilities, and investing the total sum of the capital and these raised funds in

financial instruments. The firm’s trading activity is represented by a level of gross demand Dijt

and gross supply Sijt (in value) that is both security- and firm-specific. The demand in value is

the product of its price and its quantity: Dijt = pjt · zDijt; and similarly Sijt = pjt · zSijt.

Each firm’s equity is part of the set of instruments. We write e(i) ∈ {1, 2, . . . , J} the function

that maps firm i’s equity into the set of instruments. Hence Eit = pe(i)t · zSie(i). Firm i’s number

of shares zSie(i) is fixed, while its price pe(i)t is free to adjust to market demand and supply. Each

additional unit of total demand D′it1J =
∑

j Dijt for assets beyond initial capital Eit requires

raising a corresponding additional unit of liability S′it1J =
∑

j Sijt, with 1J the J-column vector

of ones. The firm’s balance sheet satisfies the usual equality of assets and liabilities:

D′it1J = S′it1J + Eit (2)

which simplifies to ∆′it1J = Eit when defining the net demand vector as ∆it = Dit−Sit. Hence the

net demand in period t, together with firm i’s current capital Eit, makes up period t’s balance sheet

and asset-liability diversification; the firm achieves such diversification by trading ∆it−∆it−1 ∈ RJ .

Firm i faces a trading cost γij ≥ 0 per quantity traded for adjusting its net demand ∆ijt for

security j from ∆ijt−1 to ∆ijt. When the trading cost γij = 0, the firm’s holdings of security j are

not constrained by its past holdings.3 When γij → ∞ the firm’s current holdings of such illiquid

assets are entirely pinned down by its previous holdings.

The firm’s risk appetite is represented by a utility function u(·), a function of its net income.

Noting ∆it firm i’s stacked vector of net demands in period t, the firm maximizes:

max
∆it∈RJ

∫
ui
(
∆′itr̃

)
fi(r̃)dr̃− ‖γi/p · (∆it −∆it−1)‖2 (3)

s.t. ∆′it1J = Eit,

where the vector of trading costs γi/p is per unit of security traded. Such optimization program

yields a vector ∆it(pt) of net demands as a function of the price vector pt given the joint distribution

3Such trading costs are structurally identified in Section 5.
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of its beliefs about future payoffs, its initial equity, and its initial balance sheet diversification ∆it−1.

Utility functions ui are increasing, continuous, and concave. The cost of equity λi is the Lagrange

multiplier of the funding constraint ∆′it1J = Eit.

The term ‖γi/p · (∆it −∆it−1)‖2 captures the firm’s balance sheet inertia: although the firm

aims at changing demand and supply according to shifts in the distribution of return beliefs fi,

it might not be able to achieve a full adjustment of its balance-sheet from one quarter to the

next. Firms are highly specialized in trading and managing certain classes of financial instruments,

and therefore vary in their ability to respond to a change in beliefs about returns of a particular

instrument. Here · (resp., /) is the term by term vector product (resp., term by term division)

and ‖·‖2 is a norm on trading activity in RJ that measures the magnitude of trading activity.

2.2 Market Equilibrium with Trade Costs

Given each firm’s net demand for each financial instrument i as a function of (i) the price vec-

tor, (ii) return beliefs, (iii) initial equity, (iv) initial balance sheet, this subsection establishes the

existence and properties of the market equilibrium in t with trading costs.

Two key ingredients enable trade in contrast with Milgrom & Stokey (1982): first, markets

are not complete as the set of instruments does not include the full set of firm-specific contingent

claims. Second, each firm’s model, that maps private information into forecasts of returns, is not

common knowledge, which mirrors the framework of Lintner’s (1969). Hence observing the firm’s

demand for assets does not fully reveal its information. Firms trade (i) for risk-sharing purposes

as their risk preferences ui differ, and (ii) as they ‘agree to disagree’ each holding beliefs r̃i about

stochastic returns.

Market equilibrium in t is defined as follows. For any instrument j that is also the equity of

a firm i, j = e(i), the net demand of instrument j is
∑N

i′=1 ∆i′e(i)t − Eit; otherwise it is simply∑N
i′=1 ∆i′jt. Denote the stacked J-vector of firms’ equity by Et, equal to Eit when j = e(i) and 0

otherwise.

Definition 1. (Equilibrium) An equilibrium in period t is a J-vector of prices for each financial
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instrument p∗t that clears each of the J instrument markets:

N∑
i=1

∆it (p∗1t, p
∗
2t, . . . , p

∗
Jt) = Et (p∗1t, p

∗
2t, . . . , p

∗
Jt) , (4)

where ∆it (p∗t ) and Et (p∗t ) are J-column vectors.

Proposition 1. (Existence and Local Uniqueness of Equilibrium) There exists an equilib-

rium price vector p∗t ∈ RJ . Such equilibrium is locally unique almost surely.

Proof. See Appendix A.1 for existence based on standard arguments. Finite trade costs do not

affect the existence proof as the trade cost term ‖γi/p · (∆it −∆it−1)‖2 is homogeneous of degree

zero. Intuitively, such trade costs simply lower the price elasticity of demand. Local uniqueness

follows from a result by Sard (1942) and used in Debreu et al. (1970). As demand is a continuous

function of beliefs, utility functions, and equity, the set of critical points of the Jacobian has measure

zero.

2.3 Shock Propagation Through the Financial Network

The financial network predicts how partial equilibrium shocks to a limited set of equity or non-

equity instruments affect other banks’ value by propagating through balance sheets whose shifts

in diversification is potentially limited by trade costs. The framework will suggest that with large

trade costs γ →∞, the network is akin to a fixed network of equity cross-holdings and of holdings

of primitive instruments, including debt. With finite trade costs, the network ties’ sensitivity to

prices is a key mechanism that explains the amplification or the mitigation of shocks.

The model is flexible and can accommodate a large variety of shocks such as either (i) a shock to

one firm’s equity value, which affects the equity value of all other firms in the economy, (ii) monetary

policy interventions that shift the demand for debt instruments or (iii) shifts in the market beliefs

about a subset of financial instruments, e.g. driven by external factors such as market volatility

or forecasts of fundamentals. In each case, the financial network multiplies the initial, partial

equilibrium shock, and yields a predicted general equilibrium impact for each of the financial

securities.

Each of the three types (i)–(iii) of partial equilibrium shocks can be represented by a shock dθ

12



to a parameter θ that affects net demands. If, for instance, dθ is a shock to the market value of the

equity of firm k, then dθ = dEk and the partial equilibrium shift in net demand is ∂∆k/∂θ · dθ.

Firm i’s general equilibrium equity value shift is driven by shifts in its assets and liabilities’

market values, written compactly as:

dEi
dθ

= 1′
d

dθ
∆i (5)

as a consequence of the funding constraint Ei = 1′∆i (Section 2.1).

The total impact of the shock dθ on the vector ∆i ∈ RJ of net demands of each firm i =

1, 2, . . . , N is the sum of a partial equilibrium term and a general equilibrium term. The total

derivative of net demand w.r.t. the shock expands according to the chain rule as:

d∆i

dθ
=

∂∆i

∂ log p

d log p

dθ
+
∂∆i

∂θ
, (6)

where ∂∆i
∂θ ∈ RJ is the partial equilibrium rebalancing of assets and liabilities at constant prices;

∂∆i
∂ log p ∈ MJ,J(R) is the sensitivity of net demand to the prices of financial instruments, a conse-

quence of banks’ rebalancing of their balance sheet in response to price changes. d log p
dθ ∈ RJ is the

market-wide shift in the price vector, common to all institutions as the law of one price holds.

The set of instruments is split into primitive instruments and equity instruments, p′ = ((pp)′ (pe)′)

and ∆′i = ((∆p
i )
′ (∆e

i )
′). The equity instruments play a special role as they pin down the market

value of the firm. Thus:

dEi
dθ

= 1′
∂∆i

∂θ
+ 1′

 ∂∆p
i

∂ log pp
∂∆p

i
∂ log pe

∂∆e
i

∂ log pp
∂∆e

i
∂ log pe

 ·
 d log pp

dθ

d log pe

dθ

 , (7)

and 1′ ∂∆i
∂θ is the partial equilibrium shift in firm i’s value, simply noted pe. With a perfectly

inelastic supply of equity shares,4 the fluctuation in the market value of equity is driven solely

by the change in the market price of equity. This implies that d log pe

dθ = (diagE)−1 dE
dθ . In this

expression, the presence of the equity values Ei and E on both sides will provide us with the

equilibrium response of firms’ values to the shock dθ. Such response will depend on equity cross-

holdings as 1′∆e
i is the row vector of bank i’s holdings of other banks’ equity.

4While this allows for stock splits, an extension accommodates the case of public offerings and stock buy-backs.
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Such cross-holdings of bank equity by firm i respond to the vector of equity prices log pe.

The impact of log prices on the value of cross-holdings is driven by two terms. The first term is

the mechanical impact of prices on the value of the holdings, keeping the number of shares held

constant. The second term captures the endogenous response of the number of bank shares held

to price changes.

1′e
∂∆e

i

∂ log pe
= 1′e

∂ (pe · zei )
∂ log pe

= 1′ediag∆e
i︸ ︷︷ ︸

Equity HoldingsHi

+ 1′e

[
(pe1′e) ·

∂zei
∂ log pe

]
︸ ︷︷ ︸

Response of equity holdings ∂Hi/∂ log pe

(8)

where · is the term by term vector product. This is simply noted, for the sake of clarity Hi +

∂Hi/∂ log pe. The first term Hi is the row vector of holdings of other banks’ equity (in value) as in

Elliott et al. (2014). The second term, noted ∂Hi/∂ log pe is due to bank i’s response of holdings

to the price change.

