DISCUSSION PAPER SERIES

DP13826 (v. 2)

The Effects of Working while in School: Evidence from Employment Lotteries

Thomas Le Barbanchon, Diego Ubfal and Federico Araya

DEVELOPMENT ECONOMICS

LABOUR ECONOMICS

The Effects of Working while in School: Evidence from Employment Lotteries

Thomas Le Barbanchon, Diego Ubfal and Federico Araya

Discussion Paper DP13826 First Published 27 June 2019 This Revision 19 December 2021

Centre for Economic Policy Research 33 Great Sutton Street, London EC1V 0DX, UK Tel: +44 (0)20 7183 8801 www.cepr.org

This Discussion Paper is issued under the auspices of the Centre's research programmes:

- Development Economics
- Labour Economics

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic Policy Research. Research disseminated by CEPR may include views on policy, but the Centre itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to promote independent analysis and public discussion of open economies and the relations among them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage discussion and comment. Citation and use of such a paper should take account of its provisional character.

Copyright: Thomas Le Barbanchon, Diego Ubfal and Federico Araya

The Effects of Working while in School: Evidence from Employment Lotteries

Abstract

Does working while in school smooth students' transition into the labor market? We provide evidence on this question by leveraging a one-year work-study program that randomized job offers among over 90,000 student applicants in Uruguay. Program rules forbade employers from employing participants in the same job after program completion, and less than 5 percent of participants ever worked in the same firm again. Two years after the program, participants had 8 percent higher earnings. Our results suggest that the program's focus on work-related skills was a key mechanism for earnings impacts.

JEL Classification: J01, I20

Keywords: student employment, randomized lottery

Thomas Le Barbanchon - thomas.lebarbanchon@unibocconi.it Bocconi University and CEPR

Diego Ubfal - dubfal@worldbank.org
World Bank

Federico Araya - faraya@mtss.gub.uy *Uruguayan Ministry of Labor and Social Security*

The Effects of Working while in School: Evidence from Employment Lotteries*

Thomas Le Barbanchon (Bocconi University)

Diego Ubfal (World Bank)

Federico Araya (Uruguayan Ministry of Labor and Social Security)

December 2021

Abstract

Does working while in school smooth students' transition into the labor market? We provide evidence on this question by leveraging a one-year work-study program that randomized job offers among over 90,000 student applicants in Uruguay. Program rules forbade employers from employing participants in the same job after program completion, and less than 5 percent of participants ever worked in the same firm again. Two years after the program, participants had 8 percent higher earnings. Our results suggest that the program's focus on work-related skills was a key mechanism for earnings impacts.

Keywords: student employment, randomized lottery. **JEL Codes:** J01, I20.

^{*}Thomas Le Barbanchon: Bocconi University (lebarbanchon@unibocconi.it); Diego Ubfal: World Bank (dubfal@worldbank.org); Federico Araya: Uruguayan Ministry of Labor and Social Security (fedearayacaputi@gmail.com). Thomas Le Barbanchon is also affiliated at IGIER, CEPR, J-PAL and IZA; Diego Ubfal is also affiliated at IZA, IGIER and LEAP. For very helpful comments, we thank Jerome Adda, Luc Behaghel, Pascaline Dupas, Simon Görlach, Selim Gulesci, Carrie Huffaker, Judd Kessler, Eliana La Ferrara, Adriana Lleras-Muney, Marco Manacorda, Juan Pablo Martínez, Arnaud Maurel, David McKenzie, Oscar Mitnik, Michele Pellizzari, Chris Roth, Petra Todd, Fernando Vega-Redondo, and seminar participants at AASLE, Bocconi, BoI/CEPR/IZA Annual Symposium in labour economics, Ca' Foscari, CERGE-EI, Duke University, DONDENA, IHEID, IPA Research Gathering at Northwestern, ITAM, LACEA, CSAE Oxford, Paris School of Economics, SOFI, Tinbergen Institute, UPenn, Universidad de la República and Universidad de San Andrés. Niccolo Cattadori and Mariana Ferrer provided excellent research assistance. We are grateful to the Uruguayan Ministry of Labor and Social Security, ANEP, BPS and UDELAR for letting us access their data. We gratefully acknowledge financial support from J-PAL Skills for Youth Program (SYP) and LEAP. This project received ethical approval from the ethics committee of Bocconi University and was registered in the American Economic Association's registry (ID AEARCTR-0002287). The findings, interpretations, and conclusions expressed in this paper are entirely those of the authors. They do not necessarily represent the views of the World Bank and its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.

1 Introduction

Among OECD countries, the share of students aged between 15 and 19 who were working in 2016 averaged 14%, but it ranged from less than 10% in countries such as France, Italy, Japan, Mexico, and Chile to more than 40% in Denmark, the Netherlands, and Switzerland. While some countries have promoted policies encouraging youth to study without working (e.g., the Bolsa Familia conditional cash transfer program in Brazil), others have designed programs that encourage youth to work while in school (e.g., the Federal work-study program in the U.S.). This disagreement among policy-makers calls for more evidence on the effects of working while in school. The empirical literature has not reached a consensus on these effects and lacks experimental estimates. Furthermore, economic theory provides ambiguous predictions on the effects of working while in school.

On the one hand, theory suggests that working while in school might smooth the school-to-work transition. Youth may acquire skills at work that cannot be obtained at school. These could be hard skills (e.g., knowing how to write business reports) and soft skills (e.g., work attitudes such as teamwork and adaptability), either general or sector-specific (Heckman et al., 2006; Alfonsi et al., 2020; Adhvaryu et al., 2018). Similarly, early work experience can provide a signal to employers, revealing workers' productivity or motivation, which could be particularly relevant when school grades or diploma lack information on skill levels (Farber and Gibbons, 1996; Altonji and Pierret, 2001; Pallais, 2014). Furthermore, employment may provide students with funding to continue with their studies (Keane and Wolpin, 2001). On the other hand, work could subtract time from study, and unless youth manage to better organize their time, it may harm academic outcomes, and reduce general human capital acquired at school (Eckstein and Wolpin, 1999).

Empirical papers aiming to resolve this ambiguity face the challenge of addressing students' selection into employment - an issue that typically confounds the effects of working while in school. We provide the first estimates that use randomized lotteries to address the selection issue. We leverage a youth employment program offered by lottery in Uruguay. The program targets students aged 16 to 20 throughout the country, offering them a first formal work experience in the main state-owned

¹We computed these statistics from OECD (2018). In the U.S. this share was 20% in 2016, and the average for Latin America was 16% in 2014 (CEPAL and OIT, 2017).

companies (e.g., the government-owned electricity company, telecommunications company, national bank, etc.). Every year, around 850 lottery winners receive an offer for a part-time job (between 20 and 30 hours a week) that lasts between 9 and 12 months and typically consists in a clerical position, in administration or operations, focused mainly on support tasks. Program participants are required to be enrolled at a high school or university at the moment of application and throughout the duration of the program. These characteristics of the Uruguayan program also appear in other work-study programs, such as the Federal Student Work Experience Program in Canada, and the Federal work-study program in the U.S., which both offer part-time jobs for full-time students during the academic year.

The Uruguayan case represents a unique opportunity to learn about the effects of working while in school. It has the features of a social experiment without suffering from common implementation issues (Rothstein and von Wachter, 2017). First, offers to participate in the program are randomly allocated. Second, the sample of applicants to the program is representative of the student population, including both poor and non-poor households, which implies that participation bias is less likely to be an issue in our case (Czibor et al., 2019). Third, the workstudy program explicitly states enhancing students' skills as an objective, and the program rules prevent program firms from keeping participants on the same job after the end of the program. Thus, the Uruguayan program cannot work as a direct placement program, and our study then analyzes the other channels at play when students work while in school.

We use rich administrative data that allow us to recover the main labor and education outcomes for all applicants, reducing concerns about attrition. The data cover the universe of around 90,000 lottery participants. We complement the administrative data with a survey measuring school grades, time use and soft skills at the end of the program year.

During the year of the program, earnings and the employment rate of treated youth more than double with respect to the control group.² More importantly, we find statistically significant positive effects on yearly earnings and employment after the end of the program. The effect on earnings is of US\$242 two years after the

²The main results are discussed in terms of treatment on the treated (ToT) effects and compared to the control complier mean (i.e., the mean for youth who would have participated in the program if they had won the program lottery).

program, which represents 8% of the earnings of comparable youth in the control group. It is driven by both effects on employment at the extensive margin, and on wages conditional on employment. The effect on wages amounts to 6% of the complier control mean, and survives a bounding analysis that accounts for selection into employment. This suggests that working while in school increased youth productivity.

While treated youth acquire more work experience, they also acquire more education. During the program year, school retention increases by 12 percentage points, consistently with the program conditionality on enrollment. Post-program enrollment rates, when there is no longer any enrollment requirement, still remain higher in the treatment group. Over the two years following the program, the enrollment rate of treated youth is 4 percentage points higher than in the control group, when around 50% of youth are enrolled. In line with previous work (e.g., Eckstein and Wolpin, 1999; Buscha et al., 2012), the persistent effects on enrollment suggest that working while in school does not crowd out future school investment, but instead provide some evidence for crowding in. The enrollment effect is stronger for poor households than for non-poor households, which gives support to the hypothesis that credit-constrained youth save the income shock due to program wages to finance extra years of education. Our survey data also indicate that treated youth expect higher returns to secondary education, which might foster investment. Furthermore, we provide evidence that the extra education acquired in the treatment group is of the similar quality to that in the control group. While program participants enrolled in school exhibit some reduction in class hours and study time outside school, these effects are not large enough to significantly affect school grades. Grades obtained by participants during the program year are not lower than those in the control group. Time-use data indicate that youth are able to work and study by mostly reducing time devoted to leisure and household chores.

We also find persistent post-program increases on the probability of working while enrolled in school and reductions in the share of youth not working or studying. Reducing the number of youth in this group, which is close to the NEET (Not in Employment, Education or Training) category, is a key policy objective around the world, and it is also a priority for the Uruguayan government.

In summary, the work-study program smooths the students' transition to the labor market. It builds human capital through the education channel, as educational attainment increases by 0.17 years. Beyond the cognitive skills typically acquired in school, we find small program effects on soft skills. Among the Big 5 personality traits, the program significantly increases conscientiousness by 10% of a standard deviation. It also improves work attitudes that are related to time management and flexibility by around 15% of a standard deviation. As program youth get work experience, they accumulate work-related skills. Furthermore, the human capital acquired through the work-experience channel is not sector specific, but seems rather general. We do not find evidence that earnings effects are concentrated in the sectors of the program firms, or that they differ by program firm's sector. The human capital transferability seems to be a strength of the Uruguayan work-study program.

Overall, we do not find significant heterogeneity in program effects, except in enrollment effects which are stronger for students from poor households. This suggests that our results might be relevant to work-study programs targeting college students in financial needs, as the U.S. Federal Work-Study program does. Finally, we conduct an extrapolation exercise to predict program effects on earnings later in the life cycle. We make the conservative assumption that the extra work experience acquired by treated students during the program and the two following years does not matter in the long run, and then only the extra education fostered by the program contributes to mid-career wages. Using Mincerian returns to education, we predict that earnings of treated students would be around 1.7% higher than those of control students.

Our paper contributes to the literature estimating the effects of working while in school by providing the first estimates using randomized lotteries to deal with selection into employment. The previous literature using non-experimental methods has not reached a consensus about the magnitude of the returns to working while in school on labor market outcomes in the U.S (Ruhm, 1997; Hotz et al., 2002; Ashworth et al., 2020). Over a short horizon after graduation, our results point to significant earning returns to completing a part-time job in state-owned companies, for both men and women.³ In contrast, the literature seems to have reached a consensus pointing to limited effects of working while in school on educational outcomes (Eckstein and Wolpin, 1999; Buscha et al., 2012; Stinebrickner and Stine-

³Overall, we do not find evidence of statistically significant treatment effect heterogeneity by gender on labor outcomes or enrollment.

brickner, 2003). We confirm the lack of negative effects and further show that some of the large positive effects on enrollment during the program year persist beyond that year, even when the enrollment conditionality of the work-study program no longer holds.

Our study also contributes to the literature evaluating students' employment programs. We find stronger positive effects on labor market outcomes than recent experimental evaluations of summer job programs in the U.S. (Gelber et al., 2016; Davis and Heller, 2017) and in the Philippines (Beam and Quimbo, 2021), which offer shorter-duration jobs.⁴ On the contrary, our findings are in line with the recent non-experimental evaluation of the Federal Work-Study program in the U.S., which also offers subsidized employment throughout the school year (Scott-Clayton and Minaya, 2016).

Finally, our paper contributes to the literature evaluating active labor market policies (ALMP) using social experiments and randomized control trials (for recent surveys or meta-analyses see Card et al., 2017; Escudero et al., 2019; McKenzie, 2017). Our paper is the first to our knowledge to provide evidence based on randomized lotteries on a work-study program. We show that a program combining both work and regular study experience yields earnings effects greater than the worldwide average effects of vocational training reported in McKenzie (2017).

The paper proceeds as follows. Section 2 describes the Uruguayan work-study program. Section 3 discusses theoretical insights of the main expected effects of the program. Section 4 presents the data and the econometric model. Section 5 delivers causal estimates of the program effects on core labor market and education outcomes. Section 6 discusses suggestive evidence on mechanisms. Section 7 summarizes results on treatment effect heterogeneity and discusses effects to be expected beyond the two years after the program. Finally, Section 8 concludes. Codes and public data are available for replication (Le Barbanchon et al., 2021).

⁴Summer employment accounts for only a fraction of youth yearly employment. For example, it represents only 31% of yearly employment of teenagers enrolled in school in the U.S. and 28% in Uruguay. We obtained the share of summer employment for teenagers in the U.S. from 2017 CPS data (U.S. Bureau of Labor Statistics, 2017), and that in Uruguay using the administrative data for the control group in our sample. See Appendix F for details on the computation.

2 The Uruguayan work-study program

Since 2012, the work-study program "Yo Estudio y Trabajo" (YET) provides youth aged 16 to 20 who live in Uruguay with a first formal work experience in state-owned companies for up to one year. The program is a cross-institutional initiative coordinated by the Ministry of Labor and Social Security of Uruguay, and offered each year in most main cities (see Appendix C for more institutional details).

All youth aged 16 to 20 who reside in Uruguay are eligible to apply for YET as long as they satisfy two key conditions: 1) they are enrolled in an educational institution, and 2) they have not worked formally for more than 90 consecutive days. Using the microdata including all observations in the 2011 Population Census (Instituto Nacional de Estadistica Uruguay, 2011, 2013), we estimate an application rate of 34.6 percent for the 2012 edition of the program. The characteristics of the eligible population and of the program applicants are overall similar, in particular in terms of household socio-economic vulnerability (see Appendix D for details).

