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which persistence results might be the outcome of fitting spatial noise from the degree of spatial
autocorrelation in their residuals measured by a standard Moran statistic. Our findings suggest
that the results of persistence studies, and of spatial regressions more generally, might be treated
with some caution in the absence of reported Moran statistics and noise simulations.
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The Standard Errors of Persistence.

Morgan Kelly∗

Abstract

A large literature onpersistence finds thatmanymodern outcomes strongly
reflect characteristics of the same places in the distant past. However, along-
side unusually high t statistics, these regressions display severe spatial auto-
correlation in residuals, and the purpose of this paper is to examine whether
these two propertiesmight be connected. We start by running artificial regres-
sions where both variables are spatial noise and find that, even for modest
ranges of spatial correlation between points, t statistics become severely in-
flated leading to significance levels that are in error by several orders of mag-
nitude. We analyse 27 persistence studies in leading journals and find that
in most cases if we replace the main explanatory variable with spatial noise
the fit of the regression commonly improves; and if we replace the depen-
dent variable with spatial noise, the persistence variable can still explain it at
high significance levels. We can predict in advance which persistence results
might be the outcome of fitting spatial noise from the degree of spatial au-
tocorrelation in their residuals measured by a standard Moran statistic. Our
findings suggest that the results of persistence studies, and of spatial regres-
sions more generally, might be treated with some caution in the absence of
reported Moran statistics and noise simulations.
Keywords: Persistence, Deep Origins, Spatial Noise.

1 Introduction
A substantial literature on deep origins or persistence finds that many modern
outcomes such as income or social attitudes strongly reflect the characteristics of
the same places in the more or less distant past, often centuries or millennia previ-
ously. Notable examples include showing how the adoption of plough determines

∗University College Dublin, CAGE and CEPR.

1



current women’s rights; how varying patterns of administration under the British
Raj affect regional development in India; how medieval pogroms prefigured Nazi
zealotry; how the slave trade still retards modern African development; and how
colonial boundaries still drive poverty in Peru and conflict in Africa.1

Naturally such findings are open to various charges of p hacking, of publication
bias, of answers in search of questions, of scepticism aboutmonocausal and largely
atheoretical explanations of complex phenomena, about the mechanisms driving
persistence, and so on. However, all of these objections crumble into irrelevance
in the face of one blunt fact: the unusual explanatory power of these persistence
variables. While a judicious choice of variables or time periods might coax t statis-
tics towards two, there would appear to be no way that the t statistics of four, five,
or even larger that appear routinely in this literature could be the result of massag-
ing regressions, no matter how assiduously. Such persistence results must instead
reflect the workings of the deep structural characteristics that underlie historical
processes: the enduring legacies of the past.

However, persistence regressions are spatial regressions: the values today of
some variable in a given set of places are regressed on another variable for the
same places in the past. Now, Tobler’s (1970) First Law of Geography states that
“everything is related to everything else, but near things are more related than
distant things.” Spatial data, in other words, tend to be autocorrelated. In fact, for
the persistence regressions considered here the degree of spatial autocorrelation
in residuals—measured by aMoran test, the two dimensional analogue of Durbin-
Watson—tends in most cases to be extreme. Our goal is to examine whether these
two properties of persistence regressions—unusually high t statistics combined
with severe spatial autocorrelation of residuals—might in fact be connected.

To understand whether such a connection exists, we begin by simply carrying
out synthetic regressions of spatial noise variables. We generate two sets of spatial
noise, take their values at a common set of sites, and regress these values on each
other. What we find is that even for modest ranges of spatial correlation in the
spatial noise, the empirical distribution of regression t statistics becomes severely
distorted.

Take 200 sites spread at random over a unit square. If we generate noise where
the correlation of values between points largely disappears after a distance of only
0.1, then about 20 per cent of synthetic regressions will return a t statistic above 2,
a nominal significance level of five per cent. The correct five per cent significance

1These are, in turn, Alesina, Giuliano and Nunn (2013), Banerjee and Iyer (2005), Voigtländer
and Voth (2012), Nunn (2008), Dell (2010), and Michalopoulos and Papaioannou (2016).
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level is 2.8, which has a nominal p value of 0.005: the significance level is already
in error by one order of magnitude.

If we extend the correlation range to 0.3, nearly half of noise regressions will
return a t statistic above 2, and a quarter above 3. In order to reach the correct five
per cent significance level requires a t 5.5, something with a nominal significance
level of p = 4× 10−8.

Whenplaces are not scattered randomly across the landscape but instead clump
together, as they tend to do in the real world, the distortions are more severe yet.
If we take historical African tribal areas and suppose that correlation has disap-
peared in only 1,000 kilometres (about the distance across Nigeria), almost one
quarter of noise regressions will return a t statistic above five. So too will regres-
sions using interwar German towns, when the noise variables have a correlation
range around 300 kilometres: see Figures 2 and 3 below.

The intuition behindwhat causes these inflated t statistics is simple. Take some
towns dotted across a landscape and represent their average income levels as el-
evation on a map. If there is little correlation between neighbours, rich will bor-
der poor, leading to a jagged topography. However, as Tobler observed, usually
the correlation is long range so affluent places are surrounded by other affluent
ones, leading to a gently rolling landscape. Now take some other unrelated vari-
able from the past, say trials for heresy in the middle ages. Again neighbour will
resemble neighbour, leading to another rolling landscape. If we regress these vari-
ables on one another, peaks in one landscape will often tend either to correspond
to peaks in the other, giving positive t statistics, or to hollows leading to negative
ones. When the towns cluster together in a few geographical areas the probability
of coincidence will be corresponding greater.

Statistics is the exercise of extracting structure from data. The difficulty with
spatial noise is that because the value of each point is correlatedwith nearby points
it can appear to display a lot of order (see the simulations in Figure 1 below)making
it deceptively easy to uncover structure in spatial noise and mistake it for a deeply
informative signal.

In positive terms, what can be done to rule out the possibility that a high t
statistic in a persistence regression arises not because the study has unearthed a
deep historical truth, but because it happened to fit some spatial noise instead?
One approach, adopted by several studies, is to adjust standard errors along the
lines suggested by Conley (1999). We will see that although the Conley procedure
does lead to substantial falls in estimated t statistics (so long as the cutoff radius
is set at considerably longer levels than are typically used in the literature), it still
tends to return excessively large values when observations are spatially clustered,
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and the empirical significance levels vary according to the spatial pattern of each
set of observations.2

To remedy potential difficulties arising from spatial correlation, we outline in-
stead a simple two step procedure, that we then apply to existing persistence stud-
ies. The first step is to compute a Moran statistic, the spatial analogue of the
Durbin-Watson test. Like Durbin-Watson, this statistic turns out to be an useful
indicator of potential misspecificiation: in studies where the Moran statistic is in-
significant at conventional levels regression results tend to be robust; whereas large
Moran statistics are reliable warnings that nominal significance levels differ sub-
stantially from true ones.

The second step is to employ standard methods from geostatistics to generate
synthetic spatial noise that roughly matches the correlation structure of the vari-
ables of interest. These noise variables can then be used as artificial explanatory or
dependent variables in persistence regressions in place of the original variables.

To simply permute observations at random—a familiar placebo generation pro-
cedure in econometrics—is to lose the spatial correlation structure that lies at the
root of inflated t values. Suppose, for instance, that we have some variable that
strongly explains GDP per capita across the world, and to test its robustness, we
take Brazil and Argentina and randomly reassign Switzerland’s income to one and
Rwanda’s to the other. The exercise is pointless because all of the spatial correlation
driving potential spurious significance has been washed out. Instead of randomly
reordering variables we need to swirl their values around in such a way that each
point gets a new value similar to its neighbours’ ones, something that happens
when we generate spatially correlated noise.