The response of each firm i’s market value in equation 7 can now be stacked into an equity vector

E = {Ei}i.5 This provides a familiar formula. This formula expresses the response of firms’ value

to a shock dθ in terms of a network of holdings H and a partial equilibrium shock pe. Stacking

the scalars dEi
dθ into a column vector,

dE

dθ
=

[
I−

(
H +

∂H

∂ log pe
+

{
∂(1

′
p∆

p
i )

∂ log pe

}
i

)
(diagE)−1

]−1 [
∂B

∂θ
+

{
∂1′p∆

p
i

∂ log pp
+
∂1′e∆

e
i

∂ log pp

}
i

d log pp

dθ

]
(9)

where the first term can be simply written [I−A]−1 pe. In this expression, A is the adjacency of

this paper’s financial network. Such adjacency matrix is equal to Elliott et al.’s (2014) adjacency

matrix of cross holdings H (diagE)−1 in the specific case where (i) the number of bank shares held

by any other bank is kept constant, (ii) there is no interbank linkage through other instruments

than equity. Then,

Definition 2. (Endogenous Financial Network) The financial network is a weighted and

directed graph G = (V,E) whose vertices V are the banks {1, 2, . . . , N}. There is an edge (i, i′, aii′) ∈

E from bank i to bank i′ if a partial equilibrium shock in the value (assets–liabilities) of bank i affects

the market price of the equity of bank i′. The weight aii′ of the edge (i, i′) measures the magnitude

5Throughout the paper, the notation {Xi}i = X means that a series of row vectors i = 1, 2, . . . , N is stacked into
a squared matrix of size N .
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and the sign of the impact. The adjacency matrix of such financial network is A. The general

equilibrium impact of a partial equilibrium shock on banks’ values is:

dE

dθ
= [I−A]−1

[
pe +

{
∂1′p∆

p
i

∂ log pp
+
∂1′e∆

e
i

∂ log pp

}
i

d log pp

dθ

]
, (10)

When the number of equity and non-equity instruments held by each bank is fixed, and when the

price of non-equity instruments is fixed, the network is simply the network of cross-holdings, A = C,

where C = H (diagE)−1 is the matrix of cross-holdings as a proportion of each bank’s market

capitalization. In general, Equation (9) shows that the propagation of shocks is affected by two

terms in addition to C:

A ≡ C +
∂H

∂ log pe
(diagE)−1 +

{
1
′
p

∂∆p
i

∂ log pe

}
i

(diagE)−1 , (11)

where ∂H
∂ log pe (diagE)−1 is the network of cross-holdings’ response to equity price changes; and{

1
′
p

∂∆p
i

∂ log pe

}
i

is the set of links between banks that are not equity links.

2.4 Network Structure: Amplification or Mitigation

Whether a partial equilibrium shock is amplified or mitigated depends on the structure of the

financial network. Noting ‖pe‖ the magnitude of the partial equilibrium shock,6 the ratio of the

magnitude of the general equilibrium shock
∥∥dE
dθ

∥∥ to the partial equilibrium shock ‖pe‖ is a measure

of the magnification of the initial partial equilibrium shock. When
∥∥dE
dθ

∥∥ / ‖pe‖ > 1 the partial

equilibrium shock is amplified, while in the opposite case the shock is mitigated. The maximum of

such ratio is noted α:

α = max

∥∥dE
dθ

∥∥
‖pe‖

, (12)

where the maximum is taken over all possible partial equilibrium shocks pe in RN . It is equal to

the norm of the inverse of the Laplacian (1 − A)−1 of the graph G. A result by Cheeger (1969)

implies that α has an upper bound equal to a measure of the network’s connectedness. Hence

network shock amplification is related to the graph’s topology.

6Results of propositions 2 and 3 are independent of the specific norm. Such results apply for any norm on the
Euclidean space RN with dimension N equal to the number of institutions.
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We proceed as follows. Given a partition of the financial network G into two subgraphs G and

G, the conductance of the cut (G,G) measures the connection between subgraph G and subgraph

G:

ϕ(G) =

∑
j∈G,j′∈G ajj′

min(a(G), a(G))
(13)

where a(G) =
∑

j∈G
∑

j′∈V ajj′ . The Cheeger constant hG is the minimum of the conductance

ϕ(G) over all subgraphs G of G.

hG = minϕ(G) (14)

Then, Cheeger (1969) shows that the second smallest eigenvalue of the Laplacian is bounded below

by h2
G/2. Given that the maximum of α over all potential partial equilibrium shocks is the norm

of the inverse of the Laplacian, we obtain the following proposition:

Proposition 2. (Network Conductance and Maximum Propagation of Shocks) In a fi-

nancial network with a higher conductance (more ’tightly’ connected) shocks are less magnified.

Precisely,

1

2hG
≤ α ≤ 2

h2
G

. (15)

In such inequality, 1
2hG
≤ 2

h2G
as the degree of each vertex of the network is 1, which implies that

ϕ(G) ≤ 1, and hG ≤ 1.

Proof. This result is proven by Cheeger (1969).

The estimation of the Cheeger constant is challenging as the minimum is taken over all possible

subgraphs of G, of which there are 2J − 1. A common approach to this issue is to use a spectral

cut (Spielman 2007): given the eigenvector corresponding to the second smallest eigenvalue of the

laplacian, securities are sorted into each of the subgraph according to the sign of their value in the

eigenvector. Spielman (2007) shows that this leads to a cut corresponding to the minimum 14.

2.5 Measuring the Systemicness of Institutions

While the previous analysis focuses on the economy-wide propagation of partial equilibrium shocks,

we focus here on individual securities. This will allow us to measure the position of a firm’s equity

in the network of financial instruments.
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Two simple measures characterize (i) the influence and (ii) the sensitivity of a bank to a partial

equilibrium shock. Influence is a measure of the systemicness bank, sensitivity measures its fragility.

Influence typically differs from sensitivity: institutions at the fringes of the financial network exhibit

high sensitivity but negligible influence.

Definition 3. (Influence and Sensitivity) The vector of influences of each bank is7

Influence′t = 1′ [I −At]−1 , (16)

measuring the general equilibrium change in equity value of the total financial system caused by

a unit increase of a bank’s partial equilibrium shock. Influence is akin to the centrality measure

presented in Bonacich (1987). The sensitivity vector is

Sensitivityt = [I −At]−1 1, (17)

measuring the impact on each bank of a unit increase in value of all bank equities.

The structure of the financial network provides an upper bound on the average influence and

sensitivities. The following proposition suggests that a “more connected” network, in the sense of

Cheeger’s conductance, will also have smaller influences and sensitivities.

Proposition 3. (Magnification) An upper bound for the sum of the magnitudes of influences

(resp., sensitivities) is the number α that measures the amplification or mitigation of shocks:

N∑
i=1

|Influenceit| ≤ α ≤
2

h2
G

, (18)

with the same inequality for the sum
∑N

i=1 |Sensitivityit|.

Proof. Endow the space RN with the L1 norm ‖(x1, . . . , xN )‖ =
∑N

i=1 |xi|. Then: ‖Influencet‖ ≤
1
N

∥∥∥(I −At)−1
∥∥∥ ‖e‖ = α. The inequality α ≤ 2

h2G
comes from proposition 2. Given that the

spectrum of a matrix is identical to the spectrum of its transpose, the same inequality holds for

the sensitivities.
7One potential issue is that the influence vector includes the security itself. Thus, an alternative definition excludes

each instrument from the influence vector. This yields similar results in the empirical sections of this paper. A similar
comment applies to the sensitivity vector.
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Influence and sensitivity measures are typically uncorrelated with the size of holdings. In

particular, a bank’s holdings can be small but exhibit a strong elasticity with respect to the returns

of other securities. Appendix Figure 9 plots network influence against the size of holdings using

estimates provided in Section 4, and finds no systematic correlation between the two metrics.

Figure 2 illustrates an equilibrium tension between the firm-level need for diversification, and

the financial connections that such diversification implies. In particular, while the more risk averse

firms reduce the variance of their returns by diversifying their portfolio, they increase their influence

in the network. This is illustrated by two simulations of market equilibrium, one with a uniform

distribution of risk aversions, over [1, 10]; and one with a uniform distribution of risk aversions over

[1, 15]. While the distribution of risk aversions is uniform, the distribution of balance sheet sizes is

such that the least risk-averse firms have balance sheet sizes about 2.5 times the balance sheet size

of firms with a risk aversion above 4 (Subfigure (b)). Subfigures (a) and (c) illustrate the trade-off

between firm-level diversification and network-level influence: firms with the lowest risk aversion

have the equity with the greatest influence (as defined in equation (16)), and the greatest impact

of their equity on their immediate connections (Subfigure (c)).

3 Structural Estimation

Structural estimation of the model in a parametric context requires (i) a specification of banks’

utility functions ui, i.e. risk preferences, (ii) a specification of institutions’ belief formation model

and data. The first point is addressed by using CARA utility with trade costs. The CARA setup

is equivalent to maximizing expected returns under a value-at-risk constraint. In this case the

importance of the value-at-risk constraint is measured by the risk-aversion parameter ρi (Coimbra

& Rey 2017). Point (ii) is addressed by considering that each institution builds a specific factor

model of returns.

3.1 Parameterization: Demand, Trade Costs, Beliefs

Each firm trades off the expected return and the expected variance of such stochastic net income.

The relative importance of such variance for firm i is noted ρi.
8 Hence firm i chooses its net demand

8This mean-variance goal for a firm formally corresponds to the concept of absolute risk aversion in the context
of household choice under Gaussian return uncertainty with Constant Absolute Risk Aversion (CARA).
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of instruments by maximizing

argmax∆it
Q(∆it) ≡∆′itµit −

1

2
ρi∆

′
itΣit∆it − ‖γi/p · (∆it −∆it−1)‖2 (19)

s.t. ∆′it1J = Eit

where µit ≡ E [r̃it] ≡ E [r̃t|Ωit] is the J-vector of mean return beliefs and Σit ≡ Var [r̃it] ≡

Var [r̃t|Ωit] is the J-square matrix of the variance-covariance of return beliefs. Stochastic be-

liefs about returns are not multi-collinear and have strictly positive variances, in other words the

variance-covariance of beliefs Var(r̃it) is symmetric, positive-definite.

The following proposition provides a closed-form expression for net demands with firm-specific

beliefs and trade costs:

Proposition 4. (CARA Firm Demand with Trade Costs) Each firm i’s net demand for

instruments depends on the first two moments of its return beliefs, its risk aversion, its cost of

capital, and its adjustment costs. Formally, the J-vector of net demands is

∆it = (Γi + ρiΣit)
−1 (µit − ηit1 + Γi∆it−1) , (20)

where ηit is the cost of equity, i.e. the impact of a marginal relaxation of the equity constraint on

the mean-variance objective,

ηit =
1′ (Γi + ρiΣit)

−1µit − Eit + 1′Γi∆it−1

1′ (Γi + ρiΣit)
−1 1

. (21)

The Lagrange multiplier ηit is the marginal value of the funding constraint ∆′it1J = Eit.

Proof. See Appendix A.1.

Mean-Variance Frontier at Market Equilibrium

Equilibrium prices clear the market of each security j and reflect the underlying trade-off between

risk and return of each individual institution i. Thus the equilibrium market price pi should reflect

the distribution of beliefs π̃ijt about payoffs.

This is what Figure 1 illustrates in a market simulation with J = 100 instruments and N = 3
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banks. When institutions have common beliefs, figure 1 shows that the risk-return frontier describes

a typical mean-variance frontier (Cochrane 2009) with no convex hull. Equilibrium prices are

obtained by a contraction mapping derived from the general equilibrium fixed point in prices. Each

point of these simulated graphs is a security. Different shades and point types are for each of the

3 banks. With common beliefs, the mean return and risk converge to a parabola, where securities

with an average positive (resp., negative) covariance with other securities’ payoffs lie in the upper

part (resp., lower part) of the parabola.

When institutions disagree about the mean and variance of payoffs, or when institutions face

constraints on their demand or supply of securities, securities typically lie inside the convex hull

of the mean-variance frontier. The slope of the fitted line of the upper part of the parabola is an

increasing function of the bank’s risk aversion.

3.2 Model Identification: Intuitions

Knowing firms’ beliefs, risk aversion, and equity levels is key to the estimation of the sensitivity of

network ties to shocks (network adjacency matrix of equation (11)).

