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of risk aversion. Regulators face a dilemma as young (workers) and old participants (retirees) have
different capacities to absorb losses from unhedgeable inflation risks and as a consequence have
a different risk appetite.
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1 Introduction
This paper develops a framework for the valuation of pension contracts with conditional
indexation in incomplete markets. Because there is no external guarantor, the value of
the promises made depends on the capital adequacy of pension funds. But judging that
capital adequacy becomes difficult when markets are incomplete, since a complete set
of market prices is then not available and, hence, valuation will depend on preferences.
We apply the framework to the Netherlands where precisely this issue plays a role in the
current debate on pension reforms since one objective is to provide inflation-protected
benefits. Swap contracts for Dutch consumer price index (CPI) inflation do not exist, so
traditional valuation methods cannot be used to value pension contracts. While foreign
indexed debt could go some way towards protecting the purchasing power of Dutch re-
tirees, this would still leave pension fund participants exposed to real exchange rate risk.
Moreover, even if it were possible to perfectly hedge consumer price inflation, workers
and retirees would then still be exposed to the inflation risks associated with their own
specific consumption bundle (Stewart, 2008), because it differs from the bundle consumed
by the average population member: for example, the elderly consume more health care
and spend more on housing than the average member of society, while the young spend
more on transportation and education. This makes our analysis of much wider relevance
than just for the Dutch discussions on pension reform: general inflation swaps do exist
in, for example, the U.S., but not for group-specific price indices.

We estimate these valuation differences by using an intertemporal optimal consump-
tion/portfolio allocation model and use certainty-equivalent consumption as our measure
of welfare. Our results suggest that for commonly assumed degrees of risk aversion the
inability to perfectly hedge general consumer-price inflation produces a lifetime welfare
loss of up to 1% when expressed in terms of a decline in lifetime certainty-equivalent
consumption. Furthermore we find that losses associated with unhedgeable inflation risk
become much larger when there are significant differences in worker and retiree consump-
tion bundles. The combination of the two sources of unhedgeable inflation risk produces
a lifetime welfare loss of up to 6% for commonly assumed degrees of risk aversion. Hence,
substantial welfare gains can be obtained by making financial markets more complete, for
example by issuing index-linked bonds, or developing arrangements that allow workers
and retirees to trade group-specific inflation risks.

Traditional valuation approaches are based on the construction of a replicating port-
folio of traded instruments that generates cash flows identical to the arrangement to be
valued. This is “risk-neutral” valuation, which is based on the no-arbitrage condition
that equivalent cash flows should have the same value irrespective of the fundamental
risk preferences of the investor, i.e. that risk-free arbitrage gains are precluded. How-
ever, in the absence of equivalent traded financial instruments, it is no longer possible
to construct a perfect hedge, and valuation becomes dependent on the investor’s risk
aversion. Hence, if markets cannot be completed, regulators of collective pension funds
face a dilemma. Different groups of participants have a different capacity to absorb losses
from unhedgeable inflation risks and therefore have different risk appetites. In particular,
in the absence of wage income and without the ability to adjust labor supply, and with
less time left to adjust through consumption smoothing, elderly participants have less ca-
pacity to absorb shocks. Differences in risk appetite, and hence the regulator’s dilemma,
are further exacerbated if elderly participants are fundamentally more risk averse. as
empirical evidence seems to suggest – see, for example, Albert and Duffy (2012); Halek
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and Eisenhauer (2001) and Dohmen, Falk, Golsteyn, Huffman, and Sunde (2017).
Our approach is to construct an optimal portfolio of several securities in a setting

with unhedgeable inflation risk. Estimating the correlations between the returns on these
assets is key for determining the hedging strategy and the price of a non-tradable indexed
asset, an approach introduced by Hodges and Neuberger (1989).1 We apply stochastic
dynamic programming (SDP) to value risky cash flows as a function of the investors’ risk
appetite (“utility indifference pricing”). While the techniques underlying SDP go back to
the 1960s, SDP has until recently remained practically unusable, because of the difficulty
of addressing higher dimensionality problems, which arise when long-dated pension fund
liabilities need to be valued in the presence of multiple sources of risk. Recently, however,
highly-accurate numerical approximation methods have been developed that have made
SDP practically usable even in higher dimensional problems. An example is the “Least
Squares Monte Carlo” method (Longstaff & Schwartz, 2001). This method was developed
to value American options, but is easily extended to analyse multiple sources of risks.
Our paper follows the solution method applied by Koijen, Nijman, and Werker (2010),
which is a variant of the “Least Squares Monte Carlo” method.

Our paper makes several contributions to the existing literature. First, we analyze the
welfare losses caused by workers and retirees having different consumption bundles. This
issue is studied in qualitative terms by Stewart (2008) and Munnell and Chen (2015), as
inflation rates for elderly and workers have moved differently over time, for example due
to higher inflation in medical costs, which affects the elderly more than working cohorts.
However, to the best of our knowledge we are the first to quantify these losses using a
formal welfare evaluation. Second, we analyze unhedgeable inflation risk due to market
incompleteness in a more comprehensive model than the existing literature. Brennan and
Xia (2002) obtain an analytical solution and De Jong (2008) applies this to a pension
fund setting. Koijen et al. (2010) include an extra factor for modelling interest rate
risk, to obtain quantitatively more realistic results, but they do not consider unhedgeable
risk. We combine these two models and add two elements by extending the model of
Koijen et al. (2010) in three ways: by including unhedgeable CPI inflation risk similar to
Brennan and Xia (2002), by including unhedgeable inflation risk resulting from workers
and pensioners having a different consumption bundles and by adding a third state factor.
This additional factor, suggested by Driessen, Klaassen, and Melenberg (2003); Litterman
and Scheinkman (1991) and Bouwman and Lord (2016), is included to produce a more
accurate fit of the market interest rates and inflation rates.

The remainder of this paper is structured as follows. Section 2 presents the model.
Section 3 describes the estimation approach and the data that we use for our application.
In Section 4 we solve for the optimal consumption and asset allocations over an individ-
ual’s life cycle. In Section 5 we calculate the welfare loss associated with unhedgeable
inflation risks under different economic settings and degrees of risk aversion. Section 6
assesses the impact of consumption smoothing by analyzing the special case where an
individual is subject to a mandatory saving scheme, similar to a real-world pension plan,
and consumes the remainder, hence is unable to smooth consumption during the working
life. Finally, Section 7 concludes the main text. Technical details and additional results
are found in the appendices.

1Henderson (2002) applies utility maximization to obtain option prices in an incomplete market
setting. This way, the optimal portfolio weights assigned to the different asset classes depend on the risk
appetite of the investor.
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2 An economy with a three-factor yield curve
This section constructs a three-factor model of the yield curve while allowing for unhedge-
able inflation risk. Among others, Bouwman and Lord (2016); Driessen et al. (2003);
Litterman and Scheinkman (1991) suggest that a three-factor model of the yield curve
produces a more accurate fit of observed market rates than a two-factor model. Hence,
we extend the model of Koijen et al. (2010) by adding a third state factor. However,
in contrast to Koijen et al. (2010) and Bouwman and Lord (2016), but in line with the
model of Brennan and Xia (2002), we also include unhedgeable inflation risk.