As well as replacing the dependent variable, we can go the other way and re-
place the explanatory variable to see how often the persistence variable is out-
performed by noise. Although this two step approach may be applied to any spa-
tial data, our concern here is with studies of persistence.

We examine 27 persistence studies published in four journals: The American
Economic Review, Econometrica, The Journal of Political Economy, and The Quarterly
Journal of Economics. Each of these papers is a careful and lengthy statistical exer-
cise that we do not attempt to replicate in full. Instead we analyse the “leading”
regression of the paper, usually reported in the first column of Table 2 or 3, that
establishes the strength of the relationship between the modern outcome and the
historical variable, before control variables are added in subsequent columns.

2At the same time the common procedure of clustering standard errors is simply invalid in the
presence of non-negligible spatial autocorrelation: residuals in neighbouring clusters will tend to
be correlated, violating the basic assumption underlying the procedure.
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The sole concern of this paper is with possible distortions to significance levels
arising from fitting spatial noise. It is not concerned with issues of data construc-
tion. It is not concernedwith the plausibility of themechanism that is said to drive
the claimed persistence, or possible alternative explanations, or with the quality
of the underlying historical scholarship (although in most cases this is extremely
high, especially in regional studies). It is not concerned with, and does not remark
on, any econometric issues in the original regressions that it replicates, although
in a few cases these are substantial.

Above all, and this cannot be emphasized this too strongly, this paper is not
concerned with somehow validating or “disproving” the findings of individual
studies. In fact, we are not interested in any individual result except insofar as it
illustrates the broader contours of the literature. The fact that the persistence vari-
able performs poorly against spatial noise in the first regression of a paper does
not imply that later regressions in the paper necessarily suffer from the same diffi-
culties. Rather than the negative and rather pointless goal of discrediting existing
research, the purpose of this study is the positive one of marking out one potential
pitfall in persistence regressions, and in spatial studiesmorewidely, and to outline
simple measures to avoid it.

The focus throughout is on significance levels. It is increasingly recognised
that, by diverting attention from effect sizes and the uncertainty attaching to them,
the traditional econometric approach of hypothesis testing where a variable is ei-
ther “significant” or “insignificant” can be extremelymisleading. Coefficientswith
several stars may have impacts that are negligible, whereas insignificant variables
can have large effects (if a confidence interval runs from −1 to 5 the coefficient is
as likely to be 4 as zero) but their size cannot be tied down with the data at hand.
However, because the focus of the persistence literature is largely on p values, our
concern here will be almost entirely with significance levels.

We find that only about one quarter of the persistence results that we examine
are robust afterwe take account of possibility that their regressionsmight be fitting
spatial noise. We can predict how robust a result is to spatial noise from the degree
of spatial autocorrelation in its regression residuals, measured by aMoran statistic.

In terms of existing literature, our findings that a class of results are not al-
ways robust are most closely related to Bertrand, Duflo and Mullainathan (2004)
on difference-in-differences; Young (2018) on instrumental variables; and Gelman
and Carlin (2014) on effect sizes in social psychology; and has clear parallels with
Granger and Newbold (1974) on spurious regressions in time series. Several of
the studies considered here are analysed separately, in terms of their robustness to
omitted variable bias by Oster (2019). However, this appears to the first study to
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look at distortions of regression significance levels arising from spatially autocor-
related data.

The rest of the paper is as follows. The next section presents simulations to il-
lustrate the distortion of regression t statistics that occurs at evenmodest ranges of
spatial autocorrelation, especially when observations cluster geographically, and
the section after analyses differences across historic frontiers. Having seen the
large inflation in t statistics that can occur by fitting spatial noise we outline posi-
tive steps to remedy these difficulties. The remainder of the paper analyses some
persistence studies in leading journals in the light of our findings.

2 The Significance of Spatial Noise
As we stated above, our approach to investigating whether t statistics are inflated
in persistence regressions is straightforward. We simply generate two spatial noise
patterns, take their values at a common set of points and regress these values on
each other. Repeating these simulations we can derive the empirical distribution
of the regression t statistic.

The statistical study of spatially correlatedprocesses originated inmineral prospect-
ing where samples taken at several points are interpolated to map the overall con-
centrations of ore and determine the best place to excavate a mine. At its simplest,
spatial interpolation orKriging assumes that value of observations (X (s1) , X (s2) , . . . , X (sN))
taken at sites (s1, s2, . . . , sN) are normally distributed with covariance matrix Σ
whose elements are controlled by a correlation function ρ: for points i and j a
distance ‖h‖ apart

Σij = cov (xixj) = σ2ρ (‖h‖ /φ)

where the range parameterφdetermines how fast correlation decayswith distance.
So for exponential correlation we have ρ (h, φ) = exp [− (‖h‖ /φ)] and for Gaussian
we have ρ (h, φ) = exp

[
− (‖h‖ /φ)2

]
.

The most widely used covariance matrix is the Matérn function which has a
shape parameter κ that determines how fast correlation falls offwith the range: low
values correspond to exponential falloff, and high values to Gaussian: see Brown
(2015, 23). For that function φ is the distance where ρ (φ) ≈ 0.14, irrespective of κ.
For a given set of empirical observations these parameters, along with σ, can be
estimated by maximum likelihood.

The Matérn function can be extended to allow for anisotropy where the degree
of correlation changes with direction. Specifically one can estimate an anisotropy

6



Figure 1: Spatial noise with correlation ranges of 0.1, 0.2, 0.5. In the last panel, the
correlation range in the x direction is 0.5, but one quarter of this in the y direction,
and the main axis of correlation is at 60 degrees clockwise.

ratio giving the strength of north-south correlation relative to east-west correlation,
and the angle where correlation is maximized.

A useful way to get an idea of how patterns of spatial correlation change with
range is by looking at simulations of landscapes as in Figure 1 : we can think of
bright zones as rich areas and dark zones as poor ones, for example. In all cases we
set the variance σ2 and shape parameter κ to one. The figure shows simulations
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of noise over a unit square with ranges of 0.1, 0.25, and 0.5.3 To put these ranges
in perspective, modern Germany is roughly 600 kilometres square, so a range of
0.25 implies that correlation between places has largely disappeared after only 150
kilometres.

We can see that already at a range of 0.1 a good deal of spatial structure has
already emerged, and by 0.5 the large light and dark patches have a high chance of
matching the patterns in another simulation. In the fourth panel the landscape is
anisotropic, with a correlation range of 0.5 in the x direction but only one quarter of
this in the ydirection, and themain axis of correlation runs at 60 degrees clockwise.
Naturally, the range can be extended past one but the resulting pattern will be
almost entirely bright or dark. The final panel shows a case of anisotropic noise
where correlation strength vertically is twice that horizontally, and the main axis
of correlation runs southeast to northwest.

2.1 Empirical t Statistics
The substantial distortions in regression t statistics induced by evenmoderate ranges
of spatial correlation are shown in Figure 2. We start with a set of 200 random sites
and generate pairs of noise patterns. We take the value of each at every point and
regress these values on each other. The Figure displays the absolute values of t
statistics of these regressions as the correlation range of the Matérn function runs
from 0.01 to 0.6. Each line traces an empirical significance level of 0.5, 0.25, 0.1,
and 0.05. For a correlation range of 0.01 these significance levels are only slightly
above the nominal levels: 5 percent of observations will have a t statistic of 2, and
so on (the slightly greater value reflects the fact that there is some small correlation
beyond the range).