Assignment to the program is done by lottery at the locality level.⁵ The number of program participants in each locality depends on the number of jobs offered by the public firms that partner with the program in that locality. Lottery candidates are randomly ranked within locality. Sequential rounds of program offers are made until all local program slots are filled. From the third edition of the program in 2014, quotas were introduced in the largest localities to guarantee participation of minority youth from African origin (8 percent), with disabilities (4 percent) and transgender youth (2 percent). From the fourth edition in 2015, a new quota was introduced for youth from vulnerable households (11 percent), i.e., poor households receiving a conditional cash transfer.

Program participants must visit a government center to present the required documentation. They have to attend a two-day orientation workshop provided by the National Institute of Employment and Professional Training and are assigned a supervisor who follows their progress in the program. Participants staying in the job for the full contract period are awarded a work certificate.

Importantly, firms cannot choose the youth they want to hire, and candidates cannot select the firm in which they want to work. The program administration per-

⁵Candidates select the locality in which they want to participate, which is supposed to be that in which they live and/or study.

forms the matching of participants to available job positions. While doing so, the program administrators prioritize the compatibility between schooling and work hours over the relevance of the job tasks with respect to the studies specialization.⁶ For example, high school is organized in morning or afternoon shifts. Students attending the morning shifts at school are matched to firms where they can work in the afternoon (and vice versa). This process implies that there is very little job-candidate matching in terms of skills.

The job offered within the program is part-time, with a total of 20 to 30 hours per week, and overtime is not allowed. Participants are supposed to work during the normal operating hours of the firm, with the condition that working hours do not prevent them from attending school. The contract is temporary (9 to 12 months), and cannot be extended. Remuneration is fixed and amounted to \$446 per month for a 30-hour-per-week job in 2016 (around \$3.7 per hour). The program wage compares favorably to the national minimum wage fixed at \$372 per month for a full-time job.

Firms must pay youth wages out of their own budget. We visited several program firms to gather qualitative information regarding why they participate in the program. Informal conversations with employers suggest two main reasons why they offer jobs within the program. First, the program allows them to offer part-time one-year contracts that are more flexible than regular in-house labor contracts, which are strictly regulated in the public sector. Second, program participation enhances the firm's reputation with the central administration.

All program firms belong to the public sector. The majority of these are large state-owned companies and only a few positions are offered in the public administration. For example, the four main program employers of the fifth edition are: the state-owned commercial bank of Uruguay (hiring 22% of program participants), the state-owned electricity company (19%), the state-owned telephone company (9%), and the state-owned oil and gas company (6%). Among smaller employers, we find public administration offices such as the ministry of education or social security administration (see Appendix E for more details on the program firms of the fifth edition).

⁶Informal conversations with the program administrators indicated that distance from home to the firm, and hours at school were the two main variables considered in the matching process.

⁷Throughout the paper, we convert Uruguayan pesos to U.S. dollars using the January 2016 exchange rate of 0.033 dollars per peso.

The program establishes that work activities must be in administration or operations, and should be focused mainly on support tasks. Indeed, 93% of participants in the fifth program edition report working as clerks during the program (see Appendix E for more details about tasks performed on program jobs). Furthermore, the program documentation explicitly states that the early work experience should help participants develop soft skills valued in the labor market such as commitment, teamwork, adaptability, flexibility, reliability, a strong work ethic, and communication skills. The direct supervisor assigned by the program to each participant should evaluate these soft skills twice: during the program and at the end of it.

There are between 30 and 46 thousand applicants to each of the first three program editions. However, there are less than a thousand program jobs offered every year (see Appendix Table A1). Consequently, the share of participants offered a job is between 2 to 3 percent, implying a low probability of obtaining a program job. Moreover, the program is small relative to the relevant labor markets, which reduces the possibility of important spillovers from treated to control youth.

As participants may apply to more than one locality in a given edition, the number of applications is slightly larger than the number of applicants: 4 percent of the applicants apply to more than one locality in a given year. Multiple applications across years are more common: 27 percent of applicants apply to more than one edition; most applied to two editions. We explain how we handle repeated applications when we discuss the empirical specification.

3 Theoretical channels

The work-study program YET offers part-time temporary jobs in public firms to adolescents who are enrolled in school. We expect that this early work experience will increase the human capital of participants as they acquire hard skills in the workplace (e.g., knowing how to write business reports). Participants might also acquire soft skills while in the firm, such as work attitudes, self-esteem, communication skills, conflict resolution, time management, teamwork, etc. (Heckman et al., 2006; Groh et al., 2016; Acevedo et al., 2017; Adhvaryu et al., 2018). The corresponding increase in human capital will probably cause higher employment

rates and wages after the program ends - to the extent that the skills acquired in the program firms are transferable to other firms in the labor market.

In addition to the *human capital* channel described above, we expect early work experience to have a signaling role. When employers receive job applications from program participants, they may infer from their early work experience that participants are motivated or trustworthy and have skills above the hiring bar. This *signaling* channel will further contribute to positive employment and wages, unless program participation stigmatizes youth. We do not expect a significant role for a *screening* channel whereby program firms acquire private information on youth to decide whether to hire them after the program, as direct placement is against the YET guidelines.

A third channel - the *learning* channel - is related to the imperfect information youth might have about their on-the-job abilities (Arcidiacono et al., 2016). Early work experience enables them to learn whether they are good at and/or like the type of clerical jobs program firms offer. A priori, the effect of ability learning on employment in the short-term is ambiguous and it depends on the expectations of participants before they enter the program. But later on, ability learning probably allows youth to better sort across occupations, and increase their earnings through improved matching with jobs.

While the channels mentioned above mainly affect employment and wages, YET may also trigger crowding-out effects on schooling investment. As students spend working hours in firms, they may invest less time and effort in studying. This could reduce the general cognitive skill level of participants. However, as participants lose their jobs if they drop out of school, crowding-out effects should be limited, at least at the extensive margin, during the program year. The enrollment condition of the program may even trigger some crowding-in effects during the program year. The program effect on future earnings may also transit through this *education* channel.

On top of these channels, the program entails a positive shock to the income of participants. Program earnings could help credit-constrained youth finance their

⁸Even if employers might be aware that participants obtained the early work experience by chance (through a lottery), and thus would not interpret being hired in a program job as informative about skills that are unobserved in the CV, being able to complete the year in the program jobs can still be a meaningful signal. Moreover, potential employers can ask for reference letters from program employers, which would further reduce information asymmetry (Abebe et al., 2020). Finally, successful participants can show their work certificate awarded at the end of the program.

education expenses, or spend more time searching for a good job. We expect these effects (i.e., increase in enrollment or decrease in employment rates right after the program) to be stronger for youth living in poor households.

In our main analysis, we estimate the resulting effects of these different channels on average earnings, employment, wages, and educational attainment. In Section 6, we explore the mechanisms and conduct heterogeneity analysis documenting the various channels.

4 Data and econometric model

4.1 Data

We use four sources of data: YET-program administrative data, social security and educational records for all applicants, and a survey with a representative sample of applicants to the 2016 edition. All data can be matched at the youth level. First, we have data from the online application form that youth must complete in order to participate in YET lotteries. These data include basic demographic information (age, gender, locality), and educational level. From YET administrative records, we also have information on the lottery draws, subsequent offers, and program participation. This allows us to compute the overall number of positions offered, number of positions accepted and completed (see Appendix Table A1), and dummies for each of the quotas considered in the program.

The social security data record monthly labor earnings of each applicant and whether the applicants' households receive social transfers. Educational records from the National Administration of Public Education and the State University cover enrollment in public education institutions (secondary, tertiary, universities and out-of-school programs) at a yearly frequency. The social security and educational records are available from 2011 to 2017. Consequently, we restrict our main sample of analysis to the first three program editions (2012, 2013 and 2014), so that we can observe outcomes for at least 2 years after the year of the program.

Table 1 describes our sample of applicants and checks that treatment and control groups are balanced. Panel A presents data from the application form: gender, age, and whether participants applied to the program in Montevideo, the capital

city. Panels B and C report data from the administrative records measured before application: education, subsidies from social programs, and labor outcomes. We present data at the applicant level and control for lottery design when comparing controls and youth receiving a program offer. Overall, the differences between the two groups are negligible, confirming that lotteries were appropriately conducted.

Among lottery applicants, around 71 percent are enrolled in public secondary education, 49 percent are in academic schools, in general regarded as more prestigious, and 22 percent in technical schools (see Appendix C for more details on the education system in Uruguay). Around 15 percent of applicants attend the State University, which is free of tuition fees. This is a lower bound for enrollment at university, as the data only record whether the student has taken at least two exams or started a new track in a given year. Finally, 3 percent of applicants are enrolled in tertiary non-university programs or in official out-of-school programs. The residual 10 percent of applicants are not enrolled in public institutions during the year before the program. They are most likely enrolled in private institutions, as in the application form all applicants report being enrolled at an educational institution.

One youth in four lives in a vulnerable household that receives a conditional cash transfer, which is targeted at the 200,000 poorest households in the country. Households receiving also a food card, granted to the poorest 60,000 households in the country, are considered highly vulnerable. One youth in ten belongs to this highly vulnerable household category.

Social security data indicate that 15 percent of applicants worked formally for at least one month in the 12 months before applying to the program, with average yearly earnings of around \$170.9 On average, applicants worked for less than one month the year before the program, as expected, since not having worked formally for more than 90 consecutive days is a requirement to enroll in the program.

To complement the administrative data, we surveyed a representative sample of 1,616 students who applied to the lottery in the Fall 2016 (fifth program edition). The survey was in the field in November and December 2017, just before the end of most program jobs. The survey has two main objectives: describing the program experience (program jobs and time use), and measuring soft skills and school grades around the end of the program. From the YET administrative data, we

⁹Throughout the paper, we winsorize earnings at the top 1 percent.

selected all applicants who received a program offer and a random subsample of unlucky applicants. The overall response rate of the survey is 79 percent. The response rate in the offer group is 81 percent, though this slightly higher attrition rate does not generate imbalances in baseline covariates between offer and control students (see Appendix Table E1).

4.2 Econometric model

In the main analysis, we focus on Treatment effects on the Treated (ToT). We define treatment as working at least one month in a program job. We define the variable *Offered* as ever-receiving a program job offer. To obtain the causal treatment effect, we leverage the lottery design and instrument the treatment dummy with the *Offered* variable.

Under this definition of treatment, the local average treatment effect is equal to the ToT because no youth can work in a program job if not offered the program (i.e., there are no always takers). This effect is identified under the following exclusion restriction: the only reason why youth who are offered the program see their outcomes affected is that they work in a program job. In the appendix, we present intention-to-treat estimates (ITT) that do not rely on the exclusion restriction, and we obtain consistent results. We also explore an alternative definition of treatment that allows us to estimate a parameter that may be closer to the effect of working while in school, but relies on stronger assumptions. Under this alternative specification, we define treatment as working in any firm while being enrolled in school during the program year. Results are even stronger, and overall consistent with our main estimates (see Appendix Table A12). This alternative specification assumes that the *type* of in-school job has no effect on future labor and educational outcomes. In particular, it assumes that there are similar effects of program jobs and of the potential control jobs students would have accepted if they had not been offered a program job. Since program jobs are well-paid temporary jobs, we see this alternative specification as less appropriate.

The ever-offered variable (instead of the first round of offers) is a reasonable instrument in the context of randomized waiting lists with small offer rates (de Chaisemartin and Behaghel, 2020).¹⁰ In practice, the first stage is strong - 77% of youth

¹⁰In Appendix Table A15, we verify that alternative estimators, namely the double re-weighted

receiving a program offer work in a program job -, and it is homogeneous across program editions (see Appendix Table A2).

We analyze data at the applicant level and deal with applicants who apply several times in the following way. We randomly select one application for each youth in the control group (who are never offered a program job). To maximize statistical power, we select the application generating an offer for each applicant receiving at least one offer. Results are robust when selecting a random application in the ever-offered group, or when analyzing the data at the application level (see Appendix Tables A13 and A14).¹¹

We consider the following specification at the applicant level i in edition e:

$$Y_{i,t} = \alpha_1 + \gamma_t Treated_i + Locality \times EditionFE + QuotaFE + \#App_i + \rho_t X_{i,0} + \epsilon_{i,t}$$
 (1)
$$Treated_i = \alpha_2 + \delta Offered_i + Locality \times EditionFE + QuotaFE + \#App_i + \beta X_{i,0} + v_i$$
 (2)

where $Y_{i,t}$ is the outcome of individual i, t periods after the application date in edition e. $Treated_i$ indicates whether individual i worked in a program job offered in edition e. $Offered_i$ indicates whether individual i received a program job offer. To control for lottery design, we include $Locality \times Edition$ fixed effects and quota fixed effects. This takes care of variation in the probability of receiving a job offer across lotteries depending on the local number of program jobs offered and on the potential quotas. To further control for individual variation in the offer probability (and thus in the treatment probability), we include the number of applications of individual i: $\#App_i$ in edition e. To increase precision, we include a vector of covariates $X_{i,0}$ measured at application date. It comprises gender, age, whether the youth comes from a vulnerable or highly vulnerable household, earnings and level of education in the year before applying to the program. Our parameter of interest is γ_t , which we estimate using two-stage least squares as explained above; it captures the ToT effect t periods after application.

ever offer estimator of de Chaisemartin and Behaghel (2020), yield robust results.

¹¹When selecting at random among the offered group, the treatment effect estimate suffers from an attenuation bias because of measurement error in the treatment variable.

5 Main results

In this section, we present the program effects on labor market outcomes and educational attainment. When we use the administrative data on labor market outcomes and on education enrollment, we pool the first three editions of the program, and analyze effects until 2 years after the program year. Survey results refer to the fifth edition.

Some of the tables include a significant number of hypothesis tests. We conduct adjustments for multiple testing within each table (considered as a family of outcomes) and we find in general robust results. We note in our discussion the few cases where the inference is not robust to such adjustment.¹³

5.1 Effects on labor market outcomes

Graphical overview Figure 1 reports the main program effects on quarterly labor earnings. The dashed line shows the time-evolution of average earnings of the treatment group. By construction, these individuals are compliers since there are no always takers in the sample (no youth can participate in the program if not offered a job). We compute the average earnings of the corresponding compliers in the control group. The solid line in Figure 1 plots its time-evolution. Before the application date, earnings of both control and treatment groups are close to zero, as required by the eligibility condition of the program. After application, the control mean steadily increases, as aging youth gradually enter the labor market, and reaches around \$800 per quarter (Y-axis on the right side of the graph), 2 years after the program. By contrast, the average earnings of treated individuals rise sharply just after application, and remain on a plateau of about \$800 per quarter over the year of the program. Around one year after the start of the program, the treated

¹²In Online Appendix B, we restrict the sample to the first edition of the program and present results until 4 years after the program year.

¹³We obtain family-wise adjusted p-values using the implementation by Jones et al. (2019) of the free step-down procedure of Westfall and Young (1993).

¹⁴Control compliers are youth who did not receive any offer and were not allowed to work in a program job, but would have worked if they had received an offer. The control complier mean is obtained as the difference between the mean for those who work in a program job and the ToT effect.

