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1 Introduction

The World Health Organization reported 1,420,000 road traffic deaths in 2016. Furthermore,

road traffic mortality is the leading cause of death for people between the ages of 15 to 29

worldwide ( [26]). In the United States, the economic impact of road traffic accidents is

estimated in the hundreds of billions of dollars ( [5]). The OECD cites excessive speed as

the number one road safety problem in most countries ( [23]). A recent field experiment

quantifies the relationship between speed and negative outcomes ( [24]). Following a 10

mph increase in speed limits, affected freeways experienced a 3-4 mph increase in travel

speed which is associated with 9-15 percent more accidents and 34-60 percent more fatal

accidents ( [24]). Furthermore, faster speeds have negative externalities such as elevated

concentrations of carbon monoxide (14-25 percent), nitrogen oxides (9-16 percent), ozone

(1-11 percent) and higher fetal death rates around the affected freeways (9 percent) ( [24]).

With the hope of reducing the negative consequences of traffic, automation is poised to

drastically change transportation. While currently pioneered by Tesla, even mass producing

car companies such as BMW( [31]), Ford ( [29]), GM ( [28]), and Volvo ( [30]) expect fully

automated models on the road by 2021. This technology will be particularly disruptive be-

cause automated models will be operating on the same roads with traditional human drivers.

Furthermore, this mixed-agency driving environment will be a reality before policy makers

understand, let alone implement, effective policy measures. What policies will be most

effective in promoting cooperative human behavior in mixed-agency driving environments?

Policy levers that reduce driving speed and/or increase road safety in general can have

immense societal benefit. This focus is related to a long tradition of studying human co-

operation. Sanctions are highly effective in enforcing social norms ( [11], [12], [19], [21],

and [20]). A recent field experiment shows that external punishment (along with monitor-

ing) can decrease bribing behavior in education ( [6]). Developing social norms through

moral suasion is also a common way to induce pro-social behavior. Another field experiment

testing the policy effectiveness in the domain of energy demand shows that moral suasion and

economic incentives produce substantially different policy impacts ( [17]). As they show, in

settings where common identity is lacking, punishment is particularly salient in encouraging

cooperative behavior ( [25]).

A central concern for economists and policymakers focused on driving safety is to un-

derstand what type of incentive is effective in this application. Unsurprisingly, there is a

close relationship between cooperative driving behavior and exogenous punishment. For

example, a 35 percent decrease in roadway troopers was accompanied with a decrease in

citations and a significant increase in injuries and fatalities ( [10]). In addition, congestion
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tariffs in London can reduce accident rates ( [14]). However, social pressures can also have

an impact on driving behavior. Drivers in Tsingtao, China had less traffic violations when

they received text messages with comparisons of other driving behaviors within, and outside

of, the social group ( [9]). Endogenous intra-group pressure can be particularly effective in

enforcing a social norm. For example, study in Kenya shows that placing messages inside

long-distance minibuses encouraging passengers to speak up against unsafe driving reduced

insurance claims by one-half to two-thirds ( [15]). Importantly, to the best of our knowledge

there are no studies that address the issue of incentives and punishment in environments

with sizable proportions of both human-driven and driverless cars.

In this paper, we use a theoretical and experimental approach to analyze the effect

of different policies in reducing driving speeds with mixed-agency environments. This is

currently the only approach available to researchers. While automation will drastically

affect road safety, people driving on today’s roads are only interacting with other human

drivers. Therefore, we are investigating policy effectiveness of an economic environment that

doesn’t currently exist. While this may seem premature, policies encouraging safe driving

are particularly time-sensitive. Since driving is the most deadly activity that most humans

participate in, we need to understand the complex interaction between human and automated

drivers before they become a reality. Society as a whole will incur a great cost if we wait for

the existence of these mixed-agency environments before we start experimenting with which

policies are most effective.

We develop a game theoretic model of a driving scenario where agents choose different

driving speed styles, one of which is to allow their car to drive automatically. For each

individual driver, faster speeds lead to higher potential payoffs and higher probabilities of

being in an accident. With risk-neutral (or slightly risk-averse) drivers, the fastest driving

speed is a dominant strategy. However, faster driving styles increase the probability that all

drivers are involved in an accident. This means that faster driving styles generate a negative

externality on the population, and individuals’ choices can free-ride off of the safety provided

by others’ safer driving styles. Hence, it is possible that governmental regulation may be

helpful in promoting cooperation in terms of safe driving choices.

This model is used to parametrize the Control condition of a laboratory experiment. The

observed behavior in the Control condition is compared with the behavior in three treat-

ment conditions meant to mimic possible policy interventions building on our knowledge of

human cooperation. Because humans respond to framing and social comparisons, a Framing

condition uses associative language to encourage cooperative driving behavior (this closely

follows [22]). In addition, we ran two treatment conditions using punishment: Exogenous and

Endogenous punishment. The Exogenous condition is the same as the Control with the ad-
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dition that fast driving subjects have the possibility of incurring an exogenously determined

financial penalty for choosing fast driving styles. The Endogenous punishment condition also

includes a probabilistic fine, but the fine amount is determined by contributions by other

drivers.

Our main finding is that the Endogenous punishment mechanism is the most effective

policy to influence driving behavior, by deterring the most dangerous forms of driving. This

is particularly interesting because we do not observe any change in behavior in the Exogenous

punishment condition, despite facing the same probability of a fine from fast driving. The

salience of our endogenous punishment mechanism is in alignment with findings in other

problems of strategic uncertainty. For example, allowing monetary exchange systems to en-

dogenously emerge can support a social norm of cooperation in large groups ( [4] and [7]). In

addition, previous research suggests that people are responsive to their “moral responsibility”

in settings where each others’ actions affect the population ( [18]). In this previous study,

as in our work, subjects are more responsive to tackling a cooperation problem themselves

rather than delegating the task to an exogenous party. Also, the Endogenous condition com-

bines monetary and social sanctions, which are typically salient in promoting cooperation

( [21]). Finally, this result is also related to generous selling behavior in satisfaction guar-

antee exchange systems ( [2]) as well as the importance of intra-group pressures to enforce

good driving behavior ( [15]). Allowing subjects to have agency in the punishment process

shifts the moral responsibility to solve the problem endogenously. 1

Interestingly, the average speed, and thus total payoffs do not change under Endogenous

punishment. Our data suggest the following interpretation. Endogenous punishment reduces

the number of fast drivers which, in turn, incentivizes would-be automated drivers into faster

(manual) driving choices. This result is consistent with the evidence that some car safety

measures do not save lives [1] because of more aggressive driving when they adjust to the

security provided by seat belts or ABS brakes.

