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1 Introduction

Transportation accounts for 20% of global greenhouse gas emissions and policy makers are taking

up the challenge to reduce the use of polluting petroleum liquids. One of the major policy tools

used to achieve this goal are emission standards. This type of regulation sets mandatory limits on

average emission rates (or fuel economy) across the fleet. Emission standards are used across the

globe in China, the European Union, Japan, the United States of America and other countries.

These policies are simple to prescribe and do not explicitly tax consumers or producers. This paper

studies the introduction of the emission standard in the EU and tries to estimate the welfare effects

of the EU policy.

The EU regulation aimed to reduce CO2 emissions from passenger cars by 18%. The policy

was announced in 2007 and became fully binding from 2015, after a phase-in period that started

in 2012. The regulation targets CO2 emissions which is equivalent to targeting fuel consumption

or fuel efficiency.1 The EU standard is interesting to study for three reasons. First, it is a very

demanding standard with a target of 130 g CO2/km. For comparison, the US standard required

only 36 miles per gallon (mpg) in 2016, while the EU standard requires approximately 42 mpg.

Second, before the standard, the EU had no regulation on CO2 emissions. The introduction of the

standard thus allows us to study how the market equilibrium changes with the introduction of a

stringent emission standard. Third, the EU standard is attribute-based; the target for each firm

depends on the average vehicle weight. This means that firms producing heavier vehicles face a less

stringent target. Several other countries introduced an attribute-based standard.2 Understanding

the effects of the EU standard is thus helpful to guide the design of this type of regulation in the

future and in other markets across the world.

The task of evaluating the welfare impact of emission standards is not an easy one. Firms

can choose between different abatement strategies to comply with a standard, and these strategies

will have different effects on the market equilibrium. A first strategy is sales-mixing, i.e., shifting

the relative prices of vehicles with different CO2 emissions. A second strategy is downsizing, i.e.,

releasing smaller but more fuel efficient vehicles. A third strategy is technology adoption, i.e.,

improving the fuel efficiency of the vehicle fleet. A fourth strategy is gaming, i.e., improving the

fuel efficiency as measured in official ratings without improving the actual fuel efficiency on the

road. These strategies will change the prices, product attributes, product sets and market outcomes

in different ways. Firms will choose the abatement strategy that has the lowest cost, while taking

into account the strategy chosen by competing firms. Additionally, the design of the policy will

matter for the costs of different abatement strategies. To evaluate the EU standard, this paper

1CO2 cannot be filtered during the combustion process. Fuel consumption translates proportionally into grams of
CO2 per km, with a different CO2 content per liter for diesel and gasoline. Fuel consumption (liters per kilometer)
and CO2 emissions per kilometer are the inverse of fuel economy (miles per gallon).

2The International Council on Clean Transportation (2014) compares the different regulations between countries.
The EU has the goal of decreasing emissions to 95 g/km by 2021; the US has communicated a goal of 103 g/km by
2025; Japan has a goal 105 g/km by 2020; and China has a goal of 117 g/km by 2020. The US and Japan have also
introduced attribute-basing in their regulations.
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presents a model that accounts for firms’ abatement strategies and the design of the policy.

In a first step I explain the trend in sales weighted CO2 emissions between 1998 and 2011

in the EU market. Knittel (2011) shows that vehicles evolve over time in terms of the amount of

attributes that are offered relative to fuel economy. He finds that there is a constant improvement in

the amount of attributes and the fuel economy offered and interprets this as technological progress.

I follow his approach and estimate technological improvements in the trade-off that firms face

between emissions and other vehicle characteristics. I find that emissions were reduced by 14%

after the regulatory announcement. This reduction is fully explained by increases in the fuel

efficiency improvements of vehicles, while the attributes and the product set offered by firms do

not change. This shows that the market is not shifting towards smaller vehicles and thus rules out

downsizing as an explanation for the drop in emissions. The results show that the technological

progress is twice as fast after the regulatory announcement, in line with findings of Klier and Linn

(2016). Firms thus respond to emission standards by increasing the speed of technology adoption,

at least when we look at the official emission ratings. In Reynaert and Sallee (2019) we studied the

fuel efficiency of thousands of vehicles on the road to find that there is significant gaming in the

market. Emission ratings improve on paper, but these improvements do not translate to the road.

Using these estimates of on-road fuel efficiency, I find that only 30% of the increased technology

adoption is measurable on the road, so that 70% can be attributed to gaming.

The observed decrease in the emission ratings is so strong that almost all of the firms reach the

emission target before it becomes partly binding in 2012. However, looking at market outcomes

before and after the policy is not sufficient to find the welfare effects of the policy. The effect of

the regulation cannot be separated from changes in local regulations and taxes. Many EU member

states began changing vehicle taxation after 2007, clearly contributing to the downward trend in

emissions.3 There is also an 8 year gap between the policy announcement and implementation

so that the demand, costs and market fundamentals potentially change. Therefore, I resort to

a structural model to simulate the impact of the emission standard. The model allows me to

single out the impact of the policy, and it also allows me to study how the impact changes when

we change the design of the policy. In the counterfactual, I assume that the product sets of the

firms and the product attributes are fixed; this rules out downsizing, which is in line with the

decomposition of emission trends. I then model heterogeneous consumers making discrete choices

between vehicles. The firms have the following three strategic choices: price setting (sales mixing),

technology adoption and gaming. The model allows me to clearly indicate how the equilibrium

changes with each of the strategic choices. To simulate the model I need estimates of the following

primitives: preferences and price elasticities, marginal costs, changes in costs from technology

adoption and changes in costs from gaming.

For the estimation of these primitives I rely on the rich panel data from before the policy

announcement. This has the advantage that firms’ decisions are not affected by the policy. I

3See for example the French bonus malus discussed in Durrmeyer (2018) and the Swedish rebate discussed in Huse
and Lucinda (2014)
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estimate consumer tastes and price elasticities following the framework of Berry, Levinsohn, and

Pakes (1995). I allow for heterogeneous tastes of consumers for several characteristics, including

fuel costs. I extend the model to allow for multiple endogenous characteristics including prices,

fuel economy, horsepower and weight. Though I do not model the firms’ choices of these variables

explicitly in the counterfactual, the demand estimation avoids biases in the taste parameters that

would show up when firms choose characteristics with more information on unobserved quality than

the econometrician. I instrument these characteristics with a combination of sums of characteristics,

globalization and production platform instruments. The globalization instruments exploit changes

in the international production network of firms over time. When vehicles become popular in

different international markets, this impacts the production location choices as well as the engine

design choices. The validity of the instrument relies on the assumption that differences in the

global exposure are uncorrelated with unobserved quality in the EU. Given the estimated demand,

I invert the first order conditions of the profit function with respect to prices to find the marginal

costs of vehicles. Because I use prepolicy data, this is straightforward. I also invert the first

order conditions with respect to fuel consumption to find the marginal benefits and marginal costs

firms face in deciding how much fuel consumption (and consequently emissions) to offer. This

will be a crucial input to model the technology adoption; the regulation will increase the marginal

benefit of lowering fuel consumption, as vehicles with lower emissions help the firm attaining the

regulatory target. However, in doing so, firms will face increases in the marginal cost of offering

lower fuel consumption. To predict how cost changes with decreases in fuel consumption, I rely on

two approaches. First, I use the observed relation in the data between fuel consumption and the

estimated marginal cost. Second, I use the engineering reports submitted with the policy proposal

that give detailed predictions of marginal cost increases. Finally, I need an estimate for the costs

of gaming. The costs of gaming consist of the expected litigation and the cost of emission test

falsification. These costs are very difficult to estimate and I therefore rely on the level of gaming

found in the emission decomposition, rather than modeling a cost function to solve for optimal

gaming. The estimated model with multiple endogenous characteristics and multiple strategic

decisions on continuous variables is similar to the recent contributions of Fan (2013) and Crawford,

Shcherbakov, and Shum (2019).

Given the estimated primitives I introduce the EU policy in the model and simulate how it

impacts the market equilibrium. The simulations reveal that technology adoption in combination

with gaming is indeed the equilibrium abatement strategy of firms. The increases in costs from

technology adoption beyond the willingness to pay for fuel consumption imply that the regulation

decreases the consumer surplus and profits. Because of the gaming, the reductions in CO2 emission

are a mere 5% instead of the 18% target. The sum of these emission savings and consumer and

profit losses is clearly negative so that the regulation reduces welfare. However, when I consider

two additional welfare effects,i.e., reductions in other externalities and corrections in consumer

undervaluation, I find the emission standard to have a very small positive impact. The simulation

also reveals that when I restrict the firms’ abatement strategy to sales mixing, the standard would
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have had starkly different welfare effects, where the total sales and emissions then strongly decrease

at a very high costs for consumers. Why did firms choose for the combination of technology adoption

and gaming in response to the EU standard?

I find that the attribute based design of the regulation, which lets the emission target vary

with vehicle weight, makes sales mix abatement much more costly for firms. Most firms have less

vehicles beneath the attribute based target than below the flat target. Firms will have to distort

prices more to lower their sales-weighted emissions due to the attribute basing. If the regulation

had a flat design that is not attribute-based, firms would have opted for a mixture of technology

adoption and sales mixing. This would have led to CO2 emission reductions of 11%, which is

much closer to the 18% target. Why, then, was the attribute design introduced? The simulations

show that the positions of the governments are in line with their firms. The attribute basing

redistributes the incidence of the regulation between French, Italian and German producers. This

is consistent with newspaper articles at the time citing representatives of different car producing

countries. The French and Italian governments were in favor of the flat regulation while Germany

lobbied heavily for a steep attribute design. Additionally, the gaming is a product of the political

environment. A recent evaluation by the European Parliament (Gieseke and Gerbandy (2017)) has

placed responsibility for enforcement failures with the car producing member states. The countries

failed to detect and respond to gaming timely, so that the policy missed its target. Together, the

political deal regarding attribute basing and the enforcement failures, show the importance of the

political environment in which emission standards are introduced.

The paper makes several contributions. First, I show that emission standards can induce tech-

nology adoption and gaming by firms. The equilibrium effects of the abatement strategies are not

studied in detail in the previous literature. The literature studying the CAFE standard in the US

treats changes in the level of technology as a possible longer run effect of emission standards and

has not focused on the welfare effects from gaming. Second, by estimating a structural model of

demand and supply, I show that the incidence and welfare effects of the regulation vary drastically

between different abatement strategies. Third, the model allows me to study how the design of

the regulation affects the outcomes. The attribute-basing increased the pressure on firms to adopt

technology, and the weak enforcement allowed for gaming so that the policy missed its emission

reduction target. Together, these three contributions show that it is crucial to take the supply

responses carefully into account when evaluating and designing emission standards. Finally, this is

the first paper providing a detailed study of the EU regulation and its impacts on market outcomes.

The framework in this paper builds on the existing work of Knittel (2011), Jacobsen (2013) and

Reynaert and Sallee (2019). The emission decomposition follows the estimation in Knittel (2011),

but I find that the speed of technology adoption changes when the policy is announced. Jacobsen

(2013) incorporates heterogeneous responses from both consumers and producers in a structural

model. In an extension Jacobsen (2013) also considers technology adoption using the framework

of Austin and Dinan (2005). My analysis contributes by fully considering technology adoption in

the economic model. This shows the importance of the starting slope of the technology cost curve
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and how technology adoption lowers shadow costs endogenously. While Jacobsen (2013) finds that

technology adoption limits the welfare losses of standards, I show that technology adoption could

lead to welfare losses or gains depending on the cost effectiveness of the technology relative to

consumers willingness to pay for fuel consumption.4 In Reynaert and Sallee (2019) we estimate

the amount of gaming in the EU market. I use the on-road fuel efficiency estimates of our work

to see how much of the faster technology take up translates to the road. I also use the framework

we built to estimate the effects of gaming on consumer surplus. The effects of gaming crucially

depend on the consumer awareness and cost avoidance of gaming, and we calibrate several scenarios

varying these parameters. Here, the interaction between choice and gaming is embedded in the full

equilibrium model interacting with other abatement strategies, and I focus on the overall welfare

rather than the narrow consumer welfare.

This paper adds to a body of literature that studies policies targeting vehicle emissions, see

Anderson and Sallee (2016) for an overview. Holland, Hughes, and Knittel (2009) show that none of

the welfare effects of emission standards are theoretically determined. A regulation might decrease

or increase emissions from new vehicles, depending on the distribution of the price elasticities of

products below and above the emission target. This shows the importance of estimating a model

that allows for rich substitution patterns. However, the welfare effects of standards become even

more uncertain when we consider the variety of different abatement strategies. The empirical

literature on emission standards has focused on the US CAFE standard. Goldberg (1998) was

the first to consider the effect of standards on price setting and the composition of the vehicle

fleet. Anderson and Sallee (2011) use a loophole in the regulation to show that the standard

is hardly binding in recent years. Jacobsen (2013) finds that the US CAFE standard imposes

a large shadow cost on domestic US firms. Both Klier and Linn (2012) and Whitefoot, Fowlie,

and Skerlos (2017) extend the analysis by considering the endogenous product characteristics in

the model, allowing firms to change the characteristics of vehicles. Both of these papers assume

that the level of technology is fixed and consider reoptimization of product offerings on a fixed

trade-off function between emissions and attributes. I allow the trade-off relation to change but

impose that improvements must reduce fuel consumption, in line with the empirical evidence in

Europe. The economic effects of attribute-based regulations are discussed in Ito and Sallee (2018),

who focus on distortions in the market for the attribute. Whitefoot and Skerlos (2012) compute

the vehicle weight distortions for the CAFE standard with footprint basing. The analysis here is

complementary as I study different effects of attribute-basing, i.e., the cost of different abatement

strategies and the political economy behind the attribute basing.

This paper focuses on the direct welfare effects of the EU emission standard. Recent work has

considered additional margins of the policy. Jacobsen and van Benthem (2015) study the effect of

4Other notable differences are the demand model where I estimate price elasticities on the engine level (more than
400 products per market) rather than the broad category level (including 12 products) and I allow for endogenous
characteristics. The model of Jacobsen (2013) is richer in other dimensions as it incorporates effects on the second
hand market as well as changes in the vehicle miles traveled as modeled in Bento, Goulder, Jacobsen, and von Haefen
(2009)
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emission standards on vehicle scrap rates. Durrmeyer and Samano (2018) compare a standard with

a rebate policy that explicitly subsidizes and taxes emissions above and below the target. Bento,

Gillingham, and Roth (2017) focus on the effect of the fuel standard on the dispersion in vehicle

weight and its effect on accidents.5

The paper is structured as follows. Section 2 describes the policy and the available data.

Section 3 decomposes the changes in emissions in the EU automobile market between 2007 and

2011. Section 4 presents the emission standard in a model of supply and demand and discusses

the possible effects of the different abatement strategies. Section 5 presents the estimation results.

Section 6 presents the results of policy simulations, and Section 7 concludes.