Indeed, bilateral ties emerge endogenously from banks’ beliefs about stochastic returns (means,

variances, and correlations), and from their risk aversion and equity level. In turn, the observation

of time-varying financial ties and equity levels identifies the time-variation of banks’ stochastic

beliefs and their risk aversion.

For instance, in a simple case with only two assets, a negative correlation between the demand

∆ijt for listed equities and the demand ∆ij′t of long term debt reveals the belief that the return r̃ijt

on listed equities and the return r̃ij′t on long term debt are negatively correlated. The relationship

between beliefs about correlations Corr(r̃ijt, r̃ij′t) and the magnitude of time-variation in holdings

identifies the firm’s risk aversion ρ.

Each firm is characterized by (i) beliefs about J(J−1)/2 correlations and J means in each time

period t, (ii) a constant risk aversion parameter ρ, and (iii) an equity level Et. For each firm i,

we observe (a) assets and liabilities ∆ijt for each of the J instruments in each time period t and

(b) their equity level Et. Identifying beliefs and risk aversion requires a set of assumptions on the

time-varying dynamics of first- and second-order moments. The literature has provided a range of

approaches to model time-varying correlation structures (Engle & Kelly 2012, Harvey 2010, Harvey
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& Thiele 2016). In this paper, each bank forecasts returns using a firm-specific factor model, which

provides the variance-covariance structure of the forecast returns.

The following sections show that (i) assuming a firm-specific factor structure in stochastic

returns implies a firm-specific factor structure in net demands, and (ii) the relationship from the

factor structure of returns to the factor structure of net demands can be inverted to identify each

firm’s beliefs about returns’ means, variances, and correlations. Both factors and loadings are

specific to each bank i, reflecting the fact that firms have heterogeneous beliefs about both the

factors that price assets and about the comovement of prices with factors.

Trade costs are identified by estimating the impact of the previous period’s holdings on current

holdings. We lighten the exposition by presenting identification with no trade cost, and present

identification with such costs in Appendix Proposition 7.

3.3 From Return Beliefs to Net-Demands: A Dynamic Factor Model

Recent empirical asset pricing literature (Miranda-Agrippino & Rey 2015, Koijen & Yogo 2019)

suggests that unobservable and persistent factors drive asset returns. Similarly, in this paper,

each firm uses a factor model turning public and private information into a forecast of the joint

distribution of returns.

Data used in this paper includes up to 820 financial instruments (Section 4). Given such level

of disaggregation, financial instruments are grouped into natural classes, e.g. listed and unlisted

equities, long-term and short-term debt. Within each instrument class, the firm forms beliefs about

the joint distribution of financial instruments’ returns; the firm also forms beliefs about the joint

distribution of returns across instrument classes. For the sake of simplicity, we present here an

approach without grouping by instrument class.

Stochastic return beliefs about instruments follow a factor structure:

r̃it = ϕi + Λifit+1 + εit, Σεi ≡ V ar (εit) , (22)

where there are two sources of uncertainty: first, the variance of the forecast factor fit+1|fit measures

the uncertainty coming from firm i’s factor structure; second, εit measures firm i’s idiosyncratic
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uncertainty about returns. Each factor fit+1 follows an autoregressive process:

fit+1 = φi + Φifit + uit+1, Σui ≡ V ar(uit+1), (23)

where φi is a K × 1 vector of factor constants, Φi is the K-diagonal matrix of autoregressive

coefficients. uit+1 are the innovations to factors.

Overall, firms form beliefs in two steps. First, firms forecast the value of the factors fit+1;

second, firms use the loadings (ϕi,Λi,Σεi) to forecast the mean and the variance-covariance of

returns.

Proposition 5 below shows that when firms use a dynamic factor model to forecast return beliefs,

then their net demands also follow a dynamic factor model. Indeed,

∆it = ci + Lifit+1 − hit. (24)

The vector of constants ci, the net-demand loadings Li, and the time-varying term hit are a function

of the risk aversion ρ, the constant ϕi and the loadings Λi:

ci =
1

ρi

[
ΛiΣuiΛ

′
i + Σεi

]−1
(ϕi + Λiφi) , Li =

1

ρi

[
ΛiΣuiΛ

′
i + Σεi

]−1
ΛiΦi, (25)

and hit = 1
ρi

[ΛiΣuiΛ
′
i + Σεi]

−1 ηit1.

The factors fit evolve according to the same autoregressive model as the autoregressive model

for the factors of the returns (Equation 23). This result is summed up in the following proposition:

Proposition 5. (Implied Net-Demand Dynamic Factor Model) There exists a mapping

from the factor structure of return beliefs to the factor structure of net demands, noted δ:

δ : (ρi,ϕi,Λi,Σεi) 7−→ (ci, Li,hit) , (26)

The mapping is from R × RJ × L ×MJ,J to RJ ×MJ,K ×MJ,J . The set L is the set of load-

ings
{

Λi ∈MJ,K

∣∣1′ (Λi � Λi) 1 = K
}

that sum to K. In this K is the number of factors, J the

number of instruments, and Mp,q the set of real matrices of dimension p× q.

Proof. See Appendix A.1.
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3.4 From Net-Demands to Return Beliefs: Identification

The estimation of the dynamic factor model of net-demands and of the autoregressive process of

the factors yields for each firm i: (i) the autoregressive dynamic of factors (φi,Φi,Σui), (ii) the

constant and loadings (ci, Li) of net-demands, and (iii) the transformed cost of equity hit. The

model is identified by finding the factor structure of return beliefs (ϕi,Λi,Σεi) that matches these

reduced-form estimates. This is equivalent to the inversion of the mapping δ.

The autoregressive dynamics (φi,Φi,Σui) of the factors of return beliefs is identical to the

autoregressive dynamic of the factors for net demands. For the constants and loadings of return

beliefs, cost of equity, and risk aversion the proof is more elaborate. The following proposition

shows that δ is invertible:9

Proposition 6. (Identification of Return Beliefs and Risk Aversion) The mapping δ

from the factor structure of return beliefs to the factor structure of net demands can be inverted.

(ρi,ϕi,Λi,Σεi) = δ−1 (ci, Li,Σεi) identifies (i) risk aversion ρi , (ii) the constant and the loadings

of the return belief factor structure, (iii) the variance-covariance matrix of idiosyncratic risk.

Proof. The closed-form expression for the inverse δ−1 is presented in Appendix A.1. The intuition of

the proof is that the loadings on return beliefs are scaled equivalents of the loadings on net demands.

The scaling is a function of risk aversion and the variance-covariance of return loadings.

This key proposition allows us to conclude the identification of the model without trade costs.

Indeed, firm i’s ex-ante beliefs about returns are identified as:

E(r̃it) = ϕi + Λi · E(fit+1|fit), Var(r̃it) = Var(Λi · fit+1) + Σεi (27)

which provides each bank’s demand vector ∆it at any price vector pt ∈ RJ+∗.

Appendix Proposition 7 provides the identification procedure for the case with finite trade costs,

where the source of identifying variation is the correlation between past and current holdings.

3.5 Estimation Procedure

The model’s estimation proceeds as follows and yields the paper’s financial network in step 6:

9In the presence of adjustment costs, both propositions 5 and 6 still apply.
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1. The factor model for net demand is estimated for each bank. This yields estimated factors

f̂it in each period, loadings L̂i, the constants ĉi, the residual ĥit.

2. The autoregressive process for the unobserved factors f̂it+1|f̂it is estimated. In this paper

we use a first-order autoregressive process. This yields the constant φi , the autoregressive

coefficient Φi, and the variance-covariance matrix Σui of innovations.

3. Using the inverse of the mapping δ from reduced form factor structure (ci,Li,hit) to the

structural parameters we estimate the risk aversion, as well as the constant, loadings, and

variance-covariance of the factor structure of return beliefs (ρi,ϕi,Λi,Σεi).

4. The mean return E(r̃it), the variance-covariance matrix Var(r̃it) of the returns, and the cost

of equity ηit follow from equation 27.

5. These parameter pin down the firm’s net demand ∆it for any price vector pt according to

proposition 4.

6. The financial network is the matrix At obtained by summing the network of holdings (ob-

served), the response of equity holdings to equity prices (estimated), and the response of

non-equity holdings to equity prices (Definition 2).

The next section estimates beliefs, risk aversions, and the financial network using a comprehensive

longitudinal balance-sheet data with assets and liabilities of all French banks.

4 Data

Building this paper’s network of banks leads to the following data challenges: first, measuring

institution-level equity cross-holdings across bank and non-bank shareholders, in the longitudinal

dimension; second, by measuring banks’ balance sheets and the non-equity links between them,

again in the longitudinal dimension; third, by measuring the response of the financial instruments

(loans, debt) of other sectors (household sector, non-financial corporate sector, rest of the world)

to shocks occurring within the banking sector (e.g. ECB interventions) and outside of it. These

three challenges are addressed by merging the financial instruments of individual banks’ balance
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sheets with (i) other banks’ balance sheets, and (ii) with the balance sheets of other sectors than

the financial sector.

Equity Cross Ownership

For banks’ balance sheets and cross-equity ownership at the bank level, we rely on the Bureau

Van Dijk’s collection of detailed data for the period 2013–2018 on cross-equity ownerships, built

from annual reports. The 2013-2018 is particularly relevant as it covers the period of the ECB’s

Public Sector Purchase Program. For France, the Bureau Van Dijk bank data are a longitudinal

panel of 294 commercial banks, followed over 24 quarters, where balance sheets are reported at

a disaggregated level (so-called C1, C2, and U1, U2 consolidation levels) that shows both time-

varying parent-subsidiary relationships as well as time-varying ownership of equity across groups.

For instance, HSBC France fully owns HSBC Real Estate Leasing France as well as HSBC Factoring

France and HSBC SFH. The latter subsidiary is specialized in mortgage lending activities. Such

parent-subsidiary relationships evolve over time: while Edmond de Rothschild France is fully owned

by Edmond de Rothschild in March 2013, the 100% share ownership declines to 86% in March

2016. The longitudinal equity panel also reports holdings of shares across groups, such as the

35% ownership of La Banque Postale Financement (a subsidiary specialized in consumer credit) by

Société Générale. This enables an estimation of the net demand ∆e
i of banks for equity instruments.

Hence such longitudinal holdings data enables the construction of the Ct = Ht(diagEt)
−1 network

adjacency matrix in each quarter from t = 2013Q1 to t = 2018Q4.

Figure 7 plots the network implied by cross holdings of equities for the 4th quarter of 2013. The

figure makes apparent the partition of the French banking sector into a number of banking groups

formed by a holding company surrounded by a myriad of subsidiaries. Note that there is almost

no linkages between banking groups. As we shall discuss in Section 6 such network structure will

change rather dramatically when the other sources of network links, i.e. the terms from equation

(11), will be factored in.