2 Theory

We model the availability of a completely autonomous car able to transport people without

human intervention. Such an operation mode requires the driverless car to take actions

whenever they risk colliding with another car. On a road with driverless and human cars,

human drivers may free-ride off of the fact that driverless cars will prioritize safety over

1Although we see punishment choices decrease over time, driving behavior is consistently affected in all
rounds. That is, our results are consistent with the findings that there are long-run benefits of punishment
mechanisms ( [13]).
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speed.

What policies can mitigate this free-riding problem? To address this, we introduce a

game that is a stylized representation of the problem under consideration. Key features of

our model are density-dependent utility functions for both free-riding and careful drivers,

including the possibility of collisions, and a formulation of the benefit in terms of travel

time. In this section, we concern ourselves with the theoretical understanding of the model

predictions, in order to have a proper scenario against which the experimental findings can

be discussed. This framework thus opens the way to an experimental investigation of human

driving behavior in the presence of driverless cars (section 3).

2.1 The game

We denote by Si the average speed of an agent choosing driving style i ∈ {A, S, F} (A stands

for Automated, S stands for Slow, and F for Fast). We assume that the driving style of

each action can be ordered in the following manner:

SF > SS > SA > 0

If xi denotes the proportion of type i drivers, then the Average Speed of a population is

given by the following equation:

AS = xFSF + xSSS + xASA

Let pi denote the probability that a type i driver is involved in a crash.

pi = aiAS

We assume that the probability of a crash depends on the driving style in the following

manner:

aF > aS > aA

With this notation, the time needed to reach one’s destination is determined by the following

formulation:

T =

{
1
Si

with probability 1− pi
∞ with probability pi

We can now introduce the expected utility of a driver for each driving style choice.

E(U(F )) = U (SF ) (1− aFAS) , E(U(S)) = U (SS) (1− aSAS) , E(U(A)) = U (SA) (1− aAAS)
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The vector x = (xF , xS, xA) for which a driver is indifferent between choosing F , S, and A

is:

E(U(F )) = E(U(S))

E(U(A)) = E(U(S))

Assuming that all drivers share the same preferences, for a driver to be indifferent between

choosing F , S, or A, the following must be true:

U (SF ) (1− aFAS) = U (SS) (1− aSAS) ;U (SA) (1− aAAS) = U (SS) (1− aSAS) (1)

Remark 1 From equation 1 it is clear that an interior equilibrium is a solution of a linear

equation system with two equations and one unknown, AS. Thus, if all players share the

same preferences, an interior equilibrium occurs for a set of measure zero of the parameter

values of the model.

In order to derive experimental hypotheses, we further specify the model. The utility of

drivers is a CRRA function of the inverse of the time it takes to reach one’s destination.

u = U
(
T−1

)
= T−γ, γ > 0

This means that the expected utility of a driver for each driving style choice is

E(U(F )) = SγF (1− aFAS) ;E(U(S)) = SγS (1− aSAS) ;E(U(A)) = SγA (1− aAAS) .

The above model depends on the following parameters: the average speeds SF , SS and

SA, the crash probabilities aF , aS and aA and the exponent γ in the utility function. A

general analysis of the model for any value of the parameters is beyond the scope of this

paper, so from now on we will focus on a set of choices for the average speeds and crash

probabilities that we will later use in the experiments. This set of parameters, in which γ is

still free as we cannot control risk preferences in the experiment, is as follows:

SF = 2, SS = 1, SA = 0.5; aF = 0.35, aS = 0.3, aA = 0

Suppose participants are heterogeneous in CRRA and γi follows a distribution with CDF

G (.). Then, we have the following

Proposition 1 Under CRRA preferences and for our parameter values:
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1. there are no beliefs about speed AS, and no value of γi ∈ (0, 1) for which it is optimal

to choose S.

2. if there is a positive density of drivers for every γi ∈ (0, 1), there is no equilibrium

where drivers only choose A or only F .

Proof. In Appendix A.

Remark 1 and Proposition 1 lead to our first two hypotheses.

Hypothesis 1 The proportion of subjects choosing S will be lower than those choosing A

and F .

Hypothesis 2 Drivers in a population will never completely coordinate on choosing A or

F .

2.2 Theoretical implications of policy conditions

The game and hypotheses derived in the previous section will serve as our Control treatment

of the experiment. The main interest of the paper is to test the effectiveness of different policy

conditions (treatments) in terms of reducing the proportion of F drivers and the average

speed of the population (AS). In this section, we derive theoretical results suggesting that

behavior may be affected by different types of punishment (Exogenous and Endogenous)

as well as the framing of the environment (Framing).

Exogenous (punishment). The government imposes imperfectly enforced fines for drivers

choosing F . This policy imposes a (probabilistic) penalty for choosing action F , which has

been shown to impact real-world driving behavior ( [10] and [14]). Denote the penalty

amount to be P and the probability it is imposed to be p. Then we can establish the

following proposition with resulting hypothesis.

Proposition 2 A policy using monetary punishment will decrease the proportion of drivers

choosing F and the value of AS.

Proof. In Appendix A.

Hypothesis 3 The proportion of participants in the experiment choosing F will be lower in

Exogenous than in Control.