2 The EU emission standard and data

The EU emission standard The European regulation on emission standards for new passenger

cars, Regulation (EC) No. 443/2009, sets a mandatory fleet average of κ =130 grams CO2 per

kilometer. Denoting the sales of each product j by qj and the emissions of each product by ej , the

target for a firm is as follows: ∑
jεfleet qj(ej − f(wj))∑

jεfleet qj
≤ 130. (1)

The attribute basing f(wjm) = a(wj − w0) adjusts the emissions of each vehicle by the distance

in the vehicle weight wj from a shifting point w0 (the pivotal weight point). The shifting point

w0 is a mass of 1370 kg and the difference in weight from that point is multiplied by a = 0.046.6

The target is set for each producer’s fleet of new vehicles sold in a calendar year and the trading of

excess emissions between producers is not allowed.7 Figure 1 plots the target and the distance from

the target for each producer in 2007 and 2011. When producers exceed the standard they have to

pay premiums for excess emissions. The premium is e5 per unit sold for the first excess g/km and

increases to e95 per unit above 134 g/km. A manufacturer obtaining a sales weighted emission

of 146 g/km, the average in 2007, would face a significant penalty of e1,280 per vehicle (against

an average sales price of e22,250). The regulation was proposed by the European Commission in

2007 and became a European law in 2009. Deters (2010) gives an overview of the full legislative

process and the political background. In 2012, 65% of manufacturer’s sales had to comply with the

emission standard. This rose to 75% in 2013 and 80% in 2014, and the standard was fully binding

from 2015 onward. I will not model the phase-in period. Every firm succeeded in reaching the full

5These margins play a role in the current policy debate in the US as discussed in Bento, Gillingham, Jacobsen,
Knittel, Leard, Linn, McConnell, Rapson, Sallee, van Benthem, and Whitefoot (2018)

6The average SUV in the data weighs 1650 kg, and the average compact car weighs 1250 kg. The SUV’s emissions
will be scaled down while the compact car’s emissions will be scaled up.

7Manufacturers can obtain lower average emissions by gathering super credits. These credits are given for vehicles
that emit less than 50 g/km. There are also separate standards for small manufacturers making less than 30,000
vehicles per year. Both of these exceptions are ignored in the analysis since they count for a very small share of the
total market.
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Figure 1: Compliance of Firms in 2007 and 2011
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target by 2014.

The specifics of the regulation were heavily debated during the drafting of the law. Several

newspaper reports discuss lobbying efforts by EU member states, firms and environmental groups.8

France and Italy were strongly in favor of a flat standard, while Germany wanted an upward

sloping target function in either weight or footprint (the rectangular area in between the wheels of

the vehicle). The German firms BMW, Daimler and Volkswagen, on average, make heavier vehicles

than Fiat (Italian), Renault and PSA (French). The production of each of these firms mostly takes

place within the boundaries of the home country, and the car sector is an important source for

employment.

It is instructive to compare the EU policy with the US CAFE standard since this policy has been

the subject of several studies. The CAFE standard came into place in 1978 and after a gradual

phase-in has been constant at 27.5 mpg since 1990 (this corresponds to 198 g CO2/km). From

2009 onward, the CAFE standards are tightened towards 36 mpg in 2016 (this corresponds to 152

g CO2/km). Contrary to the EU standard, light trucks (SUV’s) face a different less demanding

8See, for example, ”EU unveils tough emissions curbs for cars” - Financial Times, February 7 2007 and ”France
battles Germany over car emissions” - Financial Times, November 15 2007.
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target than passenger cars. Additionally, firms are allowed to trade excess emissions over time and

with other firms.9 From 2012 onward, the CAFE standard also has an attribute-based part, i.e.,

the target varies with the footprint.

Data The main data set is obtained from a market research firm (JATO dynamics) and contains

sales and product characteristics for each passenger car sold during 1998-2011 in the following

seven European countries: Belgium, France, Germany, Italy, Great Britain, The Netherlands and

Spain.10 The characteristics and sales are given for several engine variants of a car model at the

country level with a yearly frequency. The country will be the geographical market. A model is

defined as a brand/model name/body type combination (e.g., Volkswagen Golf Hatchback).11 The

engine variants differ in fuel type (gasoline or diesel) and engine performance. Accounting for fuel

type is important in the EU market, as diesel variants have a considerable market share (56% in

2011) and the emissions of diesel variants are lower; a diesel engine emits approximately 20% less

C02 per kilometer.12

Sales are defined as new vehicle registrations in each of the countries. The prices are the sug-

gested retail prices (including registration taxes and VAT, as obtained from the European Automo-

bile Association). The product characteristics give information on the vehicle size (footprint defined

as length by width, weight and height) and engine performance (horsepower and displacement).

The data also contains information on fuel consumption (liters per 100 km and CO2 emissions per

km). These numbers are the official consumption ratings obtained from the New European Driving

Cycle (NEDC), a standardized driving cycle to assess the emission levels of car engines. The cycle

simulates both urban and extraurban driving patterns and excludes the use of auxiliary features,

such as air conditioning. Real world emissions thus differentiate from these test values. In Reynaert

and Sallee (2019) we develop a measure of on-road emissions and we show that reductions in the

official CO2 ratings do not fully translate into on-road savings. Car makers are able to calibrate

engines with defeat devices and specific software so that they perform much better on the test.

We coin the improvements that do not translate to the road gaming. I will use the measure of

on-road emissions in the analysis in order to disentangle technology adoption from gaming.13 This

information is available for a much more limited sample of vehicles. Finally, the data on sales

and emissions are supplemented with production data from PriceWaterhouseCoopers (PWC) that

contain the country and plant of production for each model. I match this with a producer price

index and a unit labor cost measure obtained from the OECD. Finally, the data on fuel prices (from

9Contrary to the CAFE standards in the US there is also no banking system for excess emissions over time. The
penalties in the EU are lower for low excess emissions but increase to higher levels than the penalties for breaking
the US CAFE standards.

10These markets represent approximately 90% of the total EU market.
11The body types are as follows: hatchback, sedan, wagon, coupe, convertible, mini MPV and SUV.
12The combustion process and different energy content of the fuel make diesel engines more efficient per kilometer.

Diesel cars emit less CO2 per kilometer, but more other pollutants such as NOX.
13In Reynaert and Sallee (2019) we construct on-road emissions from a panel of 12,000 drivers visiting fuel station

22 million times. We observe odometer readings and fuel purchases and use those to construct fuel consumption on
the road.
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DataStream), GDP/capita and number of households in each country (from Eurostat) are used to

construct the fuel costs for consumers, real prices and the number of potential buyers in each year.

To reduce the size of the data and the complexity of the analysis, I leave out firms, brands and

models with very low sales. The analysis will focus on the largest producers and their bestselling

brands on the EU market. The included firms are BMW, Daimler, Fiat, Ford, General Motors,

PSA, Renault and Volkswagen. I treat the largest Asian car makers as one decision maker. This

includes the firms Honda, Hyundai, Mitsubishi, Nissan, Suzuki and Toyota.14 The list of excluded

brands and a detailed description of the model selection and data manipulations can be found in

the appendix. In total I keep 40,239 market/year/model/engine variants in 98 year/countries, or

approximately 400 model engine variants per market. The final data contains 80% of total reported

sales in the sample.

Throughout the paper, the full dataset is partitioned over time and markets in several ways.

In Section 3, I collapse the data towards a unique model engine variant in each year and leave

out the variation over markets. These data are used to make statements on the evolution of the

supply of engine characteristics in response to the policy and contains 14,444 unique observations.

To estimate the structural model I will rely only on data prior to the policy announcement and use

the years 1998-2007. This exploits 30,000 year/market/model-engine observations. The data from

the year 2007 will be used as the benchmark for the simulations in Section 6.

Summary Statistics Figure 1 plots each producer’s distance from the emission standard in

2007 and 2011. Each firm needs to move below the dotted line, which presents the attribute-based

emission standard. In 2007 each firm is far above the target and has the following three options to

reach the standard: reduce emissions, increase vehicle weight or combine both. The Asian firms,

BMW, Daimler and Ford decrease weight and reduce emissions. Volkswagen reduces emissions

while keeping weight constant. Fiat, GM, PSA and Renault all increase the average weight slightly

while decreasing emissions strongly. A strong downward trend in emissions towards the standard

is observed for all firms. The decrease in emissions is so strong that most of the firms comply

with the emission standard four years before it is fully binding.15 Table 1 shows the change in

the sales weighted vehicle characteristics between 2007 and 2011. CO2 emissions decrease by 14%

while there is moderate growth for the other characteristics.

Figure 2 plots the sales weighted characteristics over time from 1998 to 2011 for both the EU

(Panel a) and the US (Panel b). Each characteristic is indexed in 1998. The most remarkable

trend in the EU is the evolution of sales weighted CO2 emissions. The level of emissions is constant

up until 2002, slightly declines approximately 6% until 2007, and then plunges by 14% in the last

14I combine the fleet of the Asian car makers because most of these firms do not have a very broad product set.
This makes finding a price equilibrium with sales-mixing impossible in my algorithms. Alternatively, I could choose
to only keep Toyota and Nissan, by far the largest Asian firms in the EU, but combining all Asian firms allows me
to include more products. Note that the emission standard is sales based, it does not matter where the vehicle is
produced. This means that imports sold in the EU are counted and exports are ignored.

15This shows that the emission standard is probably not the only mechanism driving down the sales weighted
emissions. Below I comment on complementary explanations.
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Table 1: Sales weighted vehicle characteristics in 2007 and 2011

Characteristics 2007 2011 % Change

CO2 (in g/km) 147 126 -14%

Horsepower (in kW) 77 80 3%

Footprint (in m2) 7.2 7.4 2%

Weight (in kg) 1271 1280 1%

Diesel 56% 56% 0%

The Table presents the sales weighted vehicle characteristics in the EU in 2007 and 2011.

Figure 2: Sales Weighted Characteristics over Time
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.8
.9

1
1.

1
1.

2
1.

3
1.

4
Sa

le
s 

W
ei

gh
te

d 
C

ha
ra

ct
er

is
tic

s

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Year

CO2 Horsepower
Weight

(b) United States
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The figure shows the evolution of quantity weighted characteristics from 1998 until 2011, indexed at 1998.
The EU trends represent the evolution of sales weighted characteristics as observed in the data. The
US trends represent the evolution of the production weighted characteristics as reported by the EPA

(http://www.epa.gov/otaq/fetrends.htm).

four years of the sample. This shift coincides exactly with the announcement of the fuel efficiency

standard by the European Commission. The CO2 emissions show a very different pattern in the US

than in the EU. Until 2007 there is a very moderate decline in emissions of 3%. Between 2007 and

2009, the emissions of newly produced vehicles decline by 7% but then remain constant at 90% of

the 1998 level. In the EU, emissions further decrease in 2010 and 2011 are at 80% of the 1998 level

by the end of the sample. In both the EU and the US weight and horsepower grow consistently

over time. By 2011, European consumers choose a vehicle that, on average, is 23% more powerful

and 13% heavier than in 1998.

3 Market response to the EU emission standard

In this section I decompose the decrease in carbon emissions in the EU vehicle market. The goal

of the decomposition is to measure the extent to which different abatement strategies can explain

the drop in emissions after the policy announcement. To do this, I estimate a trade-off relation

10



between emissions and other vehicle characteristics. The shifts over time in the relation between

characteristics and emissions supplied by car makers are decomposed into changes in technology and

changes in the composition of the vehicle fleet. I also investigate to what extent the technological

change translates to the road by separating gaming from actual technology.

Estimation of trade-off and technology parameters Following Knittel (2011), I estimate

the following regression:

log(ejt) = ζt + η log(xjt) + εjt, (2)

where the technology parameter ζt is a time fixed effect, the trade-off parameters η denote how

emissions ejt change with a 1% change in characteristic xjt and εjt is an error term.16 The tech-

nology parameter captures shifts over time in the trade-off between emissions and characteristics.

When the trade-off parameters η are constant over time, technology ζt can be seen as input neutral

as it enters multiplicative in levels.17 I include vehicle model fixed effects such that the identifying

variation comes from different engine options within the same model. I assume the remaining un-

observable εjt to be i.i.d.. The unobserved error comes from variation in unobserved attributes of

engine versions within a model name, such as torque or the valve mechanism. These unobserved

engine attributes might be correlated with explanatory variables, so that η cannot be interpreted

as a causal relation between the characteristics and emissions. The goal of estimating (2) is to see

changes in emissions over time while controlling for the correlation between emissions and other

characteristics.

The estimation of (2) is useful because it reveals the abatement strategies that firms resort

to without relying on a structural model. In Figure 2, I showed how emissions starkly decreased

after the regulatory announcement. If firms choose sales-mixing or downsizing, then the part of

the emissions that is explained by characteristics xjt should decrease over time. Both with sales

mixing and downsizing firms would sell more small and low performing cars. In contrast, when

firms choose to implement technology, we should see shifts in the technology parameters ζt over

time. As discussed above, there is large concern that firms have gamed the test. This is a concern

when estimating (2), as the left hand side variable is the official emission rating obtained from the

regulator. To test the extent to which emissions on the road change, I also estimate (2) using a

measure of on-road emissions as the left hand side variable. The on-road emissions are taken from

our work in Reynaert and Sallee (2019). This allows me to test if the technological improvements

revealed in the official data translate to on-road measures. I now present estimates of the trade-off

parameters in Table 2 and of the technology parameters in Table 3. Next, I discuss the robustness

of estimating (2), which is reported in appendix Table A1. Finally, I show the decomposition of

emissions over time in Table 4.

16Knittel (2011) assumes that the marginal cost is additively separable in elements related to emissions and other
cost elements not related to emissions. Then this estimation can be interpreted as an estimate of the level set or
iso-marginal cost relation between emissions and its determinants.

17The main specification will have a constant η, but I also show robustness when η changes over time. I estimate
2 using a wide range of robustness checks, which are specified below and are reported in Appendix Table A1.
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Table 2 presents the trade-off parameters η from estimating (2). Model 1 is the baseline spec-

ification close to that of Knittel (2011), and includes trade-off parameters for horsepower, weight,

footprint and height. For Model 1, I find that a 10% increase in horsepower is associated with a

1.8% increase in emissions. Weight is associated with higher emissions, while a 10% increase in the

footprint reduces emissions by 2.9%. A diesel engine is approximately 20% more efficient than a

gasoline engine, which coincides with engineering numbers and is very robust across specifications.

These numbers have the same sign and a similar magnitude as those reported by Knittel (2011)

and Klier and Linn (2016) who use similar European data. Model 2 allows for a firm specific trend

in technology. The trade-off parameters are robust to introducing firm specific trends. Next, I start

introducing the on-road measures of emissions. These measures are available for a much smaller set

of vehicles so that the sample shrinks from 14,444 observations to 3,766 observations. Therefore,

Model 3 replicates Model 1 with the smaller sample. The trade-off parameters shrink somewhat,

but are fairly robust. Model 4 changes the dependent variable so that the relation between the

on-road emissions and characteristics is estimated. Model 5 introduces firm specific trends. The

trade-off parameters shrink further when looking at on-road emissions. However, it becomes more

difficult to interpret these coefficients as a technical trade-off that firms face. On-road emissions

vary not only because of physical reasons but also because consumers with different driving patterns

select different types of vehicles. For example, the diesel coefficient now deviates from the engineer-

ing estimates and is 0.16 instead of 0.2. Typically, long distance drivers choose diesels because of

their higher fuel efficiency. If long distance drivers obtain lower fuel economy than short distance

drives, this explains the deviation from the engineering estimate. Below, the trade-off parameters

will be used to compute the part in emissions that correlates with characteristics. First, I zoom in

on the time fixed effects.