The state factors evolve as

dXt =−KXtdt+ dZ̃t (1)

where Xt = (X1,t, X2,t, X3,t)
′ is the vector containing the three state factors and Z̃t =

(Z1,t, Z2,t, Z3,t)
′. The elements of Z̃t are independent Brownian motions. Hence, the state

factors Xt are mean reverting around zero. To ensure identification of Xt and Z̃t, we take
K lower triangular (see Koijen et al. (2010)).

The instantaneous nominal interest risk-free rate rt and the instantaneous expected
inflation rate πt are given by, respectively,

rt =δ0,r + δ′1,rXt,

πt =δ0,π + δ′1,πXt,

δ0,r, δ0,π >0. (2)

The nominal state price density (or pricing kernel) is given by

dϕt

ϕt

=− rtdt− Λ′
tdZt, (3)

with prices of risk

Λt =Λ0 + Λ1Xt,

Λ0,Λt ∈R5 and Λ1 ∈ R5×3. (4)

Here, vector Zt = (Z1,t, Z2,t, . . . , Z5,t) ∈ R5 expands the vector Z̃t ∈ R3×1 with two
additional Brownian motions that are independent of each other and the other elements
of Zt.

Following Duffie and Kan (1996), the price at time t of a nominal zero-coupon bond
that pays out at t+ s is:

P (t, t+ s) = exp
[
A (s) +B (s)′Xt

]
, (5)

where

A (s) ≡−
∫ s

0

[
B (τ)′ Λ̃0 −

1

2
B (τ)′ B (τ) + δ0,r

]
dτ,

B (s) ≡
(
K ′ + Λ̃′

1

)−1 [
exp

(
−
(
K ′ + Λ̃′

1

)
s
)
− I3

]
δ1,r, (6)
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where I3 is the 3 × 3 identity matrix and where Λ̃t, Λ̃0 and Λ̃1 are formed by the first
three elements or rows of Λt, Λ0 and Λ1, respectively:

Λ̃t ≡
[
Λ1,t Λ2,t Λ3,t

]′
,

Λ̃0 ≡
[
(Λ0)1 (Λ0)2 (Λ0)3

]′
,

Λ̃1 ≡

 (Λ1)1,1 (Λ1)1,2 (Λ1)1,3
(Λ1)2,1 (Λ1)2,2 (Λ1)2,3
(Λ1)3,1 (Λ1)3,2 (Λ1)3,3

 . (7)

Hence, the yield on the nominal zero-coupon bond is given by

y (t, t+ s) = −1

s

[
A (s) +B (s)′ Xt

]
. (8)

Stock prices are assumed to evolve as

dSt

St

=(rt + ηS) dt+ σ′
SdZt, σS ∈ R5, (9)

Hence, the expected stock return equals the instantaneous interest rate (rt) plus a con-
stant equity risk premium (ηS): σ′

SΛt = ηS. Hence, σ′
SΛt is constant for all Xt, which

restricts Λ0 and Λ1 such that

σ′
SΛ0 = ηS and σ′

SΛ1 = 0. (10)

Finally, we assume that the consumer price index (CPI) evolves as

dΠt

Πt

=πtdt+ σ′
ΠdZt + σudZu,t, σΠ ∈ R5, Π0 = 1, (11)

which is the sum of the process for expected inflation and two unexpected components.
The first of these two components is hedgeable. The second of these components, σudZu,t,
is assumed to be unhedgeable. In the special case of σu = 0, we have a complete market
setting.

3 Data Description and Estimation

3.1 Data Description
The model parameters are estimated using quarterly data on risk-free nominal interest
rates, inflation rates and stock returns from January 1999 to January 2018. Hence, we
have NT = 77 observations for each time series. For stock returns we use the MSCI world
index (in EUR). For inflation rates, we take the ex-tabacco eurostat HICP. To correct
for seasonality in the inflation rates, we adjust for quarterly effects, but keep the overall
average.2 For tenors shorter than one year, we take the Euribor index for the 3-month
and 6-month risk-free interest rates. We assume that counterparty risk is absent for these

2This is equivalent to regressing the time series on quarterly dummies and taking the residuals plus
the estimated constant to keep the overall average of the deseasonalized inflation series equal to the
uncorrected inflation series.
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shorter tenors. For the tenors 1 to 60 years we take the European swap rates as risk-free
rates. In the estimation we use only swap rates up to 30 years, as longer tenors are
not available from the start of the sample period. However, when calibrating the initial
state of the model for generating scenarios, we take all tenors up to 60 years.3 Figure 1
depicts the data. While the quarterly returns on the MSCI and the Eurostat Harmonized
Index of Consumer Prices (HICP) inflation rate appear to be stationary, the risk-free rate
appears to be on a downward trend over the sample period under consideration, although
this trend is interrupted by an increase during the eruption of the global financial crisis.

3.2 Estimation Method, because the valuation is preference de-
pendent

We use the same optimization procedure as Draper (2014), who applies the log-likelihood
estimation procedure by Goffe, Ferrier, and Rogers (1994) with similar parameter settings
for the optimization. The estimation is based on a complete market setting, as Eurozone
HICP inflation can be hedged using inflation swaps. This implies that we set σu = 0
f, because the valuation is preference dependentor the estimation. For the yield curve
we use the following maturities: 1

4
, 1, 3, 5, 10, 20 and 30 years. We assume that the 1, 10

and 30 year yields are observed without measurement error. The reason we select these
specific tenors is that we want to have sufficient dispersion across the tenors used for the
estimation and to have tenors that are frequently traded. Hence, the state variables Xt

are retrieved from the following 3-equation system for the yields of the tenors that are
assumed to be measured with perfect precision:

y (t, t+ s) =− A (s) +B (s)′Xt

s
, for all s ∈ {1, 10, 30}

⇒ Xt =− (B (1) , B (10) , B (30))′−1

 A (1)
A (10)
A (30)

+

 y (t, t+ 1)
10y (t, t+ 10)
30y (t, t+ 30)

 . (12)

Then, the other yields with maturity s have measurement error νt,s given by

νt,s = y (t, t+ s) +
A (s) +B (s)′Xt

s
∼ N (0,Σs) , (13)

where Σs is the covariance matrix of the measurement errors νt =
(
νt, 1

4
, νt,3, νt,5, νt,20

)
.

In discretized format with time steps of size h the complete model can be written (see
Appendix A.1)

Ψt =α̂(h) + Γ̂(h)Ψt−h + εt, εt ∼ N
(
0, Σ̂

(h)
Ψ

)
Ψt ≡ (Xt, log Πt, logSt, logP (t, t+ s)) . (14)

Hence, the relevant measurement errors for stock returns and inflation are the corre-
sponding elements in εt, i.e. ε̃t ≡ (ε4,t, ε5,t). The log-likelihood is given by4

lnLL = −NT

2

ln |Σs|+ 1

NT

NT∑
t=1

νt (Σ
s)

−1
ν′t + ln

∣∣∣Σ̂Ψ

∣∣∣+ 1

NT

NT∑
t=1

ε̃t

(
Σ̂Ψ

)−1

ε̃′t + ln

∣∣∣∣∣∣
 B (1)

B (10)
B (30)

∣∣∣∣∣∣
 .