Framing. Some drivers who knowingly violate a social sanction (or norm) may incur

a psychological cost. Such social sanctions have been shown to influence behavior in lab
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settings ( [22]) as well as in real-world driving environments ( [9] and [15]). Suppose drivers

are primed before their choice of the strategy to think that welfare of others is reduced if

they choose F . Then, if they are the kind of people that suffer a cost when violating the

social norm of not harming others, they would anticipate experiencing a negative utility

when choosing F . Denote this disutility as P (slightly abusing notation), which makes their

utility when choosing F to be

E(U(F )) = U ((SF − P ))
(
1− aFASPi

)
.

With this revised utility function, we can establish the following proposition and hypoth-

esis

Proposition 3 A policy that uses social sanctions will decrease the proportion of drivers

choosing F and the value of AS.

Proof. Analogous to the proof of Proposition 2 where p = 1 because the driver knowingly

violates a social sanction.

Hypothesis 4 The proportion of participants in the experiment choosing F will be lower in

Framing than in Control.

Endogenous (punishment). At a personal cost, drivers can increase the punishment

cost, P , incurred by F drivers. In this way, the severity of the punishment is endogenously

selected. This combination of social sanctioning along with monetary punishments has been

shown to support mutual cooperation in large groups ( [4], [7], [18], and [21]). In our setting,

it may be in a driver’s best interest to contribute to the punishment fund if they believe that

it will significantly decrease the average speed of the population. Denoting the punishment

as P , again slightly abusing notation, the utility of a self-interested player when choosing F

would be

E(U(F )) = U ((SF − P ))
(
1− aFASPi

)
This revised utility function allows us to establish the following:

Proposition 4 A policy using both monetary punishment and social sanctions will decrease

the proportion of drivers choosing F and the value of AS.

Proof. Analogous to the proof of Proposition 3.

Hypothesis 5 The proportion of participants in the experiment choosing F will be lower in

Endogenous than in Control.
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3 Experimental design

3.1 Participants and sessions

Experiments were conducted at a large public university. Each subject interacted in one

policy condition. We conducted 8 sessions for each condition for a total of 32 experimental

sessions. Each session consisted of between 8 and 12 subjects and lasted no longer than 2

hours. Appendix B further describes the data for all 326 subjects.

3.2 Task

After instructions and a test of comprehension, subjects interacted in a multi-round decision-

task. The number of rounds was randomly determined to be between 17 and 25 and the

subjects did not know which period would be the final one in their experiment.2 In each

round, subjects made two incentivized choices - (1) a driving style choice and (2) a guess

about the driving style choices of other participants in the room. The remainder of this

subsection describes the choice environment that is the same across policy conditions. Screen

shots for all conditions are in Appendix D.

In each round, every subject chose whether to drive Fast (F ), Slow (S), or Auto (A). The

payoffs for each choice were consistent with the parametrization described in the previous

section. Because subjects were paid for one randomly selected round, the payoffs were scaled

(by 14). In this way, payoffs were represented as GBP during the task. Thus, conditional

on not being in an accident in a given round, the subjects who chose F , S, and A earned

£28, £14, and £7, respectively. In addition, the probabilities of being in an accident were

aF = 0.35, aS = 0.3, aA = 0 times the average speed, AS.

In each round, every subject submits a guess about the proportion of subjects in the

room who would choose F , S, and A. They did so by using the computerized “triangle

tool” which allowed subjects to make their guess by dragging a point within a triangle where

each vertex of the triangle represented a guess where 100% of the subjects in the room were

choosing one driving style. The amount a subject earned from their guess was £5 minus the

difference between their guessed distribution of driving styles and the actual distribution of

driving styles in that round. A perfect guess would earn £5 and a very inaccurate guess

would earn £0.

The triangle tool was also used by subjects to calculate the probability of an accident for

2Starting in round 18, there was a 2
3 chance that another round would be played. This process continued

until round 25 was reached, which was determined to be the last round. Subjects were told that “The
experiment will last between 18 and 25 rounds. The exact number of rounds is randomly determined by the
computer.” A computer error stopped one session in round 17 instead of round 18.
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each driving style conditional on a possible distribution of driving styles. The probability

of being in an accident (and earning £0) for each driving style was updated when the

subject changed their guess about the population. This way, subjects could compare the

probabilities of accidents for different driving style choices when facing different beliefs about

the distribution of drivers in the population.

Starting in round 2, subjects had complete information about their choices, the choices

of other participants in the room, and their payoffs in all previous rounds. In addition, a

picture was shown in the top-left of the screen which showed the distribution of driving style

choices in the previous round as well as that subject’s guess about the distribution in the

previous round.

After every subject submitted their driving choice and their guess about the distribution

of the other subjects in the room, they were shown a results screen summarizing the past

round. This screen showed the subject’s earnings based on the accuracy of their guess about

the population. In addition, each subject was informed about their probability of being in an

accident, the realization of this event, as well as their total payoff from their driving choice.

3.3 Policy conditions

Control. Subjects participated in the experiment described above. Subjects chose be-

tween driving “Fast”, “Slow”, or “Auto” and were incentivized to guess the distribution

of these driving types within the “population” of other subjects.

Framing. Subjects chose between driving “Reckless”, “Slow”, or “Safe” and were

incentivized to guess the distribution of these driving types within the “community”

of other subjects. This type of associative framing can increase contribution rates in

public goods games ( [22]).

Exogenous (punishment). Subjects who chose F had a 25% chance to pay a fine of

£4. This fine only applied to subjects who were not in an accident in that round.

Endogenous (punishment). Subjects who chose F had a 25% chance to pay a fine of

£X. X was determined every round in the following way. When subjects were making

a driving style choice and their guess about the population, they also had to choose

whether to contribute £1 into a fund used to punish F drivers. The fine amount (X)

equals the number of subjects who contributed to the punishment fund times 2.5. This

fine only applied to subjects who were not in an accident in that round.
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4 Results

4.1 Driving style choices

How do the policies affect driving style choices? Table 1 shows the percentage of driving

style choices observed across all rounds separated by condition. Overall, the profile of driving

choices in Framing and Exogenous are not significantly different from Control (Pearson’s

Chi-Squared p-value = 0.665 and 0.144, respectively). Endogenous shows the largest effect

on behavior with a profile of choices that is significantly different from Control at the 0.016

level. Endogenous has a decrease in the slowest (Auto) and fastest drivers along with an

increase in the moderate driving style choice (Slow).