The technology parameters ζt are derived from the time fixed effects in each regression and are

plotted in Table 3 for Models 1 to 5. Note that Models 2 and 5 report the averages of the firm

specific trends. The bottom panel of the table presents the difference in the mean of ζt for 1999-

2007 and for 2008-2011, corresponding to the pre- and postpolicy announcement period. Models

1-3 all explain the official emission ratings, and I find that technology improves significantly faster

in the later years of the sample. All estimates show that the technology shifts ζt are more than 2%

higher after 2007 than in the years before. The difference is statistically significant. After 2007,

the estimates thus reveal a significant increase in the pace of technology improvement. The firm

specific trends are reported in Appendix Table A2. The change in trends is there for all firms but

the magnitude differs. BMW and Renault have the lowest difference in technology growth (0.9%

and 0.8%), while Volkswagen has the highest difference (5.4%). In the official emission measures,

we find evidence of rapid changes in technology adoption, but these emission reductions might

not translate to the road. Indeed, once we explain the shifts in on-road emissions in Models 4

and 5, we find that the technology growth does not increase as rapidly in the postpolicy period.

Between 2008-2011, the mean technology change shrinks from 3.9% in Model 2 to a mere 1.5% in

Model 5. However, Models 4 and 5 reveal higher average technology growth in later years relative
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to prior years, but the difference shrinks from 2.4% to 0.7%. Firm specific values, reported in

Table Appendix A2, show similar patterns except for BMW and Renault. Overall, this reveals

that firms do engage in technology adoption after the policy announcement but that a large part

of the technology is aimed at reducing official emission ratings rather than on-road emissions. The

estimates show that 70% of the additional reduction in official emissions comes from gaming, while

30% comes from actual technology improvements. This 30/70 ratio will be used in the structural

model below.18

To show robustness for the estimation of trade-off parameters and trends in technology, I repli-

cate the estimation of 2 in several robustness exercises. Table Appendix A1 shows the estimates

and differences in the technology take up for Model 6, which changes the functional form from Cob

Douglas to Translog so that higher order terms in xjt are included. Model 7 keeps only the first

appearance of each vehicle; Model 8 allows the trade-off parameters to change over time; Model 9

weighs the observations by sales; Model 10 includes the marginal costs as estimated in the structural

model as a control; and Model 11 interacts the characteristics with the fuel type. All specifications

are ran on the full sample with official ratings as the dependent variable. All specifications estimate

that the emissions decrease between 2.1% and 3.3% more rapidly after the policy announcement.

The baseline in Model 1 is 2.3%.

Decomposition of the changes in emissions The estimated relation (2) can be used to decom-

pose the decline in emissions over time. The decomposition is done as follows: I predict emissions,

êjt, as the fitted values of regression (2) with Model 2. I also predict ejt using (2) but fixing the

technology level at ζt = ζ2007.
19 The evolution in the sales-weighted values of ejt only changes

when the composition of characteristics xjt changes over time, while êjt changes both because of

underlying characteristics and technology.

The results in Table 4 show that between 1998 and 2007, sales-weighted emissions without

technology ejt declined slightly from 156 to 152. Technology improvements are responsible for the

remaining moderate decline in emissions between 1998 and 2007. After 2007, the sales weighted

emissions without technology ejt remain constant. There is thus no evidence of significant changes

that could be attributable to either sales-mixing or downsizing, as these would change the part

of the emissions that correlates with the attributes. When I split up the average sales-weighted

emissions into vehicle models released after and prior to 2007, the results show that the emissions

ejt of vehicles released prior to 2007 remain constant.20 Vehicle models released after the policy

18I use the market level estimate of gaming rather than the firm level in the structural model for two reasons. First,
the firm level estimates are not statistically precise and introducing firm heterogeneity in gaming will create large
differences in welfare outcomes between firms. The preciseness of the estimates in Models 4 and 5 is overstated in the
standard errors as the left hand side are estimates of on-road performance and I did not adjust the standard errors
for this (bootstrapping is computationally impossible because it would require multiple estimations over 22 million
observations. The second reason is that in Reynaert and Sallee (2019) we analyze data up until 2015 rather 2011.
Over this longer period, all firms game in large and similar amounts.

19I re-scale each of the predicted emissions with the attribute-based target function, such that the numbers can be
read as actual distances from the regulation. Not doing this re-scaling has no impact on the results.

20An example of a newly released model is the ”Citroen DS3 Hatchback”, which was released in 2009.

13



Table 2: Trade-off Estimates between Emissions and Characteristics

Model 1 Model 2 Model 3 Model 4 Model 5

Official Ratings On-Road Ratings

Coef. St.E. Coef. St.E. Coef. St.E. Coef. St.E. Coef. St.E.

ln(Hp) 0.18 0.02 0.18 0.02 0.13 0.02 0.12 0.02 0.12 0.02

ln(Weight) 0.62 0.04 0.64 0.05 0.55 0.06 0.29 0.04 0.29 0.04

ln(Footprint) -0.29 0.09 -0.33 0.10 -0.34 0.08 -0.08 0.07 -0.13 0.06

ln(Height) -0.02 0.12 -0.00 0.12 0.00 0.12 0.06 0.08 0.04 0.08

Diesel -0.20 0.01 -0.20 0.01 -0.21 0.02 -0.16 0.01 -0.16 0.01

Year F.E.? Yes Yes Yes

YearXFirm? Yes Yes

Car Name F.E.? Yes Yes Yes Yes Yes

Observations 14,444 14,444 3,766 3,766 3,766

R2 0,85 0,86 0,78 0,88 0,88

This table gives the trade-off parameters η between the characteristics and emissions from equation (2).
Robust standard errors clustered per firm are reported between brackets. In Models 1, 2 and 3, the official
ln(CO2) ratings is the dependent variable, in Models 4 and 5, the on-road measures are the dependent.
Model 1 includes year fixed effects; Model 2 introduces year by firm fixed effects; Model 3 limits the sample
to data for which on-road estimates are available, but the dependent is still the official rating; Model 4 has
on-road ln(CO2) estimates as the dependent variable and has year fixed effects; Model 5 has year by firm

fixed effects.

announcement are, on average, more polluting than the existing vehicle models. The difference

between the existing vehicles and the vehicles released after the policy decreases over time however.

The observed decline in emissions is thus not attributable to changes in the sales mix or to the

release of new downsized fuel efficient vehicles. However, I cannot rule out that the vehicles would

have grown without the policy.

The sales weighted emissions with technology êjt are decreasing rapidly after 2007 and this

shows that technology adoption is fully responsible for the observed drop in the official emission

ratings. Strikingly, the decrease in sales weighted emissions of older vehicles due to technology is as

strong as the decrease in newly released vehicles and the engine improvements are installed widely

across the fleet.21

There are two concerns regarding the results presented so far. First, the Great Recession and

the EU debt crisis coincide with the policy announcement and cover the post policy announcement

period. In general, an economic downturn would lead consumers to spend less on durables and,

thus, would add to the likelihood of finding evidence for shifts in the composition of the fleet

towards smaller vehicles. The fact that we do not see this is thus strengthening the argument that

firms respond with technology adoption. Technology adoption itself could be affected by the crisis,

but the direction of that effect is unclear. A second concern is that the observed response is so

strong that most firms already complied with the emission standard in 2011, four years before the

regulation is fully binding. Individual member states do increase their emission-based taxation and

21When I zoom in on vehicle models I find (not reported) that the likelihood of releasing an engine version with
lower than existing emissions is significantly higher in the years after 2007.
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Table 3: Technological Progress Estimates

Model 1 Model 2 Model 3 Model 4 Model 5

Official Ratings On-Road Ratings

Coef. St.E. Coef. St.E. Coef. St.E. Coef. St.E. Coef. St.E.

1999 -0.5 0.8 -1.4 0.1 -1.7 1.4 -0.9 0.5 -1.2 0.1

2000 1.9 0.6 2.4 0.1 1.7 0.9 -1.5 0.2 -1.5 0.1

2001 -1.5 0.4 -2.2 0.2 -1.4 0.9 -1.2 0.2 -1.7 0.1

2002 -1.3 0.4 -1.5 0.2 -1.5 0.6 -0.9 0.3 -0.8 0.1

2003 -1.5 0.3 -1.9 0.2 -0.8 0.3 -0.5 0.2 -0.5 0.1

2004 -1.8 0.5 -2.1 0.2 -1.4 0.7 -0.7 0.3 -0.9 0.2

2005 -1.5 0.3 -1.9 0.2 -0.9 0.2 -0.2 0.2 -0.1 0.1

2006 -1.3 0.3 -1.7 0.1 -1.1 0.5 -0.4 0.2 -0.4 0.1

2007 -1.4 0.6 -2.2 0.1 -0.9 0.9 -0.2 0.5 -0.5 0.1

2008 -2.7 0.4 -3.1 0.1 -2.2 0.8 -0.9 0.4 -0.9 0.0

2009 -3.0 0.6 -3.6 0.1 -3.2 1.0 -1.4 0.5 -1.4 0.1

2010 -4.3 0.7 -4.7 0.1 -5.5 1.6 -2.5 0.5 -1.8 0.0

2011 -3.3 0.4 -4.5 0.1 -3.2 1.1 -1.3 0.6 -1.9 0.1

Difference in Technology Growth 2011-2007 and 2007-1998

Difference 2.3 0.5 2.42 0.07 2.6 0.9 0.8 0.3 0.65 0.08

The table gives the estimated yearly percentage change in emission rates due to technological improvements.
The percentages are obtained from differencing the year fixed effects in (2), and the standard errors are
computed with the Delta method. Each of the estimated models correspond to Table 2. The shaded area
are years after the policy announcement. The last rows give the difference in average technology growth
between 2011-2007 and 2007-1998. For Model 2 and Model 5 the average across firm specific trends are

reported. The firm level estimates are reported in Appendix Table A2.
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Table 4: Decomposing the Decrease in Emissions

All Vehicles Existing Models (2007≤) New Models (> 2007)

No Tech. Tech. No Tech. Tech. No Tech. Tech.

True ejt êjt ejt êjt ejt êjt

1998 169 156 172 156 172

1999 168 156 170 156 170

2000 169 155 171 155 171

2001 167 154 169 154 169

2002 164 154 166 154 166

2003 161 153 162 153 162

2004 158 152 159 152 159

2005 156 152 157 152 157

2006 154 152 155 152 155

2007 151 152 152 152 152

2008 147 152 147 151 147 157 152

2009 142 152 143 152 142 160 150

2010 135 152 136 152 136 154 137

2011 130 152 130 152 130 154 132

The table reports the observed and predicted levels of the average sales weighted CO2 emissions. Emissions
are corrected with the attribute function f(wj) and represent the actual target values for the regulation. All
predictions use the estimates from Table 2 and Table 3 Model 2. The columns ejt contain sales weighted
predicted emissions keeping technology constant at ζt = ζ2007. The columns êjt contain sales weighted

predicted values for emissions with estimated ζt.

regulation in response to the EU wide policy.22 This combination of new local taxation, together

with the standard, can explain why the response is so strong and why compliance is attained early.

It would be very interesting to study the interaction between national regulation and the EU wide

standard, but this is out of the scope of the current project. In the remaining analysis, I will

therefore model firm behavior in response to a standard to single out the effects of the EU emission

standard.

In summary, I presented evidence that the observed decline in emissions is attributable to

changes in the official CO2 ratings while the sales mix and characteristics of the fleet are unaffected.

The estimates show that 70% of the decline is explained by gaming and 30% is explained by actual

technology adaption. These findings form the basis for developing an economic model in which

firms can respond to the emission standard with technology adoption or gaming, keeping the other

characteristics of their fleet unaffected.

22Examples are the bonus/malus system in France and low emission zones in Germany as well as various scrapping
schemes.
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4 Model

This section introduces an emission standard in a structural model of consumer demand and firm

behavior. After describing the model, I discuss how different abatement strategies affect market

outcomes. I argue that there are no clear theoretical predictions for the welfare effects of emission

standards and discuss what I need to estimate. Finally, I discuss how the design choices of the

regulator regarding attribute basing and enforcement affect the firm abatement choice.23

Demand There are M geographical markets, indexed by m = 1, . . . ,M , each market is observed

t = 1, . . . , T times.24 I suppress the subscript t. In each marketm there are Am potential consumers.

Consumers are assumed to purchase only in the market where they are located. Each consumer i

chooses one alternative j, which is either the outside good, j = 0, or one of the J differentiated

products, j = 1, . . . , J . Consumer i’s conditional indirect utility for the outside good is ui0m = εi0m,

and for products j = 1, . . . , J it is:

uijm = xjmβ
x
i − βei gjmejm − αipjm + ξjm + εijm, (3)

where xjm is a vector of observed product characteristics, gjmejm are fuel costs (fuel prices gjm

times fuel consumption ejm), pjm is the vehicle price and ξjm is an unobserved characteristic of

vehicle j in market m, unobserved by the researcher but observed by consumers and firms. The

parameter vector (βei , β
x
i ) consists of random coefficients, capturing individual-specific valuations

for fuel costs and vehicle characteristics, αi is the marginal utility of income or price valuation and

εijm is a remaining individual-specific valuation for product j (assumed to be i.i.d. type I extreme

value). The random coefficient for characteristic k is given by βki = βk + σkνki , where νki is a

random draw from a standard normal distribution, so that βk represents the mean valuation for

characteristic k and σk the standard deviation across consumers.

Notice that the coefficient βei measures the consumers’ valuation of fuel costs. Consumers use

vehicles for several years and thus care about the expected fuel costs over the vehicle lifetime.

I follow the literature on fuel cost valuation (see, for example, Allcott and Wozny (2014) and

Grigolon, Reynaert, and Verboven (2018)) and make the assumption that consumers expect fuel

prices to follow a random walk. This is consistent with the survey evidence, as shown by Anderson,

Kellogg, and Sallee (2013). The fuel price at the time of purchase multiplied by the vehicle fuel

consumption then captures the expected cost per kilometer of travel in each year of usage. The

parameter βei estimates the mean and heterogeneity in the value for fuel costs scaled by mileage

23The abatement strategies discussed do not need to occur mutually exclusively. Firms will choose their abatement
strategies such that the marginal abatement costs of each strategy are equal. When firms abate by choosing only one
strategy the marginal cost of that strategy must be lower than that of the other strategies.

24I observe prices and quantities at the country level. Therefore, the geographical market will correspond to a
country in the empirical analysis.
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and a capitalization factor.25,26 The valuation for fuel costs will be estimated with data from before

the policy announcement in a period where the gap between the official and on-road ratings was

constant. I assume that consumers know what the official ratings signal about the actual fuel

costs when estimating the model. When I introduce the policy in the simulation, firms will start

gaming the emission ratings. In that period it becomes unclear if consumers can determine if rapid

decreases in fuel costs are due to gaming or actual technology adoption. I will consider both the

case where consumers are sophisticated and where they are fooled.

Each consumer i in market m chooses the alternative j = 0, . . . , J that maximizes her utility.

The predicted market share of vehicle j in market m is the probability that product j yields

the highest utility across all available products (including the outside good 0). This is given by

the logit choice probabilities, integrated over the individual-specific valuations for the continuous

characteristics:

sjm(δm, σ) =

∫
exp(δjm + µjm(σ, ν))

1 +
∑J

l=1 exp(δlm + µlm(σ, ν))
dPν(ν), (4)

where δm, the mean utility, which collects all terms in (3) that do not vary across individuals,

and µjm is the term that captures the individual idiosyncratic deviations from the mean utility

as follows: µjm=
∑

k σ
kνki x

k
jm. To complete the demand side, I set the observed market share

sjm = qjm/Am equal to the predicted market share (4). In vector notation, the demand side in

market m can then be described by the market share system as follows: sm = sm(δm, σ).