(15)

3More precisely, we take maturities 1
4 ,

1
2 , 1, 2, 3, . . . , 15, 20, 25, 30, 40, 50 and 60 years.

4The details on this log-likelihood function are provided by Duffee (2002).
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Figure 1: Quarterly data on stocks returns, inflation rates and interest rates over the
period January 1999 - January 2018.
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Table 1: Parameter estimates

Symbol Estimated value
δ0,r 0.0073
δ0,π 0.0052
ηS 0.0523
δ1,r

(
0.0146, −0.0010, 0.0120

)
δ1,π

(
0.0282, 0.0007, 0.0013

)
σΠ

(
−0.0102, 0.0012, 0.0156, −0.0081, 0

)
σS

(
−0.0696, −0.0169, 0.1084, −0.0276, −0.1999

)
K

 2.3156 0 0
−1.2931 0.1324 0
−0.7636 −0.3582 0.2946


Λ̃0

(
0.0716, −0.2828, −0.0634

)
Λ̃1

 2.3698 −0.0716 0.5015
0.7257 −0.1132 −0.0970
4.3813 0.2881 0.1259


X0

(
−0.3579, 5.8420, −0.5069

)

Muns (2015) shows that adding restrictions may lead to a better estimation. The
most likely reason is that the estimation problem has multiple local optima (Duffee,
2002). Hence, we introduce the following restrictions. The long-run instantaneous real
interest rate is non-negative, hence δ0,r ≥ δ0,π. Similar to Muns (2015), we impose
det
(
−
(
K ′ + Λ̃′

1

))
< 0 to get a finite long-term yield, lims→∞ Pr (|y (t, t+ s)| < ∞) = 1,

and we exclude oscillating term structures by discarding
(
K ′ + Λ̃′

1

)
with complex eigen-

values. We also impose a UFR larger than the long-run instantaneous nominal interest
rate. In Appendix A.2 we show that this restriction amounts to

lim
s→∞

Et [y (t, t+ s)] = δ0,r −
((

K ′ + Λ̃′
1

)−1

δ1,r

)′(
Λ̃0 +

1

2

(
K ′ + Λ̃′

1

)−1

δ1,r

)
≥ log (1 + δ0,r) .

(16)

As in Koijen et al. (2010), we assume that the risk premium associated with unex-
pected inflation risk is zero, because we are unable to identify this risk premium from the
available data (also see Campbell and Viceira (2002); Sangvinatsos and Wachter (2005)).
Hence, we take (Λ0)4 = (Λ1)4,1 = (Λ1)4,2 = (Λ1)4,3 = 0. Finally, similar to Koijen et al.
(2010), to ensure identification, the volatility matrix Σ̂Ψ should be triangular by imposing
σΠ,5 = 0.

3.3 Estimation Results
We calibrate the initial state X0 by minimizing for the maturities 1

4
up to 60 years the

sum of the squared errors between the current swap rate and the interest rates implied by
the model at time zero, y (0, s) = −A(s)+B(s)′X0

s
. The initial state and the model estimates

are reported in Table 1. The estimated annual equity premium equals ηS = 5.23% and
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Figure 2: Initial yield curves based on three and two factors. Notes: Dashed line: swap-
curve 2017 year end, solid line: fitted curve. Maturities 0-60 years.
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Figure 3: Mean and 90%-confidence interval of yields, inflation and stock returns

the estimated annual spot rate is δ0,r = 0.73%. The estimated initial state implies the
initial yield curve depicted in Figure 2. Figure 2 also shows the analogously-estimated
initial yield curve based on only two factors.5 The three-factor yield curve clearly fits the
data better than the two-factor yield curve.6

3.4 Model simulation
Given the initial state and the parameter estimates, we can now simulate the model.
Figure 3 presents the mean and 90% confidence intervals for the different economic vari-
ables based on Q = 104 simulation runs over a 60-year horizon with 2018 as the starting
year. Since the interest rates in the model are normally distributed and current interest
rates are at a (historically) relatively low level, the top right panel of Figure 3 indicates
a substantial probability of interest rates falling below zero.

5In this special case we assume that the 1 and 10 year yields are measured without error.
6Switching from three to two factors, the sum of squared errors decreases from 14 ∗ 10−5 to 8 ∗ 10−5.
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4 Optimal Lifetime Portfolio and Consumption with
Complete Markets

To set a benchmark, we first consider a setting with complete markets. There is a
representative individual who makes both a consumption-saving decision and an optimal
portfolio allocation decision in each period. We assume that individuals work part of
their life and are retired for the remainder of their life. First, we define the individual’s
preferences and the optimization problem. Second, we present the benchmark results for
this case where markets are complete.

4.1 Preferences
An individual starts working at age 0, retires at age TR and dies at age TD. Her period-t
nominal income and nominal consumption are given by Yt and Ct, respectively. Here, t
denotes both the calendar period and the age of the individual. Period utility is of the
constant relative risk aversion (CRRA) type with relative risk aversion parameter γ, and
is defined over real consumption. Hence, the individual’s problem can be written as

max
ct,xt:t∈{0,1,...TD−1}

E0

TD−1∑
t=0

βt c
1−γ
t

1− γ

 , (17)

subject to

wt+1 =(wt − ct)
(
x′
tr

e
t+1 + rft+1

)
+ yt+1,

w0 =y0,

ct ≤wt,

xi,t ≥0, ∀i,
nx∑
i=1

xi,t ≤1, (18)

where β denotes the subjective discount factor, the elements i ∈ {1, . . . , nx} of the vector
xt denote the fractions of wealth invested in the nx different risky assets, and where we
have defined the real variables:

ct =
Ct

Πt

, wt =
Wt

Πt

, yt =
Yt

Πt

, , ret =
Re

tΠt−1

Πt

, rft =
Rf

tΠt−1

Πt

, (19)

where wt is real financial wealth, yt is the real wage, ret is the real return vector on the
risky assets i ∈ {1, . . . , nx} and rft is the real return on the risk-free asset. The two
last restrictions, xi,t ≥ 0 and

∑nx

i=1 xi,t ≤ 1, the no-short-selling constraints and the no-
borrowing constraint, are included to make the investment problem more realistic, as
life-cycle investors are typically bound by such constraints. A fraction (1−

∑nx

i=1 xi,t)
of financial wealth is invested in the 1-year nominal bond. We consider the real labor
income process assumed by Cocco, Gomes, and Maenhout (2005):

yt =

{
exp (gt + κt + νt) , for t ∈

{
0, 1, . . . TR − 1

}
,

0, for t ∈
{
TR, TR + 1, . . . TD − 1

}
.

(20)
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In this process for labor income, gt represents the deterministic component of the real
wage profile, where the subscript t should be interpreted as the age of the individual.
The processes κt and νt represent an idiosyncratic shock and a persistent shock at time
t, respectively. We consider different settings for the real wage process, which we specify
later on.