¹⁵There is a delay of a few months between the application deadline and the start of program jobs, when lotteries are drawn, offers are rejected and/or accepted, and organizational workshops

earnings decrease sharply and converge back to the control earnings level. This corresponds to the end of the program, when the temporary jobs within the program must end according to program rules. After this convergence, treated earnings follow an upward trend, but at a steeper rate than control earnings. One year after the program, treatment effects are already statistically significant. The dots in Figure 1 report treatment effect estimates $\hat{\gamma}_t$ from Equation (1), with their confidence intervals (vertical lines). After the program ends, treatment effects steadily increase, and reach almost \$100 per quarter (Y-axis on the left side of the graph) by the end of the period covered by our data.

Earnings Effects Table 2 summarizes the treatment effects on yearly earnings (in Column 1), on employment (in Columns 2 and 3) and on monthly wages (in Column 4). During the program year, treated youth earn \$1,864 more than control youth, whose yearly earnings are around \$1,000 (Column 1, Row 1). Row 2 reports the effects during the year after the end of the program (labelled Year 1), and Row 3 two years after (labelled Year 2). Treatment effects on yearly earnings are positive at all horizons, and statistically significant in Year 2. They increase over time from \$86 up to \$242 in the second year after the program, corresponding to an increase in yearly earnings from 4% to 8%. 17

Informal Earnings By definition, this is an effect on earnings in the formal sector. Data from the 2013 Continuous Household Survey in Uruguay (ECH) show that 16-20 year-old youth earn around \$200 per year in the informal sector. We use this estimate to compute a conservative lower bound on the program effect on total earnings. Assuming that formal earnings induced by the program completely crowd out informal earnings, we still find a positive effect on total earnings of around \$42 (=242-200).

Employment Effects Earnings effects are partly driven by employment effects at

are set. In addition, the start of program jobs is staggered. Consequently, we define as program start the date when some first treated individuals start their program jobs, and we define as program end, 12 months after the program start. This duration gives enough time for the program jobs that start last to lapse.

¹⁶The Online Appendix presents a series of robustness checks. Results are robust to not including controls $X_{i,0}$ in the regression (Table A3), clustering standard errors at the locality level (Table A4), not winsorizing earnings (Table A5) or computing ITT effects (Table A6).

¹⁷To adjust for multiple hypotheses, we consider that we are testing for 8 hypotheses (as many as post-program outcomes). Out of 8 coefficients, the main change is for that on positive earnings in year 2, which is no longer statistically significant at the 10 percent level.

the extensive margin, shown in Columns (2) and (3). Column (2) reports treatment effects on the yearly number of months with positive earnings. During the program year, treated youth work 7 months more than control youth, who have on average less than 3 months with positive earnings. Treatment effects in Year 1 and 2 on months of work per year are small and not statistically significant. Column (3) reports the treatment effect on having at least one month of the year with positive earnings. We find slightly more positive and statistically significant effects on this measure of employment. Although positive, employment effects do not fully account for the yearly earnings effects.

Wage Effects Column (4) of Table 2 reports treatment effects on monthly wages. The estimation sample is restricted to youth with at least one month of positive earnings during the year. We address the issue of selection into employment in a separate analysis below. *Monthly* wages in program jobs are lower than the wages of employed youth in the control group by \$23 (7%). The survey data, where we observe hours worked by the end of the program year, show that the effect on *hourly* wages is positive and statistically significant (see Appendix Table E5). This is in line with treated youth being more likely to work in part-time jobs than employed youth in the control group during the program year. The monthly wage effects become positive from Year 1 after the program, and statistically significant from Year 2. In Year 2, the monthly wages of employed youth in the treatment group are \$28 higher, corresponding to a 6% increase over the control mean.

Bound analysis To tackle the issue of differential selection into employment by treatment status, we present Lee bounds for the ITT effect on wages. Table 3 first reports the ITT effects on wages of employed youth. We obtain statistically significant positive effects in Year 2, as in the ToT analysis in Table 2. The ITT effect on wages of employed youth is the result of a causal wage effect and of a composition effect that selects some youth into employment when offered the program. We cannot observe the wages that youth induced to work because of the program would have if they had not participated in the program, and we need extra assumptions to identify the causal wage effect. We follow Lee (2009) and obtain bounds for the average effect on wages for the *always-employed* (i.e., individuals who would be employed regardless of their offer status). We compute lower (upper) bounds by trimming, from the sample of employed youth offered a job, those youth with the p% higher (lower) wages, where p is 100 times the ratio of the ITT effect on

employment over the employment rate of the offered group. Table 3 reports that the lower bound of the causal wage effect is positive and statistically significant in Year 2. We construct confidence intervals for the identified interval following the procedure described in Imbens and Manski (2004). In Year 2, the confidence interval excludes zero.¹⁸

Overall, this suggests that the employment effect at the extensive margin is unlikely to induce selection effects large enough to undo the positive effects found on wages of employed youth. We can thus conclude that the program leads to positive effects on wages, our best proxy for productivity. There are several mechanisms that could trigger such a productivity effect. We explore them in Section 6.

Comparison with previous literature We can compare our results with three papers that provide evidence on the effects of working while in school using U.S. data from the National Labor Survey on Youth (NLSY). First, Ruhm (1997) finds significant returns to working part-time while in school up to nine years after high-school graduation for both men and women. Second, Hotz et al. (2002) take into account dynamic selection into employment for a male sample, and find returns that are not statistically significant. Third, Ashworth et al. (2020) use a new dynamic selection model that incorporates two unobserved random factors and estimate significant long-run returns to in-school work among men. We estimate effects on earnings (8%) and wages (6%) equal to half of what Ruhm (1997) obtains for inschool work in the U.S. Our wage effects are comparable in magnitude to those found by Ashworth et al. (2020), and larger than those found by Hotz et al. (2002). Our estimates are thus in the ballpark of previous U.S. estimates of in-school work effects on wages of youth in their 20s (even late 20s). Last, we compare our findings to a fourth paper evaluating the U.S. Federal Work-Study (FWS) program (Scott-Clayton and Minaya, 2016). Every year, FWS provides wage subsidies to around 600,000 university students working in part-time jobs, mostly on-campus. Scott-Clayton and Minaya (2016) find, in line with our results, that working in a FWS job increases youth employment rate 6 years after college entry by 2 percentage points. Compared with this previous literature, we study effects on wages observed when youth are younger (around 20 years old). One key question is whether our effects

¹⁸Lee bounds are conservative compared to similar bounds obtained in recent papers (Attanasio et al., 2011; Blanco et al., 2013; Alfonsi et al., 2020), which consider as lower bound the ITT effect itself. We would have stronger causal effects on wages under their additional assumptions.

estimated on younger youth would persist later in their life-cycle. Previous findings indicate a rather positive answer. Ruhm (1997) observes wages for youth aged 25 to 29 and find homogeneous returns over that age range. In Section 7, we discuss in more detail the expected longer-horizon effect in our context.

Differently from Hotz et al. (2002) and Ashworth et al. (2020), who restrict their sample to males, our sample comprises both men and women. This allows us to test for heterogeneous returns of in-school work by gender. In Appendix Table A19, we show that our estimated returns are not statistically different by gender.

Our study has one other important difference with the previous literature on working while in school. We study the effect of jobs that are well paid, in state-owned companies, involving sophisticated tasks (e.g., using computers, writing reports) that have a larger scope for learning and human capital accumulation than those studied in the U.S. literature. To explore the importance of job characteristics, we leverage the data on program firms industries. In Appendix Table A18, further commented in Section 6, we provide some evidence that whether the program job is in banking or the civil sector does not make a large difference on post-program earnings. However, our data do not allow us to study heterogeneity of treatment effects by finer types of job offered, which is an important topic for future research.

5.2 Effects on educational outcomes

Enrollment Effects Table 4 reports treatment effects on enrollment in educational institutions at various horizons. In Column (1), we pool together all educational institutions, while we consider each educational level separately in Columns (2) to (5). At the end of the program year, overall enrollment of treated youth increases by 12.6 percentage points from a control average of 73%. This is consistent with the enrollment requirement of the program. The direct effect of the program is to reduce the share of high school dropouts. During the two years after the end of the program, the effects on enrollment are smaller, but they persist and remain statistically significant.¹⁹ The effect is mainly driven by enrollment in secondary education (see Column 2).²⁰

¹⁹We present robustness checks in the Appendix. Table A7 presents results without including controls, and Table A8 shows the ITT effects. Overall results are robust.

²⁰To adjust for multiple hypotheses, we consider that we are testing for 8 hypotheses. This corresponds to all post-program outcomes, except enrollment in any level (column 1), which we

Enrollment in Private Schools One concern is that in the administrative data we do not observe enrollment in private institutions. If the program increased attachment to the public education sector and more youth switched to private schools in the control group, then we would overestimate the effects on enrollment. However, using survey data, we show in Appendix Table E3 that at the end of the program year there are no treatment effects on the type of schools students are enrolled.

Schooling investment Our survey data allow us to measure more precisely investment in schooling and school grades during the program year. We do not find evidence that the quality of education is lower for program participants. Table 5 first confirms with survey data for participants to the 5th program edition that the program increases retention in school. Column (1) reports that the enrollment of treated youth in high school is 11 percentage points higher (similar effect as in the administrative data).²¹ Moreover, there is no effect on truancy, since we do not observe significant effects on missing school in the last school week (Column 2). However, we do observe some negative effects at the intensive margin. Column (3) shows a reduction in weekly class hours by almost 2 hours, which represents a 6 percent decrease with respect to the control mean. This is probably associated with a change in regular class schedule for the treatment group. Additionally, Column (4) shows a 2-hour reduction in weekly study time outside school, which is statistically significant and represents 33 percent of the control mean.²² The crowding-in (on enrollment) and the crowding-out (at the intensive margin) actually offset one another, so that, on average, time dedicated to school investment for the whole sample is left unaffected by the program (see results on time use in Appendix Table E8). Furthermore, this reduction in study time of enrolled students does not translate into significantly lower grades. Column (5) shows that the program has only small effects on the grade point average of high school students; the coefficient is not statistically significant and the 95% confidence interval excludes negative effects larger than 4% of the control complier mean.²³ We find suggestive evidence

do not include as it is the sum of columns (2) to (5). The coefficients on secondary education for year 2, on tertiary non-university for year 2 and for out-of-school programs for year 1 lose statistical significance after the correction.

²¹This mitigates the concern that measurement error in the survey, potentially related to the enrollment conditionality of the program, biases our analysis of educational outcomes.

²²The p-values for the coefficients on class hours, study time and GPA are 0.12, 0.12 and 0.2, respectively, once we correct for the 4 multiple hypotheses tested in this table (excluding enrollment).

²³Columns (2) to (5) in Table 5 are conditional on enrollment. Their causal interpretation depends

that the reported GPA measure is informative and the reduction in study time and class hours in the treatment group is consistent with small effects on grades.²⁴ Overall, our evidence suggests that the increase in enrollment does not come at the expense of schooling quality or achievement. Similarly, Scott-Clayton and Minaya (2016) finds small effects on the first-year GPAs of participants to the U.S. Federal Work-Study program.

Persistent Enrollment Effect? While the effects on enrollment during the program year are probably driven by the program requirement and its enforcement, the enrollment effects over the post-program years are unconstrained behavioral responses. This suggests that conditionality in a given period generates compliance even after the conditionality is removed, as found in the context of compulsory school reforms by Meghir and Palme (2005). In our context, one potential explanation for the persistent enrollment effect relates to the income shock embedded in the program. The income shock due to program wages could be saved by credit-constrained youth to finance additional education after the program. We test for this explanation by comparing the treatment effect for poor (more likely to be credit-constrained) vs. non-poor households. In Figure 2, we plot the treatment effect on yearly earnings and on enrollment for students in vulnerable households and for students in non-vulnerable households (we report regression estimates in Appendix Table A10). In the right-hand panel, enrollment effects are significantly higher for youth in vulnerable households than for youth in non-vulnerable households both during and after the program, which is consistent with the income-effect explanation. We do not find statistically significantly different treatment effects on post-program earnings across both groups in the left-hand panel.

A complementary explanation for the persistent effect on enrollment relates to changes in student expectations of returns to education. Work experience in program jobs may lead students to update their expectations upwards. In our survey, treated youth report a higher expected probability of finding a job if one graduates

on the eventual differential selection into enrollment induced by the program. We may be concerned that marginal students induced to remain enrolled because of the program are negatively selected. To partially address this issue, we add grades in the previous year as additional controls in Appendix Table A9. This hardly affects the estimated effects, building up confidence in Table 5 take-away.

²⁴Using control group observations, we run a regression of GPA on the three inputs included in Columns 2-4 of Table 5. Using these estimates, the predicted reduction in GPA based on the estimated treatment effects is of 0.05 points.

from high school than the probability reported by control youth. The magnitude of the effect is of 3 percentage points over a mean of 70% in the control group and statistically significant at the 5% level (see Appendix Table A11). We do not find any significant treatment effect on the expected returns for other graduation levels (incomplete high school, tertiary or university), which is consistent with the persistent effects being concentrated in high school enrollment. As the effect on expected high school returns is small in magnitude, we consider this as rather suggestive evidence.

5.3 Effects on working and studying

Beyond the separate effects on employment and education enrollment, we explore how the program affects the joint distribution of these two variables. Table 6 studies the four possible outcomes: working and studying in Column (1), working without studying in Column (2), exclusively studying in Column (3) and not working or studying in Column (4). The last group is close to the NEET category (Not in Employment, Education or Training). As expected, the share of working students strongly increases during the program year, from an already high share of 28% for the control compliers. The treatment effect on the share of working students persists in Years 1 and 2, when it amounts to 4 p.p. (14-18% of the control mean). This corresponds to reductions in the share of the other three groups, including NEETs. Interestingly, the enrollment effect of 4 p.p. for Year 1 (Table 4) is the result of an increase in working students by 6 p.p. (Table 6, Column 1) and a decrease in non-working students by 2 p.p. (Column 2).²⁵ This pattern could be explained by treated youth learning how to simultaneously work and study, so that working youth are less likely to drop out of school after the program. The possibility that treated youth developed stronger work-study habits can be another explanation for the persistent effects on enrollment.

Overall, we find empirical evidence for substantial positive treatment effects on

²⁵If we restrict the sample to applications to the first program edition, for which we have 4 years of post-program outcomes, we can explore longer run effects (See Appendix B). Four years after the program, when almost all control youth have quit school (17% are working students and 5% are students only), the program effects entirely correspond to transferring youth from the NEET group to the out-of-school working group. The program then decreases the share of NEET youth by 5 p.p. (25% of control mean).

earnings, wages, and employment, and limited effects on education after the program. We now discuss possible mechanisms leading to the positive earnings effects.