However, as the range of correlation increases, regression t statistics inflate
rapidly. At a range of 0.1 about 20 per cent of noise regressions will return a t
statistic above 2, and the true five per cent significance level is 2.8. This has a nom-
inal significance level of 0.005: the nominal significance level already errs by one
order of magnitude.

At a range of 0.3 it can be seen from Figure 2 that nearly half of spatial noise
regressions will return a t statistic above 2, and a quarter will have a t statistic
above 3 while, for a regression to be significant at 5 per cent calls for a t value of
5.5 (nominal p = 3.8× 10−8).

3All spatial analysis here relies on the excellent geostatsp R package of Brown (2015).
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Empirical p values of t statistics from a regression of two spatial noise series on each other evaluated at 200
random points on a unit square. The correlation range is the distance where correlation between points becomes
negligible.

Spatial correlation causes substantial inflation of regression t statistics

Figure 2: Empirical significance levels of t statistics from spatial noise regressions
for different maximum ranges of spatial correlation. It can be seen that at a cor-
relation range of 0.3, one quarter of regressions will return a t statistic above 3.3
(p=0.001), but that a regression requires a t statistic of 5.5 to be significant at 5 per
cent.

2.2 Spatially Clustered Observations
In carrying out these simulations we assumed that the sites where we take mea-
surements are randomly distributed in space, whereas in the real world places
tend to cluster geographically. For instance, half of the capital cities in the world
are within 400 kilometres of another capital, and two thirds within 500, whereas
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if they were randomly scattered across the globe (oceans included) only one eight
and one quarter respectively should lie within these ranges.

The simplestway tomodel and estimate clustered observations iswith a Thomas
process where imaginary “parent” points are randomly distributed with Poisson
parameter µ and each of these generates a number of observable “child” points
with Poisson parameter λ. The distance of each child from the parent follows a
normal distribution with standard deviation σ. As λ rises relative to µ, and as σ
falls, clustering will rise.

For example, the 229 towns in interwarGermany analysed by Satyanath, Voigtlän-
der andVoth (2017) lie in a roughly 8 by 7 degree rectangular boxwith observations
clustered along the western edge. The estimated parameters of a Thomas process
for these points are µ = 14.48, λ = 0.27, σ = 0.42. Generating locations at random
using these parameters, and regressing noise variables with a correlation range
of 0.3 times the box width gives t statistics above 3 in 55 per cent of spatial noise
regressions—twice as many as when the observations are randomly scattered—
and the 5 per cent significance level corresponds to a t statistic of 9.94 compared
with 5.5 for unclustered data.

Naturally, with three parameters there is an unlimited number of potential
Thomas processes we can simulate, so it is more informative to look at t statis-
tics of noise regressions carried out with real data, specifically three frequently
used datasets: countries of the world, historical African tribal areas; and interwar
German towns.

Countries of the world are located by capital city in 2001 taken from the Corre-
lates of War database. Only observations between -90 and 155 degrees longitude
are considered (so that neighbouring places with longitudes of −179 and 179 are
not treated as distant: this turns out not to matter in practice) to give 178 obser-
vations. The locations of 522 historical African tribal areas are taken from Alsan
(2015); and theGerman towns previouslymentioned are fromSatyanath, Voigtlän-
der and Voth (2017).

Figure 3 shows empirical 25 per cent significance levels of spatial noise regres-
sions over these locations, where the range of the noise process is given in de-
grees. One degree at the equator is approximately 110 kilometres so degrees here
can be thought of as roughly 100 kilometres. For world capitals spread over 240
degrees of longitude, 40 degrees in the diagram corresponds to 0.17 for for the
randomly distributed locations on a unit square in Figure 2 but gives a t statistic
above 3.5 compared with 2.5 earlier: a significance level of p = 0.0005 compared
with p = 0.01. For the other two datasets the inflation in t statistics is still more
extreme.
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This figure gives 25 per cent significance levels for three datasets commonly used in the persistence
literature. The correlation range is given in degrees where one degree is roughly 100 kilometers.

25 per cent significance levels for frequently used data sets

Figure 3: Empirical 25 per cent significance levels of t statistics of spatial noise
regressions measured at 178 world capitals, 229 interwar German towns, and 225
African tribal areas. Correlation range is measured in degrees.

For Africa, we can see that at a correlation range of only 10 degrees (about
the distance across Nigeria, or one fifth of the trip from Nairobi to Lagos), one
quarter of spatial noise regressions will return a t statistic above 4.7 (nominal p =
8 × 10−6). For Germany, as the Thomas process above suggested, the distortion
is more marked. At a correlation range of 200 kilometres (Frankfurt to Cologne),
almost one quarter of noise regressions will generate t statistics above 4 (nominal
p = 1× 10−4).
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Significance levels for differences across frontiers for 200 random data points, and for Peruvian
towns from Dell (2010).

25 and 50 per cent significance levels for differences across
frontiers.

Figure 4: Empirical significance values for differences across a frontier, both for
random points, and Peruvian households across the Mita boundary. Generating
artificial consumption data with spatial noise, 50 per cent of regressions for differ-
ences across the Peruvian Mita boundary will return t statistics above 7.5.

3 Institutional Boundaries.
An approach to examining the enduring importance of historical institutions is to
examine modern outcomes on either side of an earlier border. Naturally, the break
must be arbitrary and not correspond to natural boundaries where soil fertility,
altitude and other geographical characteristics may differ.

Again we begin by generating 200 sites on a unit square, with a vertical border
drawn halfway across. We can then run a regression of the value at each point,
including a dummy for one side of the border. From Figure it can be seen that the
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distortions are even more severe than in standard persistence regressions. For a
correlation range of 0.3, half of all noise regressions will return t statistics above 2,
and one quarter above 3.

The other lines in Figure 4 use as observations the town’s on either side of the
PeruvianMita boundary fromDell (2010). These towns are inside a 4 by 2.5 degree
box, which is renormalized to be one unit across. In this case, if spatial noise with
a range of 0.3 is used for household consumption, half of all regressions will detect
a difference across the frontier that has a t statistic above 7.5.

4 Remedies for Spatial Distortions
Given the severe inflation of t statistics associated with even modest ranges of spa-
tial correlation demonstrated we have seen in Figures 2 and 3, how can we assure
ourselves that a persistence regression (or any other sort of spatial regression for
that matter) is not merely fitting noise? We outline a simple two-step procedure to
handle potential spurious fits but first examine the Conley adjustment to standard
errors.

4.1 Conley Standard Errors
Several papers considered below make a Conley (1999) adjustment to their stan-
dard errors to control for spatial correlation. This adjustment, analogous to an
adjustment for heteroskedasticity and autocorrelation, consists of calculating a co-
variancematrix with spatial weights chosen from some kernel, typically a uniform
kernel where points within a given distance are assigned a weight of unity, and
zero otherwise. Conley (2010) notes how such simple non-parametric kernels typ-
ically out-perform parametric ones, and that is the case here: although the spatial
noise is generated as a Matérn process, using a kernel with the same parameters
as the generating process typically returned more distorted t statistics than Con-
ley’s uniform kernel with the same range.4 However, despite the extreme inflation

4A common estimation technique in the spatial statistics literature (see, for example, Bivand,
Pebesma and Gomez-Rubio 2008, 274–289) is through spatial autoregression (the analogue of a
Cochrane-Orcutt procedure in time series). Each regression residual is a weighted average of its
neighbours: ei = θ

∑
j wijeij + εi where wii = 0 and ε ∼ N (0,Σ), leading to a covariance matrix

(1− θW )
−1

Σ (1− θW )
−1. For a variety of weighting schemes the results were similar to applying

a uniform kernel and are not reported here. There are in addition a variety of spatial lag models
such as Y = θWY +βX but their estimates tend to vary substantially depending on the weighting
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5 per cent significance levels after performing a Conley standard error correction using a uniform kernel with a cutoff of
20 degrees (2 for Germany).