4.2 The benchmark results under complete markets
Appendix B.1 describes in detail the solution method, which follows Koijen et al. (2010).
This an extension of Brandt, Goyal, and Santa-Clara (2005), whose approach is inspired
by the “Least Squares Monte Carlo” method (Longstaff & Schwartz, 2001). The sub-
jective discount factor is set at β = exp (−δ0,r). The benchmark value for the constant
relative risk aversion parameter is γ = 5. We set TR = 40 and TD = 60, so an individual
works for 40 years and is retired for 20

(
= TD − TR

)
years. The other parameter values

are identical to those already assumed above.
We normalize the initial nominal wage to Y0 = 1. The initial price level is also

normalized to Π0 = 1. For the benchmark setting we apply a simplified setting for real
labor income, by assuming that gt = κt = νt = 0. Hence, the real wage equals one during
the working period and is zero during retirement. From Section 5.4 onwards we extend
the analysis with a stochastic wage process, by specifying more a realistic processes for
gt, κt and νt.

We start with the complete markets setup, hence σu = 0. We simulate an individual’s
life Q = 104 times and report mean outcomes and 90% symmetric confidence intervals.
Figure 4 shows the optimal portfolio allocations over time for nx = 3 risky assets, one
stock and two index-linked bonds with maturities 5 and 30 years, and the 1 year nominal
bond as risk-free asset. We select the 5 and 30 year maturities in order to have both a
relatively short and relatively long maturity in the portfolio. However, the figure shows
that it contains almost no 5-year debt. The reason is that the 5-year bond is relatively
strongly correlated with the 30-year bond, while the latter earns the risk premium Λ̃t. The
corresponding optimal lifetime consumption, savings and wealth trajectories are shown in
Figure 5. Average consumption increases with age, because the expected portfolio return
exceeds the time preference rate. However, consumption also becomes more uncertain
with age. Since the individual is risk averse and therefore values the worst scenarios
more strongly, we see that the fifth percentile of consumption is rather stable over the
lifetime. Wealth is accumulated during the working period and during retirement wealth
decreases towards zero at the last period. We can also see that the investment portfolios
become less risky towards the end of the individual’s life. Based on the Q simulation
runs, Appendix A.3 shows that “certainty-equivalent consumption” is calculated as:

CEC =

 1− β

Q
(
1− βTD

) Q∑
q=1

TD−1∑
t=0

βtc1−γ
q,t

1/(1−γ)

(21)

Certainty-equivalent consumption CEC is the certain and constant period consumption
level over one’s entire life that yields the same expected utility as the uncertain actual
consumption stream. Using Equation (21) we find CEC = 97.40% of the annual wage
during one’s working life.

11



10 20 30 40 50
0

0.5

1

Age

P
or

tfo
lio

 w
ei

gh
t

stock

 

 
90%−CI
mean

10 20 30 40 50
0

0.5

1

Age

P
or

tfo
lio

 w
ei

gh
t

5yr real bond

 

 
90%−CI
mean

10 20 30 40 50
0

0.5

1

Age

P
or

tfo
lio

 w
ei

gh
t

30yr real bond

 

 
90%−CI
mean

10 20 30 40 50
0

0.5

1

Age

P
or

tfo
lio

 w
ei

gh
t

1yr nominal bond

 

 
90%−CI
mean

10 20 30 40 50
0

0.5

1

Age

P
or

tfo
lio

 w
ei

gh
t

mean portfolio allocations

 

 
stock
5yr real bond
30yr real bond
1yr nom bond

10 20 30 40 50
0

10

20

30

40

Age

du
ra

tio
n

portfolio duration

 

 
duration overall portfolio
duration fixed−income portfolio

Figure 4: Optimal lifetime portfolios in the absence of unhedgeable inflation risk
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Figure 5: Optimal lifetime consumption, wealth and savings trajectories in the absence
of unhedgeable inflation risk
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Similar to Koijen et al. (2010), the duration of the overall portfolio in this example
with only zero-coupon bonds is given by

DurP,t =5x2,t + 30x3,t +

(
1−

3∑
i=1

xi,t

)
(22)

using that equity has zero duration. Obviously, the fraction invested in the 30-year bond,
x3,t, has a stronger effect on the duration than the fraction invested in the 5 year bond,
x2,t. The duration of the fixed-income portfolio is in the presence of complete markets

DurFI,t =
5x2,t + 30x3,t +

(
1−

∑3
i=1 xi,t

)
x2,t + x3,t +

(
1−

∑3
i=1 xi,t

) . (23)

On average, the overall portfolio duration is 14.5 years, while the fixed-income portfolio
duration is 20.3 years. The last panel of Figure 4 shows that the durations of the overall
portfolio and the fixed-income portfolio tend to decline with age.

The benchmark asset allocation pattern is quite robust as can be seen from the impact
of several parametric changes, which we discuss in detail in Appendix B.2. From these
variations on the benchmark we conclude that the outcomes are qualitatively similar for
a higher equity premium, a lower interest rate volatility and a portfolio with different
bond maturities.

5 Incomplete markets
So far, we considered a complete market setting, as a benchmark for the main topic,
the incomplete market setting. Inflation risk cannot be completely hedged in countries
that do not issue inflation-linked bonds, and even if they do there are still problems if
those bonds index returns on general inflation whilethe young and old participants in
pension schems have significant differences in consumption patterns. Therefore in this
section we first provide a quantification of the welfare loss associated with the inability
to completely hedge away CPI inflation risk. The quantification is based on data for
the Netherlands. Then we introduce an additional source of unhedgeable inflation risk:
differences in consumption patterns of workers and retirees and quantify their welfare
consequences. Finally, we extend the analysis by introducing a more realistic stochastic
wage process.

5.1 Measuring the variability of unhedgeable inflation risk
We present two alternative ways to measure unhedgeable Dutch CPI inflation risk. First,
since European inflation risk can be hedged using Eurozone HICP inflation swaps, we can
approximate unhedgeable Dutch inflation risk as the difference between Eurostat’s HICP
inflation for the euro area7 and CPI inflation of the Netherlands. The two time series
are shown jointly in the left-hand panel of Figure 6, while the difference, euro-area HICP
inflation minus Dutch CPI inflation, is depicted in the right-hand panel. The difference
thus captures the unhedgeable component of Dutch inflation. Its standard deviation is
0.36%. A regression of this difference on its first lag shows that its coefficient, with a
p-value of 0.38, is insignificant even at the 10% level.

7See http://ec.europa.eu/eurostat/web/hicp/data/database
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Figure 6: Quarterly inflation rates from January 1999 to January 2018 after seasonality
correction. Note: the right panel shows the difference, i.e. euro-area HICP inflation
minus Dutch CPI inflation.