6 Mechanisms

In this section, we conduct exploratory analysis of the mechanisms driving the program effects on earnings. The program rules prevent firms from keeping participants on the same job after the end of the program year. In practice, state-owned companies face stringent rules on hiring/firing on their regular jobs and hire less than 5% of treated youth.²⁶ Therefore, the Uruguayan program gives us a setting where we can shut down the within-firm stepping-stone effects of work-study programs by which youth get hired in the firm where they work as students. Instead, the program emphasizes the importance of skills, more precisely transferable skills. We provide suggestive evidence about its effects on both the hard and soft skills of students. We further study program effects on earnings in various sectors to discuss skills sector-specificity.

The first channel by which the Uruguayan work-study program could enhance participants' *hard* skills is through on-the-job learning. The jobs offered by the program involve tasks that may enhance students' hard skills. Participants employed in program jobs are significantly more likely to read, write and use a computer every day than participants in the control group who are working (see Appendix Table E6). They are less likely to measure weights and distance, and they perform less physically demanding tasks. The second channel by which the program could enhance hard skills is through its indirect effect on formal education. As mentioned above, we find evidence that it increases the overall educational attainment of treated participants.

The work-study program states as an objective to enhance the *soft* skills of students by exposing them to a real work environment. We measure soft skills in our survey of program applicants to the 2016 edition. The survey was conducted around one year after application, when most of the program participants were still working in their program firms. Panel A of Table 7 reports treatment effects on each dimension

²⁶Using data from the first program edition, we verify that around 4% of the treated youth have ever worked in a program firm during the four years after the program.

of the Big 5 personality traits and a measure of grit, following the estimation of Equation (1).²⁷ We do not find any significant effects on four of the five personality traits, nor on grit, which has been shown to be a malleable skill (Alan et al., 2019; Ubfal et al., 2019). The only trait with a marginally statistically significant effect at the 10% level is conscientiousness, with an effect of around 10% of the standard deviation in the control group.

The questionnaire also included some specific questions on work attitudes, and on soft skills that can be useful in the workplace (e.g., the importance of working in teams, of completing tasks on time, of being punctual and flexible). Panel B of Table 7 shows statistically significant differences across treatment and control groups in two of the four dimensions. Treated students rate completing tasks on time (Column 1) and adapting fast (Column 2) significantly higher than control students. However, we do not find significant effects on the importance of punctuality (Column 4), which is confirmed by the lack of effects on a behavioral measure recording whether youth arrived to the survey interview at the scheduled time (Column 6). We also find no significant effects on the importance of teamwork (Column 3), which may be explained by the type of jobs that the program offers where social interactions are less frequent than in the control group.²⁸

To assess the economic importance of the statistically significant program effects on soft skills, we compute a back-of-the-envelope prediction of their effects on labor earnings. Using the control group survey data, we regress monthly labor earnings on the ten measures of soft skills (see Appendix Table A16). These estimates also reflect selection into employment and not only the effect of skills on earnings. We then predict the change in earnings following the soft-skill enhancement. We obtain that the predicted change in earnings is around 1% of the average earnings in the control group.²⁹ This is smaller than the Year-2 program effects on earnings, which amount to 8%.

²⁷The big 5 personality traits are measured with Likert-scale questions (15 questions in total, 3 questions for each dimension of the OCEAN Big 5 personality test). The questionnaire used is based on Pierre et al. (2014), including questions to capture the concept of grit (Duckworth et al., 2007).

²⁸Column (7) of Appendix Table E6 shows a negative program effect on meeting frequently at work with colleagues.

²⁹Alternatively, we can use the returns to soft skills estimated in the U.S (Deming, 2017). A one standard deviation increase in soft skills increases hourly wages by 4%. Thus, the program effects on conscientiousness (10% of a standard deviation) would yield wage increases of 0.4%, one order of magnitude less than the Year-2 program effects on wages (6%).

Across the board, we find mixed evidence of program effects on soft skills, but pointing to small effects. This is in line with previous research showing evidence that soft skills can be accumulated in regular jobs (Gottschalk, 2005; Adhvaryu et al., 2018), but might not be enhanced in temporary work experiences (Beam and Quimbo, 2021).

The contribution of the skill-enhancing channel to the earnings effects depends on the portability of skills acquired in program jobs. Treated youth work in stateowned companies, mainly in the civil and public banking sectors, while the majority of non-program labor market opportunities are provided in the private industry and trade sectors.³⁰ If human capital is sector-specific and skills acquired during the program are not transferable across sectors, program participation could increase earnings in the civil and banking sectors, but not in the main industry/trade sectors. Program participants may even have lower earnings in the industry/trade sector as they lag behind controls in terms of sector-specific experience. The sectorspecificity of human capital would weaken the work experience channel. To assess this mechanism, we first estimate program effects on earnings by aggregate sector (Appendix Table A17). Although estimates are noisy, we find that earnings effects are not concentrated in the sectors of the program firms. Second, we document how post-program earnings vary by program firms' sector (Appendix Table A18). Arguably, outside of the program, there are more opportunities in private banking than in the civil sector. After the program, however, we do not find statistically significant difference by program firms' sector. Consequently, we do not find evidence of sector specificity in acquired skills. This is in line with previous evidence that individuals move to occupations with similar tasks requirements and thus human capital is portable across sectors (see for example Gathmann and Schönberg, 2010).

Beyond the skill-enhancing human capital channel, program effects may be related to the *signaling* role of work experience or to the ability *learning* channel (from the worker side) mentioned in Section 3.³¹ Unfortunately, our data do not allow us to provide evidence for these channels. This should be further investigated in future research.

³⁰The administrative data provide information on whether the firm pertains to one of four aggregate sectors: industry/trade, banking, civil sector or other low-qualified sectors (construction, agriculture and domestic workers).

³¹See Cahuc et al. (2021) for empirical evidence on the signalling role of subsidized jobs.

7 Discussion

In this section, we summarize the empirical evidence on heterogeneous treatment effects and discuss potential longer-term effects of the program.

7.1 Heterogeneous effects

Gender We find strong effects of the program on post-program earnings and enrollment for both young men and women, with no evidence of treatment effect heterogeneity (see Appendix Table A19). This is a relevant finding given that most of the above-mentioned literature studying the effect of working while in school in the U.S. focuses on male samples.

Poor vs non-poor households In an effort to reduce inequalities, many government programs target exclusively poor households. As the Uruguayan work-study program offers jobs to any student regardless of household income, it allows to compare treatment effects on poor vs. non-poor households. Figure 2 and Appendix Table A10 show that the difference in earnings effects after the program is not statistically significant between vulnerable and non-vulnerable households. This is imprecisely estimated though and we cannot rule out large differences. The magnitude of the effects implies treatment effects that are 60% higher for vulnerable households. The effect on enrollment is more precisely estimated, and indicates that students from vulnerable households experience significantly higher program effects. To the extent that educational attainment increases earnings later in life, this suggests that vulnerable households might benefit more from the work-study program in the long run.

Age and baseline education In Appendix Figure A1, we plot treatment effects two years after the program by baseline education level (academic high school, technical high school, and university) and by age at program application. Unfortunately, estimates are noisy for each subgroup and we are not well-powered to detect statistically significant differences. We should then take the following comment as suggestive evidence. High-school students aged 19 at application seem to benefit the most from the program. We also find large treatment effects on the enrollment of 18 year old students initially enrolled in academic high school, and on the earnings of 18 year old university students. These subgroups are actually at the margin between secondary education and tertiary education. This suggests

that work-study programs may work better when students face pivotal schooling choices.

The last panel in Appendix Figure A1 shows treatment effects for university students, which is the target group of the U.S. Federal Work-Study program. We find similar effects of the Uruguayan work-study program on this older subgroup. The estimates also suggest that targeting the U.S. program to students enrolled in their first year of college may yield larger earnings effects.

7.2 Program effects in the longer run

In our main analysis, we pool the first three program editions and estimate effects over two years after the program for all editions. Focusing on the first program edition, we find increasing positive and significant effects up to four years after the program (see Appendix B). While this horizon is longer than usual experimental standards, an open question is whether effects would persist beyond the four post-program years. As earnings effects trend upwards in the post-program years, we may expect these effects to grow.

However, we showed that earnings effects are related to the increase in human capital acquired in school (education channel) and on the job (work experience channel). The evolution of earnings effects then depends on the rate of diminishing returns to work experience that would eventually trigger a convergence between program participants and control youth later in their working life. If we make the conservative assumption that the work experience channel eventually fades out, earnings effects will be driven by the education channel only. As our data measure the program effect late in the education investment cycle, the effect on educational attainment (+0.17 years of education) is likely to persist beyond the fourth year after the program. Consequently, earnings effects due to the education channel may be interpreted as a lower bound of the life-cycle effect of the program. To predict these education-induced earnings effects, we need an estimate of the returns to education for middle-age workers. We estimate a Mincerian wage regression using Uruguayan Continuous Household survey data for workers aged 25 to 50 (Instituto Nacional de Estadistica Uruguay, 2013). We obtain that one extra year of education increases earnings by around 10%.³² Taken at face value, this implies that the

³²See Card (1999) and Psacharopoulos and Patrinos (2018) for estimates in other countries.

program effect on education would trigger an increase of 1.7% in earnings.

8 Conclusion

In this paper, we provide the first comprehensive evidence of the effect of working while in school that uses controlled random variation in job offers. We leverage an Uruguayan program that offers jobs to students by lottery. We find that working in a program job while enrolled in school improves labor market outcomes in the following two years. We see positive and statistically significant effects on formal earnings, employment and wages.

We also find persistent positive effects on education enrollment, which suggests limited crowding out of working on studying. We find a large increase in high school enrollment during the program year, which could be explained by the enrollment conditionality of the program. However, we also find effects after the program year, when there is no binding conditionality. Moreover, we find no evidence of significant negative effects on schooling effort and outcomes. Our time-use survey indicates that students manage to work while in school by reducing time dedicated to leisure and household chores. A topic for future research is to study how the reduction of time that youth dedicate to household chores affect other household members.

We find that the human capital that students acquire in state-owned companies is transferable to private employers from other sectors. Our empirical analysis emphasizes human capital accumulation as a key channel. Nevertheless, we cannot discard a signaling or learning role of student work, which are relevant avenues for further research.

Our results support the further development of work-study programs in Uruguay, in countries sharing similar educational institutions and labor markets, and potentially beyond. We believe that the characteristics of the program we study - it offers well-paid jobs in clerical occupations and is complementary to schooling - are key ingredients of its success. Further analysis in other contexts could leverage job heterogeneity to shed light on these program design choices.

References

- ABEBE, G., S. CARIA, M. FAFCHAMPS, P. FALCO, S. FRANKLIN, AND S. QUINN (2020): "Anonymity or Distance? Job Search and Labour Market Exclusion in a Growing African City," *The Review of Economic Studies*, 88, 1279–1310.
- Acevedo, P., G. Cruces, P. Gertler, and S. Martinez (2017): "Living Up to Expectations: How Job Training Made Women Better Off and Men Worse Off," Working Paper 23264, NBER.
- Adhvaryu, A., N. Kala, and A. Nyshadham (2018): "The Skills to Pay the Bills: Returns to On-the-job Soft Skills Training," Working Paper 24313, NBER.
- ALAN, S., T. BONEVA, AND S. ERTAC (2019): "Ever Failed, Try Again, Succeed Better: Results from a Randomized Educational Intervention on Grit," *Quarterly Journal of Economics*, 134, 1121–1162.
- Alfonsi, L., O. Bandiera, V. Bassi, R. Burgess, I. Rasul, M. Sulaiman, and A. Vitali (2020): "Tackling Youth Unemployment: Evidence from a Labor Market Experiment in Uganda," *Econometrica*, 88, 2369–2414.
- ALTONJI, J. G. AND C. R. PIERRET (2001): "Employer Learning and Statistical Discrimination"," *The Quarterly Journal of Economics*, 116, 313–350.
- ARCIDIACONO, P., E. AUCEJO, A. MAUREL, AND T. RANSOM (2016): "College Attrition and the Dynamics of Information Revelation," Working Paper 22325, NBER.
- Ashworth, J., V. J. Hotz, A. Maurel, and T. Ransom (2020): "Changes across Cohorts in Wage Returns to Schooling and Early Work Experiences," *Journal of Labor Economics*. Forthcoming.
- Attanasio, O., A. Kugler, and C. Meghir (2011): "Subsidizing Vocational Training for Disadvantaged Youth in Colombia: Evidence from a Randomized Trial," *American Economic Journal: Applied Economics*, 3, 188–220.
- BEAM, E. A. AND S. QUIMBO (2021): "The Impact of Short-Term Employment for Low-Income Youth: Experimental Evidence from the Philippines," IZA Discussion Paper No. 14661.
- Blanco, G., C. Flores, and A. Flores-Lagunes (2013): "The Effects of Job Corps Training on Wages of Adolescents and Young Adults," *American Economic Reiew: Papers & Proceedings*, 103, 418–422.
- Buscha, F., A. Maurel, L. Page, and S. Speckesser (2012): "The Effect of Employment while in High School on Educational Attainment: A Conditional

- Difference-in-Differences Approach," Oxford Bulletin of Economics and Statistics, 74, 380–396.
- Cahuc, P., S. Carcillo, and A. Minea (2021): "The Difficult School-to-Work Transition of High School Dropouts: Evidence from a field experiment," *Journal of Human Resources*, 56, 159–183.
- CARD, D. (1999): "The Causal Effect of Education on Earnings," in *Handbook of Labor Economics*, ed. by O. C. Ashenfelter and D. Card, Elsevier, vol. 3, chap. 30, 1801–1863.
- CARD, D., J. KLUVE, AND A. WEBER (2017): "What Works? A Meta Analysis of Recent Active Labor Market Program Evaluations," *Journal of the European Economic Association*, 16, 894–931.
- CEPAL AND OIT (2017): "Coyuntura Laboral en America Latina y el Caribe. La transicion de los jovenes de la escuela al mercado laboral." Bol. CEPAL-OIT 17.
- CZIBOR, E., D. JIMENEZ-GOMEZ, AND J. A. LIST (2019): "The Dozen Things Experimental Economists Should Do (More of)," Southern Economic Journal, 86, 371–432.
- DAVIS, J. M. AND S. B. HELLER (2017): "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," *American Economic Review*, 107, 546–50.
- DE CHAISEMARTIN, C. AND L. BEHAGHEL (2020): "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," *Econometrica*, 88, 1453–1477.
- Deming, D. (2017): "The Growing Importance of Social Skills in the Labor Market," *Quarterly Journal of Economics*, 132, 1593–1640.
- Duckworth, A., C. Peterson, M. Matthews, and D. Kelly (2007): "Grit: Perseverance and Passion for Long-Term Goals," *Journal of Personality and Social Psychology*, 92, 1087–1101.
- Eckstein, Z. and K. I. Wolpin (1999): "Why Youths Drop Out of High School: The Impact of Preferences, Opportunities, and Abilities," *Econometrica*, 67, 1295–1339.
- ESCUDERO, V., J. KLUVE, E. L. MOURELO, AND C. PIGNATTI (2019): "Active Labour Market Programmes in Latin America and the Caribbean: Evidence from a Meta Analysis," *Journal of Development Studies*, 55, 2644–2661.
- FARBER, H. S. AND R. GIBBONS (1996): "Learning and Wage Dynamics," Quarterly Journal of Economics, 111, 1007–1047.
- Gathmann, C. and U. Schönberg (2010): "How General Is Human Capital? A TaskBased Approach," *Journal of Labor Economics*, 28, 1–49.