5 per cent significance levels for Conley adjusted standard errors

Figure 5: Empirical 5 per cent significance levels for Conley adjusted t statistics
of spatial noise regressions measured at 178 world capitals, 229 interwar German
towns, and 225 African tribal areas.

in t statistics we saw above, in no persistence study does the Conley adjustment
increase the standard errors materially.

The fact that adjusted standard errors are largely unchanged is a consequence
of setting an extremely low cutoff radius beyond which observations are given a
weight of zero. For example Nunn andWantchekon (2011) set a radius of three de-
grees for Africa, which spans about 70 degrees each way; while the global analysis

matrix imposed, and the value of any regressionwhose specification is driven primarily by a desire
to cause potentially informative patterns in its residuals to vanish is unclear.
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of Ashraf and Galor (2013) uses a limit of 500 kilometres: less than the distance
from London to Edinburgh. Figure 5 shows the 5 per cent significance level of t
statistics for the three empirical datasets used in Figure 3 where the cutoff radius
is set at 20 degrees for the world and Africa, and one tenth of that for Germany.
Increasing the radius to 30 or 40 degrees increased the t statistics somewhat but
not by a large amount.

Several things appear from the diagram. The first is that a Conley adjustment,
so long as we assign it a sufficiently long range, does cause t statistics to fall sub-
stantially compared with the original, uncorrected regressions. For the case of
world capitals, the new t statistics are fairly close to the nominal level of 2. How-
ever, for Germany andAfrica, although the the t statistics do fall considerably, they
remain high: around 2.5 for Germany and 3 for Africa. So although Conley correc-
tions provide a useful warning of potential distortions by causing a large reduction
in estimated t statistics, the significance levels they return for finite samples are not
entirely reliable and vary according to the spatial clustering pattern of the data.

4.2 A Two-Step Procedure
To analyse potential spatial distortions we use here instead a simple two step pro-
cedure. First, the simplest warning of misleading of t statistics turns out, as we
will see below, to be Moran’s I statistic: the spatial analogue of the Durbin-Watson
statistic. This is proportional to a weighted sum of the covariance between every
pair of residuals, where the weighting scheme to assign distant observations less
importance than nearby ones can be chosen in a variety of ways.

A “true” Moran statistic does not exist: for different choices of spatial weight-
ing schemes its value can vary considerably. However, for most of the studies con-
sidered here the spatial autocorrelation is so extreme that the choice of weighting
scheme is immaterial. We therefore only report results for the case where a point’s
five closest neighbours (using geodesic distance) are given equal weight and other
points have zero weight.

The second step to ensure that a spatial regression is not spurious is to generate
artificial noise variables to test the robustness of the claimed results. This is done
in two ways. The first is to replace the dependent variable with noise, to test the
regression’s ability to explain what it should not be able to explain. These placebo
procedures are commonplace, but involve permuting existing variables. Such ran-
dompermutations destroy the pattern of spatial correlation between neighbouring
observations that are at the root of the difficulties we have seen here. By generating

15



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

z=32.8

z=30.2

z=22.9

z=21.5

z=13.3

z=12.7

z=11.2

z=11.0

z= 8.8

z= 8.4

z= 7.1

z= 6.5

z= 5.6

z= 5.3

z= 4.7

z= 2.8

z= 2.7

z= 1.4

z= 1.0

z= 1.0

z= 0.9

z= 0.7

z= 0.1

Michalopoulos−Papaioannou, Scramble for Africa
Becker−Woessmann, Was Weber Wrong?

Caicedo, The Mission
Michalopoulos−Papaioannou, Pre−Colonial

Ashraf−Galor, Out of Africa
Voigtlaender−Voth. Persecution Perpetuated

Alsan, Effect of the TseTse Fly
Putterman−Weil, Post−1500 Population Flows

Alesina et al, Women and the Plow
Ashraf−Galor, Malthusian Epoch

Spolaore−Wacziarg Diffusion
Banerjee and Iyer. Colonial Land Tenure
Michaelopoulos, Ethnolinguistic Diversity

Hornung. Huguenots
Satyaneth et al, Bowling for Fascism

Juhasz, Napoleonic Blockade
Galor−Ozak, Time Preference

Acemoglu et al, Reversal of Fortune
Acemoglu et al, Holocaust in Russia

Acemoglu et al, Colonial Origins
La Porta et al, Law and Finance

Squicciarini−Voigtlaender, Age of Enlightenment
Nunn, Africa's Slave Trades

0 5 10 15
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Moran test for spatial autocorrelation.

Figure 6: Z scores ofMoran tests for spatial autocorrelation in regression residuals.

noise that is spatially correlated, neighbours still have similar values, sometimes
high or low, depending on the particular simulation.

The second use of artificial spatial noise is to replace the explanatory variable of
interest. By seeing how often random noise outperforms the original persistence
variable, we can get some rough idea of its empirical significance level which, as
we have seen, can differ by several orders of magnitude from its nominal one. We
now apply this procedure to some existing persistence studies.

5 Persistence versus Spatial Noise
Having seen the severe distortions in regression results that stem from spatial cor-
relation among observations, along with some simple steps to check how strong
these distortions are, we now analyse some persistence studies that have appeared
in major journals. The regression we choose for analysis is usually the first re-
gression of the paper, typically reported in the first column of Table 2 or 3, which
includes the explanatory variable of interest along with a few or no control vari-
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ables. These control variables are added in subsequent columns and typically, but
not invariably, cause the significance of the main variable to fall.

We first report Moran statistics to test for the presence of spatial autocorrela-
tion in regression residuals. For large samples theMoran statistic follows a normal
distribution, and the associated z scores for each regression are graphed in Fig-
ure 6. The diagram shows how only about one quarter of studies return a Moran
statistic above two (remember this cutoff is not intended to be an arbitrary “sig-
nificant/insignificant” one but only suggestive), and in most cases the degree of
autocorrelation is severe: a Z score of 13 corresponds to a p value of order 10−41.
For analyses using large numbers of people at each site (Dell 2010; Nunn and
Wantchekon 2011) Moran statistics are not computed.

5.1 Generating Spatial Noise
Having seen that most of the studies considered here appear to show substantial
spatial autocorrelation in residuals, we now examine how robust their results are
when we account for this, successively replacing their explanatory and dependent
variables with noise. The question then arises of what parameters to use when
generating noise.

Naturally, there are no “correct” simulation parameters, onlymore or less plau-
sible ones: we do not want to base our findings on ridiculous patterns of noise that
would never be encountered in thewild. To choose plausible parameters for global
studies we compute maximum likelihood estimates of the parameters generating
GDP per capita in 2000 (using the figures in Ashraf and Galor (2013)). Correla-
tion range φ only appears in the Matérn function in terms of

√
2κ/φ, meaning that

correlation range and shape κ cannot be reliably estimated together. Instead, pa-
rameters are estimated after setting shape. In carrying out simulations we use a
value of 16, associated with a Gaussian pattern of falloff. For income data this led
to a 99 per cent confidence interval for range of between 20 and 80 degrees east-
west, and half of this north-south. Setting κ = 1 led to a range between 20 and
240 degrees. In simulating spatial noise we therefore report values for correlation
ranges of 30, 60, and 90 degrees.