Firm Behavior To study firms’ responses to the emission standard, I model a game in which firms

have the following three choices: price setting, technology adoption and gaming. I assume that the

vehicle fleet of firms is given exogenously. Each firm sells hundreds of differentiated products and I

do not model the decision regarding which vehicles firms choose to offer. I also assume that at the

time of decision, firms have perfect information on all observable and unobservable characteristics.

Given their vehicle fleet, firms have the option to change the prices and fuel consumption of each

of the products. The fuel consumption can be changed by adding technology or by gaming the test

that determines the level of fuel consumption. When firms face a regulation, the choices will be

altered to comply. The regulation is binding across the total sales from all EU markets. The goal

of this section is to understand how firms will change decisions on pricing and fuel consumption

levels when facing a binding regulation.

25The total expected fuel costs can be written as E[
∑S
s=1(1 + r)−smigsej ] where s=1 is the time of purchase, S is

the time of scrappage, r is the interest rate and m is mileage. Using the random walk assumption for g, we can write
expected fuel costs as ρmig1ej , with ρ being the capitalization coefficient. See Grigolon, Reynaert, and Verboven
(2018) for a detailed discussion. In the utility specification in (3) βei absorbs ρmi.

26The specification does not allow consumers to separately care about emissions (a ’green glow’ effect). These
preferences might be captured by the standard deviation in tastes for fuel costs as green consumers will value fuel
costs more than others.
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The total profit per year t is the sum of the profits from each country m, as follows:

max
p,τ,g

(
∑
m

[πfm(p, τ, g)]− C(τ, g)) s.t.

∑
m

∑
jεFf

qjm((1− τj − gj)ej − f(wj))∑
m

∑
jεFf

qjm
≤ κ, (5)

where π are variable profits, C are sunk costs of changing τ and g, κ is the level of the standard

and f(wjm) is the attribute-basing on weight wj . For a flat standard f(wj) = 0, when f(wj) 6= 0

vehicles with different weights will obtain reductions or penalties on their emissions.27 I model

technology adoption and gaming as percentage reductions in fuel consumption so that 0 ≥ τ ≤ 1,

0 ≥ g ≤ 1 and 0 ≥ τ + g ≤ 1. I follow Goldberg (1998) and Jacobsen (2013) and write the

Lagrangian of the problem. The variable profits of firm f in year t are then given by the following:

πf =
∑
m

∑
j∈Ff

[(pjm − cjm − λfLj)sjmAm], (6)

Lj = (1− τj − gj)ej − f(wj)− κ (7)

where λf is the shadow cost of the regulation and Ljm is the distance of each product from the

target. When Ljm < 0 (> 0), an additional sale of vehicle j will bring the average sales-weighted

emissions closer to (further away) from the target. The per vehicle shadow cost λf gives the cost

of deviating one unit from the standard. If the standard is non-binding, λf = 0 and (6) reduces

to a standard multiproduct profit function. The shadow cost λf is firm specific because trading

of excess emissions between firms is not allowed. The shadow cost takes the same value for each

vehicle in the fleet Ff because, in equilibrium, firms will equalize the shadow costs over their fleet

to be cost efficient.

The optimal solution of the profit maximization problem is described by three first order con-

ditions. I introduce the following matrices to write the first order conditions concisely as follows:

Φ denotes a JxJ ownership matrix with each element (i, j) equal to one if i and j are owned by

the same firm and zero otherwise; 4k denotes the JxJ matrix of first order derivatives of market

shares with respect to k = p, e or g. The J first order conditions with respect to prices, technology

and gaming can be written as follows:

∂L
∂p

= 0 = q + Φ ◦ 4p(p− c− λL) (8)

∂L
∂τ

= 0 = (−c′τ + λe)q + Φ ◦ 4τ (p− c− λL)− C ′τ (9)

∂L
∂g

= 0 = λeq + Φ ◦ 4g(p− c− λL)− C ′g (10)

The first order conditions with respect to prices show the standard trade off between increases in

mark up (first term) and losses from reduced sales (second term) when increasing the price. The

first order conditions with respect to technology adoption shows that firms will trade-off marginal

27Here I specify the attribute-basing as a simple additive penalty or reduction but one could design a regulation
where the target is any function g(ejm, wjm) of emissions and the attribute.
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cost increases c′τ and the fixed costs of adoption with slacking the regulatory constraint and the

benefits of increased market share (we expect 4τ > 0). The first order conditions with respect to

gaming is very similar but gaming will induce sunk cost changes and no marginal cost changes. Note

that I model the first order conditions as joint contemporaneous choices and ignore dynamics.28

Externalities The regulation limits the sales-weighted emissions and not the total externalities

from the new vehicle fleet. The amount of CO2 emitted depends on both the size and composition

of the fleet. Given the fuel consumption of each vehicle, we can compute the total lifetime damages

from CO2 emissions. This requires information on mileage and an estimate of the value of a ton

of CO2. When consumers purchase vehicles with lower fuel consumption, emissions will decrease.

However, it might be that the standard results in more fuel efficient vehicles but also in more

purchases. It is thus not certain that total emissions will decline. In the welfare calculation I will

also consider other externalities, such as traffic, accidents and local pollutants.

Next, I discuss how equilibrium outcomes change when we move from a market without a

standard (or a nonbinding standard), λf = 0 to a market with a binding standard, λf > 0. The

changes in the market will depend on the abatement strategy of firms, i.e., sales mixing, technology

adoption or gaming. I will discuss the effect of each strategy in turn, keeping the other strategies

fixed.

Abatement by sales-mixing A first mechanism to abate emissions is to change the relative

prices of high and low emission vehicles. Firms can decrease the prices of vehicles with emissions

below the target (Lj < 0) while increasing prices of vehicles with emissions above the target

(Lj > 0). The first order conditions with respect to prices (8) shows that the shadow cost of the

regulation, λf , determines to what extent prices will be distorted from a no-policy equilibrium, as

follows:

p = c + λL− (Φ ◦ 4p)−1q (11)

The regulation implicitly increases costs and taxes vehicles with Lj > 0, while it is an implicit

subsidy for vehicles with Lj < 0. This change in the relative prices of products will shift sales

towards vehicles with lower fuel consumption, thus resulting in a different sales-mix, explaining the

name of this strategy.

The incidence and effectiveness of this abatement strategy largely depends on the responsiveness

of consumers to these price changes as captured in 4p. Holland, Hughes, and Knittel (2009)

show that when the price elasticities of subsidized products differ from those of taxed products,

total sales and emissions might increase or decrease. Without knowledge of own and cross price

elasticities we cannot make statements about the effect of the regulation on sales, emissions or

consumer surplus. The effects on profits will depend on the consumers’ responses to price changes

but will also depend on the position of the fleet relative to the target. Firms with a fleet that

28In reality, firms choose to incrementally adopt technology and gaming over the several years between the policy
announcement and enforcement. In ignoring this process, I miss how firms could make strategic abatement choices
that take into account the path dependency of their choices.
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is better adapted to the standard might increase profits, as their prices will need less distortion

than the prices of competitors. The empirical model will allow me to identify the own and cross

price elasticities for all products and to simulate the shifts in sales when we introduce a binding

regulation.

Abatement by technology adoption Firms can reduce the emissions of existing vehicles by

adapting the engines, the combustion process or features that only affect the fuel consumption.29

From (9) we see that the regulation gives incentives to the firms to adopt more technology. The

first term, (−c′τ + λe)q, specifies that increases in the fuel efficiency change the marginal cost of

each unit sold, but the technology also makes the regulation slacker, resulting in a marginal benefit

of λ. Without a regulation, λ = 0 and the marginal benefits of technology adoption would thus be

lower. The second term captures the change in sales from technology, Φ ◦4τ , multiplied by profits

per unit, (p − c − λL). Finally, implementing technology can increase the sunk costs captured by

C ′τ .

It is important to stress that each unit of technology adoption lowers L. The fleet of the firm

shifts closer to the regulatory target and, as such, the regulatory constraint becomes slacker. This

reduces the shadow cost of the regulation λf as firms need less distortions from the preferred price

schedule to comply. When determining to what extent firms adopt technology or sales mixing in

equilibrium, the shadow cost λ and the amount of technology will be determined endogenously.

The welfare effects of this strategy are again undetermined theoretically. This time, there

are two offsetting effects for consumers. There is upward pressure on prices as marginal costs

increase with c′τ . This reduces consumer surplus. However, offsetting this, firms offer vehicles with

lower fuel consumption, decreasing the cost of operating a vehicle. The sum of the purchase price

and operating costs might thus increase or decrease. Even though the resulting vehicle fleet will

have lower emissions, it is not clear that emissions will decrease, i.e., if consumers benefit from

technology, they might purchase more vehicles. The changes in marginal costs and the degree of

pass through will determine the overall effect. Given that vehicles have different fuel consumption,

the equilibrium pricing will also adjust, creating another welfare change for consumers. For firms,

technology adoption will be a preferred abatement strategy if the shadow cost of changing prices

is high and the marginal cost and sunk cost changes of technology adoption are low.

Abatement by gaming I define gaming as the efforts of the firm that decrease the official

emission ratings but not the actual on-road emissions. Gaming helps with compliance in a very

similar way as technology adoption. Each unit of gaming will reduce L and thereby the shadow

cost of the regulation λf until firms can price without regulatory constraints. However, the benefits

29Knittel (2011) gives several examples of specific technologies that are implemented. The International Energy
Agency reported a possible 40% improvement in fuel efficiency from available technologies in 2005. These include low
rolling resistance of tires, reduced driveline friction, combustion improvements, thermal management, variable valve
actuation and lift, auxiliary systems improvement, thermodynamic cycle improvements and dual clutch transmis-
sion. See http://www.iea.org/publications/freepublications/publication/technology-roadmap-fuel-economy-of-road-
vehicles.html.
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and costs of gaming are very different. In Reynaert and Sallee (2019) we empirically study the

extent of gaming and discuss the effects of gaming on buyer welfare in detail; here, I summarize

what is needed to understand firms choices and welfare implications.

The costs of gaming are very different than those of technology adoption. As summarized in

media reports following the Volkswagen crisis, gaming is essentially a sunk cost that does not affect

the marginal costs of production. The New European Driving Cycle (NEDC) is the procedure to

determine CO2 emissions and fuel consumption.30 The procedure takes a single vehicle (the golden

vehicle) and optimizes that vehicle for the test. Tape, non-resistant tires and software, referred

to as defeat devices, make the engine run in a program specialized for the test. Note that none

of these features impact how the consumers experience vehicles on the road, nor do they impact

the marginal cost of production. The sunk costs of gaming are the costs of installing the defeat

devices and more importantly, the potential legal costs and consumer blow-back when gaming is

uncovered. When deciding to game, firms will trade off these costs against the benefits of cheap

compliance. Since firms have opted to game the regulation, it reveals that firms did not expect these

reputation costs to be larger than the costs of other compliance mechanisms. In the simulation I

discuss computation of bounds on these sunk costs.

Note that the second term in first order conditions (10) accounts for market share changes

of gaming. Gaming will not affect the on-road experience of consumers and will not reduce the

actual fuel consumption. However, when purchasing a vehicle, consumers might be fooled by the

advertised fuel consumption and believe it to be the truth. The official ratings were designed to

be used in advertising and windshield stickers to inform consumers about fuel costs and pollution.

As such, gaming will have demand effects that the distort consumer choice. In the results, I will

discuss what happens when consumers are fooled or when they are fully aware of the gaming. The

effects for consumer welfare will critically depend on this consumer sophistication. If consumers do

not see through gaming, the information in the official ratings becomes a noisy signal of fuel costs

and might therefore distort consumer choices. This choice distortion reduces consumer surplus,

and might also lead to higher prices. Firms with market power will increase prices if the perceived

fuel costs reduce, but gaming might also have positive effects for consumers, as it allows firms to

avoid costly compliance and high pricing. If technology adoption or sales-mixing is very costly, then

consumers might actually prefer firms to game, benefiting from avoiding the cost increases or price

distortions. The effects on emissions from gaming can be pervasive. First, each reduction in fuel

consumption that is obtained with gaming does not reduce actual emissions. Second, consumers

will respond to the decreases in perceived fuel costs by substituting to higher performance cars.

Because cars look cheaper on paper, the overall sales might increase. Both of these effects potentially

increase emissions relative to honest compliance.

30The NEDC is also used to determine compliance with the Euronorms that regulate local pollutants such as NOx,
CO and PM. The Volkswagen scandal was about NOx emissions in diesel vehicles. The fallout of the scandal made
clear that the majority of EU car makers are not in compliance with Euronorms, see the ICCT reports.
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Abatement by downsizing I assume the fleet of each firm to be given. Previous work, see

for example Klier and Linn (2012) and Whitefoot, Fowlie, and Skerlos (2017), has tried to relax

this assumption by modeling not only improvements in fuel consumption but by allowing firms

to optimize a larger set of attributes. This strategy is coined downsizing as firms reduce the size

and power of vehicles to lower fuel consumption. Klier and Linn (2012) find that compliance costs

decrease by approximately 40% per year when firms down size instead of sales mix. The consumer

loss is similar. Whitefoot, Fowlie, and Skerlos (2017) use an interesting engineering model. In

this paper I will not discuss downsizing for two reasons. First, as I showed in Section 3, I find no

evidence of downsizing in the EU. Second, a model that would allow strategic choices over several

characteristics for the rich engine version level data that I use is out of the scope of this paper.

Design of emission standards One of the key contributions of this paper is to show how

political choices about the design features of emission standards interact with the firms’ abatement

choices. In the counterfactual, I will consider two design choices of the regulation. First, I study

the EU’s choice to have a policy that is attribute-based and therefore upsloping, as depicted in

Figure 1. Second, I study the implications of weak enforcement of the regulation.

It is instructive to compare the attribute-based regulation with a flat tax. For a flat standard,

L′jm = [ejm − κ′] and f(wjm) = 0. The target function is a horizontal line at κ′ and all firms

need to reach exactly the same level of sales-weighted emissions. Each firm will have a different

set of vehicles with Ljm < 0 and L′jm < 0. Because of the upsloping ABR in the EU, the sales of

many small lightweight vehicles do not help with compliance, while they would have helped with

compliance under a flat standard. As such, the attribute basing reduces the number of products

that have Ljm < 0. It follows that sales mixing becomes much costlier because firms have less

products to which they can shift sales. Reducing fuel consumption by technology adoption or

gaming helps to increase the number of products that have emissions underneath the target. In the

empirical section I will show that the ABR increases the stringency for French and Italian firms but

reduces the stringency for German firms. This matches the lobbying efforts by the governments

described at the time of the negotiations. I will also show that sales mixing became so expensive

for firms such that they had to resort to lowering fuel consumption.

The attribute-based regulation might have other economic consequences. Ito and Sallee (2018)

point out that attribute-based standards create a distortion in the demand and supply of the

attribute itself. If heavier cars help with attaining the target, weight is indirectly subsidized and

producers will choose to add more weight to their vehicles.31 In this exercise, I keep the weight

fixed and assume that there are no distortions in the attribute itself. The reason is that I do

not observe any changes in weight consistent with this distortion and that endogenizing additional

characteristics is computationally costly.