- Gelber, A., A. Isen, and J. B. Kessler (2016): "The Effects of Youth Employment: Evidence from New York City Lotteries," *Quarterly Journal of Economics*, 131, 423–460.
- Gottschalk, P. (2005): "Can work alter welfare recipients' beliefs?" *Journal of Policy Analysis and Management*, 24, 485–498.
- Groh, M., N. Krishnan, D. McKenzie, and T. Vishwanath (2016): "Do Wage Subsidies Provide a Stepping-Stone to Employment for Recent College Graduates? Evidence from a Randomized Experiment in Jordan," *The Review of Economics and Statistics*, 98, 488–502.
- HECKMAN, J., J. STIXRUD, AND S. URZUA (2006): "The Effects of Cognitive and Noncognitive Abilities on Labor Market Outcomes and Social Behavior," *Journal of Labor Economics*, 24, 411–482.
- Hotz, V. J., L. C. Xu, M. Tienda, and A. Ahituv (2002): "Are There Returns to the Wages of Young Men from Working While in School?" *The Review of Economics and Statistics*, 84, 221–236.
- IMBENS, G. AND C. MANSKI (2004): "Confidence Intervals for Partially Identified Parameters," *Econometrica*, 72, 1845–1857.
- Instituto Nacional de Estadistica Uruguay (2011): "Censo de Poblacion, Hogares y Viviendas, 2011," Database retrieved at https://www.ine.gub.uy/web/guest/censos1.
- ——— (2013): "Encuesta Continua de Hogares 2013," Database retrieved at https://www.ine.gub.uy/web/guest/encuesta-continua-de-hogares1.
- Jones, D., D. Molitor, and J. Reif (2019): "What Do Workplace Wellness Programs Do? Evidence from the Illinois Workplace Wellness Study," *Quarterly Journal of Economics*, 134, 1747–1791.
- KEANE, M. P. AND K. I. WOLPIN (2001): "The Effect of Parental Transfers and Borrowing Constraints on Educational Attainment," *International Economic Review*, 42, 1051–1103.
- LE BARBANCHON, T., D. UBFAL, AND F. ARAYA (2021): "Data and Code for: The Effects of Working while in School: Evidence from Employment Lotteries," American Economic Association, Inter-university Consortium for Political and Social Research https://doi.org/10.3886/E151261V1.
- Lee, D. S. (2009): "Training, Wages, and Sample Selection: Estimating Sharp Bounds on Treatment Effects," *The Review of Economic Studies*, 76, 1071–1102.

- McKenzie, D. (2017): "How Effective are Active Labor Market Policies in Developing Countries? A Critical Review of Recent Evidence," World Bank Research Observer, 32, 127–154.
- MEGHIR, C. AND M. PALME (2005): "Educational Reform, Ability, and Family Background," *American Economic Review*, 95, 414–424.
- OECD (2018): "Education at a glance: Transition from school to work (Ed. 2018)," Education statistics (database), https://doi.org/10.1787/515cb36f-en, OECD.
- Pallais, A. (2014): "Inefficient Hiring in Entry-Level Labor Markets," *The American Economic Review*, 104, 3565–3599.
- PIERRE, G., M. L. S. PUERTA, A. VALERIO, AND T. RAJADEL (2014): "STEP skills measurement surveys: innovative tools for assessing skills," Social Protection and Jobs Discussion Paper Number 1421, World Bank.
- PSACHAROPOULOS, G. AND H. A. PATRINOS (2018): "Returns to investment in education: a decennial review of the global literature," *Education Economics*, 26, 445–458.
- ROTHSTEIN, J. AND T. VON WACHTER (2017): "Social Experiments in the Labor Market," in *Handbook of Economic Field Experiments*, ed. by A. Banerjee and E. Duflo, North-Holland, vol. 2, chap. 8, 555 637.
- Ruhm, C. J. (1997): "Is High School Employment Consumption or Investment?" Journal of Labor Economics, 15, 735–776.
- Scott-Clayton, J. and V. Minaya (2016): "Should student employment be subsidized? Conditional counterfactuals and the outcomes of work-study participation," *Economics of Education Review*, 52, 1–18.
- STINEBRICKNER, R. AND T. R. STINEBRICKNER (2003): "Working during School and Academic Performance," *Journal of Labor Economics*, 21, 473–491.
- UBFAL, D., I. ARRAIZ, D. BEUERMANN, M. FRESE, A. MAFFIOLI, AND D. VERCH (2019): "The Impact of Soft-Skills Training for Entrepreneurs in Jamaica," IZA Discussion Paper No. 12325.
- U.S. Bureau of Labor Statistics (2017): "Current Population Survey 2017," Monthly tables A-16, not seasonally adjusted.
- Westfall, P. H. and S. S. Young (1993): Resampling-based multiple testing: Examples and methods for p-value adjustment, John Wiley & Sons.

FIGURES

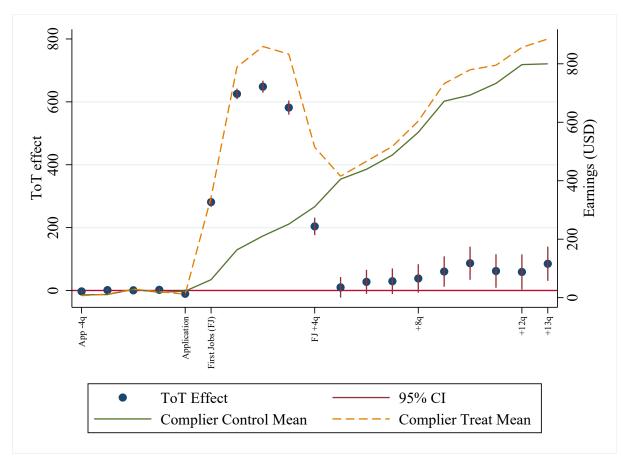
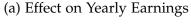


Figure 1: Quarterly earnings

Source: Administrative data.

Note: This figure plots the evolution of quarterly treatment effects (left Y-axis), and of average quarterly earnings by treatment group (right axis). We use blue dots to report treatment effects, and red vertical lines for their 95% confidence intervals. During the program year, quarterly treatment effects amount to around 600 USD. The dashed yellow (resp. solid green) line reports quarterly earnings for the treated individuals (resp. compliers in the control group). During the program year, treated individuals earn around 800 USD per quarter.

Figure 2: Treatment Effect Heterogeneity by Baseline Household Vulnerability



(b) Effect on Enrollment



Source: Administrative data.

Note: This figure shows treatment effects of the work-study program by household vulnerability at application date. Vulnerable households include households receiving a cash transfer and/or a food card (labelled as *Highly Vulnerable* in Table 1). Panel 2a shows treatment effects on yearly earnings during the program year (Year 0) and two years after the program ends (Year 2). Panel 2b shows effects on enrollment. They are obtained by two stage least squares regressions of Equation (1), where we further interact the treatment dummy with the vulnerability dummy. Vertical lines represent 95% confidence intervals.

TABLES

Table 1: Balance checks between treatment and control groups - all editions pooled

	(1)	(2)	(3)	(4)	(5)
	Cor	ntrol	Offe	Offered	
	Mean	S.D.	Mean	S.D.	p-value
Panel A. Demographic					
Female	0.58	0.49	0.60	0.49	0.15
Aged 16-18	0.71	0.45	0.72	0.45	0.88
Aged 19-20	0.29	0.45	0.28	0.45	0.88
Montevideo (Capital City)	0.49	0.50	0.55	0.50	
Panel B. Education and Social Programs Year -1					
Enrolled in Academic Secondary Education	0.49	0.50	0.48	0.50	0.51
Enrolled in Technical Secondary Education	0.22	0.41	0.22	0.42	0.56
Enrolled in University	0.15	0.36	0.16	0.36	0.32
Enrolled in Tertiary Non-University	0.01	0.11	0.01	0.10	0.68
Enrolled in Out-of-School Programs	0.02	0.14	0.02	0.14	0.54
Highly Vulnerable HH (Food Card Recipient)	0.10	0.30	0.09	0.29	0.25
Vulnerable Household (CCT recipient)	0.27	0.45	0.27	0.44	0.72
Panel C. Labor Outcomes Year -1					
Earnings (winsorized top 1%, USD)	172.29	601.28	154.19	581.75	0.22
Positive Earnings	0.15	0.36	0.15	0.35	0.83
Months with Positive Earnings	0.71	2.14	0.62	1.97	0.11
Panel D. Aggregate orthogonality test for panels A-C					
p-value (joint F-test)					0.45
Observations	87,737		2,686		90,423

Source: Administrative data and YET Application Form. Notes: the p-value reported in Column 5 is obtained from a regression of each variable on a YET job offer dummy with robust standard errors, controlling for lottery design (lottery and quota dummies) and number of applications. We do not test for differences in means for **Montevideo** since the lottery was randomized within each locality and we control for lottery design in all our specifications. We code **Enrolled in University** by using two indicators available in the administrative data: "entering a new program that year" or "taking at least two exams that year," for the first edition we do not have data on Year -1 and we use the value self-reported by participants in the application form. **p-value (joint F-test)**: corresponds to the orthogonality test in a regression of the YET job offer dummy on covariates; the regression also controls for lottery design and number of applications (coefficients not included in the F-test).

Table 2: Effect of YET on labor outcomes

	(1)	(2)	(3)	(4)
	Total	Months with	Positive	Wages
	earnings	earnings	earnings	O
	O	O	O	
Program year				
Year 0	1863.91	6.85	0.56	-23.47
	(36.85)	(0.08)	(0.01)	(2.79)
	[1004.26]	[2.76]	[0.44]	[318.87]
Post-Program years				
Year 1	86.08	-0.01	0.05	7.13
	(71.73)	(0.12)	(0.01)	(7.12)
	[1976.26]	[4.38]	[0.59]	[400.61]
	-			
Year 2	242.47	0.06	0.02	28.65
	(96.41)	(0.13)	(0.01)	(8.63)
	[2965.23]	[5.38]	[0.65]	[494.64]
	-			
Observations	90423	90423	90423	59743

Notes: Two stage least squares regressions where we instrument the YET participation dummy with a job offer dummy. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. **Total earnings**: total labor income over 12 months, winsorized at the top 1 percent of positive values and converted into U.S. dollars. **Months with earnings**: number of months over 12 months with positive income. **Positive earnings**: indicator for positive earnings in any month over 12 months. **Wages**: Total earnings divided by Months with earnings, it is missing for those who have not worked any month over the 12 months. Standard errors robust to heteroskedasticity shown in parenthesis and control complier means in brackets.

Table 3: Bounds for the ITT effects on monthly wages (post-program years)

	(1) ITT effect on wages	(2) (3) Lee bounds on wage effects		(4) Imbens and Manski 95% Confidence Interv	
		Lower	Upper	Lower	Upper
Year 1	5.49 (5.49) [410.69]	-22.13 (4.82)	23.99 (5.36)	-30.06	32.81
Year 2	22.05 (6.65) [501.88]	19.65 (6.55)	31.65 (6.58)	8.87	42.48

Notes: This table presents bounds on causal effect on wages for the "always employed" (individuals who would be employed regardless of whether they are offered the program job or not) based on the procedure described in Lee (2009). To obtain the upper bound, we trim the sample of observed wages in the offered group with the p% lower wages, where p is the ratio of the ITT effect on employment over the employment rate on the offered group. The lower bound is the symmetric case where we trim the p% higher wages. Robust standard errors shown in parenthesis and control means in brackets. We follow Imbens and Manski (2004) to construct confidence intervals for the bounds.

Table 4: Effect of YET on enrollment in education

	(1) Any Level	(2) Secondary Programs	(3) University	(4) Tertiary Non-Univ.	(5) Out-of-school Education
Program year					
Year 0	0.126	0.102	0.018	0.007	0.002
	(0.009)	(0.010)	(0.007)	(0.004)	(0.004)
	[0.731]	[0.500]	[0.203]	[0.017]	[0.023]
Post-Program years					
Year 1	0.037	0.030	0.011	0.003	-0.005
	(0.012)	(0.011)	(0.009)	(0.004)	(0.002)
	[0.608]	[0.321]	[0.265]	[0.022]	[0.015]
Year 2	0.041	0.024	0.009	0.008	0.000
	(0.012)	(0.010)	(0.009)	(0.004)	(0.002)
	[0.452]	[0.225]	[0.205]	[0.025]	[0.007]
Observations	90423	90423	90423	90423	90423

Notes: Two stage least squares regressions where we instrument the YET participation dummy with a job offer dummy. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. We code "registered at university" by using two indicators available in the administrative data: "entering a new program that year" or "taking at least two exams that year." Robust standard errors shown in parenthesis and control complier means in brackets.

Table 5: Effect of YET on study effort during the program year (Year 0)

	(1) High school enrolled	(2) Absent last week	(3) Class hs per week	(4) Study time outside school (hs per week)	(5) GPA current
Treated	0.11 (0.033)	0.042 (0.041)	-1.64 (0.75)	-2.32 (1.07)	-0.20 (0.15)
CCM	0.44	0.24	26.8	6.86	7.75
Applicants	1,272	604	604	604	604

Source: Survey.

Note: IV regression of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Class hs per week: average hours attending high school (calculated as product of reported hours per day and days per week). Study time outside school: reported hours studying at home or outside school (time-use module). GPA: reported current GPA in high school (grades range from 1 to 12). GPA standard deviation amounts to 1.6. Robust standard errors shown in parentheses.

Table 6: Effect of YET on working and studying

	(1) Work and Study	(2) Work No Study	(3) No Work and Study	(4) No Work No Study
Program year				
Year 0	0.57	-0.01	-0.45	-0.12
	(0.01)	(0.01)	(0.01)	(0.00)
	[0.28]	[0.15]	[0.45]	[0.12]
Post-Program years Year 1	0.06 (0.01) [0.33]	-0.01 (0.01) [0.25]	-0.02 (0.01) [0.27]	-0.03 (0.01) [0.14]
Year 2	0.04	-0.02	0.00	-0.02
rear 2	(0.01)	(0.01)	(0.01)	(0.01)
	[0.29]	[0.36]	[0.16]	[0.18]
Observations	90423	90423	90423	90423

Notes: Two stage least squares regressions where we instrument the YET participation dummy with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Study: registered at public secondary education, out-of-school programs, tertiary or university. Work: positive income for any month during the year. Robust standard errors shown in parenthesis and control complier means in brackets.