Another gauge of the plausibility of the noise pattern is to look at typical simu-
lations to see if clusters of high and low values appear too large or small on a map
compared with something familiar such as GDP. Figure 7 shows simulations with
correlation ranges running from 30 to 120 degrees east-west, and half this north-
south, where each country is plotted as an equal sized tile. It can be seen that at
30 degrees, the map is split into small clusters with light areas frequently border-
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Figure 7: A tile map of simulated world income where synthetic income is gener-
ated as spatial noise with correlation range going from 30 to 120 degrees east-west
and half this north-south.

ing dark ones. At 60 degrees more homogeneous clusters have emerged, while the
particular simulation at 90 degrees came out looking like the actual world distri-
bution with an affluent north and impoverished south. At 120 degrees the clusters
are becoming very large but still do not look unrealistic.

Africa spans 70 degrees in both directions. We therefore report results for
ranges of 10, 20, and 30 degrees (with north-south ranges again half this). For
France, Germany, and South America we give results for 3, 4, and 5 degrees, but
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for the Peruvian Mita of Dell (2010) we use ranges of 0.5, 1, and 1.5 reflecting the
smaller study area. To repeat, we are agnostic about parameter values but the
ranges here do not seem too implausible empirically.

In simulating noisewedid not include spatial trends: we know for example that
income rises as one moves away from the equator. This means that in any one sim-
ulation Chad is as likely to be rich as is Switzerland. As a result the performance
of noise variables will be attenuated, but we do not wish to introduce the extra
complication of choosing spatial trends and causing confusion about whether the
results might be driven by these.

5.2 Noise as the Explanatory Variable.
Tables A1–A3 summarize the performance of noise in persistence regressions for
global studies, Africa and India, and Europe and South America, using the cor-
relation ranges already mentioned. Each is split in two parts. One is for the case
where noise is the explanatory variable, and this tells in what fraction of simula-
tions the noise variable is significant at standard significance levels from 0.05 to
0.0001 as well as how often the noise variable outperforms the original persistence
variable by having a higher significance level. The other columns are for the case
where noise is the dependent variable, and show how often the persistence vari-
able explains noise at various standard significance levels.

It is more informative if we graph the data, using in each case the results for
the middle value of the correlation range in each table: 60 for global studies, 20
for Africa, and 4 for Europe, with the north-south ranges being half this. The per-
formance of noise explanatory variables compared against the original persistence
variable is shown in Figure 8. This gives the original significance level of the per-
sistence variable (or their joint significance level if there are several as in Ashraf
and Galor, 2013 and Michalopoulos, 2012). A logarithmic axis truncated at 10−9

is used to cope with the extremely high significance levels of some studies in this
literature.

Beside it is graphed the proportion of simulations where the noise variable had
higher explanatory power than the original persistence one. In some rough sense
this measure of outperformance corresponds to an empirical p value of the sort we
had in Section 2, however in this case the noise has no claim to be the “true” value,
especially because we have omitted any spatial trends in generating it.

The pattern of results is revealing. Studies that had low Moran statistics in
Figure 6 all cluster towards the top of the graph, rarely being out-performed by
spatial noise. Interspersed with them are some studies with high Moran statistics
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Figure 8: Nominal significance levels of persistence studies and the proportion of
simulations where they have lower explanatory power than spatial noise.
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Figure 9: Explanatory power of spatial noise in persistence regressions.
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but which began with extreme levels of significance. As one moves downwards
into studies with high Moran statistics we can see that it is increasingly common
for noise to perform better than the original persistence variable. In particular,
several studies with nominal significance levels of order 10−6 are outperformed by
noise in over thirty per cent of simulations, and this would be higher if the noise
were superimposed on spatial trends.

Figure 9 looks at howoften a spatial noise explanatory variable, used in place of
the original persistence one, is significant at p = 0.001 or p = 0.0001. It can be seen
for one third of studies, spatial noise will be significant at 0.0001 over 20 per cent
of the time, and for two thirds of them, noise will be significant at 0.001 in ten per
cent of cases. It is interesting that although several studies look at the determinants
of modern GDP per capita, the explanatory power of noise varies considerably re-
flecting the different samples and methodology being used. Acemoglu, Johnson
and Robinson (2001) and Acemoglu, Johnson and Robinson (2002) consider fairly
small samples, whereas Spolaore and Wacziarg (2009) use most countries in exis-
tence. By contrast, Ashraf and Galor (2013) and Putterman andWeil (2010) weight
their explanatory variables by a matrix of settler origins, as we therefore do with
spatial noise, leading to predictive power that is higher still.

5.3 Noise as the Dependent Variable
Having examined the ability of spatial noise to explain different outcomes, we now
turn things around and see howwell the persistence variable can explain a depen-
dent variable which is spatial noise. This is shown in Figure 10 which gives the
fraction of simulations that returned significance levels of p = 0.001 and p = 0.0001.
Again the tendency is for studies with lower Moran statistics to have less ability to
predict noise, alongside regressions whose initial explanatory power given in Fig-
ure 8 is comparatively low. At the other end, many persistence variables have un-
usual power to predict spatial noise, especially those with high explanatory power
in the original studies.

One thing that is notable however is that quite a few regressions that returned
lowMoran statistics have substantial explanatory power for noise. However, in all
of these simulations the estimated Moran statistics have now become extremely
high: these are noise regressions after all. Moran statistics again differentiate ro-
bust relationships from specious ones.
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Figure 10: Ability of persistence variables to explain spatial noise.
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6 Studies Examined.
Here we give details of the regressions we examined from the papers analysed
above. We group them into three categories by their geographical focus: global;
Africa and India; and Europe and Latin America. Because the original studies
were conducted in Stata and we use R to take advantage of its strong geostatisti-
cal capabilities, we have taken care to ensure that we could exactly replicate the
original results, notably their standard errors.

6.1 Global Studies.
Acemoglu, Johnson and Robinson (2001). The Colonial Origins of Comparative
Development: An Empirical Investigation

We replicate the Acemoglu, Johnson and Robinson (2001) regression of average
protection against expropriation risk on estimated settler mortality, both in logs
from Table 3, with mortality truncated at 250 per thousand.

Acemoglu, Johnson and Robinson (2002). Reversal of Fortune

We replicate Column 1 of Table 3 in Acemoglu, Johnson and Robinson (2002), re-
gressing GDP per capita in 1995 on estimated urbanization in 1500.

Alesina, Giuliano and Nunn (2013): The Plow and Women’s Rights.

We take Alesina et al’s (2013) Table 3, column 1 regression of women’s labour force
participation on plow adoption, controlling for agricultural suitability, tropical cli-
mate, large animals, political hierarchies, and economic complexity.

Ashraf and Galor (2011). Dynamics and Stagnation in the Malthusian Epoch.

The timing of the neolithic transition is used as source of exogenous technological
progress in a Malthusian model. Here we analyse the first regression of Table 2,
where the log of population density in the year 1500 is regressed on the number
of years since the neolithic and a continental dummy.
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Ashraf and Galor (2013). The “Out of Africa” Hypothesis, Human Genetic Di-
versity, and Comparative Economic Development

We reproduce the first column of Table 5where per capita GDP in 2000 is regressed
on a measure of genetic diversity based on migratory distance from East Africa
and adjusted to take account of settler ancestry. Noise was first generated then
weighted according to the matrix of settler origins. We apply robust standard er-
rors in all regressions, rather than the bootstrapped errors of the original study
which are closer to non-adjusted ones.