The EU’s political structure has also led to weak enforcement of the policy. In the empirical

section I will discuss how failures in delegation of enforcement have led to the gaming crisis in

31This creates distortions, which might be significant if weight is associated with other external costs. See, for
example, the analysis by Anderson and Auffhammer (2014) relating weight to accident risk.
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the EU market. Theoretically, enforcement is captured by the sunk cost of gaming C(g). When

enforcement would be strict and legal punishment for gaming high, the sunk costs of gaming would

increase. This would mean that gaming as an abatement strategy becomes less attractive so that

firms would resort to sales mixing or technology adoption. In the empirical section I will discuss

what would have happened if firms had not gamed the EU regulation.

5 Estimation

In this section, I describe the estimation. I use a panel of 7 countries over 10 years to estimate

the taste and cost parameters. The sample is restricted to 1998-2007, the years before the policy

announcement. This allows me to estimate a model in which firms maximize unconstrained profits

as given in (6) with λ = 0. It also allows me to estimate the consumer valuation of fuel costs

before firms start to game emission ratings. I first discuss the demand estimation that allows

for endogeneity of both prices and engine characteristics. Next, I discuss the supply side and

estimation of costs. I also discuss the functional form assumptions needed to make a projection of

marginal costs out of sample to model technological improvements. With the estimates of consumer

preferences, marginal costs and the functional form assumption we can simulate the impact of the

emission standard in the next section.

Demand Estimation The vector of parameters θ to be estimated consists of the taste parameters

βei , β
x
i and αi. I estimate both a mean and a standard deviation of the taste for fuel consumption,

horsepower, and a dummy for foreign perceived cars (e.g. a BMW in France). I specify αi to

be proportional to income ymt in market mt, so αi = α/ymt.
32 A set of controls is added for

which I only estimate the mean taste. These include weight, footprint, height, a dummy for 3 or 5

doors, market fixed effects, diesel by market interactions, months on market dummies (for vehicles

introduced within a calendar year), and a market specific time trend.33 Finally, I add fixed effects

on the vehicle model level so that all identifying variation for the taste parameters comes from

different engine versions within the same vehicle model. The remaining unexplained variation in

market shares is ξjmt. The parameters are obtained by minimizing the GMM criterion as follows:

min
θ
ξ (θ)′ g(z)′Aξ (θ)′ g(z)′ (12)

where ξ is a vector of demand unobservables stacked over all markets, g(z) is the matrix of instru-

ments and A is a weighting matrix. I use the two step efficient GMM estimator so that the second

32Assume that the utility is Cob Douglas in income and characteristics of the good, as in Berry, Levinsohn, and
Pakes (1995). The logarithm of indirect utility can be written as uij = αlog(yi − pj) + u(x, g, ξ, ε, θ), where the first
part is utility from income and the second part utility from consumption of the good. Assuming that pj << yi we
can write log(yi − pj) ≈ log(yi) − pj/yi and substitute αi = α/ymt in (3).

33I introduce random coefficients on 3 variables that capture important margins on which I expect consumer
heterogeneity to matter. Height, weight and footprint do not have a random coefficient because the identification
of multiple random coefficients proved impossible with multiple endogenous characteristics. The remaining variables
try to control for market or time level shifts and seem less fit to be candidates to model individual heterogeneity.
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step A is the estimate of the optimal weighting matrix. I follow the estimation algorithm described

in Berry, Levinsohn, and Pakes (1995) and Nevo (2001). I take into account recent cautionary

warnings and improvements and carefully check the properties of the obtained minimum.34

A common exclusion restriction in the literature is E[ξ|x] = 0, so that any function of observed

characteristics is a valid candidate to form the unconditional moments. This means that we allow

for correlation between prices and ξ but assume that all the vehicle characteristic choices of firms

are independent of ξ. The counterfactual considers strategic choices in response to a regulation.

However, even before the regulation firms will design products to maximize profits. The concern

when estimating demand is that firms know more about consumer tastes than the econometrician

when the product is designed. This potentially introduces omitted variable bias through correlation

of the demand unobservable ξ and product characteristics, despite the rich set of fixed effects. To

account for this, I introduce additional instrumental variables. The identification assumption is

E[ξ|zk] = 0 so that the demand unobservables are mean independent from instruments z. There

are three sets of parameters for which we need to construct moments, which are as follows: the

taste parameter for price, the taste parameters for endogenous characteristics and the nonlinear

parameters. First, I will consider instruments z1 for the model with price endogeneity. Second, I

will consider instruments z2 for the more general case with endogenous characteristics.

Instruments The instrument set z1 contains all characteristics and demand shifters, except price,

as included instruments. The excluded instruments are the sums of other product characteristics

(both the sum across all competing firms’ products and the sum across products of the same firm).

These are valid instruments for prices only when the characteristics are mean independent of the

demand unobservable. Using the location where each vehicle is produced, I include the logarithm

of local labor costs in the country of production as a cost shifter.

For instrument set z2, I follow the recent work by Whitefoot, Fowlie, and Skerlos (2017) who

use engineering procedures to distinguish between fixed vehicle characteristics and more mutable

characteristics. In the first engineering step, the dimensions of the vehicle (footprint and height)

are set. In following steps, the engines are fitted in the design. I therefore assume that the footprint

and height are exogenous and remain in the set of included instruments. Fuel costs, horsepower

and weight are allowed to be endogenous so that we need excluded instruments for the following

four variables: the three mutable characteristics and prices.

Because the mutable characteristics are potentially correlated with ξ, their sums (across own

or other firm products) are not valid instruments anymore. I therefore form additional instruments

that aim to capture variations in the engine design decisions of firms. Using global production data,

34More specifically I do the following: (i) I use a nested-fixed point (NFP) algorithm, BLP’s contraction mapping
with a tight convergence criterion (1e-12) to solve for ξjmt. I use a NFP because Mathematical Programming under
Equilibrium Constraints proved to be slower in this application once I paralyzed the computation of the contraction
mapping, (ii) I re-estimate the model with 25 different starting values for the nonlinear parameters, (iii) I check
first and second order conditions at the obtained minimum, (iv) I use the Interior/Direct algorithm of Knitro, (v) I
compute the integral over individual market shares using sparse grids, see Heiss and Winschel (2008), (vi) I estimate
the variances of the random coefficients rather than the standard deviations, see Ketz (Forthcoming).
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I exploit changes in the exposure of each vehicle model to non-EU markets over time. I compute the

share of each vehicle model that is produced in Africa, Asia, Eastern Europe, North America and

South America. These production shares evolve within a model over time as some models become

popular in the US (e.g. the BMW X5) or in China (e.g. the AUDI A8). A vehicle designed for

the EU and US market will be different than a model designed for the EU and China. Because of

the vehicle fixed effects, the identifying variation of the IV’s comes from the trend in globalization

within vehicle models. I assume that the differences in exposure to other markets impact the design

choices but are orthogonal to the EU unobserved demand ξjmt. In the production data I also observe

a size variable, scaled from 1 to 10, for each vehicle produced. Using these observations, I compute

a weighted sum of size for each model and brand. The weights are the regional production shares

and the size is the production weighted average size of all vehicles produced in a region. Similar

to the sums of characteristics instruments, this captures the degree of competition in the product

space for each vehicle from other vehicles across all the regions where the vehicle is produced. Next,

I follow Klier and Linn (2012) and include the average footprint and height of vehicles in different

classes that are produced on the same production platform. For example, the AUDI A5, which is

in the luxury class, is produced on the same platform, named MLB, as the AUDI Q5, an SUV. The

average attributes of the Q5 are used as an instrument for the A5, and vice versa. The idea behind

the instrument is that vehicles produced on the same platform will share both fixed and mutable

characteristics.35 Finally, fuel costs are the interaction of fuel prices times fuel consumption. Fuel

prices are exogenous, so I interact them with the projection of fuel consumption on all instruments.

To improve the efficiency of the estimates of the variances of the random coefficients, I compute

approximate optimal instruments for the nonlinear parameters following the approach described

in Berry, Levinsohn, and Pakes (1999) and Reynaert and Verboven (2014). To approximate the

infeasible optimal IV’s, I perform a two stage approach, first estimating the nonlinear model with

a guess for the nonlinear parameters in the first step of the GMM and then updating the approxi-

mation at the first stage estimates.36 This procedure generates a number of additional instruments

that is equal to the number of standard deviations of random coefficients to estimate but these

instruments are nonlinear functions of the previously described included and excluded instruments.

Appendix 7 gives a detailed overview of all the instrumental variables.

Costs The marginal costs cjm are not directly observed but are obtained from the first order

conditions of the firms’ profit maximization. Using equation (8), the demand estimates and the

fact that λ = 0 in the estimation sample, I compute cjm. Similarly, we can use equation (9) to back

out the product level estimates of c′. These estimates give prepolicy estimates of the slope of the

marginal cost with respect to reductions in fuel consumption. Information on c′ is useful because

35Notice that Klier and Linn (2012) include all the characteristics of different class vehicles on the same platform.
This means that the exclusion restriction related to characteristics is specific to vehicle classes. I allow the exclusion
restriction to be more general and include only the footprint and height in the computation of this instrument.

36The guess for the nonlinear parameters is the Logit taste parameter divided by 10. I compute the approximated
optimal IV at ξ = 0 and use projections of the endogenous variables on the included and excluded instruments in the
computation, see Reynaert and Verboven (2014)
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the slope of c′ in the final year reveals the cost changes that firms are willing to incur to provide the

current levels of fuel consumption of their products. Further improvements would be more costly,

but those would not be made because the benefit from the improvements is smaller than the costs.

If the supply model is correctly specified, any cost function for further reductions in emissions

must start at c′τ=0, otherwise it is at odds with the revealed choices of firms and consumers. I will

therefore use the estimated c′ as the intercept for the cost slope in the simulations.37

We also need an estimate for values of c′τ>0 when the regulation requires fuel consumption

reductions above what we observe. I will use two approaches for this problem. The first approach

is to rely on cost estimates by engineers. The EU Comission has relied on several studies to

support the design of the EU emission standard, see TNO (2011). These documents describe

several existing technologies to reduce emissions, at zero development cost. The policy report

only includes improvements that should be readily available for the car makers at no fixed costs.

The studies specify convex cost functions for percentage reductions in emissions. I will use these

functions in the main results and I will refer to them as the engineering cost curve. However, I

shift the intercept in the engineering cost function from zero to the point where the slope of the

engineering function equals c′τ=0.
38

The second approach is to rely on historical marginal costs in the data to obtain information on

how costs change with fuel consumption. Under the assumption that marginal costs are log-linear

we have the following:

log(cjm) = γeejm + djmγ
d + ωjm, (13)

in which djm is a 1×L vector of observed product characteristics, market controls and cost shifters

and ωjm is unobserved. Fuel consumption enters the marginal cost, as all else equal, it is likely to

be more expensive to produce engines with lower fuel consumption. The estimated parameter on

emissions informs us how marginal costs change with changes in ejm. The functional form allows

us to make predictions on the costs of further reductions in fuel consumption that are not observed

in the sample. In the counterfactuals, I will show how the results change when we rely on the

estimated cost function rather than the engineering cost function.

Estimation Results Table 5 reports the estimated parameters and standard errors for the de-

mand model. The table presents four specifications. The first two specifications assume exogenous

characteristics and use instrument set z1 in both a logit and a RC logit. The last two specifications

allow for endogenous characteristics and use instrument set z2. The first stage results are reported

in Appendix Table A3. When prices are the sole endogenous variable, the excluded IV’s are strong

and have an F statistic of 67. The labor cost instrument has the expected positive sign. With mul-

37The counterfactual results will also consider a case where we start from another intercept below the estimated
one. As I will discuss below there might be reasons, such as market failures in technology adoption, to think that the
actual slope is smaller than the estimated c′τ=0.

38The engineering estimates specify a polynomial function for the cost of emission reduction. I use that function
and compute its derivative at each point. See Table 79 in the report TNO (2011). I use separate cost functions for
diesel and gasoline and the coefficients for medium sized vehicles (the reported cost functions only differ between size
categories for very large reductions in emissions of more than 40%).
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tiple endogenous variables, the instruments are weaker with F stats that account for the multiple

endogenous variables being between 5.7 and 21.2.

The demand parameters for the model with endogenous prices show that consumers dislike

higher prices, higher fuel costs and cars perceived as foreign (BMW in France). Consumers prefer

vehicles that are more powerful, heavier and larger. In the RC logit, the standard deviations on

horsepower and foreign show that there is considerable variation in the taste for horsepower and

weight. The estimates change considerably when I allow for multiple endogenous characteristics.

The price coefficient decreases from -6.7 to -8.1, while the fuel cost parameter increases from -2.6

to -1.2. This will matter for the welfare simulations, i.e., when consumers care less about fuel costs

relative to price, they will derive lower utility from technologies that drive up costs to decrease

fuel costs. The remaining coefficients have larger standard errors than in the model with less

endogeneity, and several mean tastes switch sign in the RC Logit model. The standard deviations

show considerable heterogeneity in the taste for fuel costs, horsepower and foreign vehicles in this

case.

In Appenix Table A4 I discuss the fit of the demand model. By definition the model fits perfect

within sample. However, I show how well different parts of the demand explain sales-weighted

attributes. First, I predict sales by only relying on the taste parameters for attributes while setting

the vehicle model fixed effects and demand unobservable equal to zero. This shows that, based

on taste parameters alone, consumers would buy vehicles with lower attributes. The model name

fixed effects, on average, explain purchases of vehicles with high attributes and prices. Out of the

estimation sample, in calendar year 2011, we cannot rely on fixed effects and demand unobservables.

Prediction based on taste parameters alone shows the demand model explaings attributes purchased

relatively well, and not worse than the prediction error from leaving out the unobservable and fixed

effects within sample.

The second panel of Table 5 gives the results from a regression of marginal costs on product

characteristics. I show the results under perfect competition (a regression of prices on characteris-

tics) and imperfect competition for both the RC Logit models. These results show that cost shifters

have the expected sign, i.e., increases in labor cost increase marginal costs and larger more powerful

cars are also costlier. All marginal cost regressions show that increasing the fuel efficiency of the

vehicle is costly. A one unit decrease in the liters per 100km increases the cost by 2.8% to 4.7% in

the two specifications.

Finally, I use the model to compute the cost slope that rationalizes the fuel consumption choices

of firms before the policy. Additionally, there is an important difference here when I allow for more

endogenous variables. When consumers care less about fuel costs it becomes less interesting for firms

to provide fuel consumption reductions. As the marginal benefit of fuel consumption reductions

decreases, so does the implied marginal cost slope in (9). Indeed, the model with endogenous

characteristics implies a prepolicy intercept of the cost slope that is five times less steep than what

the price endogeneity model implies. The level of cost increases caused by the policy will be lower

when the initial intercept is lower, so that it is more likely that the emission standard will increase
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Table 5: Estimation Results

Demand Estimates

Price Endog. (z1) Charact. Endog. (z2)

Logit RC Logit Logit RC Logit

Est. St. Err. Est. St. Err. Est. St. Err. Est. St. Err.

Price/Inc. -6,709 0,365 -6,476 0,325 -8,074 0,569 -8,452 0,694

Fuel Cost -2,649 0,120 -2,842 0,127 -1,291 0,192 -1,036 0,269

Horsepower 2,889 0,227 1,232 0,152 3,868 0,673 -1,546 0,760

Weight 0,666 0,181 1,248 0,156 -6,130 2,143 1,530 1,300

Base 0,580 0,056 0,526 0,051 1,499 0,229 0,878 0,179

Height 0,183 0,041 0,215 0,037 0,477 0,091 0,291 0,060

Foreign -0,848 0,023 -1,218 0,043 -0,698 0,042 -0,973 0,060

Standard Deviations

Fuel Cost 0,000 0,033 1,196 0,484

Horsepower 1,604 0,272 2,878 2,445

Foreign 1,276 0,192 0,897 0,185

Marginal Cost Estimates

Perf.Comp. Imp.Comp. Imp.Comp.