The second alternative measures unhedgeable inflation risk by regressing Dutch CPI
inflation on the CPI inflation rates of countries that issue index-linked bonds. Figure 7
depicts the quarterly CPI inflation rates after seasonality correction for the U.K., Ger-
many, France, Italy, Spain, Australia, New Zealand, Denmark, Sweden, Japan, the U.S.,
Canada and the Netherlands.8 The bottom right panel also shows the residual from a
linear regression of Dutch CPI inflation on the CPI inflation rates of the aforementioned
countries.9 We take the regression residual as the unhedgeable component of Dutch in-
flation. Its standard deviation is 0.30%, very close to the standard deviation of the other
alternative based on the difference between euro-area HICP inflation and Dutch CPI in-
flation. Again, we can reject serial correlation in the residuals.10 We also estimate the
standard deviation of the residuals by adding commodity indices, which could also be
relevant for inflation hedging (Spierdijk & Umar, 2013). By including an oil price index,
a gold price index and a general commodity price index, the R-squared increases to 47%
and the standard deviation of residuals slightly decreases to 0.29% - see Appendix A.4
for more details.

It should be emphasized that the aforementioned estimates are likely a lower bound
to the unhedgeable inflation risk. First, due to trading frictions, it may not be possible
to exactly construct the desired inflation hedge and adjust its term structure to match
the exposure time pattern. Moreover, we ignore the fact that index-linked bonds are
illiquid financial instruments compared to nominal bonds, which would make the optimal
hedge less effective on average. Possibly, to limit the cost of the hedging strategy fewer
instruments than necessary may end up being used, with a higher amount of unhedged
inflation risk as a consequence. Therefore, in the sequel we calibrate unhedgeable inflation
risk at 0.36%, the larger of the above estimates.

8The data is obtained from the Federal Reserve Economic Data on May 29, 2018 from
https://fred.stlouisfed.org

9The regression specification is CPINL,t−CPINL,t−1

CPINL,t−1
= β0+

∑n
i=1 βi

CPIi,t−CPIi,t−1

CPIi,t−1
+εt. The R-squared

is 43%.
10If we only consider the European countries, i.e. exclude Australia, New Zealand, Japan, the U.S. and

Canada from the regression, the R-squared falls to 41% and the standard deviation of residuals remains
at 0.30%. Moreover, if we redo this estimation without seasonally adjusting the CPI inflation rates, then
the standard deviation of the residuals becomes 0.34%.
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Figure 7: Quarterly CPI changes from 1999Q1 to 2018Q1 after seasonality correction
Source: Federal Reserve Economic Data, available at https://fred.stlouisfed.org
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5.2 Results for unhedgeable aggregate inflation risk
This subsection studies the welfare effects of adding to our benchmark setting unhedgeable
CPI inflation risk over the individual’s life cycle. Based on the standard deviation of
the difference between eurozone HICP inflation and Dutch CPI inflation, we set the
annualized unhedgeable inflation risk parameter at σu =

√
4 ∗ 0.36%. Then, Equation

(11) becomes

dΠt

Πt

=
dΠ̃t

Π̃t

+ σudZu,t. (24)

where Π̃t is the Eurozone price index and Πt is the Dutch price index.
While unhedgeable inflation risk may seem small on an annual basis, over the long

run differences in price indices potentially become large as they accumulate over time.
We assume that at the start of one’s life the unhedged components of the relevant price
index or indices are zero. Figures 23 and 24 in Appendix B.3 show the corresponding tra-
jectories for the optimal portfolio composition, consumption, wealth and savings, which
are very similar to the corresponding trajectories in the absence of unhedgeable inflation
risk. Since unhedgeable risk is orthogonal to the other risk factors, the optimal portfolio
allocations over the life cycle are quite similar in the absence of unhedgeable inflation
risk - see Figure 23 in Appendix B.3.11 The differences between the trajectories with
and without unhedgeable inflation risk can be explained by the fact that wealth and/or
the state of the economy (in real terms) is more volatile in the setting with unhedgeable
inflation.

Using Equation (21) Figure 8 depicts for both the complete and the incomplete mar-
kets setting the individual’s certainty-equivalent consumption over her remaining lifetime.
In the left panel we see that certainty-equivalent consumption is hump-shaped over the
remaining lifetime. The reason is that there is a tradeoff between two effects. On the one
hand, certainty-equivalent consumption over an individual’s remaining lifetime increases
as average consumption increases with age. On the other hand, the uncertainty about
consumption also increases with age, which reduces welfare. These two effects are also
shown in the top panel of Figure 5. The hump-shaped pattern for certainty-equivalent
consumption in Figure 8 shows that the first effect dominates at young ages, while the
second effect dominates later in life.

In the right panel of Figure 8, we compare the incomplete market setting with the
complete market setting. Over the entire lifetime, the welfare loss is about 0.21%, while
the welfare loss over the remaining lifetime becomes larger at higher ages. In particular,
for a person entering retirement it equals 0.82%. For two reasons the welfare loss is
smaller for a young person. First, unhedgeable inflation risk accumulates over time,

11We can see this immediately by noting that:

E0

[
(WT /ΠT )

1−γ

1− γ

]
=E0


(
WT /Π̃T

)1−γ

1− γ
(Πu

T )
1−γ

 =⇒

argmax
xτ :τ∈{0,1,...T−1}

E0

[
(WT /ΠT )

1−γ

1− γ

]
= argmax

xτ :τ∈{0,1,...T−1}

E0


(
WT /Π̃T

)1−γ

1− γ


where Π̃T denotes the hedgeable part of inflation risk and Πu

T = Π̃T /ΠT denotes the unhedgeable part.
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Figure 8: Certainty-equivalent consumption and welfare loss from unhedgeable consumer-
price inflation risk. Notes: the left-hand panel depicts certainty-equivalent consumption
over the remaining lifetime as a function of age, while the right-hand panel depicts the
welfare loss from unhedgeable inflation risk calculated as

(
CECincompl

t −CECcompl
t

CECcompl
t

∗ 100%
)

,
where “incompl” indicates the case of incomplete markets, i.e. of unhedgeable inflation,
while “compl” indicates the case of complete markets, i.e. in which all inflation risk is
hedgeable.

implying that the resulting losses materialize mostly later in life and, hence, discounting
reduces their effect on the young’s welfare. Second, we have assumed that the nominal
wage rate follows the price index and, therefore, the individual is partially hedged against
unhedgeable inflation risk during her active period. We will relax this assumption from
Section 5.4 onwards.

5.3 Heterogeneous inflation risk exposures
Pensioners typically have a different consumption basket than working cohorts, so they
are exposed to different inflation risk. In the U.S. there exists an experimental CPI for
elderly Americans known as the CPI-E, which has been developed by the Bureau of Labor
Statistics (BLS). This index attaches a higher weight to medical care and a lower weight
to education and transportation. For example, Stewart (2008) shows that the CPI-E
(elderly) and the CPI-W (workers) have moved differently over time. Munnell and Chen
(2015) argue that if medical costs start surging, the social security index should be linked
to an index designed for the elderly, e.g. the CPI-E, instead of the overall CPI. Figure 9
depicts the quarterly percentage changes in CPI-E and CPI-W obtained from the Bureau
of Labor Statistics (2018). The difference between these two series is shown in the lower
panel of Figure 9 and has a standard deviation of σE = 0.30%.12

This subsection explores the welfare losses associated with worker- and elderly-specific
inflation processes using the data constructed by the Bureau of Labor Statistics (2018),
first when aggregate (CPI) inflation risk can be perfectly hedged and then when it cannot.
Denote the price index of the elderly by ΠE and the price index of the workers by ΠW .