Table 7: Effects during the program: soft skills

	(1)	(2)	(3)	(4)	(5)	(6)			
	Panel A. Big 5 and grit								
	Open	Conscientious	Extrav Scale 1-5	Agreeable	Neurotic	Grit			
Treated	-0.018 (0.033)	0.063 (0.037)	0.013 (0.052)	-0.028 (0.038)	0.029 (0.059)	-0.043 (0.039)			
CCM Control sd	4.03 0.49	3.81 0.57	3.60 0.73	3.69 0.53	3.41 0.83	3.73 0.58			
		Panel B. S	oft Skills Re	lated to Lab	or Market				
	Finish on time	Adapts fast	Teamwork important Scale 1-5	Punctual	Index (1-4)	Unpunctual Interview			
Treated	0.090 (0.046)	0.11 (0.047)	0.068 (0.047)	0.025 (0.056)	0.073 (0.033)	-0.009 (0.010)			
CCM Control sd	4.07 0.68	3.99 0.65	4.22 0.68	4.16 0.82	4.11 0.49	0.03 0.15			
Individuals	1,272	1,272	1,272	1,272	1,272	1,272			

Source: Survey.

Note: IV regression of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

Online Appendix

The Effects of Working while in School: Evidence from Employment Lotteries

Thomas Le Barbanchon (Bocconi University) Diego Ubfal (World Bank)
Federico Araya (Uruguayan MLSS)

The online appendix is divided in six sections from A to F. In Section A, we include extra figures and tables mainly testing the robustness of our results to different specifications. In Section B, we replicate the main figures and tables in the paper restricting the sample to Edition 1 of the program, which we observe up to 4 years after the program. In Section C, we provide additional institutional details of the YET work-study program and the Uruguayan education system. In Section D, we explore selection into applying to the program by comparing youth who apply to the program with the eligible population of youth in Uruguay. In Section E, we provide further empirical evidence using our survey data. Finally, in Section F, we explain in detail how we compute the share of summer jobs over total employment while in school, in the US and in Uruguay.

A Extra Figures and Tables

Table A1: YET edition by edition

Edition	1	2	3	4	5
Application Date	May 2012	May 2013	May 2014	Sep 2015	Sep 2016
Applications	46,544	43,661	31,990	21,159	27,143
Applicants	46,008	42,643	30,969	20,537	26,137
Job Offers Made	754	981	955	722	843
Jobs Started	592	754	718	614	652
Jobs Completed	549	686	660	540	615
Sector: Civil	0.82	0.73	0.70	0.64	0.62
Sector: Industry/Trade	0.02	0.04	0.04	0.04	0.04
Sector: Banking	0.16	0.23	0.26	0.32	0.34
Localities	51	64	67	65	63

Source: YET Program Administrative Data. There is a downward trend in applications over time, probably due to the program spending more resources in advertising in the first two editions, and due to longer lottery registration time windows in the first two editions. However, we do not see any notable trend in applicants' characteristics over time (see Appendix D).

Table A2: Effect of YET offer on YET participation (first stage)

	(1)	(2)	(3)	(4)
		YET Partio	cipation	
	All Editions	Edition 1	Edition 2	Edition 3
Won Lottery	0.77	0.79	0.77	0.77
J	(0.01)	(0.01)	(0.01)	(0.01)
Fstat	9,401	2,818	3,305	3,302
Observations	90,423	36,181	30,410	23,832

Notes: OLS regressions of YET participation in Year 0 on the offer to take the YET job (winning the lottery). Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Robust standard errors shown in parenthesis. Results for the first edition are obtained with the same method used to select unique applications as in the other editions. Results are almost identical if we keep the first application.

Table A3: Effect of YET on labor outcomes - no controls

	(1)	(2)	(3)	(4)
	Total	Months with	Positive	Wages
	earnings	earnings	earnings	
Program year				
Year 0	1845.36	6.82	0.56	-34.04
	(39.96)	(0.08)	(0.01)	(2.81)
	[1022.81]	[2.79]	[0.44]	[329.44]
Post-Program years				
Year 1	64.65	-0.03	0.04	2.78
	(74.60)	(0.12)	(0.01)	(7.39)
	[1997.69]	[4.41]	[0.59]	[404.96]
Year 2	222.16	0.04	0.02	25.64
	(99.51)	(0.13)	(0.01)	(8.98)
	[2985.54]	[5.40]	[0.65]	[497.64]
Observations	90423	90423	90423	59743

Notes: Replicates Table 2 without including control variables.

Table A4: Effect of YET on labor outcomes - clustering at locality level

	(1)	(2)	(3)	(4)
	Total	Months with	Positive	Wages
	earnings	earnings	earnings	Ü
Program year				
Year 0	1863.91	6.85	0.56	-23.47
	(171.53)	(0.36)	(0.04)	(7.57)
	[1004.26]	[2.76]	[0.44]	[318.87]
Post-Program years				
Year 1	86.08	-0.01	0.05	7.13
	(72.63)	(0.12)	(0.01)	(4.98)
	[1976.26]	[4.38]	[0.59]	[400.61]
Year 2	242.47	0.06	0.02	28.65
	(62.88)	(0.09)	(0.01)	(6.80)
	[2965.23]	[5.38]	[0.65]	[494.64]
Observations	90423	90423	90423	59743

Notes: Replicates Table 2, but clustering the standard errors at the locality level.

Table A5: Effect of YET on labor outcomes - no winsorizing

	(1) Total earnings	(2) Months with earnings	(3) Positive earnings	(4) Wages
Program year	10/1.00	ć 0 5	0.54	0.4.05
Year 0	1861.33 (38.27)	6.85 (0.08)	0.56 (0.01)	-24.27 (2.94)
	[1016.66]	[2.76]	[0.44]	[320.49]
Post-Program years				
Year 1	102.79	-0.01	0.05	9.35
	(75.14) [1990.57]	(0.12) [4.39]	(0.01) [0.59]	(7.59) [402.49]
Year 2	271.29	0.06	0.02	32.11
lear 2	(101.53)	(0.13)	(0.01)	(9.33)
	[2987.91]	[5.38]	[0.65]	[497.57]
Observations	90423	90423	90423	59743

Notes: Replicates Table 2, without winsorizing the dependent variables used in Column (1) and Column (4).

Table A6: Effect of YET on labor outcomes - ITT effects

	(1) Total earnings	(2) Months with earnings	(3) Positive earnings	(4) Wages
Year 0	1442.06	5.30	0.44	-20.15
	(31.72)	(0.08)	(0.01)	(2.40)
	[1143.87]	[3.10]	[0.47]	[327.55]
Year 1	66.60	-0.00	0.04	5.49
	(55.55)	(0.09)	(0.01)	(5.49)
	[2129.01]	[4.62]	[0.61]	[410.69]
Year 2	187.60	0.05	0.02	22.05
	(74.71)	(0.10)	(0.01)	(6.65)
	[3065.88]	[5.47]	[0.66]	[501.88]
Observations	90423	90423	90423	59743

Notes: Replicates Table 2, but presents ITT effects rather than ToT effects. Control means are presented in brackets.

Table A7: Effect of YET on enrollment in education - no controls

	(1) Any Level	(2) Secondary Programs	(3) University	(4) Tertiary Non-Univ.	(5) Out-of-school Education
Program year					
Year 0	0.131	0.100	0.026	0.007	0.002
	(0.010)	(0.012)	(0.010)	(0.004)	(0.004)
	[0.727]	[0.503]	[0.196]	[0.017]	[0.023]
Post-Program years					
Year 1	0.041	0.028	0.018	0.003	-0.005
	(0.012)	(0.012)	(0.011)	(0.004)	(0.002)
	[0.603]	[0.323]	[0.258]	[0.022]	[0.015]
Year 2	0.044	0.022	0.015	0.008	0.000
Tear 2	(0.011)	(0.011)	(0.010)	(0.004)	(0.002)
	[0.448]	[0.227]	[0.199]	[0.025]	[0.007]
Observations	90423	90423	90423	90423	90423

Notes: Replicates Table 4 without including control variables.

Table A8: Effect of YET on enrollment in education - ITT effects

	(1)	(2)	(3)	(4)	(5)
	Any	Secondary	University	Tertiary	Out-of-school
	Level	Programs		Non-Univ.	Education
Year 0	0.097	0.079	0.014	0.005	0.002
	(0.007)	(0.008)	(0.006)	(0.003)	(0.003)
	[0.694]	[0.464]	[0.206]	[0.018]	[0.020]
Year 1	0.028	0.023	0.009	0.002	-0.004
	(0.009)	(0.009)	(0.007)	(0.003)	(0.002)
	[0.573]	[0.293]	[0.258]	[0.024]	[0.013]
Year 2	0.032	0.018	0.007	0.006	0.000
	(0.009)	(0.008)	(0.007)	(0.003)	(0.002)
	[0.447]	[0.208]	[0.217]	[0.025]	[0.008]
Observations	90423	90423	90423	90423	90423
	_				

Notes: Replicates Table 4, but presents ITT effects rather than ToT effects. Control means are presented in brackets.

Table A9: Effect of YET on study effort during the program year (Year 0) Controlling for school grades in previous year

	(1)	(2)	(3)	(4)	(5)
	High school	Absent	Class hs	Study time	GPA
	enrolled	last week	per week	outside school	current
				(hs per week)	
Treated	0.11	0.032	-1.51	-2.12	-0.003
	(0.033)	(0.041)	(0.74)	(1.04)	(0.10)
CCM	0.44	0.25	26.6	6.65	7.55
Applicants	1,272	604	604	604	604

Source: Survey.

Note: IV regression of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts) and school grades in previous year. Class hs per week: average hours attending high school (calculated as product of reported hours per day and days per week). Study time outside school: reported hours studying at home or outside school (time-use module). GPA: reported current GPA in high school (grades range from 1 to 12). GPA standard deviation amounts to 1.6. Robust standard errors shown in parentheses.

Table A10: Effect of YET by baseline household vulnerability

	(1)	(2)	(3)	(4)
	Total	Enrolled	Total	Enrolled
	Earnings	Any level	Earnings	Any Level
	Ye	ar 0	Ye	ear 2
Treated (T)	1791.08	0.11	206.98	0.02
	(43.62)	(0.01)	(114.91)	(0.01)
T * Vulnerable	269.17 (80.78)	0.06 (0.02)	131.57 (209.30)	0.07 (0.03)
Vulnerable	417.39	-0.11	-120.42	-0.17
	(192.44)	(0.04)	(324.87)	(0.04)
CCM No Vulnerable Observations	1068.84	0.74	3142.59	0.49
	90,423	90,423	90,423	90,423

Notes: two stage least squares regressions where we instrument the YET participation dummy and the interaction with Vulnerable dummy with a job offer dummy and the corresponding interaction. Controls for lottery design (lottery and quota dummies) and number of applications are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Robust standard errors shown in parenthesis. **Enrolled Any Level**: Enrolled in any level of public education. **Total earnings**: total labor income over 12 months, winsorized at the top 1 percent of positive values and converted into U.S. dollars. **Vulnerable**: dummy for being in a household receiving a cash transfer (26% of the sample) the month before the program. **CCM**: control complier mean of the dependent variable among those who are not vulnerable.

Table A11: Effects during the program: expected returns to education

	(1)	(2)	(3)	(4)
	Expected proba	bility (in%) of find	ling a job wher	n one finishes
	3 years of high school	6 years of high school	tertiary education	university
Treated	-2.15 (1.39)	3.09 (1.41)	1.11 (1.13)	-0.39 (0.87)
CCM	42.7	70.6	84.7	93.9
Applicants	1,272	1,272	1,272	1,272

Source: Survey.

Note: IV estimates of Eq. (1). The dependent variable is the answer to the following survey question: "What is the probability of finding a job when one finishes...?" Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

Table A12: Effect of working and studying during program year

	(1) Total Earns.	(2) Pos. Earns.	(3) Wages	(4) Enrolled Any Level
		Y	ear 2	
Work and Study	423.09 (167.69)	0.04 (0.02)	56.91 (17.16)	0.07 (0.02)
CCM Observations	2318.25 90,423	0.57 90,423	465.72 59,743	0.46 90,423

Notes: Two stage least squares regressions where we instrument a dummy variable taking the value of one if youth work (positive yearly earnings) and study (enrolled at any level) during the program year with the offer to take the YET job. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Robust standard errors shown in parenthesis and control complier means in brackets. The control complier mean is obtained as the difference between the average outcome for compliers offered a YET job and the estimated local average treatment effect. To recover the former from the data we assume that the average outcome for and the share of always takers is the same among those offered and not offered a YET job.

Table A13: Main Effects selecting one application at random (treated edition)

	(1) Total Earns.	(2) Pos. Earns.	(3) Wages	(4) Enrolled Any Level
		Y	ear 2	
Treated	212.38 (93.30)	0.02 (0.01)	26.01 (8.28)	0.04 (0.01)
CCM Observations	2990.25 90,423	0.66 90,423	496.84 59,708	0.45 90,423

Notes: This table replicates our main results for Year 2 using a different procedure to a select a unique application for each candidate. We select one application at random among all applications for participants in the control group, and among the applications in a treated edition for participants in the treated group.

Table A14: Main Effects using multiple applications

	(1) Total Earns.	(2) Pos. Earns.	(3) Wages	(4) Enrolled Any Level
		Ye	ear 2	
Treated	189.94	0.02	24.67	0.03
	(101.46)	(0.01)	(9.32)	(0.01)
CCM	3039.74	0.66	499.71	0.47
Observations	122,195	122,195	81,297	122,195

Notes: This table replicates our main results for Year 2 keeping all applications submitted for each individual and clustering standard errors at the applicant level.

Table A15: Effects of YET - double-reweigthed ever-offer estimator

	(1)	(2)	(3)
	Year 0	Year 1	Year 2
Earnings	1826.77	99.32	278.86
	(40.45)	(86.10)	(117.59)
Enrolled Any Level	0.131	0.036	0.044
	(0.011)	(0.014)	(0.014)
Observations	84230	84230	84230

Notes: This table presents the DREO estimator of de Chaisemartin and Behaghel (2020). The DREO accounts for potential bias due to larger shares of compliers in the offer group of randomized waiting-list designs. The Earnings results compare well to Column (1) of Table 2, the Enrollment results to Column (1) of Table 4.

Table A16: Soft skills and earnings in the control group

	(1)
	Total income (monthly dollars)
Onon	30.25
Open	
Conscientious	(18.64) 29.62
Conscientious	
Extraversion	(18.43) 13.90
Extraversion	
A amagalalamaga	(12.14) 2.582
Agreeableness	
Noundia	(17.67) -15.94
Neurotic	
Cuit	(10.68) -2.609
Grit	
Timiah aa an tima	(18.38) -7.444
Finishes on time	
A 1(((13.93)
Adapts fast	20.56
TT 1 ' ' '	(13.17)
Teamwork important	-6.122
D (1	(15.06)
Punctual	-18.67
	(11.67)
Observations	632
	0.029
R-squared	122.8
mean of depvar	201.6
sd of depvar	201.0

Source: Survey.

Note: OLS regression of monthly earnings on soft skills measures in the control group. Robust standard errors shown in parentheses.