Fuel Cost -0,028 0,001 -0,047 0,001 -0,041 0,001

Horsepower 0,629 0,005 0,692 0,006 0,627 0,004

Weight 0,664 0,009 0,670 0,011 0,600 0,008

Base 0,092 0,002 0,026 0,003 0,021 0,002

Height -0,005 0,001 0,051 0,001 0,035 0,001

Log Labor Cost 0,229 0,010 0,081 0,012 0,111 0,009

The Table reports the estimated parameters for the demand and marginal cost equations. The first two
columns in the Demand Estimates are the Logit and RC Logit for the model with endogenous prices and
instrument set z1. The last two columns are the Logit and RC Logit for the model with endogenous prices and
characteristics and instrument set z2. The additional controls in all the demand specifications are: market
fixed effects, a dummy for 3 doors, months on market dummies (for vehicles introduced within a calendar
year), fuel type by market dummies, a time trend and 331 vehicle model fixed effects. Marginal Costs slope
estimates are reported for perfect competition in the first column (regression of price on characteristics).
Columns two and three give marginal cost estimates under the assumption of a Nash Bertrand game in
prices (imperfect competition) for both the RC Logit Models. Note that standard errors are not corrected

for the uncertainty in the marginal cost levels.
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welfare.

I conclude this section by emphasizing that emissions enter the model through two channels.

First, all else equal, consumers dislike vehicles that have higher emissions because they are more

costly. There is considerable and significant variation in the degree to which consumers dislike fuel

costs. Second, producing vehicles with lower emissions and fuel costs is costly for manufacturers.

The first channel matters for all compliance strategies, while the second channel matters to evaluate

the cost changes from technology adoption.

6 Welfare effects

In this section I use the estimated model to compare the welfare effects of emission standards

with various compliance strategies. I start by describing the solution methods and computation

of welfare. After that, I describe the welfare impact of the EU emission standard, the role of the

attribute basing, the role of enforcement and the importance of the cost assumptions. These results

show the main contribution of the paper, i.e., the design of emission standards has an impact on

the abatement choices of firms and the abatement choices matters for the welfare impact of the

standard.

Simulation setup The goal of the welfare simulation is to find the welfare effects of the intro-

duction of the EU emission standard, to test the robustness to the economic assumptions and to

compare its effects with alternative policy designs. The counterfactual is computed by solving the

system of first order conditions (8), (9) and (10) for a binding regulation with a target to reduce

sales-weighted emissions to 130 g/km. The goal of the counterfactual is to simulate the optimal

changes in prices, technology and gaming in response to the emission standard. To do so I take

the vehicle fleet of each firm in 2007 as given and improve the emissions by 6%. This adjusts for

the fact that there would have been reductions in emissions even without the regulation.39 All

vehicles and characteristics of this fleet are fixed in the simulation except price, technology τ , and

gaming g. Furthermore, in line with the engineering documents, I assume that there are no fixed

costs to develop or adopt the technology, so that C ′τ = 0. All cars would have gone through a

redesign cycle in the eight years between policy announcement and implementation. I will com-

ment on fixed costs of gaming below. Finally, I solve for the equilibrium so that each firm exactly

complies. In reality, this does not need to be the case, as firms may not comply with the standard

and pay fines.40 Note that no firm has incentives to over-comply, as this would involve distorting

the optimal choices further from the prepolicy equilibrium, as such the counterfactual singles out

39The different models estimated in Section 3 show that there is a 0.7% to 1% annual decrease in emissions in the
prepolicy period. To adjust for the fact that the vehicle fleet would have improved without the policy, I endow the
2007 fleet with a 6% reduction in emissions. This 6% equals 8 years (between 2007-2015) of 0.7% technology growth.
The hypothetical fleet is the baseline for the welfare computations.

40In equilibrium, this will end up to not be a constraint on the solution as all firms prefer compliance over paying
fines in the main scenario. Except in the case where I restrict firms to sales mixing, the fines will matter and change
the outcome. I discuss this in Appendix 7.
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the effect of the policy.

Solving for the system of equations (8), (9) and (10) and the policy target is computationally

infeasible. Solving the full system would require a solution for j unknown prices, τ ’s and g’s in

each country, as well as a level of λ for each firm. I proceed by making a couple of additional

assumptions. First, the first order conditions for gaming (10) are satisfied only when the sunk cost

of gaming is positive. This cost is very difficult to determine as it depends on future legal fees,

brand reputation and hidden efforts. Therefore, I will use the reduced form results from estimating

the trade off relationship to fix the level of gaming. Given the estimates derived in Section 3,

I assume that each percentage improvement in fuel consumption includes 70% gaming and 30%

actual technology. This means that I solve (8) and (9) with respect to prices and technology while

imposing that each 0.3 units of τ imply 0.7 units of g. When discussing the role of gaming and

enforcement, I vary this ratio so that either each unit of technology has no gaming with it, or

technology is full gaming. I further reduce the number of variables to solve for by assuming that

technology is implemented fleet wide for each firm. This reduces the number of equations in (9)

from j to the number of firms.

Given these simplifications, I run the following algorithm. Step 1 is to choose a value for the

firm level technology τ and shadow cost λ. Given these values, I compute the changes in the

marginal costs from technology and the product price distortion implied by the shadow cost λL for

each product. Step 2 solves for the Nash equilibrium in prices given the values chosen in Step 1.

This step thus solves for (8). Step 3 evaluates how far we are from satisfying (9) and the regulatory

target given the guess from Step 1 and the prices from Step 2. I then update the guess and repeat

Steps 1-3 until we are sufficiently close to (9) and the policy target. This final iteration gives the

solutions for τ , λ, prices and the implied amount of gaming. To update the guess between Step 3

and Step 1, I use the least square nonlinear equation solver provided by Knitro, with bounds on

the parameters. The parameter space is bounded because the shadow costs must be positive and

the technology improvements must be between 0 and 1.

Given the solution vectors of τ , λ and prices, I compute the changes in outcomes between the

initial equilibrium and the new equilibrium. All welfare changes give the total vehicle lifetime

changes for one year of new vehicle sales. The direct effects of the regulation will be changes in

the consumer surplus, profits and gains from correcting externalities. The consumer surplus is

calculated using the log sum formula of Small and Rosen (1981). There is an additional step to

account for gaming. When consumers are fooled by gaming, it creates a difference between the

decision and experience utility. To compute consumer surplus for non-sophisticated consumers

I compute the size of the choice distortion created by the differences in decision and experience

utility. The consumer surplus partly comes from reduced fuel expenses. Approximately 60% of these

expenses are fuel taxes paid to the government. Depending on whether these taxes are efficient, this

part of the consumer gains could be seen as a transfer from the government to consumers and not as

a pure welfare change. Changes in profits are obtained from prices, marginal costs and quantities.

Note that emission standards do not result in monetary transfers from firms to the government
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when every firm complies. Appendix 7 show when firms would opt not to comply and pay fines.

To compute the changes in CO2 emissions, I assume a vehicle lifetime of 15 years, a yearly mileage

of 14,000km and a discount rate of 6% to capitalize the yearly gains/losses in externalities.41 The

mileage is assumed to be constant, ignoring the possible rebound effects on the intensive margin.

To compute the value of the CO2 reductions, I assume that each ton of CO2 has an external cost

of e28.42

Finally, I compute two additional welfare effects of the policy that were not explicit targets

of the policy maker. The regulation will change the number of vehicles sold, so that the size of

the market changes. Parry, Walls, and Harrington (2007) give an estimate for the total external

cost from driving for the US market. These externalities include local pollution, accident risks and

congestion, and together, these are estimated to be more important than the CO2 externality. They

report an externality of e12 cents per kilometer. This number is probably not directly applicable

to the EU market but at least gives a sense of the relative importance of emissions and other

externalities.43 I will report the gains from shrinking the size of the vehicle market using this e12

cents per kilometer number. Note that this is very optimistic, as the emission standard only targets

the sales of new vehicles, not when they drive or how much they drive. When the new vehicle fleet

shrinks, it is very uncertain congestion will decrease, as existing vehicles might fill the gap. A

second additional welfare effect is related to the behavioral biases of consumers. It has been argued

that emission standards are a more effective tool to reduce pollution if consumers undervalue future

fuel savings. Using the same data and a similar methodology, in Grigolon, Reynaert, and Verboven

(2018) we find that the consumer undervaluation of fuel costs in the EU is at most modest.44 For

the model with endogenous characteristics I find that consumers value fuel costs less and purchase

prices more. At these estimates using the annual mileage and interest rate of 6%, I find that

consumers only value a 1 euro reduction in future fuel costs at 0.42 cents. The emission standard

will result in consumers purchasing vehicles with lower fuel costs and I include the future gains

consumers obtain from this. To do this, I change the consumers experience utility from vehicles

so that their valuation of net present fuel costs is equal to their valuation of price. The change in

the consumer surplus is paternalistic in the sense that I take a stance on what consumer valuation

should be, see Allcott (2016).

I will now discuss the welfare effects of the EU emission standard, the role of attribute basing

and enforcement, and the importance of the assumptions about costs.

Welfare Effects Table 6 Column I shows the central welfare estimates for the EU emission

standard.45 The simulation assumes that 70% of emission reductions are due to gaming, the

41Yearly mileage and vehicle lifetime are chosen to match statistics reported by Eurostat.
42This number comes from the Interagency Working Group on the Social Cost of Carbon.
43This number is probably an upper bound for the EU since taxes on fuel and driving are, on average, higher than

in the US.
44Additionally, recent work in the US has found limited to no undervaluation for fuel costs. See Busse, Knittel,

and Zettelmeyer (2013), Allcott and Wozny (2014) and Sallee, West, and Fan (2016)
45The table presents the simulation outcomes at the estimated parameters and an 80% confidence interval. The

C.I. is computed by taking 50 draws from the estimated parameter variance covariance matrix (assuming a joint
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standard is the actual attribute-based regulation, consumers are sophisticated so that choices do

not respond to gaming and technology increases the marginal costs through the engineering cost

function that starts at the estimated level of ĉ′. Column I solves for the optimal firm strategy so

that firms can employ both sales mixing and technology (and the gaming that comes mechanically

with it). Column II restricts the firm abatement strategy to technology adoption and Column III

restricts it to sales-mixing.

Columns I and II are almost equivalent, showing that firms choose to abate almost fully by

technology adoption and gaming.46 In the baseline estimate of Column I, we see that the emission

standard reduces sales by 1% and emissions by 4.9%. The standard did not change the share of small

vehicles (defined as the compact and subcompact vehicle classes). If firms would have responded

by sales mixing (Column III) we would have seen stark decreases in sales and emissions and a stark

increase in the market share for small vehicles. This illustrates already that the abatement strategy

chosen by firms is crucial for the market outcomes of the standard.

The second panel of Table 6 shows the welfare effects of the regulation. I find that the EU

standard decreased both the consumer surplus and profits by 2.6 billion and 0.6 billion euro,

respectively. These losses are incurred because the firms are forced to take up technology beyond

the marginal benefit. In turn, this increases the prices for consumers above their willingness to pay

for fuel consumption. The CO2 reduction of 5% is much lower than the policy target because of the

gaming. The total emission savings are worth only 0.3 billion, which is much less than the private

losses. Dividing private losses by tons of CO2 I find an implied value of the government for a ton of

CO2 of e2633. This is much higher than the current estimated levels of the social cost of carbon.

There are other policies available, such as a gasoline tax, or more general an economy wide carbon

tax, that would reduce carbon at a much lower cost. Note that the effects on consumer surplus

and profits would have been much more negative with sales mixing, so that the regulation would

have been worse for welfare.

However, the policy has two indirect potential benefits that I report in final panel of Table 6.

First, a decrease in the fleet of vehicles on the road, reduces other externalities from traffic. Given

the assumption of 12 cents per km, the 1% reduction in traffic increases welfare by 2.2 billion.

This is a large number and, as explained above, is most likely an absolute upper bound.47 Second,

correcting undervaluation reduces the consumer surplus losses significantly by 1.5 billion. Because

consumers undervalue fuel consumption in the RC Logit II model, the reduced future fuel expenses

of the new choices will benefit consumers in the future more than they value today. Both these

normal distribution). For each draw of parameters, the supply side is re-estimated and new simulation outcomes are
computed. A bootstrap interval is computed using the differences between these 50 outcomes and the outcome at
the mean parameters.

46The percentage improvements in technology in both scenarios are almost equal with differences of 0.1% points
while the shadow costs are very close to zero. On the margin, a very small amount of sales mixing will always be
efficient.

47Less sales of new cars increases the lifetime of existing old and dirtier cars (see Jacobsen and van Benthem (2015),
efficient vehicles might be driven more, congestion does not necessarily reduce with less vehicles and the effects of
local pollution depend heavily on where the vehicles are driven.
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indirect welfare effects need to be added in full to find positive welfare effects. 48

The regulation was introduced with the goal of reducing CO2 emissions. The regulation failed

in meeting its target because most reductions in CO2 happened only on paper and not on the

road. However, the regulation reduced private welfare by a substantial amount relative to the

emission gains. Other savings, either in other externalities or from correcting undervaluation are

both needed to find positive welfare effects from the regulation. Why did firms choose abatement

with technology and gaming? I continue to discuss the role of attribute basing and the enforcement.

48Appendix Table A5 shows the simulation results with the estimates of RC Logit I. Consumer valuation for
fuel costs is estimated to be higher, so that we start the simulation from a steeper point on the convex cost curve.
Decreases in sales, emissions, consumer surplus, profits and other externalities are much larger because the compliance
costs are higher. There are no savings from correcting undervaluation (in fact there are losses because of estimated
overvaluation).
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Attribute Basing In the baseline result, we find that firms choose to abate almost exclusively

by lowering the emission rates. The reason for this choice is the attribute basing of the regulation.

Table 6 Column IV gives the welfare effects of compliance to a flat regulation. This scenario would

have led to more sales mixing and more emission savings. The share of small cars increases by 9%

points. Why does a flat standard allow for more sales mixing? The slope in the target has the effect

that many low weight products are above the target rather than below. This is illustrated for Fiat

in Figure 3. The figure plots all the products in the fleet, scaled by sales, in the emission-vehicle

weight space. This shows that many products in the lower left of the figure are below the red flat

target but are above the green sloped target. For all these products the policy is an implicit subsidy

under a flat regulation but is an implicit tax for the attribute based regulation. This makes sales

mixing much more costly because the firm has much fewer products to which it can shift sales.

Why was the EU emission standard attribute-based? Deters (2010) describes the legislation

process in detail. He gives the following quote from French president Nicolas Sarkozy clearly

favoring a flat regulation:”There is no legitimate reason to give the buyer of a heavy vehicle a right

to more pollution than any other buyer.” While Romano Prodi, Italian Prime Minister, stated

the following: ”A steeper value curve would lead to a significant distortion of competition and an

illegitimate hardship for the producers of small cars”. Both these statements contrast nicely with

Angela Merkel, Chancellor of Germany, who stated the following: ”The proposed value curve is

already a reduction duty far above average for larger cars”. A steeper target function (the Germans

proposed a slope a = 0.06 instead of 0.04) would have resulted in lower effort needed from the

German firms. The attribute basing was therefore the result of a political agreement between the

car producing countries.