12Any conclusions based on these indices should be treated with care: there is measurement error due
to the small sample sizes, while discounts for elderly are not taken into account (Munnell & Chen, 2015;
Stewart, 2008).
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Figure 9: Quarterly percentage changes in CPI-E (elderly) and CPI-W (workers) in the
United States. Source: Bureau of Labor Statistics (2018).

We assume that the difference in the inflation processes of the workers and the elderly is

dΠW
t

ΠW
t

− dΠE
t

ΠE
t

=σEdZE,t, (25)

where dZE,t is a Brownian motion independent of the other processes in the economy
and σE is the standard deviation of the differences. Based on the empirical standard
deviation of the difference, we set its annualized value at σE =

√
4 ∗ 0.30%.

Furthermore, we assume that the overall inflation rate is determined by the group-
specific inflation rates as follows

dΠt

Πt

= (1− ω)
dΠW

t

ΠW
t

+ ω
dΠE

t

ΠE
t

. (26)

The parameter ω denotes the proportion of the consumer price index fluctuations deter-
mined by the price index of the elderly. By regressing the inflation rates presented in
the top panel of Figure 9 on the overall quarterly CPI changes, we find the following
regression fit:

dΠt

Πt

≈ 51.2%
dΠW

t

ΠW
t

+ 47.2%
dΠE

t

ΠE
t

,

with an R2 = 99.3%. This indicates that roughly half of the CPI fluctuations is deter-
mined by the price index of the elderly. Hence, in the sequel we set ω = 50%. The elderly
are a smaller group than the young, but also has accumulated relatively more wealth.
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In analogy to the above definitions, we now replace the real variables defined in
Equation (19) by

ct =
Ct

Πl
t

, wt =
Wt

Πl
t

, yt =
Yt

Πl
t

, , ret =
Re

tΠ
l
t−1

Πl
t

, rft =
Rf

tΠ
l
t−1

Πl
t

,

with Πl
t =

{
ΠW

t , for t ∈
{
0, 1, . . . TR − 1

}
,

ΠE
t for t ∈

{
TR, TR + 1, . . . TD − 1

}
.

(27)

Formally, the optimization problem can again be rewritten subject to the restrictions in
(18).

Again, we assume that at the start of one’s life the unhedged components of the
relevant price index or indices are zero. Consider first the case in which there is no
unhedgeable inflation risk in the overall price index, i.e. σu = 0, hence there is only
unhedgeable inflation risk stemming from the differences in the consumption bundles of
the workers and the retired. Figure 25 and Figure 26 in Appendix B.3, respectively,
depict the optimal portfolio composition, consumption, savings and wealth trajectories
over an individual’s lifetime. Combining unhedgeable risk in aggregate inflation and in
the inflation differences, i.e. σE =

√
4 ∗ 0.30% and σu =

√
4 ∗ 0.36%, yields Figure 27

and Figure 28 in Appendix B.3. Again, the differences with the complete market case
are small, compare these figures with the ones in Section 4.2.

Figure 10 presents the welfare effects over the individual’s remaining lifetime for the
various possible combinations: no unhedgeable inflation risk, one source of unhedgeable
inflation risk and both sources combined. As before, welfare losses are largely concen-
trated during retirement. Therefore, Table 2 reports for the different cases the welfares
loss from unhedgeable inflation risk at the start of the career and at the start of retire-
ment. For CRRA parameter γ = 5, the welfare loss over lifetime from unhedgeable CPI
inflation risk is about 0.21% in terms of certainty-equivalent consumption, while that
from cohort-specific inflation risk is about 0.05%. If we combine the two sources of un-
hedgeable inflation risk, the overall lifetime welfare loss is 0.25%. The welfare loss from
both sources of unhedgeable inflation risk is much larger at the start of retirement, and
amounts 1.05%.

Since different groups of participants will have different degrees of risk aversion (in
particular the young will have more risk appetite than the old), Table 2 reports welfare
losses for different degrees of relative risk aversion. Not surprisingly, welfare losses increase
with the degree of risk aversion. Since valuation in incomplete markets depends on
the degree of risk aversion, we establish a range for the welfare loses associated with
unhedgeable inflation risk for degrees of relative risk aversion commonly assumed in the
literature. The full lifetime value of not having unhedgeable inflation risks ranges from
almost zero for risk aversion levels γ = 3 to 6.07% for γ = 10. For individuals at the
start of their retirement welfare losses amount to up to 7.81% percent when γ = 10
when both sources of unhedgeable inflation risks are present. This is arguably the most
relevant measure, so welfare losses from unhedgeable inflation risk can be substantial.
This poses a major problem for regulators having toassess the capital adequacy of a
collective pension fund; since there are no market prices available for the unhedgeable
component of inflation risk and the standard risk neutral approach is not applicable, the
regulator will have to choose a degree of risk aversion but then it unavoidably will run
into objections by groups having a diffent attitude towards risk. Choose the average of
the degree of risk aversion and the young will accuse the regulator of being overly cautious
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Figure 10: Certainty-equivalent consumption and welfare losses from unhedgeable
consumer-price and group-specific inflation risk. Notes: left-hand panel depicts certainty-
equivalent consumption over the remaining lifetime as a function of age under different
settings of unhedgeable inflation risk, while the right-hand panel depicts the corresponding
welfare loss from these different sources of unhedgeable inflation risk.

while in the optics of the old the pension fund may well be undercapitalized when the
regulator gives a green light.

5.4 Endowment economy with stochastic real wage during work-
ing life

So far we have considered a setting in which our individual each period obtains a nominal
wage perfectly linked to the price index, i.e. a constant real wage over the life cycle. This
subsection turns to the case of a more realistic labor process of the individual in which
the wage is not perfectly linked to the price index.

First, we estimate the deterministic part of Equation (20), which is given by a poly-
nomial function:

gt = θ0 + θ1t+ θ2
t2

10
+ θ3

t3

100
. (28)

Using data for the Netherlands on average income per age in (CBS, 2019), we obtain the
following estimates

θ̂0 = 2.9554, θ̂1 = 0.0964, θ̂2 = −0.0309, θ̂3 = 0.0025. (29)

The idiosyncratic risk from Equation (20) is modelled as

κt ∼ N
(
0, σ2

κ

)
.

For the parameter of the idiosyncratic risk, we take same value as in Cocco et al. (2005),
which is σ2

κ = 0.0738.13 Figure 11 shows the obtained stochastic real wage income in the
case without unhedgeable risk and no persistent risk in real wage, i.e. σu = 0 and νt = 0.

13They estimate the wage profile for three groups: no high school, high school and college. We take
their middle case for our assumption of parameter σκ. The middle case is also the setting applied by
Koijen et al. (2010).
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Table 2: Welfare effect from unhedgeable inflation risk.