Whom-to-Whom Sectoral Data

Yet, this paper’s general equilibrium modeling suggests that such a network of cross holdings may

not take into account links across banks due to other instruments (e.g. loans, debt, deposits), due to

25



connections through other sectors (e.g. the non-financial corporate). This requires building a data

set of sectors, where banks’ balance sheets sum up to the total assets and liabilities of the financial

sector. Each bank balance sheet data obtained through the Bureau Van Dijk provides itemized

holdings of securities, where securities are sorted into holdings within the financial sector and hold-

ings outside the sector. For instance, such balance sheets include the EUR amount of deposits from

the banking sector, and from other sectors such as the household sector. This enables an estima-

tion of the net demand ∆p
i of the net demand of banks i for 20 primitive non-equity instruments:

one real asset and 19 categories of financial instruments including currency, deposits, securities

(stocks, debt, fund shares), loans (short-term, long-term), entitlements (insurance, pension), and

derivatives.

For other sectors than the financial sector, we rely on the detailed security-holdings statistics

collected by the Banque de France at quarterly frequency through the PROTIDE survey. One key

feature of this data set is that it provides whom-to-whom holdings, in contrast with U.S. Flow

of Funds data. The six sectors are 1) banking, which includes the central bank, 2) insurance,

3) mutual funds, 4) the corporate sector, 5) household, including non-profit institutions, and 6) the

public sector.

We map the full asset- and liability-side of banks’ balance-sheet by accounting category into

the same instrument categories as available in the sectoral accounts (European System of Accounts

2010), in particular debt securities (short-term F.31 and long-term F.32), equity (listed F.511 and

unlisted F.512), and fund shares (money market F.521 and non-money market F.522).

Three facts assess the validity of the longitudinal whom-to-whom-sector-bank matched data set.

First, we check that the total assets of all banks, minus the interbank cross-equity holdings, match

the total assets of the financial sector. Such check reveals that cumulative assets under management

of all banks included in the final dataset amount on average (over time) to approximately 80% of

the aggregate banking sector balance-sheet as observed in the sectoral accounts data (ESA 2010).

The remaining 20% are largely explained by the fact that the banking sector definition applied here

also includes money-market funds, owing to the fact that liabilities of money-market funds exhibit

similar characteristics as deposits offered by monetary banks. Assets under management display a

typical ‘superstar’ distribution, as predicted by the model’s simulation displayed in Figure 2. The

model’s simulations indeed predict the endogenous emergence of a set of large banks. A similar
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pattern is observed in the data, the 90th percentile holds on average 77%, and the 99% percentile

on average 28% of total banking assets. Second, we check that the total sum of bank holdings

of specific securities outside the financial sector matches the total EUR holdings of the financial

sector of this security. Third, banks’ demand for assets ∆it = ∆it (p∗1t, p
∗
2t, . . . , p

∗
Jt;θ) aggregates

up with similar properties as a sector-level CARA demand where the sector-level risk aversion is

the harmonic mean of individual banks’ risk aversions.

Estimating Realized Returns

A key test of the model’s estimates of beliefs is to compare banks’ beliefs about returns to their

realizations, for each instrument. In order to obtain the first and second moment of returns, we

construct time series of returns (i) due to changes in prices and (ii) due to payoffs, e.g. dividend

income.

Returns due to valuation changes can be derived from information on the amount in Euro of

stocks outstanding and valuation changes by financial instrument and sector. While the data does

not include changes in the number of instruments, a key insight is that, while different banks and

sectors change their holdings differently, they experience the same price shifts. Appendix B.1 shows

how a panel regression with institution and instrument fixed effects can identify returns using the

variation of balance-sheet positions and instruments’ income.

Returns due to payoffs on financial instruments are constructed from information recorded in

the income accounts on different types of income received and paid by sector. Types of income

are dividends, interest payments, investment income attributable to mutual fund shareholders,

insurance policy holders, and investment income payable on pension entitlements.

5 Structural Parameters

The procedure described in section 3 enables to estimate the structural parameters of the model:

beliefs about future returns, risk-aversion and trading costs. The first step of the procedure is the

estimation of the dynamic factor model.
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5.1 Return Beliefs

Dynamic Factors and Macroeconomic Variables The estimation of the dynamic factor

model used to construct return beliefs enables both the factors and the factor loadings to vary

across institutional sectors. The estimation results reveal however that the factors are rather

similar across sectors with some variation in their order of importance for explaining the variance

of net demand.

Figure 3, left panel, plots the time series of the first three factors for the banking sector with

shaded area corresponding to the Global Financial Crises (2007-2008) and the European Debt Crisis

(2011-2013). These first three factors explain 41% of the variance in net assets demand. Figure 3,

left panel, right panel, plot the same factors alongside with macroeconomic variables which exhibit

the strongest co-movement with each of the factor. The first and second factor captures remarkably

well the Global Financial Crisis and the European Debt Crisis. The first factor co-moves with World

GDP growth and captures the global cycle and the global crisis. The second factor co-moves tightly

with the average spread with the average interest rate of the GIIPS countries (Greece, Ireland, Italy,

Portugal, Spain). Given the exposure of the French banking sector the Euro Sovereign Debt crisis

in Southern Europe, it is very reassuring to see it captured by the second factor. The third factor

co-moves with the Euro Area GDP growth. Overall the first three factors used to explain net asset

demand by the banking sector display a time series profile which captures well either the 2007-

2008 financial crisis or the 2011-2013 Eurozone sovereign crisis and correlate well with variables

capturing the global cycle, the Euro cycle, and sovereign stress in the GIIPS countries. The net

demands of the other sectors are roughly explained by the same set of factors but their importance

tends to change. The insurance and corporate sector net asset demands areas explained more by

the Global and Euro growth cycles and less so my sovereign stress in the GIIPS countries.

Return Beliefs and Ex-post Returns The estimated factor model for return beliefs, described

in Section 3.4, yields for each sector and each instrument, a one-quarter-ahead return forecast.

Figure 4 and Figure 5 plot alongside the time series of realized ex-post returns the time series of

corresponding return beliefs, the 95th percent confidence forecast interval band, for the financial

sectors and the real sectors, and for each of the following financial instruments: Bonds (Short-

Term and Long-Term), Stocks (Listed and Unlisted), Mutual Fund Shares (Money Market and
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Non-Money Market).

The R-square of an OLS regression of ex-post returns on ex-ante return beliefs and a constant

is reported on the right-hand upper corner of each plot. In many cases, the ex-ante return beliefs

predict well ex-post returns. The corporate sector ex-ante return beliefs explain 31 percent of the

variance of ex-post stock returns. The household sector ex-ante return beliefs explain 35 percent

of the variance of the Non Money Market Mutual Funds ex-post returns. In both cases, the time

series of return belief tracks very well the asset crash of 2007-2008, and the subsequent rebound.

Other good predicting performance include the prediction of unlisted stock returns by the banking

sector and the household sector, the prediction of short-term bonds return by the insurance sector,

the prediction of the return to mutual funds by the corporate sector, the household sector, and

the mutual fund sector itself. In several instances however, the model either does not predict ex-

post return or more puzzlingly its predictions negatively correlate with ex-post returns. We shall

notice that this feature is mostly driven by the 2007-2008 crisis. A potential explanation is that

several institutional sectors during that period had to increase their purchases of assets even if their

returns were declining. Since beliefs are implicitly derived from net demands, those counter-cyclical

purchases can drive the negative correlation between return beliefs and ex-post returns. This is

the case for the banking sector which hoarded short-term liquid assets during the crisis, for the

public sector who bought large stock shares to recapitalize the banking sector and the automobile

sector during the crisis, and for the insurance sector which increased considerably its asset holdings

during the crisis.10

Comparing beliefs across sector reveal that while there is substantial disagreement in beliefs at

each point in time, the return beliefs of the banking sector and the mutual fund sectors display

a strong comovement. The correlation between the return beliefs of the banking sector and those

of the mutual fund sectors are high for most financial instruments: listed stocks (0.54), unlisted

stocks (0.46), non money-market mutual fund share (0.34), short-term debt (0.40). There are

however episodes in which the return beliefs differ substantially. For example, the mutual fund

sector exhibited much more pessimistic beliefs during the 2007-2008 crisis about the return to

stocks and to debt securities, while the banking sector became more pessimist on the returns to

10The increasing size the insurance sector balance sheet is document in HRV. Its counter-cyclical purchases during
the crisis can be, in part, explained by government moral suasion as a way to facilitate the banking sector deleveraging.
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stocks and mutual fund shares during the sovereign crisis of 2011-2012. One interpretation is that

the bank bailout of 2007-2008 avoided the need for banks to engage in massive fire-sales (with

deep discount prices), while the mutual fund sector faced large withdrawals from customers and

had to engage in such fire-sales. On the opposite, banks were suffering from significant liquidity or

solvency stress during the sovereign debt crisis, due to their exposure to GIIPS debt, and therefore

faced a pressure to sell-off rapidly other assets that the mutual fund sector did not experience

then. The comparison of beliefs among the three real sectors reveal a sharp contrast between the

belief returns of the corporate and household that typically comove, and that of the public sector

that often displays counter-cyclical beliefs, and especially so during the 2007-2008 crisis. This is

consistent with the role played by government in providing bailout and in the debt financing of

large public sector deficits during the crisis.

Bank-Specific Return Beliefs In order to obtain bank’s specific return beliefs, we regress

net-demands of each bank for each financial instrument on the net-demand factors estimated for

the banking sector computed using sectoral data. The time-variation in net-demands for financial

instruments and factors identifies the net-demands loadings. The underlying assumption is that

each bank forms belief using the same return-belief factors as the banking sector as a whole but

with bank-specific loadings. From that point, onwards, we can apply the procedure described in

and obtain all the bank-specific structural parameters according to the procedure described here

3.5.

Belief Updating and Bank’s heterogeneity.

We can assess the heterogeneity of the return beliefs’ model across banks by looking at how they

differentially incorporate information from realized returns in updating their return belief. We do

so by regressing the difference between realized return and bank’s return belief on the same variable

lagged – by itself and interacted with bank’s characteristics – controlling for time, instrument, and

bank fixed effects.

Table 1, column 1, shows that the differential between realized returns and return belief is

mean reverting suggesting that, on average, banks do update their belief in order to minimize

their forecast error about realized returns. There is, however, considerable heterogeneity in this
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correction mechanism. Using our model estimates of risk-aversion, we show that more risk-averse

banks are more aggressively updating their belief than less risk-averse banks (Column 2). Risk-

aversion is therefore associated with banks being more Bayesian in using the realized information,

and implicitly less contrarian, that is less likely to withstand beliefs that are not (yet) being

validated by realized returns. By contrast, banks that are more leveraged, or larger, are less

aggressively correcting their beliefs. This result, which stands when controlling for risk aversion,

suggests a possible overconfidence bias of larger and more leveraged banks in the long run validity

of their return belief model.

In short it is highly reassuring to observe that the pattern of belief updating observed in the

data is largely consistent with priors on which type of banks are more or less likely to follow a

Bayesian updating behavior.