Table A17: Effect of YET on earnings by aggregate sector

	(1)	(2)	(3)	(4)
	Total	Total	Total	Total
	earnings	earnings	earnings	earnings
	Industry	Civil	Banking	Low Qual.
Program year				
Year 0	-511.32	1816.89	599.31	-41.33
	(31.92)	(32.00)	(27.64)	(5.23)
	[821.60]	[107.53]	[24.45]	[51.27]
Post-Program years				
Year 1	61.98	22.34	40.69	-43.09
	(65.39)	(34.24)	(18.49)	(11.66)
	[1639.07]	[196.94]	[38.50]	[93.57]
Year 2	124.37	75.17	74.38	-16.88
	(87.49)	(51.44)	(30.01)	(19.75)
	[2489.82]	[262.81]	[55.12]	[117.71]
Observations	90423	90423	90423	90423

Notes: Two stage least squares regressions where we instrument the YET participation dummy with the offer to take the YET job. In Column (1), the dependent variable is earnings in firms belonging to the Industry/Trade sector. Columns (2) to (4) are resp. for the Public Sector (excluding public employees in public industries or banks), the Banking sector, and for Low-qualification jobs (construction, domestic workers and rural workers). Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Earnings are winsorized at the top 1 percent of positive values and converted into U.S. dollars. Robust standard errors shown in parenthesis and control complier means in brackets.

Table A18: Effect of sector of program job on earnings

	(1)	(2)	(3)	(4)
	Total	Total	Enrolled	Enrolled
	earnings	earnings	Any level	Any level
	Year 0	Year 2	Year 0	Year 2
Program job in Banking	476.92	315.03	0.02	0.01
	(54.92)	(228.12)	(0.02)	(0.03)
Program job in Industry	209.02	-48.60	0.03	0.02
	(185.33)	(567.27)	(0.03)	(0.06)
Control Mean (Civil Sec.)	2861.55	3138.07	0.87	0.50
Observations	2,061	2,061	2,061	2,061

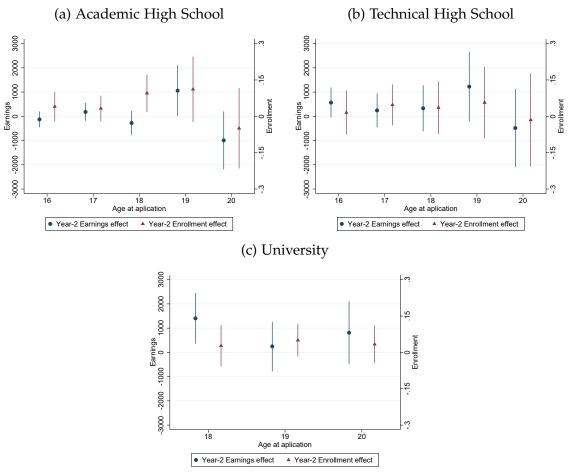
Notes: OLS regressions of earnings and enrollment in education on the sector of the program job. The sample is restricted to treated participants and the omitted reference category is the civil sector, which include all state-owned companies that are not in banking or industry. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Robust standard errors shown in parenthesis.

Table A19: Treatment Effect Heterogeneity by Gender

	(1)	(2)	(3)	(4)	
	Total	Enrolled	Total	Enrolled	
	Earnings	Any level	Earnings	Any Level	
	Ye	ar 0	Year 2		
Treated (T)	1694.18	0.14	275.26	0.05	
	(62.58)	(0.02)	(175.32)	(0.02)	
T * Female	277.10	-0.02	-53.53	-0.01	
	(77.05)	(0.02)	(207.41)	(0.03)	
Female	-262.82 (12.54)	0.01 (0.00)	-788.48 (25.03)	0.02 (0.00)	
p-value T+T*Female=0	0.00	0.00	0.05	0.02	
Observations	90,423	90,423	90,423	90,423	

Notes: two stage least squares regressions where we instrument the YET participation dummy, and its interaction with a female dummy with a job offer dummy and the corresponding interaction. Controls for lottery design (lottery and quota dummies) are included. Covariates include gender, a dummy for age 18 or less at application, a dummy for receiving cash transfers, baseline earnings and dummies for baseline education type. Robust standard errors shown in parenthesis. **p-value**: p-value of the test that the treatment effect for females is zero (sum of the treated and interaction coefficients).

Figure A1: Treatment Effect Heterogeneity by Baseline Education and by Age



Note: This figure shows treatment effects of the work-study program by education level and by age, both at application date. Panel A1a restricts the estimation to students enrolled in academic high schools at the application date. Panel A1b to those enrolled in technical high schools. Panel A1c to university students. Within each education group, we estimate treatment effects on earnings two years after the program (circles, left-hand axis), and on enrollment in any education institution (triangles, right-hand axis). They are obtained by two stage least squares regressions of Equation (1), where we have further interacted the treatment dummy with age at application. Vertical lines represent the 95% confidence interval.

B Results for Edition 1 only

ToT effect

Application

Application

Application

First Jobs (F1)

First Jobs (F1)

Application

Application

Application

Application

First Jobs (F1)

First Jobs (F1)

Application

Complier Control Mean

ToT Effect

Complier Control Mean

First Jobs (ISO)

Farmings (USD)

Figure B1: Quarterly earnings. Edition 1

Note: This figure replicates Figure 1, but restricts the sample to the first cohort of applicants to the program.

Table B1: Balance checks - Edition 1, unique application, first application

	(1)	(2)	(3)	(4)	(5)
	Cor	ntrol	Offe	ered	
	Mean	S.D.	Mean	S.D.	p-value
Panel A. Demographic					
Female	0.58	0.49	0.60	0.49	0.26
Aged 16-18	0.70	0.46	0.71	0.45	0.44
Aged 19-20	0.30	0.46	0.29	0.45	0.44
Montevideo (Capital City)	0.52	0.50	0.58	0.49	
Panel B. Education and Social Programs Year -1					
Enrolled in Academic Secondary Education	0.49	0.50	0.47	0.50	0.48
Enrolled in Technical Secondary Education	0.20	0.40	0.22	0.42	0.16
Enrolled in Tertiary Non-University	0.01	0.11	0.01	0.11	0.72
Enrolled in Out-of-School Programs	0.02	0.14	0.02	0.13	0.26
Highly Vulnerable HH (Food Card Recipient)	0.09	0.29	0.08	0.27	0.46
Vulnerable Household (CCT recipient)	0.25	0.43	0.25	0.43	0.69
Panel C. Labor Outcomes Year -1					
Earnings (winsorized top 1%, USD)	168.24	566.46	151.02	512.61	0.26
Positive Earnings	0.16	0.37	0.18	0.38	0.44
Months with Positive Earnings	0.75	2.19	0.67	1.93	0.14
Panel D. Aggregate orthogonality test for panels A-C					
p-value (joint F-test)					0.04
Observation	45,254		754		46,008

Source: Administrative Data and YET Application Form. Notes: the p-value reported in Column 5 is obtained from a regression of each variable on a YET job offer dummy with robust standard errors, controlling for lottery design (lottery and quota dummies) and number of applications submitted. We do not test for differences in means for **Montevideo** since the lottery was randomized within each locality and we control for lottery design in all our specifications. **p-value (joint F-test)**: corresponds to the orthogonality test in a regression of the YET job offer dummy on covariates, the regression also controls for lottery design and number of applications submitted (coefficients not included in the F-test).

Table B2: Effect of YET on labor outcomes. Edition 1

	(1) Total earnings	(2) Months with earnings	(3) Positive earnings	(4) Wages
Program year				
Year 0	1768.63	6.88	0.55	-6.79
	(57.98)	(0.13)	(0.01)	(4.30)
	[893.75]	[2.79]	[0.45]	[278.93]
Post-Program years				
Year 1	256.81	0.10	0.07	26.77
	(126.14)	(0.21)	(0.02)	(11.57)
	[1977.17]	[4.89]	[0.63]	[360.56]
Year 2	505.56	0.13	0.02	58.49
	(174.51)	(0.23)	(0.02)	(14.63)
	[2955.81]	[5.95]	[0.69]	[451.30]
Year 3	625.61	0.22	0.01	65.06
	(215.54)	(0.24)	(0.02)	(17.72)
	[3825.41]	[6.39]	[0.72]	[543.31]
Year 4	1050.59	0.49	0.05	71.01
	(264.50)	(0.23)	(0.02)	(21.63)
	[4945.20]	[6.98]	[0.75]	[657.28]
Observations	46008	46008	46008	34090

Notes: This table replicates Table 2, but restricts the sample to the first cohort of applicants to the program.

Table B3: Bounds for the ITT effects on wages (post-program years) Edition 1

	(1) ITT effect on wages	(2) (3) Lee bounds on wage effects		(4) Imbens and Manski 95% Confidence Interval		
		Lower	Upper	Lower	Upper	
Year 1	21.32 (9.20) [379.19]	-13.84 (7.66)	46.35 (8.84)	-26.44	60.90	
Year 2	45.93 (11.50) [467.29]	45.93 (11.50)	54.11 (11.42)	27.01	72.89	
Year 3	51.68 (14.05) [566.58]	51.68 (14.05)	51.68 (14.05)	28.57	74.80	
Year 4	56.68 (17.26) [682.32]	6.93 (14.37)	80.98 (17.15)	-16.71	109.19	

Notes: This table replicates Table 3, but restricts the sample to the first cohort of applicants to the program.

Table B4: Effect of YET on enrollment in education. Edition 1

	(1)	(2)	(3)	(4)	(5)
	Any Level	Secondary Programs	University	Tertiary Non-Univ.	Out-of-school Education
	Levei	Tiograms		Non-Onv.	Education
Program year					
Year 0	0.087	0.066	0.022	0.000	-0.004
	(0.019)	(0.019)	(0.013)	(0.006)	(0.007)
	[0.724]	[0.508]	[0.181]	[0.022]	[0.028]
Post-Program years					
Year 1	0.009	0.024	-0.005	0.005	-0.013
icai i	(0.022)	(0.021)	(0.016)	(0.008)	(0.004)
	[0.599]	[0.324]	[0.245]	[0.027]	[0.021]
Year 2	0.012	0.023	-0.007	-0.002	-0.006
	(0.022)	(0.019)	(0.017)	(0.007)	(0.004)
	[0.511]	[0.219]	[0.266]	[0.030]	[0.013]
Year 3	-0.000	-0.003	-0.000	-0.005	0.007
	(0.022)	(0.017)	(0.018)	(0.007)	(0.005)
	[0.482]	[0.185]	[0.274]	[0.031]	[0.005]
Year 4	-0.005	0.002	-0.006	-0.007	0.008
	(0.019)	(0.016)	(0.009)	(0.007)	(0.005)
	[0.226]	[0.152]	[0.045]	[0.029]	[0.003]
Observations	46008	46008	46008	46008	46008

Notes: This table replicates Table 4, but restricts the sample to the first cohort of applicants to the program.

Table B5: Effect of YET on working and studying. Edition 1

	(1)	(2)	(3)	(4)
	Work	Work	No Work	No Work
	and Study	No Study	and Study	No Study
Program year Year 0	0.52 (0.02) [0.30]	0.04 (0.02) [0.15]	-0.43 (0.01) [0.43]	-0.12 (0.01) [0.12]
Post-Program years Year 1	0.05 (0.02) [0.35]	0.01 (0.02) [0.28]	-0.04 (0.02) [0.25]	-0.02 (0.01) [0.12]
Year 2	0.03	-0.01	-0.02	-0.00
	(0.02)	(0.02)	(0.02)	(0.02)
	[0.34]	[0.35]	[0.17]	[0.14]
Year 3	0.01	0.00	-0.01	-0.00
	(0.02)	(0.02)	(0.02)	(0.02)
	[0.34]	[0.38]	[0.14]	[0.14]
Year 4	-0.00	0.05	-0.00	-0.05
	(0.02)	(0.02)	(0.01)	(0.02)
	[0.17]	[0.57]	[0.05]	[0.20]
Observations	46008	46008	46008	46008

Notes: This table replicates Table 6, but restricts the sample to the first cohort of applicants to the program. For 2017 we do not have the data on taking two exams, and therefore, the mean of university registration is underestimated (this applies to year 4).

C Institutional details

C.1 The Uruguayan work-study program

The work-study program "Yo Estudio y Trabajo" (YET) offers positions in 77 localities, which include almost all the main cities in Uruguay. According to the 2011 Census, Uruguay has a population of 3.3 million divided in 19 departments and 298 localities, with around 60 localities with more than 5,000 inhabitants classified as cities (Instituto Nacional de Estadistica Uruguay, 2011).

Program applications are completed online or using a computer at an employment center and, if selected, applicants must show proof of enrollment from an educational institution certifying a minimum level of attendance (240 hours), an official identification card and the electoral card if older than eighteen. Upon selection, the no formal employment requirement is cross-validated with social security data and proof of enrollment is required every three months. Upon enrollment, students aged 16-17 receive information about how to obtain work permits.

The program remuneration is fixed at four times the minimum tax unit used in Uruguay, which means 13,360 pesos per month for a 30-hour-per-week job in January 2016. Pregnant women and mothers of kids below the age of 4, who represent around 4% of the lottery applicants, are entitled to wages that are 50% higher.

Students are allowed to re-apply from one edition to the next according to the following rules. Those who start a program job are not allowed to participate in a later edition, while those who do not start one are allowed to apply again without receiving any priority.

C.2 Educational system in Uruguay

Since 2008, general secondary education is compulsory for youth aged 12-17 years old. It encompasses six years of instruction, divided into two three-year cycles. The second cycle is aimed at youth aged 15-17 years old and has a course load from 34 to 36 weekly hours. Gross enrollment rates in 2015 were 96% for the first cycle and 82% for the second cycle, while completion rates were below 50%, with very high repetition rates (Source: "Anuarios Estadísticos de Educación del Ministerio de Educación y Cultura y Departamento de Estadística.") There are two possible

tracks: the academic track, which is in general regarded as more prestigious, and the technical track. Regarding higher education, there are no tuition fees at the State university.

D Program Applicants vs Youth Population

Table D1 describes selection into program application using public data from the 2011 Uruguayan Population Census and from the 2013 wave of the continuous household survey (Instituto Nacional de Estadistica Uruguay, 2011, 2013). The Population Census conducted in Uruguay in 2011 registered 255,338 youth aged 16 to 20 (Column 1). Only 132,968 (54%) of them were attending school (Column 2). If we consider this number as the population eligible to participate in the program, then we have an application rate of 34.6 percent in the 2012 edition of the program. Two caveats are in order with this estimate. First, candidates could register into school in 2012 in order to apply to the program, which means that we overestimate the application rate. Second, some students in Column (2) worked formally for more than 90 days, which would lead us to underestimate the application rate. The second bias is probably moderate though, as only 7 percent of youth attending school earned positive income in a formal job (contributing to social security). In Column (3), we report the characteristics of the population of applicants - as declared on their application forms - to the 2012 edition.

Columns (2) and (3) allow to compare the characteristics of the eligible population and of the applicants, which are overall quite similar. Women and youth aged 19-20 are just slightly over-represented in the applicants' sample. We also see a share of applications in Montevideo larger than the fraction of people living there, which can be linked to the fact that participants are willing to move to the capital in order to work there. Finally, the share of youth coming from highly vulnerable households (those receiving a social food card) is similar between the applicant pool and the general population.