Galor and Özak (2016). The Agricultural Origins of Time Preference

This paper looks at the impact of pre-industrial agro-climatic characteristics on a
measure of long term orientation. Our results are based on the first column of
Table 2 which uses crop yield as the explanatory variable, along with dummies for
continent.

LaPorta et al. (1998) Law and Finance

This paper studies of the impact of legal origins on institutional quality. We analyse
column 2 of Table 6 where judicial efficiency is regressed on a dummy for civil law,
and per capita income.

Michalopoulos (2012) The Origins of Ethnolinguistic Diversity

This paper examines the connection between a measure of ethnolinguistic diver-
sity and geographical factors, in particular the mean and variance of elevation
and land quality. We examine column 2 of table 1 where the log of the number
of languages within a country is regressed on these four variables, with absolute
distance from the equator as a control. We report joint significance levels for the
hypothesis that the coefficients on all four are zero.

Nunn and Qian (2011). The Potato’s Contribution to Population and Urbaniza-
tion.

Here we replicate the regression in Table 4 Column 1 of Nunn and Qian (2011)
which regresses country population from 1100 to 1900 on the area of land suitable
for potato cultivation multiplied by a dummy for years after 1700, the assigned
start of potato cultivation. The regression includes controls for the area suited to
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old world crops, elevation, ruggedness, percentage tropical, all interacted by date.
Potato suitability is the variable that we simulate.

The dependent variable in this study is country population for every time pe-
riod. Reliably simulating such a spatio-temporal process, even if the population of
neighbouring countries did not vary hugely, with a short number of time periods
is not straightforward and we do not attempt it here so no results for regressions
with artificial dependent variables are reported.

Putterman and Weil (2010). Post 1500 Population Flows and the Long-Run De-
terminants of Economic Growth and Inequality

Historical societies are assigned a score depending on their level of political devel-
opment at points through history, and modern societies are then given weighted
scores depending on the ancestral scores of their current populations, and this is
used as an explanatory variable for modern income levels. We reproduce column
2 of Table 2. In simulating the explanatory variable we generate an observation for
each country in the sample and thenmultiply it by the ancestry weightingmatrix.5

Spolaore and Wacziarg (2009). The Diffusion of Development

This paper looks at the ability of a measure of a country’s genetic difference from
the United States to explain its per capita GDP. We examine the baseline regres-
sion of these two variables in the first column of Table 1. In doing this we use their
updated measure of genetic difference, and GDP per capita for 2000: the regres-
sion results are more or less unchanged from those reported for the original study
although the sample size is somewhat larger.

6.2 Africa and India
In terms of persistence, there are two immediately salient facts about Africa: the
prevalence of the slave trade, particularly in West Africa, and the wide variety of
tribal cultures in existence before European colonization, catalogued inMurdock’s
(1967) Ethnographic Atlas. In India, attention has centred on the long run impact of
the British Raj. For Africa the correlation range in simulations was in the range of
15–30 degrees, relative to the 70 length and width of the continent.

5We use updated scores and migration matrices from https://sites.google.com/site/

econolaols/extended-state-history-index and https://www.brown.edu/Departments/

Economics/Faculty/Louis_Putterman/world%20migration%20matrix.htm which give slightly
stronger effect sizes that those of the original study.
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Alsan (2015). The effect of the TseTse fly on African development

Alsan (2015) analyses how the distribution of the tsetse fly, which transmits try-
panosome parasites to animals and humans, has retarded the African develop-
ment. We consider the regression in Table 1, on how local suitability for tsetse
flies affects urbanization rates, controlling for climate variables and clustering by
province.

Banerjee and Iyer (2005). History, Institutions, and Economic Performance: The
Legacy of Colonial Land Tenure Systems in India

Banerjee and Iyer (2005) examine the long run impact of colonial land revenue
regimes on modern India. Their Table 3 regresses various aspects of modern agri-
culture on the share of land controlled by landlords, alongside geographical con-
trols and how long the area was under British rule. We focus on fertilizer use
because this is the regression where landlord control has the strongest explana-
tory power. In carrying out the placebo regressions, we repeat the same generated
noise variables for yield in each year in the panel. To compute aMoran statistic we
used data for one year, 1982: using other periods gave effectively identical results.

Michalopoulos and Papaioannou (2013). Pre-Colonial Ethnic Institutions.

Michalopoulos and Papaioannou (2013) examine the extent to which modern re-
gional development, measured by satellite images of night time luminosity, is af-
fected by the degree of pre-colonial ethnic political centralization reported byMur-
dock (1967) which ranges from stateless societies at zero to large states at four. We
examine the baseline regression in Column 1 of Table 2.

Michalopoulos and Papaioannou (2016). The Long Term Effects of the Scramble
for Africa

The legacy of the arbitrary straight line borders drawn across much of Africa by
European colonial powers on modern levels of political violence is considered by
Michalopoulos and Papaioannou (2016). Specifically they analyse whether vio-
lence is higher in the traditional homelands of tribes that found themselves parti-
tioned by such borders. We consider the negative binomial regression in Column 1
of Table 2 which regresses the number of all violent incidents on an indicator vari-
able of whether the homeland is split, as well as the share of adjacent groups that
are partitioned. Controls include country population at independence, distance to
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the national border and dummies for rivers and lakes. Thiswas the sole casewhere
the standard error estimated using R differed somewhat from the original study:
0.17 rather than 0.16 but the same R procedure is applied over all simulations.

Nunn (2008). The Long Term Effect of the Slave Trade

Nunn (2008) examineswhether the intensity of slave exports, relative to a country’s
area, is negatively correlated with its GDP in 2000. We replicate the regression in
the first column of Table 3 in the paper, where a dummy for each colonial power
is included.

Nunn and Wantchekon (2011). The Slave Trade and the Origins of Mistrust in
Africa

The impact of the slave trade on modern levels of trust using individual level sur-
vey data are examined by Nunn and Wantchekon (2011). In column 1 of their Ta-
ble 2 they report the impact of slave exports relative to geographic area on trust of
neighbours, including as control variables individual factors (such as age, sex, ed-
ucation, and urban or rural location), district controls for ethnic fractionalization,
and a country fixed effect.

6.3 Europe and Latin America.
The large amounts of detailed data available for Germany, especially Prussia, since
the late eighteenth century have led to several notable studies of persistence. By
contrast there are fewer studies for France where data are sparser.

Acemoglu, Hassan and Robinson (2011). Social Structure and Development: A
Legacy of the Holocaust in Russia

Acemoglu, Hassan and Robinson (2011) examine the impact of Nazi occupation on
subsequent urban growth by examining the interaction between pre-war Jewish
population and whether an area was conquered by the Wehrmacht. Their results
are distorted by one severe outlier (the town of Derbent) and if this is excluded
or given a dummy, the effect size rises markedly, residuals become more normal,
and the Moran statistic falls substantially. We therefore report results for the first
regression of Table 2 after excluding this observation.
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Becker and Woessmann (2009). Was Weber Wrong? A Human Capital Theory
of Protestant Economic History

Against the Weber thesis that Protestant economic success reflected an ingrained
work ethic, Becker andWoessmann (2009) argue that it originated instead in higher
literacy rates associated with Bible reading. To test this they examine the connec-
tion between the percentage of a Prussian county that was Protestant in 1871 and
the literacy of its population and we analyse the first regression of Table 2.

Becker andPascali (2019): Religion,Division of Labor andConflict: Anti-Semitism
in German Regions over 600 Years

This paper considers whether the transition in some cities to Lutheranism, which
had no ban on usury, reduced tolerance of Jews. We analyse the first column of Ta-
ble 2which is a panel regression, by century, of expulsions or killings of Jews on the
interaction between being Protestant in 1546 and post-Reformation centuries. For
both dependent and explanatory variables we simulate two sets of spatial noise,
and assign one to the first two pre-Reformation centuries, and the other to the later
centuries.