5.2 Risk-aversion

Section 3.4 suggests that the mapping between the factor structure of net demand and that of the

return beliefs identifies beliefs about all instruments’ first and second-order moments (variances

and covariances), up to a global constant of overall volatility σ2
ε . Specifically the model identifies

the product ρσ2
ε , that is the degree of risk-aversion multiplied by the residual variance of the belief

return model. We recover the degree of risk-aversion as follows. We match the overall residual

variance of the return belief model to the overall residual variance of ex-post returns, that is the

fraction of the variance of the ex-post returns that is not explained by the factors.11 Table A, upper

panel, report risk-aversion estimates, one by sector, obtained by matching variances. As in typical

in the equity risk premium literature (Ang 2014, Ait Sahalia & Lo 2000, Ross 2015), this approach

generates estimates ranging from 8.9 to 21.7, depending on the institutional sector, and which are

within the range of estimates of the literature. 12

Sector-level risk aversion estimates are also ranked in a natural way: a higher estimated risk-

11Note that here were are only scaling the residual variance of the belief model. Therefore the residual variance
could be of the same order of magnitude of that of ex-post return and yet the variance of beliefs conditional on factors
could be sensibly smaller than that of ex-post returns.

12While imposing the matching of belief returns to ex-post returns is a way to discipline belief formation, one cannot
rule out that beliefs are substantially more volatile than ex-post returns as papers have suggested, e.g. Shleifer &
Summers (1990). We thus test the robustness of our results to letting the variance of return beliefs to be a multiple
of the variance of ex-post returns (Table A, bottom three panels); in this case estimated risk-aversion parameters are
substantially smaller.
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aversion in financial sectors subject to capital requirement (banks, insurance) than for the mutual

funds sector or the corporate sector.

Bank-level estimates display substantial heterogeneity, and estimates that the disaggregation

of the banking sector is key in lowering risk aversion estimates. The mean equal to 4.25, while the

median is 0.25, with a standard deviation of 7.7. The large degree of heterogeneity in risk-aversion is

expected given differences in size at given return-belief and cost of equity. These differences in risk

aversion generate substantial heterogeneity in the response to monetary policy shocks (Section 6.1).

5.3 Trading costs

Trading costs are essential ingredients to the estimation of the model. They indeed directly impact

the relative persistence of linkages in the financial network. The structural estimation of trading

costs does not impose a priori restriction on the relative liquidity of different asset classes. Figure

6 plots the deviation of median trade costs from the overall median trade cost by major asset

classes. Reassuringly long term loans is the less liquid asset class, and equity the most liquid ones,

short-term loans and debt displaying an intermediate degree of liquidity.

6 The Network in General Equilibrium:

Estimating the Impact of ECB Quantitative Easing

Section 2.3 suggests that the network structure of interlinkages between banks turns partial equi-

librium shocks to banks’ value into general equilibrium shocks that affect the market pricing of

equity. As such, shocks to the demand of a specific financial instrument, e.g. debt, have two

impacts: first, they affect the diversification of constrained banks connected through their balance

sheet interlinkages, the phenomenon described in equation (10). The propagation of the shock is

in part due to the sensitivity of holdings, constrained by their trade cost; such trade cost is lowest

for traded equity, and highest for non-traded loans. Empirically estimated trade costs reflect the

homogeneity of securities and their ability to be traded on a market-clearing exchange. In order

to understand the propagation channels, we must look at the structure of the network beyond the

predetermined network of cross-holdings. Figure 8 plots the sensitivity of the network of cross-

holdings to changes in equity prices and Figure A the linkages between banks that are not equity
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links. In sharp contrast with Figure 7, the network structure that emerges from these two addi-

tional components includes many important links between banking groups, and thus contributes to

the propagation of shocks throughout the banking sector. Note also that Societe Generale appears

now at the center of the between-groups links but did not display any special feature when only the

network of cross-holdings was considered.

Second, the shock changes the structure of the network itself: the position of banks in the

network (their influence and sensitivity, defined in Section (2.5)) shifts in a way that either mitigates

or amplifies the shock (Section (2.4)). These features are analyzed empirically in the case of the

ECB’s quantitative easing below.

6.1 Structural Policy Evaluation: the case of ECB Quantitative Easing.

In this section, we use our structural model to assess the effects on bank balance-sheet and on the

financial network of a large-scale quantitative easing policy through which a central bank expands

its balance-sheet by purchasing securities while increasing its monetary base. Precisely, we simulate

a demand shock for government bonds which corresponds to the cumulative net purchases over a

quarter during the first phase of the Extended Asset Program (March 2015 to March 2016) of

the European Central Bank. The quarterly demand shock (Euro 180 bn.) corresponds to three

times the monthly purchases (Euro 60 Bn.) For simplicity, we choose for the shock to replicate the

Public Sector Purchase Program (PSPP) and thus ignore the purchase of non-government bonds.

We choose to simulate the shock one year before the actual shock occur so that the estimated return

beliefs used in the simulation are not contaminated by the actual shock.

Table 2, Panel (a) summarizes the calibration of the shock which follows the design of actual

ECB policy: (i) asset purchases are made in proportion to country’s share in the capital of the

ECB, which implies that 20 percent (80 percent) of bonds purchased were French Government bonds

(Other Euro Area Government bonds); (ii) the proportion of short and long-term government bonds

are made such so as to keep constant the outstanding share of each type of debt. The calibration

of the shock thus implies a initial impact 4 times bigger for the rest of the Euro Area government

bond market than for the French market.
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Impact on yields and spreads Table 2, Panel (b) reports the effects of the QE shock on asset

prices in partial and in general equilibrium on French government bonds, corporate bonds (spread)

and equity (premium). In partial equilibrium, the yield on French government debt decreases

to clear the additional demand by the Eurosystem. The yield on long-term French debt decreases

substantially more (-7.4 bps) than the one on short-term French debt (-1.0 bps) implying a flattening

of the yield curve (decrease in the term premium). Since in partial equilibrium only the prices of

government debt change, the equity premium increases. The general equilibrium effect is much

stronger than the partial equilibrium one with a decline in long-term (short-term) bond yield of

-43.9 bps (-37.4).13 The price of the corporate bonds and that of equity increase sharply in general

equilibrium so that the term premium and equity premium remain the same. In short, the calibrated

QE shock, despite a modest partial equilibrium impact, has a strong impact on government bond

yields in general equilibrium and a very large pass-through into the price of other assets (corporate

bonds, equity).

Even if we do not use any information on quantities, prices or beliefs during the period of

the policy shock, we obtain structural estimates for the effects on yield which are reassuringly of

the same order magnitude to those obtained from reduced-form regressions using actual data for

the period of the shock. Andrade, Breckenfelder, De Fiore, Karadi & Tristani (2016) report a

median impact of 43bps on 10-year government bonds based on a meta-study of 24 studies. Their

own estimates based on 2-days event windows around the program announcement and around

the program implementation suggests an effect of 13 basis points after the announcement and an

additional 14 basis points after the implementation. Koijen, Koulischer, Nguyen & Yogo (2018)

using an IV approach, exploiting the predictability of purchases found an effect ranging from 2bps

to 60 bps depending on country and maturity.

Impact on banks’ balance sheets Figure 3 summarizes the effects of the ECB shock on various

balance sheet measures for individual banks. Figure 3 plots the distributions of the log-change in

these various measures between the 25th and the 75th percentiles and report the mean and various

quantile of the distribution of log changes below each distributional plot. The median log-change

in the size of banks’ balance sheets is close to zero but this hides considerable heterogeneity, with

13Network structure matters for general equilibrium price responses as the comparative statics on prices d logp/dθ
depend on the adjacency matrix of the network graph.
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a subset of banks experiencing a substantial reduction in balance-sheet size (at the 25th percentile,

the reduction is −2.1 percent). On the asset side, the most critical change regards debt holdings,

which is not surprising given the nature of the shock. The median change in debt holdings is

–0.77 percent but there is substantial heterogeneity: at the 25th percentile, banks reduce their

holding by -6.0 percent. The equity holdings change very little except at tails of the distribution

resulting in an increase in the mean equity equity holdings of +10.6 percent. On the liability side,

there is little change in the equity position of banks except at the upper tail (95th quantile) where

banks increase their equity position by 9.2 percent. There is however a substantial decrease in debt

liabilities resulting in a mean reduction of −7.4 percent, with 25 banks experiencing a reduction

of more than 3.9 percent. Altogether the ECB shock results in a reduction in balance sheet size

through a simultaneous reduction in both debt holdings and debt liabilities for a sizable fraction

of the banks.

The bottom panel plots asset volatility and distance to insolvency (Atkeson et al. 2017). The

distance to insolvency increases for almost all banks even if the magnitude of the change is small.

The majority of banks experience a reduction of asset volatility – the median bank experiences a

decline in volatility of −0.2 percentage point, but there is substantial heterogeneity across banks

with the 25th percentile experiencing a reduction of −1.1 percent and 95th percentile an increase

of 1.4 percent.

Table 4 explores how banks differ in their response to the ECB quantitative easing shocks, that

is how the rebalancing of their portfolio of bonds and equities varies with their initial portfolio,

their risk-aversion, as well as in their degree of influence and sensitivity in the network. There is a

considerable literature on the heterogeneity of the response of banks to monetary policy shocks as

a function of their exposure to interest rate risk and other shocks (Flannery & James 1984, Landier,

Sraer & Thesmar 2013, Dell’Ariccia et al. 2017). A key unsolved question we address here is whether

the position of banks in the financial network, as captured here by their influence and sensitivity,

is a key source of heterogeneity.

The ECB shock increases the equity-premium (+7.23 bps) which should lead to a rebalancing

of the portfolio towards equity and away from bonds. Indeed the constant terms on Table 4 reveals

a reduction in debt holdings and an increase in equity holdings. There is however substantial

heterogeneity in the magnitude of such response. First, banks with initially large debt equity
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holdings reduce their holdings by less, and those with initially large equity holdings increase their

holdings by less. Second, rebalancing is more muted for more risk-averse banks: there is both

a lower increase in their equity holdings and a lower decline of bond holdings than other banks.

Third, network-based heterogeneity does significantly matter: banks that are more influent also

rebalance significantly less between bonds and equities. By contrast, the degree of sensitivity does

not correlate significantly with changes in bonds and equity holdings.

Impact on network systemicness The effects of the ECB policy shocks on the network and

its systemicness can be measured through changes in influence and sensitivity for each of the 306

banks. In order to compute such changes, we recompute those network measures in the new market

equilibrium following the sovereign asset purchases by the ECB, and compare them to the initial

estimates. Summary statistics for changes in influence and sensitivity suggest substantial shifts

in banks’ network positions. The ECB shock causes a mean reduction of influence and sensitivity

of 0.45 and 0.27 percentage points respectively following the quarterly ECB sovereign purchases

(Euro 180 bn). Since the later shock represents only about 8.2 percent of the total ECB program

(Euro 2200 bn.), we shall expect for the overall program to have a sizable reduction in systemicness.