Parameter setting σu(in %) σE(in %)
Lifetime welfare effect (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.05 -0.21 -0.40 -1.09

Cohort specific inflation risk 0
√
4 ∗ 0.30 -3∗10−3 -0.05 -0.20 -1.05

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.05 -0.25 -0.60 -6.07

σu(in %) σE(in %)
Welfare effect during retirement (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.52 -0.82 -0.83 -1.46

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.11 -0.29 -0.53 -1.47

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.61 -1.05 -1.35 -7.81

Note: the welfare effect is relative to the setting without unhedgeable inflation risk, i.e.
σu = σE = 0. The welfare effects during retirement are evaluated at the moment of
retirement.

For the persistent shock of real labor income, we assume that νt represents the part
of unexpected inflation which is not factored into nominal wage arrangements:

νt = − (1− ρ)

(
Πt − Πt−1

Πt−1

− πt

)
. (30)

If we take ρ = 1, then the real wage risk only consists of idiosyncratic risk κt, i.e.
yt = exp (gt + κt). For ρ < 1, part of the unexpected inflation

(
Πt−Πt−1

Πt−1
− πt

)
is not

captured in the nominal wage contracts. This introduces nominal rigidity into wages,
similar to the staggered contract first formulated by Taylor (1979). This similarity is
explained in more detail in Appendix A.5. The economic interpretation is that collective
labour contracts are typically revised every two to four years. This way, unexpected
inflation has a gradually increasing effect on the real wage, before a new nominal wage
arrangement is concluded.

For the setting without unhedgeable inflation risk and with complete wage correction
for unexpected inflation (ρ = 1), the optimal lifetime portfolios are depicted in Figure
12 and the optimal lifetime consumption, wealth and savings trajectories are shown in
Figure 13. As before, the optimal allocation towards stocks is largest at the beginning of
the individual’s career. The reason is that human capital is relatively safe compared to
equity investments and the ratio of financial wealth over total wealth, including human
capital, is lower at the beginning of the individual’s career. However, in a setting with
an increasing expected real wage at a low age - see Figure 11 - the optimal allocation
towards stocks is even larger at the beginning of the individual’s career, because the ratio
of financial wealth over total wealth is even lower. Concretely, the optimal allocation
towards equity in the first six years of working life is on average 10%-points higher. This
difference remains positive during working life, but decreases with age. During retirement
the average allocation towards stocks is equal to the setting with a constant real wage.14

14These effects can be observed by comparing Figure 4 with Figure 12.
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Figure 11: Stochastic real wage income

The settings with unhedgeable inflation risk are shown in Figures 29 - 34 in Appendix
B.3.

In the left-hand panel of Figure 14 the welfare levels at each age over the remaining
lifetime for the settings with and without the different sources of unhedgeable inflation
risk are presented, while the right-hand panel shows the welfare losses relative to the
case in which there is no unhedgeable inflation risk. These welfare effects are determined
for constant relative risk aversion γ = 5. Compared to the setting without unhedgeable
inflation risk, lifetime welfare is 0.14% to 0.20% lower, while for individuals close to the
end of their life welfare over their remaining lifetime is between 0.7% and 1.6% lower.
Table 3 presents the welfare effects from the different sources of unhedgeable inflation risk
for different parameter values ρ. This table shows that the loss from unhedgeable inflation
risk increases when a larger part of unexpected inflation risk is not incorporated in the
nominal wage arrangements. However, comparing the case with ρ = 1 to the case with
ρ = 0 the additional welfare loss is rather small, i.e. at most 0.02%-point over lifetime
and at most 0.08%-point during retirement. Table 3 considers the case for relative risk
aversion parameter γ = 5 only, while Table 4 present the results for other levels of risk
aversion with ρ = 0 and ρ = 1 respectively. While, as before, the level of risk aversion has
a substantial influence on the welfare losses associated with unhedgeable inflation risks,
the degree of nominal wage indexation has relatively little effect (compare the results for
ρ = 1 with the corresponding results for ρ = 0).

6 A Fixed Pension Contribution Rate
In this section we turn to the special case in which an indvidual does not optimally
smooth consumption during the working life, but merely saves by contributing a fixed
fraction of his wage to a defined-contribution (DC) retirement account. The remainder
of his salary is consumed. This way, we can investigate how much of the welfare loss
from unhedgeable inflation risk may be avoided by consumption smoothing. This is
not just of academic interest since real-world pension plans are often of the DC type,
requiring a fixed contribution rate from its participants. Moreover, optimal consumption
smoothing is not always possible. For example, when necessary living expenses already
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Figure 12: Optimal lifetime portfolios without unhedgeable inflation risk in a setting with
stochastic labour income
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Figure 13: Optimal lifetime consumption, wealth and savings trajectories without un-
hedgeable inflation risk in a setting with stochastic labour income. Note: figures are in
thousands of euros.
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Figure 14: Certainty-equivalent consumption and welfare losses from unhedgeable in-
flation risk in a setting with stochastic labour income. Notes: left-hand panel depicts
certainty-equivalent consumption over the remaining lifetime as a function of age under
different settings of unhedgeable inflation risk, while the right-hand panel depicts the cor-
responding welfare loss from these different sources of unhedgeable inflation risk. Figure
is based on constant relative risk aversion γ = 5.

equal or exceed net income, additional savings are no longer possible in the absence of
borrowing possibilities. Also myopic financial behaviour of individuals may lead them to
spend all disposable income. Hence, we consider it useful, certainly for the group in the
lower part of the income distribution, to analyze the welfare effects in the presence of
a fixed contribution rate for pension savings χ and all remaining income in each period
is consumed in the same period. This is the situation we analyse in this section. So
consumption during working life equals

ct = (1− χ) yt. (31)

The individual still optimizes his investment portfolio each period, but chooses his optimal
consumption level only during his retirement.

In order to have a fair comparison with the earlier setting with consumption smoothing
as in Section 5.4, we determine the fixed contribution rate such that the average present
value of the contributions to the DC pension scheme equal the average present value of
contributions under consumption smoothing:

1

Q

Q∑
q=1

TR−1∑
t=0

(yq,t − cq,t)Pq

(
t, TR

)
=

1

Q

Q∑
q=1

TR−1∑
t=0

χyq,tPq

(
t, TR

)
,

⇐⇒ χ =

∑Q
q=1

∑TR−1
t=0 (yq,t − cq,t)Pq

(
t, TR

)∑Q
q=1

∑TR−1
t=0 yq,tPq (t, TR)

. (32)

where ct is the optimal consumption level obtained in subsection 5.4. Hence, the param-
eter χ is calculated by taking the average across the Q simulation paths. For the risk
aversion parameter γ = 5, we obtain an average contribution rate of χ = 7.9% under the
setting without unhedgeable risk (σu = σE = 0). Including unhedgeable risk yields the
same contribution rate when rounded to one digit. The contribution rate increases with
risk aversion, because a participant with larger risk aversion reduces the probability of
having extremely low consumption by saving more. Specifically, for γ = 3, 7 and 10, we
obtain χ = 4.4%, 9.9% and χ = 12.4%, respectively.
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Table 3: Welfare effects from unhedgeable inflation risk in a setting with stochastic labour
income

Parameter setting σu(in %) σE(in %)
Lifetime welfare effect (in %)

ρ = 0 ρ = 1
4

ρ = 1
2

ρ = 1

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.16 -0.15 -0.15 -0.14

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.13 -0.13 -0.12 -0.12

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.22 -0.22 -0.21 -0.20

σu(in %) σE(in %)
Welfare effect during retirement (in %)

ρ = 0 ρ = 1
4

ρ = 1
2

ρ = 1

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.82 -0.80 -0.78 -0.75

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.60 -0.59 -0.58 -0.57

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -1.33 -1.31 -1.29 -1.25

Note: the welfare effect is relative to the setting without unhedgeable inflation risk, i.e.
σu = σE = 0. The welfare effect during retirement is evaluated at the moment of
retirement. Calculations are based on a constant relative risk aversion parameter γ = 5.