Table 1: Choices by condition

Policy % Fast % Slow % Auto

Control 46.69% 19.71% 33.60%

Framing 45.98% 21.00% 33.01%

Exogenous 48.74% 20.79% 30.48%

Endogenous 44.50% 23.69% 31.82%

To further explore the two-level effect of the Endogenous condition, we use a multinomial

logistic regression. This will examine the relationship between the (nominal) driving style

choice and the effect of the three policy conditions relative to Control. This process conducts

2 independent binary logistic regressions in which one driving style is used as a reference

which the other 2 driving styles are regressed against. For expositional clarity, we designate

the Slow driving style as the reference. In doing so, the model is expressed by the following

two equations:

ln

(
prob(Auto)

prob(Slow)

)
= Framing · β1,A +Exogenous · β2,A +Endogenous · β3,A +XβX,A + β0,A

ln

(
prob(Fast)

prob(Slow)

)
= Framing · β1,F +Exogenous · β2,F +Endogenous · β3,F + XβX,F + β0,F

X is a vector of subject-specific and period-specific control variables. We control for the

effect of earnings and accidents in the proceeding round (“PrevEarn” is an integer between

11



-1 and 28, “PrevAcc”= 1 if the subject experienced an accident in the previous round) as

well as a dummy variable tracking early and late rounds (“LateRounds”= 1 in rounds 11

and greater). These variables may be important if subjects are learning to play the game

differently over time. After the choice periods, we collected data on subject-specific vari-

ables. Subjects made incentivized decisions in a multiple-price list to elicit risk preferences

( [16];“Risk” ∈ [0, 10] where 10 is very risk-loving). Subjects were asked their sex (“Sex” =

1 if male), whether they had ever been issued a driver’s license (“Driving” = 1 if yes), and

whether they felt they became better at earning money during the experiment (“Learning”

= 1 if yes).

Maximum likelihood estimates are shown in Table 2.3 Our main coefficients of interest

are connected to the dummy variables for each policy. These estimated coefficients show the

log odds that a certain driving style (either Auto or Fast) is chosen relative to the reference

driving style (Slow). For example, consider the Endogenous coefficient in column 1a of Table

2 (−0.238). This means that the log odds of choosing Auto as opposed to Slow is decreased

by 0.238 when comparing driving behavior in Control to driving behavior in Endogenous.

We fit one model using only the policy variables (columns 1a and 1b), one model including

our control variables (2a and 2b), and one model including our control variables as well as

interactions between Risk and Sex (3a and 3b).

3Subject-level fixed effects are not included because each subject experiences only one condition.
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Table 2: The effect of policy conditions on driving choices (relative to Slow)

Auto Fast Auto Fast Auto Fast

(1a) (1b) (2a) (2b) (3a) (3b)

Framing −0.081 −0.079 −0.065 −0.090 −0.213 −0.901∗∗∗

p = 0.418 p = 0.406 p = 0.528 p = 0.358 p = 0.461 p = 0.002
Exogenous −0.151 −0.010 −0.048 0.019 0.186 −0.919∗∗∗

p = 0.120 p = 0.912 p = 0.634 p = 0.843 p = 0.517 p = 0.002
Endogenous −0.238∗∗ −0.231∗∗∗ −0.275∗∗∗ −0.196∗∗ −0.879∗∗∗ −1.738∗∗∗

p = 0.011 p = 0.009 p = 0.005 p = 0.031 p = 0.002 p < 0.001
——————————————————————————————————————————

Risk −0.247∗∗∗ −0.017 −0.298∗∗∗ −0.158∗∗∗

p < 0.001 p = 0.420 p < 0.001 p < 0.001
Sex 0.195∗∗∗ 0.570∗∗∗ 0.412∗∗∗ 0.162

p = 0.007 p< 0.001 p = 0.004 p = 0.227
PrevEarn −0.045∗∗∗ 0.065∗∗∗ −0.044∗∗∗ 0.064∗∗∗

p < 0.001 p < 0.001 p< 0.001 p< 0.001
PrevAcc −0.959∗∗∗ 1.374∗∗∗ −0.936∗∗∗ 1.343∗∗∗

p < 0.001 p < 0.001 p < 0.001 p < 0.001
Learning −0.223∗∗∗ 0.057 −0.276∗∗∗ 0.025

p = 0.003 p = 0.401 p < 0.001 p = 0.717
Driving 0.291∗∗∗ 0.071 0.251∗∗∗ 0.041

p < 0.001 p = 0.309 p = 0.002 p = 0.563
LateRounds 0.397∗∗∗ 0.145∗∗ 0.396∗∗∗ 0.147∗∗

p < 0.001 p = 0.029 p < 0.001 p = 0.027
Framing*Risk 0.116∗ 0.141∗∗

p = 0.063 p = 0.019
Framing*Sex −0.690∗∗∗ 0.418∗∗

p = 0.001 p = 0.034
Exogenous*Risk −0.021 0.190∗∗∗

p = 0.737 p = 0.002
Exogenous*Sex −0.429∗∗ 0.211

p = 0.042 p = 0.272
Endogenous*Risk 0.144∗∗ 0.279∗∗∗

p = 0.027 p < 0.001
Endogenous*Sex 0.143 0.917∗∗∗

p = 0.468 p < 0.001
Constant 0.533∗∗∗ 0.862∗∗∗ 1.687∗∗∗ −0.642∗∗∗ 1.843∗∗∗ 0.202

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p = 0.352

Akaike Inf. Crit. 14,185 14,185 12,705 12,705 12,633 12,633

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Endogenous has a consistent and significant effect on driving behavior in all 3 models.