Column (4) presents the characteristics of the average applicants across the first three editions of the program, our main sample, we see a slight increase in the share of women, and younger teenagers in comparison to the first edition, but overall the composition of applicants does not vary much over time and it is not very different from that of the general population of this age.

Table D1: Characteristics of youth in Uruguay

	(1)	(2)	(3)	(4)
	Census	Census	YET	YET
	All	Studying	First Ed.	Ed. 1-3
	2011	2011	2012	2012-2014
				·
Female	0.49	0.55	0.58	0.60
Age 16-18	0.62	0.72	0.70	0.72
Age 19-20	0.38	0.28	0.30	0.28
Montevideo	0.38	0.42	0.52	0.49
Enrolled	0.54	1.00	1.00	1.00
Highly Vulnerable Household*	0.12	0.08	0.09	0.09
Worked formally last month*	0.14	0.07	0.07	0.06
Individuals	255,338	132,968	46,008	90,423
Applications			46,544	122,195

Source: Census 2011, YET Application Forms and Continuous Household Survey 2013 (ECH).

Notes: **Census Studying**: sample restricted to those who reported being currently attending an educational institution. **Montevideo**: based on locality of residence in Columns (1) and (2), and on locality for which they submitted the application in Columns (3) and (4). **Enrolled**: currently attending an educational institution. We impute a value of one to YET participants since everyone reported being enrolled at the application stage. **Highly Vulnerable Household**: respondent lives in a household receiving TUS food card. **Worked Formally Last Month**: for Columns (1) and (2) we use an indicator for reporting positive income in the month before the survey in a job that contributes to social security (formal). For Columns (3) and (4) we use an indicator for having positive income in the social security data the month before the application to the program. * Values reported in Columns (1) and (2) are from the 2013 household survey (ECH) since information is not available in the census.

E Survey results for the program year of Edition 5

In this section, we describe in greater detail what happens during the program year, more precisely just before the program jobs end (9-12 months after the lottery). For some dimensions, such as education and labor market outcomes, we then document the exact content of the program, and compliance to the program rules.

Table E1 shows that, among survey respondents, the control group and the group of youth receiving a program job offer are overall balanced on baseline characteristics.

Table E2 reports the effect of being offered a program job on employment, educational enrollment and total income. This table draws the big picture of the treatment group situation around the end of the program. Overall the estimates are in line with the evidence from administrative data at the same horizon. By the end of the program, the treatment group still experiences a significant increase in employment rates by 48 p.p out of a mean of 27 percent in the control group. The enrollment rate in education is also significantly higher in the treatment group by 9 p.p. (while 3 out of 4 youth are enrolled in education in the control group). Beyond marginal distributions, we obtain a significant increase in the share of students working and studying, the main objective of the program. Conversely, the program decreases the share of young youth who are neither in employment, education, or training (NEETs) by 12 p.p., which represents 63 percent of the mean for compliers in the control group. Column (5) reports the treatment effect on total monthly income converted in dollars at the exchange rate at the time of the survey. Treated students earn \$142 more on average, which means that the program more than doubles the monthly income of youth.

Table E3 presents treatment effects on whether students are studying in public or private institutions. Conditionally on being enrolled, there are no effects on the type of schools students are enrolled at the end of the program year.

Tables E4 to E6 describe the employment experiences of program applicants: their employers, their jobs and their tasks, respectively. The estimation samples are restricted to employed youth, so results can be affected by selection and should be interpreted as descriptive evidence. Consistent with the program description above and with its objectives, employment is almost exclusively formal in the treatment

Table E1: Balance check - respondents to the survey of the 5th edition

	(1)	(2)	(3)	(4)	(5)
	Con		Offe		
	Mean	sd	Mean	sd	p^+
Observations	632		640		
p-value F test*					0.35
Panel A. Demographics					
Female	0.64	0.48	0.62	0.49	0.35
Age	17.72	1.41	17.80	1.42	0.42
Number of kids	0.03	0.17	0.02	0.16	0.53
Father completed high school	0.28	0.45	0.31	0.46	0.30
Mother completed high school	0.41	0.49	0.41	0.49	0.76
More than 10 books at home	0.48	0.50	0.49	0.50	0.49
Panel B. Education and Social Programs					
School: hours per day	5.49	1.65	5.47	1.45	0.70
School: morning shift	0.42	0.49	0.48	0.50	0.10
School: afternoon shift	0.42	0.49	0.37	0.48	0.06
School: evening shift	0.16	0.37	0.15	0.35	0.72
School: Secondary Academic	0.61	0.49	0.54	0.50	0.04
School: Secondary Technical	0.25	0.43	0.27	0.44	0.50
School: Non-Formal Education	0.01	0.12	0.03	0.16	0.62
School: Teacher's College	0.01	0.09	0.02	0.13	0.19
School: Tertiary	0.01	0.10	0.03	0.16	0.01
School: University	0.11	0.31	0.13	0.33	0.52
Enrolled the year before the program (Sec or Tert.)	0.93	0.25	0.94	0.23	0.37
Repeated grade once in primary school	0.13	0.33	0.14	0.35	0.87
Household Receives Cash Transfer	0.19	0.39	0.16	0.36	0.33
Household Recipient of Food Card	0.12	0.33	0.11	0.31	0.32

Source: Survey and administrative data on applications.

Note: + p-value reported in column (5) is obtained from a regression of each variable on being selected in the lottery with robust standard errors and controlling for locality dummies, quota dummies, and number of applications. *p-value corresponding to the joint-hypothesis test in a regression of the treatment indicator on all variables presented in the table, the regression also controls for locality and quota dummies, and number of applications.

Table E2: Effects during the program: employment and education status.

	(1) Employed	(2) Study	(3) Work & Study	(4) NEET	(5) Tot. income month, \$
Treated	0.472	0.084	0.435	-0.121	140.5
	(0.031)	(0.028)	(0.030)	(0.023)	(13.64)
CCM	0.269	0.748	0.207	0.190	123.4
Applicants	1,272	1,272	1,272	1,272	1,272

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses. CCM: Control Complier Mean.

Table E3: Effects during the program: public vs private education.

	(1) Study	(2) Public School
	A	any Level
Treated	0.084 (0.028)	-0.005 (0.014)
CCM Applicants	0.748 1,272	0.956 996

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses. CCM: Control Complier Mean.

group, while almost one third of the control group is employed in informal jobs (defined as those that do not contribute to social security). Column (2) of Table E4 shows that 94% of treated teenagers report being employed in the public sector, while in the control group less than 1 out of 5 applicants are working in that sector. This is consistent with the information in the program website on the list of employers. Survey respondents in the treatment group report that their main employers are: the National Bank (22%), the state-owned electricity company (19%), the state-owned telephone company (9%) and the state-owned oil and gas company (6%). These four largest employers hire 56% of the treatment group. Similarly, treated employees are significantly more likely to work in larger firms (larger than 50 employees), in the manufacturing industry, in the financial services and public services (industry classification in the survey is more detailed than in the administrative data). In a nutshell, the program crowds out small, informal employers from the retail trade industry, which is the main employer type in the control group.

Table E4: Effects during the program: employers type

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Formal	Public	Small firm	Manuf.	Retail	Fin.	Public
		Employer	< 50		Trade	services	services
Treated	0.284	0.769	-0.409	0.189	-0.406	0.360	0.077
	(0.040)	(0.037)	(0.048)	(0.034)	(0.045)	(0.032)	(0.038)
CCM	0.690	0.176	0.621	0.101	0.437	0.000	0.127
Applicants	587	587	577	587	587	587	587

Source: Survey.

Note: OLS estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

Industry classification differs in the survey and in the administrative data. For example, state-owned companies producing electricity are classified in the manufacturing industry in the survey, and in the civil sector in the administrative data.

Table E5 shows that treated youth are more satisfied with their job. We see a statistically significant increase by almost two thirds of a standard deviation in a job satisfaction index. Column (2) of Table E5 also shows that the share of part-time work (less than 29 hours per week) is significantly higher in the treatment group. This translates into a lower total monthly wage. More importantly, (log) hourly wages paid to treated students are significantly higher than those paid to control group workers.

Table E5: Effects during the program: jobs type

	(1)	(2)	(3)	(4)
	Job	Part-time	Total	Hourly
	satisf.	work	wages	wage
	(scale 1-5)	< 29 hours	month, dollars	log, dollars
Treated	0.638	0.321	-44.46	0.173
	(0.105)	(0.051)	(18.55)	(0.057)
	2.664	0.050	260 5	2 211
CCM	3.664	0.350	360.5	2.311
Control sd	1.067	0.477	213	0.672
Applicants	587	587	587	573

Source: Survey Data.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

In Table E6, we describe the occupations and tasks performed by employed youth. Consistently with the industries of the program employers, treated youth are much more likely to work as clerks: 93 percent of treated youth are clerks compared to 42 percent in the control group. Consequently, treated youth are much more likely to read, write and use computers on a daily basis in the workplace (Columns 2 to 4). Treated youth are less likely to measure weights or distances during their workday (Column 5). They report that their work is less physically demanding (Column 6): we see a decrease in half a standard deviation in an index capturing how physically demanding the job is.³³ Surprisingly, treated employees declare that they have less frequent interactions with their colleagues, this could be due to the fact that they work in larger firms. Although their job is closer to office work, they might be less likely to work in teams (Column 7).

Table E8 yields unique information on how the increase in working time due to the program crowds out other activities. The program increases youth weekly working time by almost 11 hours. Hours worked in the treatment group are more than double those in the control group.³⁴ We do not find evidence of work crowding

³³Table E7 provides further details on the job tasks: treated youth read more pages and are less likely to carry heavy loads.

³⁴Hours worked measured in the time-use survey reach almost 20 hours in the treatment group. This is slightly lower than the range stated on the program rules (20-30), and it is because some youth already left their program jobs by the time of the survey and report zero hours worked.

Table E6: Effects during the program: occupation & tasks

	(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Clerical			Computers	Measuring	Physically	Freq.
	occupation	Reading	Writing	every day	weights,dist.	demand.	meetings
						(scale 1-10)	colleagues
Treated	0.511	0.220	0.121	0.448	-0.128	-1.482	-0.171
	(0.045)	(0.048)	(0.049)	(0.048)	(0.043)	(0.274)	(0.050)
CCM	0.421	0.608	0.608	0.403	0.253	4.372	0.365
Control sd	0.487	0.499	0.495	0.486	0.450	2.789	0.489
Applicants	587	587	587	587	587	587	587

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

Table E7: Effects during the program: more details on tasks of employed youths

	(1) Pages read	(2) Pages written	(3) Carry > 25 kg
Treated	2.459	0.552	-0.147
	(1.334)	(0.619)	(0.041)
CCM	5.922	1.521	0.236
Control sd	11.77	4.614	0.444
Applicants	587	587	587

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

out or crowding in study time. The positive effect of the program on enrollment and the negative effect on study hours conditional on being enrolled cancel each other out. The main result in Table E8 is that wage employment crowds out both home production (Column 4) and leisure time (Column 5).³⁵ Leisure time decreases by 14 percent and time dedicated to household chores decreases by 50 percent.³⁶

Table E8: Effects during the program: time use

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
	Time (hours per week)							
	Working	Studying in or out of school	Commuting	Household chores	Leisure	Sleeping	Eating	
Treated	10.34 (1.421)	-2.046 (1.571)	2.002 (0.900)	-2.805 (0.665)	-4.499 (1.766)	-0.258 (1.293)	-1.530 (0.741)	
CCM	9.511	20.19	5.867	5.998	33.47	58.64	10.70	
Indiv.	1,272	1,272	1,272	1,272	1,272	1,272	1,272	

Source: Survey.

Note: IV estimates of Eq. (1). Controls for lottery design are included. The time-use survey questions are daily, we convert answers into weekly measures. Covariates include school shift dummies (either morning or afternoon shifts). Robust standard errors shown in parentheses.

³⁵The effects on work, household chores and leisure are robust to adjusting the p-values for the 7 hypotheses tested in this table. Those on commuting and eating lose statistical significance with the adjustment.

³⁶We do not find effects on sleeping time and there is a marginally statistically significant reduction on the time dedicated to eating (1.4 hours per week). Furthermore, we do not find evidence of program effects on youth health. Although few respondents report them, we do not find any significant treatment effect on the time spent visiting physicians or hospitals. This is confirmed by another direct question about health complications in the survey, where no effects are detected, and by the absence of effects on mortality rates registered in the administrative data.

F Summer jobs vs. employment while in school

In this Section, we explain how we compute the contribution of summer jobs to the overall employment of teenagers enrolled in school for the US and Uruguay.

Summer jobs have been the focus of recent papers in the US. We estimate the incidence of summer jobs on the overall employment of 16-19 year-old teenagers enrolled in school. Summer jobs are not easy to isolate from aggregate employment and education statistics. If we define summer jobs as jobs starting and ending within the summer, we need detailed data on labor market transitions and on enrollment transitions to identify them. Instead, we focus on summer employment (June-July-August in the US), which is a larger category that includes summer jobs. Some summer employment starts before the summer or ends after it.

We use aggregate statistics from the 2017 Current Population Survey (U.S. Bureau of Labor Statistics, 2017). From Table A-16 published in the website of the Bureau of Labor and Statistics, 37 we compute the employment rate of teenagers (16-19) enrolled in school, excluding summer months (June-July-August), and we obtain a share of 23%. The employment rate of enrolled teenagers remains stable over the summer months, probably because of a composition effect: the enrollment rate during the summer drops from 83% to 52%. As teenagers enrolled during the year who take summer jobs probably declare themselves as non-enrolled over the summer, we need to correct our estimates of summer employment for teenagers who regularly attend school. We then assume that the entire summer increase in jobs held by teenagers who report themselves as non-enrolled over the summer is due to teenagers enrolled in non-summer months. A priori, this yields an upper bound estimate of the employment rate of the enrolled population, which then amounts to 31%. Summer employment then contributes to 31% of yearly employment (= 0.31/(0.31 + 3*0.23)). This number is that reported in the introduction.

We also propose an alternative and less conservative estimate of summer jobs contribution. With aggregate monthly data, we assume that summer jobs correspond to the net increase in jobs over the summer months. As the employment rate increases from 23% to 31%, the net increase is 8 percentage points. Then we obtain a

³⁷Not seasonally adjusted, Table A-16: Employment status of the civilian noninstitutional population 16 to 24 years of age by school enrollment, age, sex, race, Hispanic or Latino ethnicity, and educational attainment

yearly contribution of summer jobs of 8% (= (0.31 - 0.23)/(0.31 + 3 * 0.23)).

We compute the contribution of summer employment in Uruguay using our administrative data on applicants. We take the ratio between the total number of youth working in summer months (Dec-Feb) over the total number of youth who work from the first of July to the next June after they apply to the program. This calculation gives us a share of summer jobs equal to 28%, which is constant for all cohorts of the program (2012-2015).