Dell (2010). The Persistent Effects of Peru’s Mining Mita

This study examines differences in household consumption and child stunting on
either side of Peru’s Mita boundary. It finds that areas which traditionally had to
provide conscripted mine labour have household consumption almost 30 per cent
lower than on the other side of the boundary.

We examine the regression in column 1 of Table 2, which compares equivalent
household consumption in a hundred kilometre strip on either side of the bound-
ary with controls for distance to the boundary, elevation, slope and household
characteristics. The variable of interest is a dummy for being inside the boundary.
We examine here howwell the regression explains arbitrary patterns of consump-
tion generated as spatial noise. To do this we take the locations where households
live and simulate consumption levels based on median consumption at the points.

The original study found a 28 per cent difference in consumption levels across
the historic boundary. If we normalize the noise variables to have the same mean
and standard deviation as the original consumption data, we get a difference of at
least 28 per cent (positive or negative) in 70 per cent of cases.
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Hornung (2014). Immigration and the Diffusion of Technology: The Huguenot
Diaspora in Prussia

In 1685 Louis XIV revoked the Edict of Nantes, which had granted religious tol-
eration to French Protestants, leading many to settle in western Prussia. Whether
their skills stimulated the textile industry in their new homes is examined by Hor-
nung (2014) who analyses the output of enterprises recorded in 1802 compared
with the share of Huguenot population in the same towns in 1700.6 Because we
are interested in the spatial properties of this result we focus on towns rather than
firms by aggregating all firms in a town together. Hornung’s findings of the strong
impact of Huguenots are essentially unchanged after this aggregation.

Juhász (2018). Temporary Protection and Technology Adoption: Evidence from
the Napoleonic Blockade

This study examines the long run impact on the French cotton industry ofNapoleon’s
Continental Systemwhich aimed to exclude English products fromEurope: specif-
ically areas along the north coast weremore tightly protected in relative terms than
before. We replicate the first column of Table 1 by regressing changes in spindles
per capita between 1803 and 1812 on the change in the effective distance from Lon-
don.

Satyanath, Voigtländer and Voth (2017). Bowling for Fascism: Social Capital
and the Rise of the Nazi Party

The impact of social capital on the rise ofHitler is considered by Satyanath, Voigtlän-
der and Voth (2017) who examine the links between membership of associations
and subsequent Nazi membership. We consider the regression in column 1 of Ta-
ble 3which links numbers joining theNazi party per capita between 1925 and 1933
and membership of all associations, with controls for population, and numbers of
Catholics and blue collar workers.

Squicciarini and Voigtländer (2015). Human Capital and Industrialization: Ev-
idence from the Age of Enlightenment

This study examines how growth in French cities in the late eighteenth century can
be predicted by the number of inhabitantswho subscibed toDiderot’sEncyclopédie.
We consider their Table 3 column 2 which is a convergence regression of urban

6I would like to thank Erik Hornung for kindly providing the location data used in the study.
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growth from 1750 to 1800 on 1750 population, to which they add subscribers and
some geographical controls.

Valencia Caicedo (2019). TheMission: Human Capital Transmission, Economic
Persistence, and Culture in South America

This examines how distance from a Jesuit mission affects modern illiteracy rates
in Argentina, Brazil, and Paraguay. We analyse column 1 of Table 2.

Voigtländer and Voth (2012). Persecution Perpetuated: The Medieval Origins
of Anti-Semitic Violence in Nazi Germany.

Studying how deep the roots of violent antisemitism in Germany might reach,
Voigtländer and Voth (2012) compared towns that recorded pogroms after the
Black Death of 1348–49 with those that did not, and found that the former had
stronger support for National Socialism. Here we examine their regression in col-
umn two of Table 4 of Nazi vote share in 1928 on pogroms, with controls for city
population, and the percentage of Protestants and Jews.

7 Conclusions
The regressions in studies of historical persistence combine notably high t statistics
with severe levels of spatial autocorrelation of residuals, and the goal of this paper
was to determine whether these two properties are related.

We found that in the presence of even short range autocorrelation the t statis-
tics of regressions develop extremely thick tails, and outlined a simple procedure
to handle this. The first step was to estimate a Moran statistic as a useful diag-
nostic against the possibility that the regression is simply fitting spatial noise. We
went on to simulate spatial noise with an empirically plausible structure: either to
be used as the dependent variable or to replace the original persistence explana-
tory variable. Applying this procedure to 27 studies in leading journals we found
that in about three quarters of cases, corresponding to large Moran statistics, the
persistence variable had strong ability to predict noise, and frequently had lower
predictive as an explanatory variable than did spatial noise. Our findings suggest
that the results of persistence studies, and of spatial regressions more generally,
might be treated with some caution in the absence of reported Moran statistics
and noise simulations.

31



Appendix: Simulation Results.
Here we present tabulations of how persistence studies performed relative to spa-
tial noise. Specifically, for each area we generate noise at three, hopefully plausi-
ble, correlation ranges, and report how it performed as an explanatory variable,
replacing the original persistence variable; and how well the persistence variable
was able to explain noise as a dependent variable.
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Table A1: Persistence versus spatial noise: Global studies.

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

Acemoglu et al, Colonial Origins
30 0.00 0.14 0.05 0.01 0.00 0.30 0.17 0.08 0.04
60 0.00 0.22 0.10 0.03 0.01 0.41 0.26 0.15 0.08
90 0.00 0.27 0.13 0.05 0.01 0.44 0.29 0.17 0.10

Acemoglu et al, Reversal of Fortune
30 0.01 0.13 0.05 0.01 0.00 0.21 0.10 0.03 0.01
60 0.03 0.16 0.07 0.02 0.01 0.26 0.14 0.06 0.02
90 0.04 0.19 0.09 0.03 0.01 0.27 0.14 0.05 0.02

Alesina et al, Women and the Plow
30 0.02 0.35 0.21 0.10 0.04 0.37 0.23 0.12 0.07
60 0.10 0.53 0.38 0.24 0.15 0.53 0.41 0.29 0.21
90 0.15 0.55 0.43 0.30 0.22 0.62 0.50 0.38 0.29

Ashraf-Galor, Malthusian Epoch
30 0.15 0.30 0.18 0.09 0.04 0.39 0.24 0.13 0.07
60 0.17 0.34 0.21 0.11 0.06 0.54 0.40 0.27 0.19

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.

Continued on next page
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Table A1: Global studies. (cont.)

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

90 0.21 0.37 0.25 0.13 0.08 0.60 0.48 0.36 0.25

Ashraf-Galor, Out of Africa
30 0.14 0.56 0.45 0.32 0.24 0.55 0.40 0.25 0.17
60 0.31 0.70 0.61 0.51 0.43 0.77 0.66 0.52 0.41
90 0.38 0.75 0.67 0.58 0.51 0.83 0.75 0.63 0.52

Galor-Ozak, Time Preference
30 0.02 0.19 0.07 0.02 0.00 0.33 0.20 0.11 0.06
60 0.05 0.27 0.14 0.05 0.01 0.31 0.20 0.10 0.05
90 0.05 0.32 0.16 0.05 0.01 0.37 0.22 0.11 0.06

La Porta et al, Law and Finance
30 0.01 0.10 0.03 0.01 0.00 0.12 0.04 0.01 0.00
60 0.01 0.07 0.02 0.01 0.00 0.20 0.09 0.03 0.01
90 0.00 0.05 0.01 0.00 0.00 0.26 0.11 0.03 0.01

Michaelopoulos, Ethnolinguistic Diversity
30 0.00 0.17 0.08 0.03 0.01 0.61 0.45 0.29 0.17

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.