Both Fast and Auto drivers transition into Slow as we compare Control with Endogenous.

Result 1 Compared to Control, subjects in Endogenous are more likely to choose Slow than

Auto. In addition, subjects are more likely to choose Slow than Fast.

This result suggests that the Endogenous policy is effective at deterring the worst kind

of behavior (fast drivers). However, in doing so, Endogenous also promotes slightly more

dangerous behavior from people who were originally avoiding it because of the previous

higher presence of dangerous drivers. As mentioned in the introduction, this is reminiscent

of the evidence that seat belts do not save lives [1] because drivers adjust their behavior to

the higher safety awarded by the seat belts.

A superficial reading of column 3b could suggest that Framing and Exogenous may

encourage Fast drivers into Slow drivers. However, the other two models appear inconsistent

with this result. This is due to the fact that model 3b includes interactions of different

variables with the condition, and hence those coefficients should be read as the impact of

the condition on the excluded category. So the correct interpretation is that the average

treatment effect of Framing and Exogenous is null in terms of turning Fast into Slow

drivers, but that masks some positive and some negative interactions with demographic

characteristics, which we discuss below. Furthermore, Framing and Exogenous do not

influence drivers who, in the Control environment would choose Auto.

It is surprising to notice that Exogenous and Endogenous have drastically different

impacts on driving behavior. Both policies are focused on promoting cooperation through

the punishment of Fast drivers. The only difference was that the amount of the punishment

was decided by costly investment within the population. This result mimics the intuition

behind previous findings which demonstrate how social norms are more deeply incorporated

when they are formed endogenously ( [2], [4], [7], [13], [15], [18], [21]).

Some estimates of control variables are of interest when they are consistent across models

2 and 3. Subjects more likely to choose Auto (compared to Slow) are more risk-averse,

male, owned a driver’s license, and did not get better at earning points by the end of the

experiment. In addition, Auto was preferred to Slow when a subject earned less and did not

have an accident in the preceding period, and during the later rounds of the experiment.

Fast was preferred to Slow when a subject earned more in the preceding period and during

the later rounds of the experiment.

The interaction variables from model 3 are also interesting. The effects of Framing and

Exogenous on driving behavior were dependent on a subject’s sex. For instance, under

these policies, males were more likely to choose Fast and less likely to choose Auto when

14



compared to their female counterparts. In Endogenous, males were more likely to choose

Fast. Furthermore, all three policies seemed to have a larger effect on subjects with higher

risk aversion.

4.2 Average Speed

The individual driving style choices determine the population’s Average Speed. This is an

important outcome because it determines the probability of an accident for the Fast and Slow

drivers. More generally, Average Speed measures the general safety of a driving environment.

How do the policies affect a population’s average speed?

A linear regression studies the relationship between Average Speed and the effect of the

three policy conditions. In line with Table 2, we also control for a range of other variables.

Unlike in Table 2, Average Speed is a group-level outcome, which means the control variables

are aggregated to reflect the group-level values, rather than individual-level values. “Risk

(Avg)” is the average of a group’s “Risk” measure used in Table 2. Similarly, “Sex (Prop)” is

the proportion males in a group. Average earnings and proportion of accidents in proceeding

rounds are also controlled for (“PrevEarn (Avg)” and “PrevAcc (Prop)”). The proportion of

subjects in a group who have been issued a driver’s license and who felt they learned during

the experiment were controlled for (“Driving (Prop)” and “Learning (Prop)”). Finally, a

dummy variable tracks early and late rounds (“LateRounds”= 1 in rounds 11 and greater).

Estimates are shown in Table 3. Our main coefficients of interest are connected to the

dummy variables for each policy. We fit one model using only the policy variables (column

1), models including all control variables and all interaction variables between Risk (Avg)

and Sex (Prop) (2a and 3a), and models including only the control variables as well as

interactions between Risk (Avg) and Sex (Prop) (2b and 3b) that provide the best fit of the

data (according to the AIC).

Framing and Exogenous have no significant effect on Average Speed in any of the

models. The Endogenous policy only shows a reduction in Average Speed with marginal

significance in model 3b (p-value 0.093). As for controls, a higher average risk preference,

lower proportion of males, and a higher proportion of accidents in the previous round in-

creases Average Speed. In addition, groups with high proportions of males significantly

increased Average Speed in the Exogenous condition.

Result 2 None of the treatments have a robust significant effect on Average Speeds compared

to the Control groups.
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Table 3: The effect of policy conditions on Average Speed

(1) (2a) (2b) (3a) (3b)

Framing 0.010 0.005 0.007 −0.017 0.022
p = 0.617 p = 0.831 p = 0.725 p = 0.938 p = 0.915

Exogenous 0.051∗∗ 0.034 0.030 −0.121 −0.108
p = 0.013 p = 0.101 p = 0.142 p = 0.469 p = 0.506

Endogenous 0.004 0.013 0.003 −0.280 −0.303∗

p = 0.844 p = 0.520 p = 0.863 p = 0.125 p = 0.093
——————————————————————————————————————————

Risk (Avg) 0.050∗∗∗ 0.056∗∗∗ 0.060∗∗ 0.066∗∗

p< 0.001 p< 0.001 p = 0.030 p = 0.016
Sex (Prop) −0.026 −0.039 −0.235∗∗∗ −0.250∗∗∗

p = 0.590 p = 0.403 p = 0.003 p = 0.002
PrevAcc (Prop) 0.126∗∗∗ 0.113∗∗∗ 0.102∗∗ 0.092∗∗