Furthermore, the effects are extremely skewed with large changes happening on the left tail of the

distribution. 10 (5) percent of banks experience of reduction of their influence of more than 1.74

ppt (3.87 ppt). Figure 10 shows a very strong negative correlation between the changes of the

influence and sensitivity measure and their initial level, that is, the banks that were more sensitive

and more influent show a larger reduction in their systemicness than the others. If the objective of

the ECB program was to reduce the systemic risk stemming from banks that were either a potential

source of fragility to the network (because of their influence) or at great risk of being subject to

risk (because of their sensitivity), our results show that it is actually what does happen after the

policy intervention. By contrast, Appendix Figure C displays no relationship between changes in

influences and sensitivity and the size of the banks.
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7 Conclusion

This paper shows how the structural estimation of general equilibrium securities trade, both on the

asset and on the liability sides, is a micro-foundation for a network of of banks. Shocks propagate

through this network and cause an endogenous transformation of the structure of the network in

the response to the shock. While only using net demands as an input, the estimated network can

be estimated and used to simulate the effect of a large policy shocks such as ECB quantitative

easing. Such shock reduces government bonds yield, increases distance to insolvency for banks, and

reduce the systemicness and fragility of the financial network.
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Figure 1: The Equilibrium Mean-Variance Frontier with Disagreement About Stochastic Payoffs

Prices converge to an equilibrium vector price vector p∗ (∆(p∗) = 0) that arbitrages return and
risk. With all firms agreeing about the distribution of stochastic payoffs, expectations and variances
of returns r̃i = π̃i/p describe a mean-variance frontier. For securities that are positively correlated
with the average portfolio, equilibrium means and variances of returns sit on an upward sloping
1-dimensional curve. Securities that are negatively correlated with the average portfolio sit on the
lower part of the mean-variance parabola. When firms disagree about payoffs, the mean-variance
arbitrage curve has points in its convex hull. There are also such points whenever institutions face
constraints (see Appendix Section 1.2).
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Figure 2: The Equilibrium Relationship between a bank’s Influence and its Risk Aversion

These figures present the equilibrium relationship (i) between each bank’s risk aversion ρi and its in-
fluence in the financial network, defined in Section 2.5; (ii) between each bank’s risk aversion ρi and
its balance sheet size. The first market simulation (black points) has a lower average risk aversion:
risk aversions are drawn from a uniform distribution over [1, 10]. The second market simulation
(grey points) has a higher average risk aversion: they are drawn from a uniform distribution over
[1, 15]

(a) Influence of a Firm’s Equity and Its Risk Aversion
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Figure 3: Banks’ Estimated Return-Beliefs Factors and Macro-Variables

This figure shows the first three factors of return-beliefs and net-demands of the banking sector.
Shaded areas correspond to the Global Financial Crisis (2007Q3-2008Q4) and the European Debt
Crisis (2011Q4-2013Q1), respectively. Subgraphs (b), (d), and (f) relate standardized factors to
standardized observable macro-variables.

(a) Factor 1 (b) Factor 1 &World GDP Growth

(c) Factor 2 (d) Factor 2 & GIIPS Spread

(e) Factor 3 (f) Factor 3 & Euro Area GDP Growth
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Figure 4: Comparing Identified Beliefs to Actual Returns

These plots compare average sector-level beliefs about returns with actual returns.

(a) Banking (b) Insurance (c) Mutual Funds
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Figure 5: Comparing Identified Beliefs to Actual Returns (Non-Financial Sector)

The expected return belief is drawn in blue with 95% confidence bands based on the sectors return
uncertainty. Ex-post returns are drawn in black.
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Figure 6: Estimated Trade Costs by Financial Instrument Type

This figure shows the median of estimated trade costs for a selection of financial instruments, i.e.
Equity, Debt, Short-term Loans, and Long-Term Loans relative to the overall median of trade costs.
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Figure 7: The Network of Cross Holdings

This figure depicts the network of cross holdings C (Equation 11 of Definition 2) for the 4th quarter
of 2013. This network does not incorporate the response ∂H

∂ log pe (diagE)−1 of the holdings to equity

prices and the interbank links going through primitive instruments
{

1
′
p

∂∆p
i

∂ log pe

}
i
(diagE)−1. As such

it represents the network of cross holdings introduced by Elliott et al. (2014).
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Figure 8: The Sensitivity of Interbank Cross Holdings to Price Changes

This figure depicts the sensitivity of the network of cross holdings (Equation 11 of Definition 2) for
the 4th quarter of 2013. This network represents the response term ∂H

∂ log pe (diagE)−1 of the holdings
to equity prices.
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Figure 9: The Correlation of Total Assets with Network Influence and Sensitivity

The top (resp., bottom) figure relates network influence (resp., sensitivity) to bank size. See Sec-
tion 2 for the definition of these network measures.

(a) Influence and Size
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Figure 10: ECB Shock and Network Structure: Impact of Monetary Policy on Influence and
Sensitivity

These two figures present the impact of the ECB shock on the influence and the sensitivity of banks.
The impact is a general equilibrium change, i.e. after the series of balance sheet re-diversification
leading to the equilibrium price vector.

(a) Impact on Firm Influence in General Equilibrium
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(b) Impact on Firm Sensitivity in General Equilibrium
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Table 1: How do Banks Form their Beliefs? How Beliefs about Returns Respond to Realizations

This table shows results of panel regressions of the difference between realized returns and beliefs
about mean returns on its lag and banks’ characteristics.

Dependent variable:
Realized Return minus Bank’s Belief in t
(1) (2) (3) (4)

Realized Return minus 0.846*** 0.906*** 0.323*** 0.908***
Bank’s Belief in t− 1 (0.004) (0.014) (0.083) (0.011)

× Log Risk Aversion −0.022***
(0.005)

× Leverage 0.554***
(0.088)

× Log Size 0.015***
(0.002)

Fixed Effects
Time Yes Yes Yes Yes
Bank Yes Yes Yes Yes
Instrument Yes Yes Yes Yes

Adjusted R2 0.757 0.757 0.758 0.757
F Statistic 404.715 402.474 403.06 403.083
Observations 18,802 18,802 18,802 18,802
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Table 2: Simulation of a PSPP Shock, Bond Yields, Corporate Spread, and the Equity Premium

This table shows the calibration (Panel (a)) of an increase in the ECB’s Public Sector Purchase
Program (PSPP) by 180 bil. Eur in 2014Q1 and the response of selected asset prices (Panel (b))

(a) Calibration of the ECB’s PSPP Purchase Shock

ECB Capital Key† Share Outstanding Net Demand Shock
(%) (%) (bil. Eur)

French Government Debt Long Term 20.00 88.05 31.70
Short Term 20.00 11.95 4.30

Other Euro Area Government Debt Long Term 80.00 86.82 13.18
Short Term 80.00 125.02 18.98

Deposits -180.00

(b) Response of Selected Asset Prices

Effect (in bps)

Partial Equilibrium‡ General Equilibrium

French Government Bond Yield Long Term -7.43 -43.90
Short Term -1.00 -37.43

French Corporate Spread Long Term 7.43 7.56
Short Term 1.00 1.08

Term Premium -6.42 -6.46
Equity Premium 7.43 7.23

†: The ECB capital is paid in by the national central banks of all EU Member States. Each country’s
share is calculated using a key based on its population and gross domestic product.
‡: In partial equilibrium asset prices only change in markets that are directly impacted by the PSPP
shock. For example, since the equity premium is calculated as the difference between the return on
equity and the yield on long-term government debt, it moves in the same magnitude as the latter.
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Table 3: Banks’ Heterogeneous Response to the ECB’s PSPP Shock

This table shows the general equilibrium change of banks’ balance-sheets to an increase in the ECB’s
Public Sector Purchase Program (PSPP) by 180 bil. Eur in 2014Q1. Density plots depict the kernel
density estimation of the empirical distribution of the general equilibrium change between the first
and third quartile. Distance to insolvency (DI) from Atkeson et al. (2017) is calculated as the
the drop in asset value that would render the firm insolvent, measured in units of the firm’s asset
standard deviation.

Q75- Quantile

GE-Initial in: Mean Q25 5% 25% 50% 75% 95%

Size (%)

−6.25 2.11 −35.76 −2.12 −0.08 −0.01 −0.00

Assets
Equity (%)

10.67 0.14 −16.61 −0.08 −0.00 0.07 32.30

Debt (%)

−23.45 5.89 −131.92 −6.02 −0.77 −0.13 −0.01

Liabilities
Equity (%)

0.66 0.04 −1.50 0.00 0.00 0.04 9.17

Debt (%)

−7.43 3.85 −42.14 −3.86 −0.09 −0.02 −0.01

DI (×100)

0.55 0.13 0.00 0.01 0.03 0.14 1.75

Asset Vol. (ppts)

5.09 1.60 −1.10 −0.19 −0.12 1.41 36.36
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Table 4: Banks’ Heterogeneous Response to the ECB’s PSPP Shock – Initial Characteristics

This table shows results from an OLS regression of banks’ balance-sheet responses to an increase
in the ECB’s Public Sector Purchase Program (PSPP) by 180 bil. Eur in 2014Q1 on banks’ risk
aversion (columns (1) and (4)), cost of equity (columns (2) and (5)), and the initial balance-sheet
(columns (5) and (6)). Estimated log-risk-aversion has a sample average of 0.6, a standard deviation
of 3.3, and an interquartile range of 7.1.

(1) (2) (3) (4) (5) (6)
∆ log Bonds ∆ log Bonds ∆ log Bonds ∆ log Equity ∆ log Equity ∆ log Equity

Initial Influence 0.087** −0.011*
(0.039) (0.006)

log Risk Aversion 0.122*** 0.121*** 0.118*** −0.008*** −0.008*** −0.009***
(0.023) (0.022) (0.020) (0.003) (0.002) (0.003)

log Bonds 0.075*** 0.074*** 0.079***
(0.022) (0.022) (0.024)

log Size −0.013 −0.004 −0.014 0.001 0.001 0.001
(0.021) (0.021) (0.021) (0.002) (0.002) (0.002)

Initial Sensitivity −0.545 −0.045
(0.607) (0.034)

log Equity −0.008*** −0.009*** −0.007***
(0.0026) (0.003) (0.002)

Constant −0.228*** −0.265*** −0.197*** 0.014* 0.015* 0.017**
(0.068) (0.073) (0.061) (0.007) (0.008) (0.009)

Observations 155 155 155 154 154 154
R−squared 0.418 0.425 0.429 0.277 0.29 0.287
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Appendix Figure A: Linkages through Primitive Instruments

This figure depicts the interbank linkages due to primitive instruments (Equation 11 ) for the 4th

quarter of 2015. This network represents the term

{
∂(1
′
p∆

p
i )

∂ log pe

}
i

in the expression of the network

definition 2.
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Appendix Table A: Risk Aversion and Return Belief Uncertainty

This table presents the estimates of risk aversion and the standard deviation of return beliefs for
different values of the calibration ratio δ of economy-wide return beliefs over economy-wide ex-post
returns.