Continued on next page
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Table A1: Global studies. (cont.)

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

60 0.00 0.21 0.09 0.03 0.01 0.80 0.67 0.51 0.37
90 0.00 0.18 0.07 0.02 0.00 0.82 0.71 0.56 0.45

Nunn-Qian, Potato’s Contribution
30 0.01 0.40 0.27 0.17 0.10 . . . .
60 0.03 0.55 0.42 0.30 0.22 . . . .
90 0.03 0.56 0.44 0.31 0.22 . . . .

Putterman-Weil, Post-1500 Population Flows
30 0.17 0.60 0.49 0.39 0.30 0.47 0.33 0.21 0.13
60 0.35 0.74 0.66 0.56 0.48 0.62 0.51 0.40 0.31
90 0.41 0.76 0.70 0.61 0.54 0.67 0.57 0.46 0.39

Spolaore-Wacziarg Diffusion
30 0.00 0.47 0.32 0.19 0.11 0.51 0.38 0.26 0.17
60 0.01 0.60 0.48 0.36 0.26 0.67 0.58 0.47 0.39
90 0.02 0.65 0.53 0.40 0.32 0.72 0.64 0.56 0.50

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.
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Table A2: Persistence versus spatial noise: Africa and India.

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

Alsan, Effect of the TseTse Fly
10 0.14 0.37 0.24 0.13 0.06 0.53 0.42 0.29 0.20
20 0.16 0.43 0.28 0.15 0.08 0.41 0.28 0.17 0.11
30 0.12 0.40 0.24 0.11 0.04 0.22 0.12 0.05 0.02

Michalopoulos-Papaioannou, Pre-Colonial
10 0.07 0.17 0.06 0.02 0.01 0.12 0.04 0.01 0.00
20 0.15 0.25 0.14 0.06 0.02 0.19 0.08 0.02 0.00
30 0.20 0.31 0.19 0.09 0.04 0.24 0.11 0.03 0.00

Michalopoulos-Papaioannou, Scramble for Africa
10 0.13 0.26 0.14 0.06 0.03 0.05 0.01 0.00 0.00
20 0.06 0.15 0.06 0.02 0.01 0.05 0.01 0.00 0.00
30 0.03 0.12 0.04 0.01 0.00 0.05 0.01 0.00 0.00

Nunn-Wantchekon, Mistrust in Africa
10 0.02 0.36 0.23 0.11 0.06 0.43 0.29 0.17 0.11
20 0.07 0.47 0.34 0.21 0.13 0.51 0.36 0.22 0.13

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.

Continued on next page
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Table A2: Africa and India. (cont.)

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

30 0.09 0.51 0.37 0.24 0.16 0.54 0.40 0.25 0.14

Nunn, Africa’s Slave Trades
10 0.00 0.10 0.04 0.01 0.00 0.12 0.03 0.01 0.00
20 0.01 0.17 0.07 0.02 0.01 0.19 0.07 0.02 0.00
30 0.01 0.21 0.10 0.04 0.01 0.25 0.12 0.03 0.01

Banerjee and Iyer. Colonial Land Tenure
8 0.20 0.47 0.32 0.18 0.10 0.46 0.31 0.19 0.10
10 0.24 0.49 0.36 0.22 0.15 0.49 0.34 0.22 0.13
12 0.28 0.54 0.40 0.27 0.18 0.51 0.36 0.24 0.15

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.
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Table A3: Persistence versus spatial noise: Europe and South America.

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

Acemoglu et al, Holocaust in Russia
3 0.00 0.18 0.07 0.02 0.00 0.47 0.34 0.22 0.14
4 0.01 0.22 0.09 0.03 0.01 0.51 0.38 0.25 0.17
5 0.01 0.23 0.11 0.04 0.01 0.52 0.39 0.26 0.18

Becker-Pascali, Anti-Semitism
3 0.40 0.55 0.44 0.32 0.23 0.71 0.61 0.51 0.44
4 0.45 0.62 0.50 0.37 0.27 0.72 0.65 0.55 0.48
5 0.54 0.67 0.57 0.45 0.36 0.73 0.65 0.56 0.49

Becker-Woessmann, Was Weber Wrong?
3 0.31 0.68 0.58 0.49 0.41 0.66 0.57 0.46 0.39
4 0.41 0.74 0.67 0.58 0.51 0.71 0.63 0.53 0.46
5 0.50 0.79 0.73 0.66 0.60 0.77 0.69 0.61 0.54

Caicedo, The Mission
3 0.46 0.62 0.50 0.39 0.29 0.71 0.63 0.53 0.46
4 0.50 0.65 0.55 0.43 0.33 0.74 0.66 0.57 0.50

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.

Continued on next page
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Table A3: Europe and South America. (cont.)

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

5 0.52 0.68 0.57 0.44 0.35 0.76 0.69 0.59 0.53

Hornung. Huguenots
3 0.18 0.55 0.44 0.30 0.20 0.47 0.32 0.18 0.09
4 0.28 0.61 0.51 0.39 0.30 0.53 0.39 0.24 0.12
5 0.33 0.68 0.58 0.46 0.35 0.58 0.43 0.24 0.11

Juhasz, Napoleonic Blockade
3 0.03 0.35 0.17 0.03 0.00 0.56 0.44 0.31 0.23
4 0.07 0.44 0.25 0.07 0.01 0.64 0.54 0.42 0.33
5 0.11 0.49 0.32 0.11 0.01 0.69 0.60 0.50 0.41

Satyaneth et al, Bowling for Fascism
3 0.18 0.33 0.19 0.09 0.03 0.37 0.22 0.09 0.03
4 0.23 0.40 0.25 0.11 0.05 0.44 0.28 0.14 0.06
5 0.29 0.46 0.30 0.16 0.08 0.48 0.34 0.19 0.09

Squicciarini-Voigtlaender, Age of Enlightenment
3 0.00 0.17 0.07 0.01 0.00 0.21 0.08 0.03 0.01

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.

Continued on next page
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Table A3: Europe and South America. (cont.)

Explanatory Noisea Dependent Noiseb

Correlation
Rangec Out-

performsd p = 0.05e p = 0.01 p = 0.001 p = 0.0001 p = 0.05f p = 0.01 p = 0.001 p = 0.0001

4 0.00 0.20 0.08 0.02 0.00 0.20 0.09 0.02 0.01
5 0.00 0.21 0.09 0.02 0.00 0.19 0.09 0.02 0.01

Voigtlaender-Voth. Persecution Perpetuated
3 0.45 0.58 0.47 0.33 0.23 0.29 0.15 0.06 0.02
4 0.53 0.65 0.54 0.42 0.32 0.31 0.17 0.08 0.03
5 0.58 0.69 0.58 0.47 0.37 0.36 0.21 0.09 0.03

Dell, Peruvian Mita
0.5 . . . . . 0.33 0.19 0.09 0.05
1 . . . . . 0.48 0.35 0.23 0.15
1.5 . . . . . 0.55 0.43 0.31 0.22

a Explanatory variable replaced by noise. b Dependent variable replaced by noise.
c East-west correlation range in degrees. North-south range is half this.
d Proportion of simulations where noise has higher explanatory power than original persistence variable.
e Proportion of simulations where noise is significant at level p. f Proportion of simulations where persistence variable
explains noise with significance level p.
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