p = 0.005 p = 0.006 p = 0.020 p = 0.024
PrevEarn (Avg) 0.002 0.001

p = 0.373 p = 0.554
Learning (Prop) −0.110∗∗ −0.068

p = 0.045 p = 0.227
Driving (Prop) −0.030 0.008

p = 0.586 p = 0.898
LateRounds −0.004 −0.003

p = 0.777 p = 0.810
Framing*Risk (Avg) −0.018 −0.027

p = 0.662 p = 0.499
Framing*Sex (Prop) 0.184 0.183

p = 0.186 p = 0.185
Exogenous*Risk (Avg) −0.021 −0.026

p = 0.549 p = 0.454
Exogenous*Sex (Prop) 0.517∗∗∗ 0.524∗∗∗

p< 0.001 p< 0.001
Endogenous*Risk (Avg) 0.057 0.062

p = 0.184 p = 0.141
Endogenous*Sex (Prop) 0.113 0.107

p = 0.401 p = 0.424
Constant 1.287∗∗∗ 1.133∗∗∗ 1.051∗∗∗ 1.165∗∗∗ 1.128∗∗∗

p< 0.001 p< 0.001 p< 0.001 p< 0.001 p< 0.001

Obs. 660 660 660 660 660
R2 0.012 0.069 0.061 0.104 0.102
Adj. R2 0.007 0.055 0.053 0.082 0.085
Res. SE 0.186 0.182 0.182 0.179 0.179
F Stat 2.592∗ 4.809∗∗∗ 7.124∗∗∗ 4.688∗∗∗ 6.117∗∗∗

AIC -341 -366 -369 -380 -386

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.0116



4.3 Beliefs about the driving choices within the population

How do the policies affect a subject’s beliefs about the driving style choices of others? Three

separate linear regressions study the relationship between the three policies and a subject’s

belief about the choices of other subjects in the population. As shown in Table 4, this

produces one model estimating the effect on a subject’s believed proportion of Fast drivers

(1a and 1b), Slow drivers (2a and 2b), and Auto drivers (3a and 3b).4

These estimated models suggest two findings. First, subjects in the Endogenous condi-

tion accurately predict the change in driving behavior relative to the Control condition. The

beliefs in Endogenous are in the exact same direction as the choices - less Fast and Auto

drivers and more Slow drivers. Second, subjects in the Framing and Exogenous conditions

believe that these policies would increase the number of Fast drivers and decrease the number

of Auto drivers (with no effect on the number of Slow drivers). However, these beliefs are

inconsistent with Table 2, which suggests that these conditions have no impact on driving

behavior on average.

Result 3 Unlike the subjects in Framing and Exogenous, subjects in Endogenous accu-

rately predict the effect of the policy on the driving behavior of others.

4.4 The relationship between beliefs and driving choices

How does a subject’s beliefs about the population determine that subject’s driving choice?

Four separate linear regressions (one for each experimental condition) study the relationship

between a subject’s belief about the choices of other subjects in the population and that

subject’s belief. The results of these 4 regressions are shown in Table 5 which omits the

estimated coefficients for the control variables.

Result 4 In all 4 experimental conditions, if a subject believes there will be more Slow

drivers, s/he is more likely to drive Slow as well.

Result 4 suggests that the Slow action seems to be an attractive socially reinforcing action

or as an action with strategic complementarity.

In Control, an increase in a subject’s belief about the proportion of Fast drivers corre-

sponds with that subject choosing Auto or Fast more likely than Slow. This can be explained

as subjects reacting to two tendencies; one to be strategic and one to follow the norm of

the population. Subjects who choose Auto when their Fast belief is high are playing the

game as game theorists would predict whereas subjects who choose Fast when their Fast

4A Tobit model produces similar results.
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Table 4: The effect of policy conditions on beliefs about other drivers

Fast Slow Auto Fast Slow Auto
Belief Belief Belief Belief Belief Belief

(1a) (2a) (3a) (1b) (2b) (2c)

Framing 1.368∗∗∗ 0.380 −1.748∗∗∗ 1.480∗∗∗ 0.025 −1.505∗∗∗

p = 0.004 p = 0.412 p = 0.001 p = 0.002 p = 0.956 p = 0.003
Exogenous 3.400∗∗∗ 0.474 −3.874∗∗∗ 3.293∗∗∗ 0.025 −3.318∗∗∗

p < 0.001 p = 0.286 p < 0.001 p < 0.001 p = 0.954 p < 0.001
Endogenous −1.213∗∗∗ 3.443∗∗∗ −2.230∗∗∗ −1.087∗∗ 3.381∗∗∗ −2.293∗∗∗

p = 0.006 p < 0.001 p < 0.001 p = 0.012 p < 0.001 p < 0.001
——————————————————————————————————————————

Risk 0.464∗∗∗ 0.382∗∗∗ −0.846∗∗∗

p < 0.001 p < 0.001 p < 0.001
Sex 0.741∗∗ −1.375∗∗∗ 0.634∗

p = 0.020 p < 0.001 p = 0.065
PrevEarn 0.210∗∗∗ −0.069∗∗∗ −0.141∗∗∗

p < 0.001 p < 0.001 p < 0.001
PrevAcc 3.662∗∗∗ 0.237 −3.899∗∗∗

p < 0.001 p = 0.594 p < 0.001
Learning 0.799∗∗ −0.321 −0.478

p = 0.015 p = 0.316 p = 0.175
Driving 0.133 −0.130 −0.003

p = 0.694 p = 0.696 p = 0.993
LateRounds 2.862∗∗∗ −5.628∗∗∗ 2.766∗∗∗

p < 0.001 p < 0.001 p < 0.001
Constant 44.090∗∗∗ 22.156∗∗∗ 33.754∗∗∗ 36.729∗∗∗ 25.220∗∗∗ 38.051∗∗∗

p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Obs. 6,749 6,749 6,749 6,749 6,749 6,749
R2 0.017 0.012 0.010 0.058 0.068 0.041
Adj. R2 0.017 0.011 0.009 0.056 0.067 0.040
Res. SE 13.166 13.014 14.142 12.899 12.645 13.921
F Stat. 39.625∗∗∗ 26.926∗∗∗ 21.843∗∗∗ 41.240∗∗∗ 49.189∗∗∗ 29.022∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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belief is high are playing the game as if they are following a social norm. However, only the

strategic tendency remains strong in the 3 policy conditions, as an increase in a subject’s

belief about Fast drivers is associated only with more Auto choices. This effect is strongest

in the Endogenous condition.