In Table 7, I compare the effects of attribute-based and flat regulation. I compare the profits,

technologies and shadow costs for different firms averaged per production region, i.e., Asia, France,

Germany, Italy and the US. The left panel gives changes of compliance to the ABR when firms

choose optimally or when they are restricted to sales mixing. The right panel does the same for the

flat target. Restricting firms to sales mixing shows that the shadow costs of sales mixing increases

with the slope of the regulation. The mean shadow costs of sales mixing triple from 0.29 to 0.94

when introducing the attribute basing. To see this, compare λ and λ′ in II and IV. Fiat, the only

Italian firm, would have automatically complied with a flat target, while they have the highest

shadow cost under the attribute-based standard. Because sales mixing to the ABR is so costly for

Fiat (and also the Asian firms), it will abate emissions mostly by technology and gaming. This

has large implications for market equilibrium, because when some firms start improving emission

ratings (and consumers benefit from lower fuel costs), other firms face competitive pressure to

follow. This equilibrium behavior explains why we see a shift from some technology and some sales

mixing in III to almost exclusively technology and gaming in I.

The changes in profits in Table 7 show that French and Italian firms benefit from a flat standard,

while all the compliance costs fall on the German firms. This is in line with the strong positions the

countries took when bargaining over the regulation. The policy debate in 2007 focused mainly on
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Figure 3: Position of the Fiat fleet relative to flat and attribute based target
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The figure plots every vehicle sold by Fiat in 2007 as it appears in the base data for the counterfactual. Each blue
circle is a product, and the circles scale with the quantity sold. The red line is the flat target at 130 grams of CO2

per km. The green line is the attribute-based target. More sales of products below the target help with compliance.

these distributional issues and not on the effect of the slope on the likelihood of different abatement

strategies. This clearly shows the importance of the political economy of the regulation. The ABR

was agreed such that all firms would have similar distances from the target and thus would face

similar compliance efforts. However, this design made sales mixing more expensive so that the

industry needed to reduce the official emission numbers to be able to comply with the regulation.

Enforcement Interestingly, it is again national interests that led to the weak enforcement of emis-

sion testing and ultimately led to gaming. In a recent report the European Parliament (Gieseke

and Gerbandy (2017)) blamed both the European Commission and the member states for allowing

firms to game emission tests. The report states that member states contravened their legal obli-

gation to monitor and enforce defeat devices, while France, Germany and Italy had evidence that

emission control systems were not focused on the use of vehicles in on-road conditions. The report

states that these countries did not take steps to understand the performance gap between official

and on-road emission, thus indicating maladministration. The report also blames member states

for under-funding testing facilities (in practice, car makers funded the testing facilities themselves).

Even after the Volkswagen scandal in the US most member states did not start immediate and con-

sistent investigations, nor did they adopt an effective and dissuasive penalty system. Additionally,

the European Commission failed to oversee the enforcement of member states. In summary, the

main car producing countries were aware of the gaming but failed to enforce the regulation. The
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Table 7: Profits and Stringency per Producing State

ABR Flat

I II III IV

Solve for: τ, λ λ τ, λ′ λ′

∆ Prof. τ λ ∆ Prof. λ ∆ Prof. τ λ ∆ Prof. λ

Asia -212 14 0.09 -1660 1.33 -380 2 0.33 -163 0.41

France 23 4 0.04 1527 0.45 382 0 0.04 1296 0.05

Germany -635 13 0.08 -1855 0.93 -1287 8 0.33 -3196 0.57

Italy -84 8 0.07 -682 1.12 28 0 0.00 281 0.00

US -44 8 0.06 86 0.85 299 3 0.21 578 0.43

The table gives the average shadow costs and changes in profits in millions of euros relative to no policy
for German, Italian, French, Asian and US firms from abatement in response to both the Attribute Based
Regulation and a Flat Regulation. In all solutions there is no gaming, only actual technology adoption.
Solution I solves for equilibrium abatement to the ABR, II allows only for sales mixing. Solution III solves

for equilibrium abatement to the flat standard, IV allows only for sales mixing.

overseeing European Commission in its turn failed to follow up on the signals that downstream

enforcement was failing.

Columns I, V and VI of Table 6 shed light on the economic consequences of the weak enforce-

ment. The difference between Columns I and V is consumer’s awareness of the gaming. In I, the

gaming does not affect consumer choice, while it does in V. When consumers are fooled by gaming

they perceive cars to have lower fuel consumption, and discover this to be wrong while driving.

This causes a choice distortion to consumers and thus, a further reduction in consumer surplus.

Additionally, the firms increase prices because products are perceived to be of higher quality. The

situation is worse for the environment as there are almost no reductions in sales and emissions

now. Overall, this causes the regulation to have a clear negative welfare effect (even when taking

into account other externalities and undervaluation). Column VI shows what the welfare effects

would have been had the standard been fully enforced. This would have increased private losses

in consumer surplus and profits, but would have led to much higher CO2 and other externality

savings. Column VI is the simulation that shows the highest welfare numbers, but the EU failed

to attain this. Finally, if abatement would be 100% gaming there would be no changes in the

static equilibrium with sophisticated consumers. Car makers would report different emissions to

the regulator but prices and fuel costs would remain the same

The evidence presented here shows that the design of the regulation is responsible for the

observed outcome. First, the political bargaining between France, Germany and Italy led to an

attribute-based standard with a steep slope. This increased the cost of sales mixing and thus,

increased the likelihood of compliance by gaming and technology adoption. Next, enforcement

failures on the level of the member states then enabled firms to resort to gaming.

Cost function and investment inefficiencies In the main simulation we start from the eco-

nomic point where the marginal benefits of emission reductions equal marginal costs. The engi-
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neering reports however present a cost function that starts with a lower slope than the estimated

point concurring with the economic model. If the engineers are correct, this means that firms

leave money on the table, i.e., they do not choose to adopt available cost effective technology for

which there is willingness to pay.49 Additionally, economists have argued that there might be mar-

ket failures in the supply and adoption of technology. Jaffe, Newell, and Stavins (2005) point to

spillovers in technology, spillovers in adoption and incomplete information about future returns of

the investment as possible market failures. The result of these market failures could be a socially

sub-optimal equilibrium with no or too little investment and technology adoption. The regulation

gives clear and binding efficiency targets for the whole industry and thus might have succeeded

in moving the industry out of a sub-optimal equilibrium by inducing technology adoption. There

has been very little work on the empirical validation of these supply side market failures but the

framework here allows the testing of the welfare effects of the emission standard when the supply

side undervalues technology.50

By comparing Column VI and VII in Table 6, we see that supply side failures in technology

adoption are not necessarily bad for welfare when externalities are at play. Because of the cheap

technology, the regulation makes firms reduce fuel consumption for less than the consumers’ willing-

ness to pay. This means that vehicles become cheaper, as consumers receive better characteristics

for a price below their willingness to pay. As such, the market size will increase rather than de-

crease. The regulation now has a rebound effect on the extensive margin.51 The cheap technology

reduces consumer and profit losses but also wipes out the savings in other externalities so that, sur-

prisingly, more technology adoption is not necessarily better for welfare. Note that the regulation

pushes firms beyond what could be explained by market failures, a policy that would only require

cost efficient technology would be less stringent. In general, I believe this scenario not to be very

credible. In line with Anderson and Sallee (2011) we expect car makers to abate emissions with

the least costly compliance strategies. If technology is so cheap and would have costed only e190

million in variable profits, then why would firms have resorted to gaming?

In Appendix Table A5 Column II I also show the results with the estimated cost function

specified in (13). The results are very similar to the main scenario but the estimated cost function

is less convex than the engineering cost function. This reduces the consumer and profit losses. The

question is, to what extent historical cost increases identify future cost changes.52

49Notice that the main results already account for the welfare effects of potential undervaluation by consumers;
here, I consider the suboptimal technology adoption of firms.

50Recent work, such as Hashmi and Van Biesebroeck (2016) and Aghion, Dechezlepretre, Hemous, Martin, and
Reenen (2016), has looked at R&D patterns in the automobile industry through patents.

51See Gillingham, Kotchen, Rapson and Wagner (2013) for an overview of the possible sources of rebound effects.
A second rebound effect that might be expected is an increase in vehicle usage, a rebound effect on the intensive
margin. A further rebound effect could come from the use of savings on vehicle expenses on other energy intensive
activities. This is known as the indirect rebound effect. Lastly, a decrease in the demand for fuels might lower the
price of oil, thus causing further shocks in the economy,as macro-economic rebound effect. Here, I only focus on the
rebound effect on the extensive margin, the reported emission savings are thus an upper bound on the total savings.

52Additionally, the slope of the estimated cost function with respect to fuel costs is highly dependent on the
functional form. In many specifications, the regression of the predicted marginal costs on fuel costs results in a
positive sign, such that the fuel economy lowers the marginal costs. These issues could be due to multicollinearity
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Sunk Costs The profit changes reported in Table 6 are changes in variable profits. Both tech-

nology adoption and gaming potentially have sunk costs. I explain the underlying sources of sunk

costs and then I compute an upper bound on these costs by computing deviations in variable profits

from optimal strategies.

The fixed costs of technology adoption contain the development of technology, implementation

of technology and the redesign of the vehicle. Engineers state that the technology to attain the

emission reduction was available at the time of the policy. The policy allows for a period of 8 years

between announcement and enforcement. Vehicles typically go through faster redesign cycles, see

Blonigen, Knittel, and Soderbery (2017). This means that the additional sunk costs of redesigning

are also likely to be small. Because of the availability of technology and no additional redesign

cycles we expect little additional sunk costs of technology except for the adoption itself.

Gaming has expected sunk costs. The defeat devices used to game the emission tests have to

be purchased or designed. Then there is also the risk of facing liability for noncompliance and class

actions from consumers and shareholders. A complicating factor is that similar defeat devices are

used to avoid pollution standards so that the legal cases are both about misrepresenting pollutants

and fuel economy. It is thus unclear if we should attribute all of these costs to the emission standard.

Given the estimated static model, I can compute an implied upper bound of sunk costs from

the changes in variable profits when firms deviate from the optimal strategy.53 What is a firm

willing to pay in sunk costs to not comply with sales mixing? The upper bound of these sunk

costs can be computed by comparing variable profits in the optimal equilibrium with variable

profits in an equilibrium where the firm is restricted to sales mixing, while all other firms continue

playing optimal strategies. The variable profits of the deviating firm will be lower and this provides

information on the costs this firm would be willing to sink to not play the sales mixing strategy. The

difference in variable profits gives the cost of deviating for a single year of sales, but the regulation

is binding for several years. We thus need to scale and discount the difference in variable profits by

the expected investment horizon of the firm. Because the 2015 emission standard binds until 2021

(when it will be replaced by an even more stringent regulation), I foresee a horizon of 6 years.54

Computing this upper bound requires solving an additional equilibrium for each firm and is thus

costly. I find that the sum of the upper bounds for all firms equals e70 billion. The lowest upper

bound equals e500 million for Fiat and the highest is e20 billion for Volkswagen. The results for all

firms and for smaller deviations are shown in Appendix Table A6. This shows that firms are willing

to sink high amounts to be able to comply with gaming and technology adoption. This also means

that the modest positive welfare numbers presented in Table 6 are not sufficient to claim that the

regulation had any positive effect. There are currently multiple legal cases against car makers, the

as well as changes in mark ups that are correlated with fuel costs but not captured in the first order condition, see
Langer and Miller (2013).

53In this setting, I can compute deviations from the single equilibrium with the optimal compliance strategies.
From observing multiple compliance choices in multiple markets, one could use a moment inequality estimator to
estimate the sunk costs, see Pakes, Porter, Ho, and Ishii (2015). Here, I can only compute a single deviation profit
for each firm implied by the simultaneous game.

54I use a 6% discount rate to compute the net present value of the stream of variable profit losses.
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efforts and costs related to these cases are an additional welfare loss so that the regulation has at

best zero effect on welfare.55

7 Conclusion

This paper has evaluated the response to a recent EU wide emission standard. I find that between

2007 and 2011, sales-weighted emissions from new vehicle sales have decreased by 14%. Decompos-

ing this decrease, I find that two-thirds of the decrease in emission is attributable to firms gaming

the emission test procedure. One-third of the decrease stems from actual technology adoption.

A structural model of demand and supply, allowing for endogenous abatement strategy choices,

revealed that the overall effect of the regulation has been negative for consumers and producers

and did not save large amounts of carbon. For the regulation to be welfare-improving, we need to

optimistically scale the reduction in the size of the new vehicle fleet with a cost of saving other

externalities, such as accidents and local pollution, while this was not the goal of the regulation.

The projected carbon savings did not materialize because of noncompliance and gaming on emis-

sion tests. The reasons that firms chose this abatement strategy are the attribute basing and the

lack of enforcement. Both of the reasons are a product of the political environment in the EU.

This exercise provides important lessons for emission standards as a policy tool. First, the com-

pliance strategy that firms use matters for the welfare and environmental outcomes of the policy.

The design of the policy has potentially large impacts on which strategies are employed. I showed

that the attribute basing made sales mixing so costly that some firms had almost no choice but to

decrease the emission ratings of all their vehicles. Second, emission standards are designed, imple-

mented and enforced in a world where politics matter. I find that even in a developed world setting,

such as the EU, this political reality matters for the outcome, as both the attribute basing and

lack of enforcement are the result of the political economy. Third, technology adoption is a crucial

mechanism of compliance and needs to be considered when evaluating emission standards. This is

very difficult because the evaluation depends on assumptions about the cost curve of technology

adoption. Both consumers and firms might undervalue fuel consumption reductions. It is crucial

to understand to what extent this is happening, especially on the supply side, as we lack evidence

of market failures so that our economic models are at odds with engineering estimates.

Overall, I want to stress that emission standards are a risky and unpredictable policy instrument

when the goal is to reduce carbon emissions. Standards rely on emission tests that could be

potentially gamed when compliance costs become very high. It is uncertain that emissions actually

reduce because of the policy. If the engineers are correct and there is cost effective technology

available, then standards might increase the size of the market rather than decrease it, causing an

increase in emissions. A correct fuel tax in combination with subsidies to adopt technology would

fare better, as the first instrument corrects for the externality and the second for potential supply

55In the fallout of the VW diesel scandal the EU parliament listed dozens of ongoing lawsuits (see: European
Parliament Briefing PE 583.793). In recent years, several other firms have become defendants in claims as it became
clear VW was not the only firm to have gamed the EU emission tests.
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side failures. Another option would be to bring the transport sector into the emission trading

system so that the vehicle market contributes to the prices of carbon permits and abatement costs

equalize across sectors. Since all EU countries have very high fuel taxes that cover more than the

carbon externality, it is difficult to understand why the EU chose this policy as a mechanism to

reduce carbon emissions. One of the reasons is that the EU has limited fiscal authority to further

raise taxes. The EU parliament recently approved ever more stringent emission standards for 2021

to 2030. These standards are so stringent that classic combustion engines will not be capable of

reaching the target, which implies that a shift to alternative fuels is imposed on the next decade.