Banking Insurance Mutual Funds Corporate Household Public RoW

δ = 1
ρ 21.69 23.97 8.94 12.02 13.94 9.053 12.046

σε 0.01 0.008 0.009 0.0111 0.0118 0.0104 0.009

δ = 2
ρ 14.18 16.96 7.56 8.42 12.12 6.36 9.22

σε 0.0183 0.0156 0.0130 0.0227 0.0160 0.0211 0.0539

δ = 4
ρ 8.73 11.99 5.52 6.01 8.66 4.76 8.74

σε 0.0357 0.0312 0.0272 0.0446 0.0326 0.0376 0.0604

δ = 6
ρ 4.67 7.58 3.45 3.86 5.57 2.99 6.78

σε 0.0898 0.0779 0.0721 0.1082 0.0817 0.1055 0.1024
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Appendix Figure B: Banks’ Estimated Return-Beliefs Factors and Macro-Variables

This figure shows the first three factors of return-beliefs and net-demands of the banking sector.
Shaded areas correspond to the Global Financial Crisis (2007Q3-2008Q4) and the European Debt
Crisis (2011Q4-2013Q1), respectively. Subgraphs (b), (d), and (f) relate standardized factors to
standardized observable macro-variables.

(a) Factor 1 (b) Factor 1 &World GDP Growth

(c) Factor 2 (d) Factor 2 & GIIPS Spread

(e) Factor 3 (f) Factor 3 & Euro Area GDP Growth

Source of Macro-Variables: IMF WEO database and IFS.
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Appendix Figure C: ECB Shock and Bank Size

These two figures present the impact of the ECB shock on the influence and the sensitivity of banks,
against their size (total assets).

(a) Change in Influence and Bank Size
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(b) Change in Sensitivity and Bank Size
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A Theory

A.1 Proofs: General Equilibrium Model

Proposition 1. (Existence of Equilibrium)

Proof. For clarity of exposition and without loss of generality, we omit the subscript t in the

notations for this proof. Write ∆(p) =
∑N

i=1 ∆i(p1, p2, . . . , pJ) − E(p1, p2, . . . , pJ). Throughout

the paper, ∆(p) is the value of net demand. We thus write z(p) the net demand in units of financial

instruments, and thus ∆(p) = p � z(p) is the term by term product of the price vector and the

net demand vector in units.

An equilibrium price vector is a J-vector p such that z(p) = 0.

Following Mas-Colell, Whinston, Green et al. (1995), we need to show that the aggregate net

demand curve p ∈ RJ+∗ 7→ z(p) ∈ RJ satisfies the following properties:

1. z(·) is continuous.

2. z(·) is homogenous of degree zero.

3. p · z(p) = 0 for all p, i.e. Walras law is satisfied.

4. There is an s > 0 such that zj(p) > −s for all financial instruments j = 1, 2, . . . , J and for

all price vectors p.

5. If pn → p, where p 6= 0 and pj = 0 for some j, then

max {z1(pn), . . . , zJ(pn)} → ∞

The continuity of z(·) over RJ+∗ is established as both the joint distribution of returns fi and the

utility function ui of each firm i are continuous functions of p at each point of R+∗J .

The homogeneity of z(·) is established by writing the first-order condition of program (3) with

‖·‖ the Euclidean norm:

∫
u′i
(
∆′itr̃

)
pjtr̃ijtfi(r̃)dr̃− 2 (γij/pj)

2 pjt · (zijt − zijt−1) + λi∆ijt = 0,

58



where λi is the Lagrange multiplier of the funding constraint, which is homogeneous of degree 0.

The first two terms are also homogeneous of degree 0, which establishes the homogeneity of degree

0 of z.

Walras law follows from the sum of the funding constraints, as

p · z(p) =
J∑
j=1

N∑
i=1

(∆ij(p)− 1(j(i) = j)Ei(p)) = 0. (28)

On point 4.: the existence of a lower bound for net demands z(p) follows from the funding con-

straint (2). Indeed, assume that there is no s such that zj(p) > −s for all financial instru-

ments j = 1, 2, . . . , J and for all price vectors p. Then we can build a sequence (sk,pk) such that

sk → ∞ as k → ∞, and for each k, there is a j′(k) in {1, 2, . . . , J} for which −sk > zj′(k)(p
k).

Given the funding constraint, this implies that there will be a similar sequence for which demand

will go to infinity. Formally, there is a sequence (σk,πk) such that σk → ∞ as k → ∞, and for

each k, there is a j′′(k) in {1, 2, . . . , J} for which zj′′(k)(π
k) > σk. This, however, implies that

the variance of the firm’s portfolio diverges to infinity as k → ∞, which cannot be a solution to

the optimization program (19).The last point follows from the fact that if asset j’s return diverges

to infinity, µj → ∞, one of the components of net demand will diverge to infinity. Given that

properties 1–5 are satisfied, an equilibrium price vector p∗ exists with z(p∗) = 0.

A.2 Proofs of Identification

Proposition 5. (Implied Net Demand Dynamic Factor Model)

Proof. From the expression for net-demand,

∆̂it =
1

ρi
Σ−1
it (µit − ηit1J) , (29)

and, using the factor structure of return beliefs (22), the moments of stochastic return beliefs are

parametrized as

µit = (ϕi + Λiφi + ΛiΦifit−1) (30)

Σit =
(
ΛiΣuiΛ

′
i

)
+ σ2

εiId+ Σei. (31)
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Noting Σεi ≡ σ2
εiId + Σei, realize that the variance covariance of stochastic return beliefs can be

written as a product, such that net demands are:

∆̂it =
1

ρi

(
I + Σ−1

εi

(
ΛiΣuiΛ

′
i

))−1
Σ−1
εi︸ ︷︷ ︸

X

[ϕi + Λifit − 1Bηit] . (32)

Notice that the inverse of the variance covariance of return beliefs, Σ−1
it , can be written as an infinite

sum as

[
I −

(
−Σ−1

εi

(
ΛiΣuiΛ

′
i

))]
= I +

(
−Σ−1

εi

(
ΛiΣuiΛ

′
i

))
+

(
−Σ−1

εi (. . . )
)2

+ ...,

and that therefore the term noted X can be written as

X = Σ−1
εi

[
I −

(
ΛiΣuiΛ

′
i

)
Σ−1
εi +

(
−
(
ΛiΣuiΛ

′
i

)
Σ−1
εi

)2
+ ...

]
= Σ−1

εi

[
I +

(
ΛiΣuiΛ

′
i

)
Σ−1
εi

]−1

=
[
ΛiΣuiΛ

′
i + Σεi

]−1
.

The matrix Σεi is a measure of the unexplained variance of stochastic return beliefs. Then net

demand has the factor structure:

∆̂it = ci + Lifit−1 + hit, (33)

where constants, loadings and transformed cost of equity of the net demand factor model are given

by:

ci =
1

ρi

[
ΛiΣuiΛ

′
i + Σεi

]−1
(ϕi + Λiφi)

Li =
1

ρi

[
ΛiΣuiΛ

′
i + Σεi

]−1
ΛiΦi

hit =
1

ρi

[
ΛiΣuiΛ

′
i + Σεi

]−1
1ηit.

The introduction of trade costs Γi at the instrument-level adds an additional term Γ−1
i inside the
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inversion and identification can proceed as before.

Proposition 7. (Identification of Return Beliefs and Risk Aversion)

Proof. Because all three objects ΣEi,Σui, Φi are known parameters in this mapping, we introduce

scaled return belief loadings Λ̃i ≡ Σ
−1/2
Ei ΛiΣ

1/2
ui , and scaled net-demand loadings L̃i ≡ Σ

−1/2
Ei LiΦ

−1
i Σ

1/2
u

to simplify notations. Then, scaled belief loadings and risk aversion need to satisfy (dropping the

firm index):

1

ρ

(
I + Λ̃Λ̃′

)−1
Λ̃ = L̃. (34)

The invertibility of the mapping g is proven in two steps: First, we show that for a given risk

aversion ρ, Λ̃ can be obtained by applying the method of undetermined coefficients and solving a

quadratic matrix equation. Second, ρ is determined using the fact that Λ must be in the domain of

the mapping g, i.e. a matrix of factor loadings satisfying the property that the sum of its squared

elements is equal to K.

We start by writing scaled return belief loadings, Λ̃, as a matrix product of scaled net-demand

loadings and an unknown square-matrix,

Λ̃ = L̃ ·
(
ρ−1I − Λ̃′L̃

)−1
. (35)

Equation (35) leads us to conjecture that the solution for Λ̃ is of the form,

Λ̃ = L̃ ·X, (36)

where X is an undetermined square-matrix of coefficients. From equations (35) and 36 it follows

that

X =
(
ρ−1I −X ′L̃′L̃

)−1
. (37)

Because equation (37) is symmetric, it must be that X = X ′ and equation (37) can be written as

the quadratic matrix equation

I︸︷︷︸
A

·X−2−ρ−1I︸ ︷︷ ︸
B

·X−1 +L̃′L̃︸ ︷︷ ︸
C

= 0, (38)
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which has, if (i) A = I, (ii) BC = CB, and (iii) B2 − 4AC has a square-root, the solution

X∗(ρ) =

(
1

2

[
ρ−1I +

(
ρ−2I − 4L̃′L̃

)1/2
])−1

. (39)

Conditions (i) and (ii) are easily checked to be satisfied. Condition (iii) is satisfied as long as ρ

is small enough for B2 − 4AC to be positive semi-definite. A positive semi-definite matrix has a

unique positive semi-definite square root. While it is irrelevant for the variance of return beliefs,

which square root is chosen, the natural solution is the positive semi-definite square root. Indeed,

the positive semi-definite square root will preserve the direction of factors as identified by the

factor model on net-demands. Choosing another square root would make it necessary to change

the direction of factors.

With X∗(ρ), risk aversion ρ follows from the predicate of the domain of the mapping g. The

sum of squared elements of Λ must be equal to the number of factors, K.

1′ (Λ ◦ Λ) 1 = 1′
((

Σ
1/2
E L̃X∗(ρ)Σ−1/2

u

)
�
(

Σ
1/2
E L̃X∗(ρ)Σ−1/2

u

))
1 = K. (40)

Proposition 7. (Identification of Beliefs with Trade Costs) The optimal net demand schedule

of firm i in the presence of adjustment costs can be written as

∆it = ci + Lifit−1 + hit +Gi∆it−1, (41)

where the constant vector Ci, the loadings Li, the transformed cost of equity ηit, and Gi the trans-

formed adjustment costs are functions of the unobserved factor structure of return beliefs, the

coefficients of the auto-regressive processes of underlying factors, the adjustment costs and risk

preference: 

ci =
(
I + Γi/(ρiσ

2
εi) +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1
Λi (ϕi + φi) /(ρiσ

2
εi)

Li =
(
I + Γi/(ρiσ

2
εi) +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1
ΛiΦi/(ρiσ

2
εi)

hit = −
(
I + Γi/(ρiσ

2
εi) +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1
1ηit/(ρiσ

2
εi)

Gi =
(
I + Γi/(ρiσ

2
εi) +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1
Γi/(ρiσ

2
εi)

(42)
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The identification of structural parameters in the presence of adjustment costs is very similar to the

identification without adjustment costs. Indeed, the additional observation Gi is used to express the

ratio Γi
ρiσ2

εi
=
(
I +

σ2
ui

σ2
εi

ΛiΛ
′
i

)(
Gi (I −Gi)−1

)
in terms of structural parameters and observations.