A similar analysis is true for a subject’s increasing belief in the proportion of Auto drivers.

However, both tendencies are observed in the Control and Framing condition, whereas only

the social norm tendency is present in the two punishment conditions.
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Table 5: The effect of beliefs on driving choices (relative to Slow)

Control Exogenous Framing Endogenous

Auto Fast Auto Fast Auto Fast Auto Fast

(1) (2) (3) (4) (5) (6) (7) (8)

Fast 0.037∗∗∗ 0.019∗∗∗ 0.029∗∗∗ 0.008∗∗ 0.025∗∗∗ 0.007 0.025∗∗∗ −0.004
Belief p < 0.001 p < 0.001 p < 0.001 p = 0.046 p < 0.001 p = 0.138 p < 0.001 p = 0.301

Slow −0.019∗∗∗ −0.032∗∗∗ −0.014∗∗∗ −0.038∗∗∗ −0.028∗∗∗ −0.042∗∗∗ −0.033∗∗∗ −0.047∗∗∗

Belief p < 0.001 p < 0.001 p = 0.006 p < 0.001 p < 0.001 p < 0.001 p < 0.001 p < 0.001

Auto 0.035∗∗∗ 0.008∗ 0.054∗∗∗ 0.004 0.053∗∗∗ 0.016∗∗∗ 0.034∗∗∗ −0.004
Belief p < 0.001 p = 0.059 p < 0.001 p = 0.271 p < 0.001 p = 0.002 p < 0.001 p = 0.319

Const. 0.00∗∗∗ 0.00 0.00∗∗∗ −0.00∗∗∗ 0.00∗∗∗ 0.00 0.00∗∗∗ −0.00∗∗∗

p < 0.001 p = 0.492 p < 0.001 p = 0.001 p < 0.001 p = 0.015 p < 0.001 p < 0.001

Controls Yes Yes Yes Yes Yes Yes Yes Yes

AIC 3,142 3,142 2,938 2,938 2,618 2,618 3,391 3,391

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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5 Discussion and conclusion

The inevitable introduction of driverless cars raises important economic and social concerns

over road safety. Adoption of this technology will be gradual which means that we will

need regulatory policies for mixed-agency driving environments with both human-driven

and driverless cars. In this paper, we have made a first attempt to study which policies

can reduce driving speeds - thus increasing road safety. We have proposed three different

interventions, namely framing the situation in a safety-conscious manner, putting in place

fines by an external agent (traffic police), and setting up a scheme in which fines are imposed

according to the participation of the drivers’ community. Of these three scenarios, we have

found that endogenizing the punishment mechanism is the only way to influence cooperative

behavior in our novel mixed-agency driving scenario.

As far as the effectiveness of endogenous punishment to change driving styles, our elici-

tation of subjects’ beliefs allows us to connect the mechanism by which it works to influence

via social norm formation. Indeed, according to Bicchieri ( [3]) there is a social norm in place

when people in a group expect others to conform to the behavior dictated by the norm, and

in addition they expect others to enforce that behavior on them through punishment. As

we discussed above, in the Endogenous condition subjects predict accurately the behavior

of the group (thus, their empirical expectations are correct) while their beliefs are incorrect

in the other conditions. In addition, in the Endogenous condition subjects know that they

can be punished by their peers, instead of the external agent of the Exogenous condition,

which turns more cautious behavior into a true social norm at least in a sizable fraction of

the population. Therefore, our results suggest that a proper policy to prepare for mixed-

agency scenarios is through behavior change interventions that appeal directly to people’s

expectations about what others will do ( [8]). The Endogenous condition did not, however,

yield higher social welfare, because the deterrence of the most risky behaviors comes hand

in hand with a reduction in the least risky behaviors. This is a reminder that safety policies

lead to behavioral adjustments that can yield unexpected consequences ( [1]). Furthermore,

suggests that regulators may need to promote only the best behaviors as being the acceptable

social norm.
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Appendix A

Proof of proposition 1

SF = 2, SS = 1, SA = 0.5; aF = 0.35, aS = 0.3, aA = 0

E(U(F )) = 2γ (1− 0.35 (2xF + xS + 0.5 (1− xF − xS)))

E(U(S)) = (1− 0.3 (2xF + xS + 0.5 (1− xF − xA)))

E(U(A)) = 0.5γ

For part 1 of the proposition to be true we need to show that action S is not a best

response for all possible beliefs about the population (AS ∈ [0.5, 2]) and for reasonable risk

preferences (γ ∈ (0, 1)). Suppose not, then there is some γ and AS for which

E(U(S)) > max {E(U(A)), E(U(F ))} .

2γ (1− 0.35AS) < 1− 0.3AS

0.5γ =
1

2γ
< (1− 0.3AS)⇔ 1

(1− 0.3AS)
< 2γ

(1− 0.35AS)

(1− 0.3AS)
< 2γ (1− 0.35AS) < 1− 0.3AS

For such values to exist, it is necessary that

1 <
(1− 0.3AS)2

(1− 0.35AS)

The derivative of (1−0.3AS)2

(1−0.35AS)
with respect to AS is

−0.6 (1− 0.3AS) + 0.35 (1− 0.3AS)

(1− 0.35AS)2
=

0.075AS − 0.25

(1− 0.35AS)2
< 0

and thus (1−0.3AS)2

(1−0.35AS)
< 1 for AS ∈ [0.5, 2] .
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For part 2, notice that if an entire population chooses F , then it must be the case that

for all γ ∈ (0, 1)

2γ (1− 0.35 · 2) = 0.3 · 2γ ≥ 0.5γ

0.3 ≥ 0.25γ. (2)

Since inequality 2 is only true for γ ≥ − ln 0.3
− ln 0.25

' 0.868 48, then there is a contradiction.