The numbers derived in this paper are obtained under various assumptions and one should keep

in mind the limitations of the model and the data. First, I focus only on the sales of new vehicles and

assume there will be no effects on prices and vehicle lifetimes in the used car market. It would be

interesting to study if there are different effects from gaming, technology adoption and sales mixing

on the used car market. Second, all welfare numbers are obtained ignoring possible rebound effects

on driving behavior. Third, I did not include dynamics in the analysis. Important fixed costs on

the firm side might have effects on the market structure and rapid technology adoption might result

in consumers strategically timing purchases. Even without these complications, the counterfactual

outcomes show us that the welfare effects from emission standards are far from obvious and that

the design of the regulation matters for which abatement strategies will be chosen.
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Appendix For Online Publication Only

Details on Data Selection

I focus the analysis on the largest EU firms that sell more than 50 000 vehicles in each year of the
sample. These are as follows: BMW, Daimler, Fiat, Ford, GM, PSA, Renault and Volkswagen. I
consider the largest Asian manufacturers as being one firm in the model. This firm includes the
following: Honda, Hyundai, Mazda, Mitsubishi, Nissan, Suzuki and Toyota. The following firms
are not considered in the analysis: Alpina, Aston Martin, Brilliance Auto, Chana, DR Motor, Geely
Group, Great Wall, Isuzu, Jensen, Jiangling, Lada, Mahindra & Mahindra, MG Rover, Morgan,
Perodua, Porsche, Proton, SAIC, Santana, Spyker, Ssangyin, Subaru, Tata, TVR, Venturi and
Wiesmann. Daimler and Chrysler merged during the sample period, and I treat them as one firm
in the whole sample.

For the included firms I focus on the most popular brands. I drop the following brands which
mostly include luxurious sports cars and temporary owned brands: Abarth, Bentley, Buick, Cadil-
lic, Corvette, Daimler, Dodge, Ferrari, Galloper, Hummer, Infiniti, Innocenti, Iveco, Jaguar, Lam-
borghini, Land Rover, Lincoln, Maserati, Maybach, Pontiac, Rolls-Royce and Tata. In total, the
firms and brands that are not included account for 3.5% of the sales.

Additionally, to reduce the number of observations I select only the top 50% highest selling
models which are a combination of a Brand/Model/Body indicator, e.g. ”Volkswagen Golf Hatch-
back”. Of the top 50% most popular models, I select the engine variants that are sold at least 20
times. Because of this selection, which is necessary to make the number of market share equations
tractable, I lose another 14% of sales such that the final data set includes 81.5% of the total re-
ported sales. I lose another 3% of total reported sales due to missing values and unrealistic outliers
in the characteristics.

The definition of the vehicle weight changes throughout the sample from the curb weight before
2010 to the gross vehicle weight in the years 2010 and 2011. I transform the gross vehicle weight
to the curb weight by matching vehicles that are identical in all characteristics between 2009 and
2010. I regress curb weight on gross vehicle weight, doors and displacement and use the predicted
value of that regression to obtain the curb weight in 2010 and 2011. The R2 of that regression is
0.95. The curb weight is approximately 72% lower than gross vehicle weight. The observed and
imputed curb weight are then used to compute each vehicle’s compliance with the regulation.

Details on Excluded Instruments

For the specification with endogenous prices the following 13 excluded instruments are used in the
first stage:

• Sum of the characteristics of fuel consumption, horsepower, weight, footprint, height of all
other products sold by the same firm in the market (5 instruments);

• Sum of the characteristics of fuel consumption, horsepower, weight, footprint, height of all
other products in the market (5 instruments);

• Number of products sold by the same firm in the market (1 instrument);

• Number of products in the market (1 instrument); and

• Log of the labor cost in the country of production of the vehicle (1 instrument).
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For the specification with endogenous prices, fuel costs, horsepower and weight, the following
17 excluded instruments are used in the first stage:

• Sum of the characteristics of the footprint, height of all other products sold by the same firm
in the market (2 instruments);

• Sum of the characteristics of the footprint, height of all other products in the market (2
instruments);

• Number of products sold by the same firm in the market (1 instrument);

• Number of products in the market (1 instrument);

• Log of the labor cost in the country of production of the vehicle (1 instrument);

• Production share of the vehicle model in Africa, Asia, East Europe, North America, and
South America (5 instruments);

• Weighted sum of the average size of all vehicles produced in each region, weights equal the
production share of the vehicle model (1 instrument);

• Weighted sum of the average size of all vehicles produced in each region, weights equal the
production share of the vehicle brand (1 instrument);

• Sum of the characteristics of the footprint, height of vehicles of different vehicle segment
produced on the same platform (2 instruments); and

• Fuel consumption projected on all included and excluded instruments interacted with fuel
prices (1 instrument).

The role of Fines

As explained in Section 2, the fines are given by e5 per unit sold for the first excess g/km and
increase to e95 per unit above 134 g/km. These are the pure monetary fines; it could be that
noncompliance with the regulation brings other reputation costs. Though, when firms choose to
game these reputation costs might not matter anymore.

The fines are an increasing schedule, so that minor deviations are punished lightly at e5 per
vehicle sold and a deviation of more than 4 grams is punished at e95 per vehicle. In between
fines are e15 and e25 for gram 2 and 3 for noncompliance. I consider the smaller fines as minor
punishments for unexpected changes in the fleet averages and the fine of e95 per vehicle as the
punishment for actual noncompliance. This fine will matter for the abatement strategies.

In principle, the fines give an upper bound for the Lagrangian multipliers λ. If the per unit
shadow cost of the regulation becomes higher than the fine, then a firm would prefer to pay the
fine above further price distortions. In practice, I find that this matters only in the scenario Flat
reported in Column IV of Table 6. In all other solutions the equilibrium value of λ is far below
this upper-bound. The framework can accommodate fines flexibly however. As I solve the model
with bounds on λ and τ , I can replace the upper-bound of λ from infinity to the level of the fine.
Column III of Table A5 presents the results where the firms pay fines. Only Volkswagen ends up
in an equilibrium where they deviate from the emission standard and they pay 400 million euro.
This is a profit loss, but the profit loss flows to the state, so it is not necessarily a welfare loss.
Otherwise, the equilibrium outcomes are very comparable.
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The solution presented in Table A5 also bounds technology. When firms hit the upper-bound
on λ, the algorithm will resort to increasing τ to attain compliance. Therefore, I use the solution
of τ when there is no upper-bound on λ as an upper-bound in this algorithm. This is slightly
over-restrictive as somewhat more technology will have a lower cost than the fine. The τ also has
an implicit per vehicle cost that should be lower than the fine. This cost depends on the equilibrium
conditions and is thus harder to solve for (I could, in principle, restate the variable to solve for the
per vehicle technology costs rather than percentage reductions).

Additional Figures and Tables

Table A1: Robustness for Table 2 and Table 3

Model 6 Model 7 Model 8 Model 9 Model 10 Model 11

ln(Hp) 0.43 0.21 0.08 0.13 0.22 0.26

(0.58) (0.02) (0.03) (0.02) (0.02) (0.05)

ln(Weight) -1.34 0.68 0.75 0.65 0.67 0.55

(2.05) (0.06) (0.05) (0.03) (0.05) (0.03)

ln(Footprint) 0.35 -0.15 -0.28 -0.40 -0.26 -0.33

(3.02) (0.10) (0.09) (0.10) (0.08) (0.10)

ln(Height) -17.28 -0.07 0.01 0.04 -0.04 -0.06

(5.90) (0.11) (0.10) (0.15) (0.13) (0.12)

Diesel -0.20 -0.20 -0.20 -0.21 -0.20 -0.65

(0.01) (0.01) (0.01) (0.01) (0.01) (0.15)

Year F.E.? Yes Yes Yes Yes Yes Yes

YearXFirm?

Car Name F.E.? Yes Yes Yes Yes Yes Yes

Observations 14,444 3,441 14,444 14,444 14,444 14,444

R2 0.87 0.81 0.86 0.86 0.86 0.86

Difference in Technology Growth 2011-2007 and 2007-1998

Difference 2.6 2.1 3.3 2.2 2.3 2.5

0.5 0.5 0.7 0.7 0.5 0.5

The table presents the robustness of the findings in Table 2 and Table 3. Each Model estimates equation (2)
and the Table presents the first order terms of trade off parameters and the difference in technological change
between 2011-2007 and 2007-1998. Standard errors are robust and clustered per firm. Standard error for
the difference is computed using the Delta method. Model 6 changes the functional form from Cob Douglas
to Translog so that higher order terms in attributes are included. Model 7 keeps only the first appearance
of each vehicle. Model 8 allows the trade off parameters to change over time. Model 9 weighs observations
by sales. Model 10 includes the marginal costs as estimated in the structural model as a control. Model 11

interacts characteristics with fuel type.
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Table A3: First Stage Estimates

(1) (2) (3) (4) (5)
Price/Income Price/Income Euro per Km Horsepower Weight

Log Labor Costs 0.191∗∗∗ 0.159∗∗∗ -0.394∗∗ -0.0734∗ -0.0236∗

(0.0252) (0.0269) (0.120) (0.0316) (0.0105)
Sum of own Fuel Consumption -2.440∗∗∗

(0.487)
Sum of own Horsepower -1.476

(2.408)
Sum of own Weight 1.024∗∗

(0.384)
Sum of own Footprint 3.215∗∗∗ 3.602∗∗∗ -4.856 -0.967 -1.303∗∗∗

(0.750) (0.596) (2.779) (0.756) (0.234)
Sum of own Height 1.944∗∗∗ 1.853∗∗∗ 3.418 0.646 0.561∗∗∗

(0.497) (0.412) (1.924) (0.525) (0.162)
Sum of own Products -4.659∗∗∗ -5.330∗∗∗ -1.473 -0.156 0.144

(0.876) (0.863) (4.036) (1.101) (0.339)
Sum of other Horsepower -33.81∗∗∗

(4.241)
Sum of other Weight -0.701

(0.572)
Sum of other Footprint 9.614∗∗∗ -2.211∗ 2.147 0.280 -1.054∗∗

(1.522) (0.920) (4.244) (1.145) (0.361)
Sum of other Height 3.818∗∗∗ 2.917∗∗∗ 3.444 0.602 -0.0873

(0.854) (0.831) (3.834) (1.035) (0.326)
Sum of other Products -8.803∗∗∗ -2.649∗ -6.613 -0.973 0.944

(1.480) (1.273) (5.910) (1.603) (0.500)
Gasoline Price by proj. Li -0.00975∗∗∗ 1.013∗∗∗ 0.00254 -0.00209∗

(0.00209) (0.00978) (0.00266) (0.000822)
Production Share Africa 0.137∗ 0.247 -0.0252 0.0895∗∗∗

(0.0598) (0.273) (0.0730) (0.0234)
Production Share Asia -0.0423∗∗ -0.111 -0.00323 0.0104

(0.0160) (0.0650) (0.0162) (0.00622)
Production Share East Europe 0.0453 -0.700∗ -0.289∗∗∗ -0.0154

(0.0624) (0.285) (0.0762) (0.0245)
Production Share North America -0.270∗∗ 1.051∗ -0.0481 -0.0877∗

(0.0958) (0.438) (0.118) (0.0375)
Production Share South America 0.149∗∗∗ -0.303 -0.112∗ -0.0302

(0.0442) (0.203) (0.0547) (0.0173)
Brand Prod. shares by Size -0.0345∗∗ 0.162∗∗∗ 0.0495∗∗∗ 0.0245∗∗∗

(0.0118) (0.0474) (0.0117) (0.00458)
Model Prod. shares by Size 0.120∗∗∗ -0.189 0.0332 0.0327∗

(0.0326) (0.150) (0.0406) (0.0128)
Plant Height Other Segment 1.069 -15.06 -6.392∗∗ -1.424

(1.953) (9.059) (2.452) (0.766)
Plant Footprint Other Segment -3.810 26.97 10.98∗ 2.666

(3.720) (17.27) (4.677) (1.460)
SW F Stat 67.35 5.82 21.20 5.75 11.20
# End. Vars 1 4 4 4 4
# Excl. Instr. 13 17 17 17 17
Observations 28775 28775 28775 28775 28775

The table gives the first stage estimates for the specification with endogenous prices (1) and the specification
with endogenous prices, fuel costs, horsepower and weight (2-4). The coefficients and robust standard
errors for all excluded instruments are reported (the included instrument coefficients are not reported). The
Sanderson-Windmeijer multivariate F test of excluded instruments is reported for every endogenous variable,

this statistic equals the standard F-test of excluded variables with a single endogenous variable in (1).
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Table A4: Model Fit

Within Sample Out of Sample

True Pred. I Pred. II Pred. III True Pred. I

Emission 147 142 155 139 126 125

Weight 1.27 1.19 1.33 1.17 1.28 1.24

Horsepower 0.78 0.66 0.84 0.66 0.80 0.71

Footprint 7.23 7.01 7.43 6.95 7.39 7.31

Price/Income 0.71 0.56 0.76 0.56 0.69 0.58

Diesel 0.56 0.50 0.53 0.49 0.56 0.49

The table presents sales-weighted averages of characteristics within the estimation sample (for year 2007) and
out of sample (for year 2011). The prediction columns present sales-weighted measures based on predicted
sales rather than observed sales. Prediction I predicts sales using the estimated utility parameters without
fixed effects and demand unobservable. Prediction II predicts sales using the estimated utility parameters
with fixed effects but without demand unobservable. Prediction III predicts sales using the estimated utility

parameters with demand unobservable but without fixed effects.

Table A5: Simulation Outcomes

I II III

RC Logit I Estimated Tech Flat with Fines

Solve for: λ, τ λ, τ λ, τ

Gaming: 70% 70% 70%

Consumer Soph.: 1 1 1

Market Size

Total Sales -14,78 -0,14 -0,11

Emissions -19,45 -5,69 -10,66

Share small 2.27 3.33 9.26

Direct Welfare Effects (∆ in billion e’s)

Consumer Surplus -29,67 -3,04 -6,19

Profits -9,50 -0,25 -0,44

CO2 Value 1,35 0,39 0,74

Total -37,82 -2,89 -5,89

Implied Value for CO2 8109,22 2330,24 2338,86

Indirect Welfare Effects (∆ in billion e’s)

Other Externalities 29,66 0,28 0,22

Paternalism -7,21 1,95 3,31

Fines: 0,44

Total: -15,37 -0,67 -1,92

The table gives the aggregated effects over all countries and firms for each policy simulation. Column I
solves for the optimal abatement strategy given baseline assumptions but at parameter estimates of the RC
Logit I model without endogenous characteristics. Column II is the same as Column I Table 6 but using
the estimated cost function. Column III is the same as Column IV of Table 6 but introducing fines as an
upperbound for the Lagrangian multiplier. See the text for the assumptions behind the welfare calculations.
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Table A6: Sunk Cost Upper Bound Estimates

Deviation: 0.9 ∗ (τ + g) 0 ∗ (τ + g)

BMW 0.07 4.92

Daimler 0.49 14.46

Fiat 0.08 5.08

Ford 0.04 2.24

GM 0.14 7.86

PSA 0.01 0.51

Renault 0.05 2.71

VW 0.29 20.86

Asian 0.21 11.38

Total for Industry 1.38 70.00

The table gives the estimated upper bounds on sunk costs from 18 different simulations. Column I presents
the difference in the variable profits obtained from optimal compliance and from deviating from the optimal
strategy. In the deviation (τ + g) is restricted to 90% of the optimal (τ + g). The second column is the loss
in variable profits for each firm when it is restricted to fully comply with sales mixing while all other firms
are responding optimally. Simulation I from Table 6 is used as the base to compute the deviations in the
variable profits. The differences in variable profits are counted for 6 years and discounted with a rate of 6%.
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