This can be plugged into the expression of net demand factor loadings, Li, to obtain

Li =

(
I +

(
I +

σ2
ui

σ2
εi

ΛiΛ
′
i

)[
Gi (I −Gi)−1

]
+
σ2
ui

σ2
εi

ΛiΛ
′
i

)−1

ΛiΦi/(ρiσ
2
εi)

Li =

((
I +

σ2
ui

σ2
εi

ΛiΛ
′
i

)[
I +Gi (I −Gi)−1

])−1

ΛiΦi/(ρiσ
2
εi)

(I −Gi)−1 Li =

(
I +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1

ΛiΦi/(ρiσ
2
εi)

and the mapping g in the text (Equation 26) is modified to

g :

(
1

ρiσ2
εi

,Λi

)
7−→

σ
2
ui

σ2
εi

,
1

ρiσ2
εi

(
I +

σ2
ui

σ2
εi

ΛiΛ
′
i

)−1

ΛiΦi︸ ︷︷ ︸
(I−Gi)−1Li

 . (43)

The identification of the remaining parameters proceeds in the same way as in the model without

adjustment costs using the relations from Proposition 7.

A.3 Firms’ Demand with Exogenous Constraints

This section introduces occasionally binding linear constraints. Note C∆i and CEi two matrices of

size K × J that collect coefficients on net demands∆it and initial capital Eit, respectively, and ci

a K-column vector of scalars, then K linear constraints can be expressed as:

C∆i∆it + CEiEit ≤ ci (44)

The set of constraints of the above form comprises the following regulatory and internal constraints:

• Funding constraint:

1′∆it − 1′Eit ≤ 0

• Short-selling constraint : firm i cannot demand (resp. supply) instruments j in a subset
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J ⊂ {1, 2, . . . , J} . These constraints effectively define the line of business of a firm. Banks

may for instance be prevented from selling insurance policies.

∆it(j) ≥ 0 for j ∈ J (resp.,≥ 0 for j ∈ J )

• Portfolio value constraints that fix a threshold under which the market value of a given

portfolio of instruments should not fall (relative to equity or in absolute terms). These may

include liquidity constraints (such as the Liquidity Coverage Ratio as defined in Basel III

stipulating that High Quality Liquid Assets have to be hold in sufficient quantity to cover

refinancing risks) or a leverage ratio setting a minimum level of equity relative to total assets.

a′∆it

b′∆it + d′Eit
≥ zi

Demands for financial instruments then take a simple form based on the marginal cost of the

constraint and the multivariate Sharpe ratio Σ−1
it µit.

Proposition 8. (Firm Demand with Constraints) In the presence of occasionally binding

linear constraints of the form as in equation 44, firm i’s net demand for instruments depend on the

first two moments of its return beliefs, its risk aversion, and a vector of Lagrange multipliers, ηit

associated to the occasionally binding constraints:

∆it =
1

ρi
Σ−1
it

(
µit − C ′∆iηit

)
. (45)

The Lagrange multipliers depend on a k-column vector of latent and unobservable slack-variables

sit,

ηit =
(
C∆iΣ

−1
it C

′
∆i

)−1 [
C∆iΣ

−1
it µit − ρi (ci − CEiEit + sit)

]
(46)

where the vector of slack variables has the following truncated form:

sit ≡ max

{
− 1

ρi
C∆iΣ

−1
it µit + ci − CEiEit,0

}
. (47)

Since sit is a function of prices, the presence of occasionally binding constraints thus effectively
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introduces a discontinuity in firm i’s net demand for financial instruments. In contrast to the

baseline case of only a funding constraint, now discontinuities in net-demands arise endogenously

as a function of (i) the moments of the return belief distribution (µit,Σit) and initial equity Eit.

Proof. The set of K occasionally binding constraints C∆i∆it + CEiEit ≤ ci can be transformed

into a set of binding constraints, by introducing a vector of slack variables zit, defined by

z2
it ≡ ci − C∆i∆it − CEiEit. (48)

The firm then not only chooses a vector of net demands ∆it, but also the vector of slack variables

zit in order to maximize the mean variance objective

∆′itµit −
1

2
ρi∆

′
itΣit∆it − η′it

[
ci − C∆i∆it − CEiEit − z2

it

]
(49)

The F.O.C.s of this problem then are

∆it =
1

ρi
Σ−1
it

(
µit − C ′∆iηit

)
0 = diag

(
z2
it

)
ηit

ηit =
(
C∆iΣ

−1
it C

′
∆i

)−1 [
C∆iΣ

−1
it µit − ρi

(
ci − CEiEit − z2

it

)]
,

to which a solution in closed form exists. Indeed, define sit ≡ z2
it, then plugging in the expression

for the Lagrange multipliers into the F.O.C. of the slack variables yields a system of independent

(one for each slack variable sit(k)) quadratic equations:

diag (sit) ·
(
C∆iΣ

−1
it C

′
∆i

)−1
[

1

ρi
C∆iΣ

−1
it µit − ci + CEiEit + sit

]
= 0. (50)

Therefore there are potentially two solutions for each slack variable sit(k), indeed

sit = 0 ∧ sit = − 1

ρi
C∆iΣ

−1
it µit + ci − CEiEit (51)

However, since sit ≡ z2
it ≥ 0, values with sit(k) < 0 can be excluded. Furthermore, we impose

that if there exists a solution sit(k) > 0, we choose this solution, which corresponds to the case
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where constraint k is not binding. Note that this is no loss of generality. Indeed, if the objective is

quasi-convex in net-demands, there is one global maximum of the mean-variance objective, which

can be one of the two: within the set of constraints or outside the set of constraints. If it is within,

then the constraints are not binding, and we find the global maximum by choosing the solution

for which sit(k) > 0 (i.e. constraint k does not bind). If the global maximum is outside the set of

constraints, sit(k) < 0, and we thus go to the boundary of the set of constraints at which sit(k) = 0.

Therefore the slack variable are:

sit = max

{
− 1

ρi
C∆iΣ

−1
it µit + ci − CEiEit,0

}
(52)

B Data

B.1 Estimation of Returns

There are two challenges for deriving returns on financial instrument categories from sectoral ac-

count data.

1. Returns are specific to the sectoral investment position. The sectoral accounts provide in-

formation on aggregates of financial instruments of the same type. No information exists on

sectoral portfolio allocations across financial instruments of the same type. Returns realized

on financial instruments of the same type therefore vary across sector, due to differences in

inter-type allocations.

2. Pay-offs are recorded only at the sectoral level as income received or payed in the income

accounts. Therefore dividends, interest payments and investment income cannot be directly

attributed to financial instruments.

We use the variation of investment positions across sectors and financial instruments, the variation

of valuation changes across sectors and financial instruments and the variation of income received

or payed across sectors to estimate subsequently: (i) the return due to valuation changes and (ii)

the return due to payoffs. Financial instruments are indexed by j = 1, ..., J and sectors are indexed
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by i = 1, ..., I. Furthermore, PD
t and P S

t are matrices of size I × J that collect the demand and

supply by I sectors for J financial instruments, respectively. The rate of return due to valuation

changes is denoted by gjt+1 and the rate of return due to payoffs is denoted by πjt+1.

Assumption 1. (Separate Estimation of Returns and Shifts in Demand) The return on

asset j demanded or supplied by sector i have an asset-specific component and a component specific

to the financial position f ∈ {D,S} of sector i.

πfijt+1 = πjt+1 + ufit+1, f ∈ {D,S} (53)

gfijt+1 = gjt+1 + vfit+1, f ∈ {D,S} (54)

where D denotes the demand/asset side of the balance-sheet and S the supply/liability side of the

balance-sheet. We assume that the component specific to the financial position f ∈ {D,S} of sector

i is iid distributed with mean zero.

Collecting the pay-offs and valuation gains received or payed on J assets by I sectors in the

matrices Πf
t and Gf

t of dimension I × J , respectively, Assumption 1 implies that the return in

amount of currency units realized can be written in matrix notation as

Πf
t = P f

t diag (πt+1) + diag
(
uft+1

)
P f
t , f ∈ {D,S} (55)

Gf
t = P f

t diag
(
gt+1

)
+ diag

(
vft+1

)
P f
t , f ∈ {D,S} (56)

As argued above, not all returns realized by sectors on financial instruments are fully observable.

For example, only the sum of interest payments received by sector i is observable, but not interest

payments received on loans and coupon payments received on debt securities separately. Indeed,

there are matrices OΠ and OG of dimension J ×K that map unobservable return components to

observable functions of returns, such that we can transform equations 5556 to

Πf
tO

Π =
[
P f
t diag (πt+1) + diag

(
uft+1

)
P f
t

]
OΠ, f ∈ {D,S} (57)

Gf
tO

G =
[
P f
t diag

(
gt+1

)
+ diag

(
vft+1

)
P f
t

]
OG, f ∈ {D,S} (58)
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Note that if all returns were observable, OΠ = OG = I. Finally, we estimate gjt+1, πjt+1 such

as to minimize the sum of squared residuals. This method simplifies to weighted Ordinary Least

Squares when we assume additionally that the sector and financial position specific components of

returns are uncorrelated.

B.2 Imputation of the Real Asset

The estimation of the model requires information on complete balance-sheets, i.e. stock and change

(valuation + flows + other changes) for both financial and non-financial assets. These data are

available in the following form:

1. Financial asset stocks and changes: at quarterly frequency from quarterly sectoral accounts

from EUROSTAT. The datasets are: nasq 10 f bs, nasq 10 f gl, nasq 10 f tr, nasq 10 f oc.

2. Non-financial asset stocks: at annual frequency from both EUROSTAT (nasa 10 nfa) and

INSEE.

3. Non-financial asset changes to due flows: at quarterly frequency from EUROSTAT (nasq 10 nf tr),

but strangely not from INSEE.

4. Non-financial asset changes due to valuation, flows and other changes: at annual frequency

from INSEE, but not from EUROSTAT.

Quarterly stocks and changes of the financial part of sectoral balance-sheet are directly obtained

from the sectoral financial accounts from EUROSTAT. The non-financial part of the balance-sheet

are obtained in three steps:

1. We aggregate quarterly flows from EUROSTAT to annual flows and calculate the share of

the annual flow that takes place in each quarter. For example we will find that in 2008.1 30%

of the 2008 annual flow took place, etc.

2. We take annual changes (valuation + flows + other changes) from INSEE and apply the

inter-annual breakdown for flows obtained in Step 1 to all types of changes.

3. We take the annual stocks from INSEE and build up the quarterly stocks from the quarterly

series of changes obtained in Step 2.
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