If an entire population chooses A, then it must be the case that for all γ ∈ (0, 1)

2γ (1− 0.35 · 0.5) = 0.825 · 2γ ≤ 0.5γ

0.825 ≤ 0.25γ. (3)

Again, since 3 is only true for γ ≤ − ln 0.825
− ln 0.25

' 0.138 77, we have a contradiction. �

Proof of Proposition 2

Denote ASPi as the equilibrium belief of driver i about the average speed of the population

under the punishment system P, p. Similarly, denote ASi as the belief of driver i about the

average speed of the population without the system P, p. Proposition 1 states that the

equilibrium will consist of a mixture of F and A drivers (S will never be chosen). The

proportions of drivers choosing actions F and A are determined by the set of drivers that

strictly prefer one action over the other. Since both sets have positive measure, and all

γi ∈ (0, 1) have positive measure, there will be a type i driver who is indifferent between the

two actions. For that driver, in a system without punishment, it must be that case that

Ui (SF ) (1− aFASi) = Ui (SA) (1− aAASi) .

With the punishment according to the P, p system, it must be that case that

((1− p)Ui (SF ) + pUi (SF − P ))
(
1− aFASPi

)
= Ui (SA)

(
1− aAASPi

)
.

In a system without punishment, a driver will chose action F if

Ui (SF )

Ui (SA)
=

(1− aAASi)
(1− aFASi)

. (4)

In a system with punishment, a driver will choose action F if

((1− p)Ui (SF ) + pUi ((SF − P )))

Ui (SA)
=

(
1− aAASPi

)
(1− aFASPi )

. (5)
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When comparing the left side of equations 4 and 5, it is clear that

Ui (SF )

Ui (SA)
>

((1− p)Ui (SF ) + pUi ((SF − P )))

Ui (SA)
.

This means that the following must be true:

(1− aAASi)
(1− aFASi)

>

(
1− aAASPi

)
(1− aFASPi )

This immediately implies the following comparison between the Average Speeds across the

two systems.

(
1− aFASPi

)
(1− aAASi) >

(
1− aAASPi

)
(1− aFASi)

−aFASPi − aAASi > −aAASPi − aFASi
(aF − aA)ASi > (aF − aA)ASPi

ASi > ASPi

Note that AS = xFSF +xSSS +xASA. Proposition 1 states that xS is zero without P, p,,

which means that it must be the case that for ASi > ASPi to be true, we must have that

xPF < xF .�
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Appendix B - Subject statistics

Table 6: Subject statistics by policy condition
# of Avg. time Avg. # # of % % Avg.

Treatment subjects of day of rounds choices male undergrad age

Control 80 12:48 21.6 1,735 49% 54% 24.2

Framing 77 12:15 18.9 1,457 53% 40% 24.4

Exogenous 84 12:33 20.4 1,703 43% 46% 24.4

Endogenous 85 12:48 21.8 1,854 46% 42% 23.8

Total 326 12:36 20.7 6,749 48% 46% 24.2
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Appendix C - Endogenous punishment analysis

Our main results suggest that the availability of endogenous punishment was the only policy

that significantly alters driving behavior. Because of this, the Endogenous condition deserves

a deeper analysis. What type of subjects are contributing to the (costly) punishment fund?

Out of a possible 1,854 contribution choices, subjects contributed to punishment on 209

occasions (11.3%). Table 7 shows the punishment decisions by driving choice. This table

shows that Slow drivers were most likely to contribute to the punishment fund, however

this result is only marginally significant (Fisher’s Exact Test p-val <0.1 for each pair-wise

comparison with Auto and Fast).

Table 7: Punishment contributions by driving choice

Punishment contributions
Contribute Auto Slow Fast Total

Yes 62 61 86 209

No 528 378 739 1,645

Perc 10.5% 13.9% 10.4% 11.3%

Table 8 classifies subjects based on the number of times they contributed to the punish-

ment fund. Approximately half of the subjects contributed to the fund at least once whereas

three subjects contributed in every round they played. Interestingly, the three “Always”

subjects employed the same driving choice in every round they played. One subject chose

Fast every round, one subject chose Slow every round, and one subject chose Auto every

round. All three “Always” subjects were female graduate students.
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Table 8: Number of punishment contributions per subject

Subject punishment types
Contribution Never Seldom Moderate High Always

type 0 1-2 3-8 11-13 22-23
# of 44 23 10 5 3

subjects (51.7%) (27.1%) (11.8%) (5.9%) (3.5%)
% of total

contributions 0 16.3% 23% 28.7% 32.1%

Table 9 and Figure 1 investigate the driving choices within the punishment types de-

scribed in Table 8. There doesn’t seem to be a monotonic relationship between the number

of punishment contributions and any of the three driving choices. From this analysis, it seems

that punishing subjects are not substantially different from non-punishers in their driving

choices. The decision to endogenously punish is orthogonal to the choice about driving.

Table 9: Number of punishment contributions per subject

Subject choices by punishment types
Contribution Never Seldom Moderate High Always

type 0 1-2 3-8 11-13 22-23
Auto 336 137 48 47 22

(34.8%) (27.6%) (22.4%) (42.7%) (32.8%)
Slow 168 146 84 18 23

(17.4%) (29.4%) (39.3%) (16.4%) (34.3%)
Fast 462 214 82 45 22

(47.8%) (43.1%) (38.3%) (40.9%) (32.8%)
# of

choices 966 497 214 110 67
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Figure 1: Subject choices by punishment types

As is expected in public goods type games, costly punishment declines with time. Figure

2 shows that the proportion of subjects contributing to the punishment fund declines over

the duration of the experiment.

Figure 2: Contribution decisions by round

30



Appendix D - Screen shots

Figure 3: Control choice screen

Figure 4: Framing choice screen
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Figure 5: Exogenous punishment choice screen

Figure 6: Endogenous punishment choice screen
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Figure 7: Control results screen

Figure 8: Framing results screen
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Figure 9: Exogenous punishment results screen

Figure 10: Endogenous punishment results screen
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