We take for each value of the risk aversion parameter the corresponding fixed contri-
bution rate as presented above. For the setting with γ = 5, without unhedgeable inflation
risk and with complete nominal correction for unexpected inflation (ρ = 1), the optimal
lifetime portfolios are depicted in Figure 15 and the optimal lifetime consumption, wealth
and savings trajectories are shown in Figure 16. The kink in consumption at retirement
date is the result of switching from a regime without consumption smoothing to a regime
with consumption smoothing during retirement.

The left-hand panel of Figure 17 depicts welfare at each age over the remaining lifetime
for the settings with and without the different sources of unhedgeable inflation risk,
while the right-hand panel shows the welfare losses associated with the different sources
of unhedgeable inflation risk. Compared to the setting without unhedgeable inflation
risk, lifetime welfare is 0.20% to 0.52% lower, depending on which unhedgeable risks are
considered. For individuals close to the end of their life, the welfare loss associated with
both sources of unhedgeable inflation risk amounts to about 2.3%. Table 5 presents the
welfare effects from the different sources of unhedgeable inflation risk for different risk
aversion parameter values γ.15 Comparing the numbers in Table 5 with those in the
bottom half of Table 4 we see that in most cases the welfare losses from unhedgeable
inflation risk are larger than under the setting with consumption smoothing. Hence, a
substantial fraction of the losses associated with unhedgeable risk is eliminated through
optimal consumption smoothing. The range of lifetime certainty-equivalent consumption
values associated with the elimination of unhedgeable inflation risks changes from 0.03%-
0.88% to 0.27%-5.96% for risk aversion ranging from γ = 3 to γ = 10. As real-life pension
schemes typically apply a fixed or at least a rigid contribution rate and individuals can
optimally smooth consumption only to a limited extent, the actual valuation range most

15The welfare effects for a contribution rate of χ = 10% and χ = 20% are presented in Table 6 in
Appendix B.3.
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Figure 15: Optimal lifetime portfolios without unhedgeable inflation risk in a DC pension
scheme. Note: contribution rate is fixed at χ = 7.9%
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Figure 16: Optimal lifetime consumption, wealth and savings trajectories without un-
hedgeable inflation risk in a DC pension scheme. Notes: savings are in thousands of
euros, while the contribution rate is fixed χ = 7.9%.
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Table 4: Welfare effects from unhedgeable inflation risk in a setting with stochastic labour
income

Parameter setting
ρ = 0 Lifetime welfare effect (in %)

σu(in %) σE(in %) γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.01 -0.16 -0.34 -0.52

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.02 -0.13 -0.32 -0.52

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.03 -0.22 -0.40 -0.85

ρ = 0 Welfare effect during retirement (in %)

σu(in %) σE(in %) γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.50 -0.80 -1.08 -3.23

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.19 -0.59 -0.89 -3.00

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.71 -1.31 -1.73 -10.53

ρ = 1 Lifetime welfare effect (in %)

σu(in %) σE(in %) γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -1∗10−3 -0.14 -0.31 -0.50

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.02 -0.12 -0.29 -0.51

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.03 -0.20 -0.36 -0.88

ρ = 1 Welfare effect during retirement (in %)

σu(in %) σE(in %) γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.46 -0.75 -0.98 -3.16

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.17 -0.57 -0.83 -3.11

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.67 -1.25 -1.61 -11.38

Note: the welfare effects are relative to the setting without unhedgeable inflation risk,
i.e. σu = σE = 0. The welfare effect during retirement is evaluated at the moment of
retirement.

likely lies between these ranges.

7 Conclusion
We have developed a framework for the evaluation of welfare losses with unhedgeable
inflation risk and, using calibrations based on macro and financial figures, we quantify
these losses. Individuals experience welfare losses from two sources of unhedgeable in-
flation risk. First, CPI inflation risk cannot be fully hedged in countries that do not
issue index-linked bonds. Second, the price index based on their individual consumption
bundle may differ from the general consumer price index. The losses over one’s remaining
lifetime are rather small for young individuals, but are non-negligible for elderly individ-
uals.

The welfare loss from not being able to hedge CPI inflation risk due to the absence
of index-linked bonds may amount to up to 1% in terms of lifetime certainty-equivalent
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Figure 17: Certainty-equivalent consumption and welfare losses from unhedgeable in-
flation risk in a DC pension scheme with fixed contribution rate. Notes: left panel
depicts certainty-equivalent consumption over the remaining lifetime as a function of age
under different settings of unhedgeable inflation risk, while the right panel depicts the
corresponding welfare loss from these different sources of unhedgeable inflation risk. The
contribution rate is fixed at χ = 7.9%.

consumption for commonly assumed degrees of risk aversion. Moreover, the fact that
workers and pensioners have their own specific consumption bundles produces a welfare
loss of similar magnitude. However, if we combine the two sources of unhedgeable inflation
risk, the numbers become substantially more significant: lifetime welfare loss can amount
to up to 6% for commonly assumed degrees of risk aversion.

We have investigated the robustness of our baseline welfare loss quantification in var-
ious directions. In particular, welfare losses are quantitatively similar when we assume a
more realistic and stochastic real wage process. Finally, the welfare losses from unhedge-
able inflation risks become larger when, during their working life, individuals merely
contribute a fixed percentage of their gross wage to a DC pension account, but are pre-
vented from optimally smoothing consumption. This describes the situation of a large
fraction of the population.

Different instruments may be deployed to reduce the welfare losses from unhedgeable
inflation risks. The non-negligible welfare losses from unhedgeable CPI inflation risk
could be reduced if governments would absorb the risk and start issuing index-linked debt.
Obviously, these micro-level benefits from index-linked debt need to be weighed against its
costs. For example, because of the smaller size of its market, liquidity premia associated
with index-linked debt may initially be higher than with nominal debt. Also, index-linked
debt may affect the stability of the public budget, although the direction into which this
works is not a priori clear.16 The welfare losses from unhedgeable risk caused by group-
specific consumption packages could be reduced through appropriately designed risk-
sharing arrangements in collective pension schemes in which different cohorts participate.

The substantial welfare losses that we document, in particular in the presence of
different consumption patterns between the old and the young, pose a major problem
for regulators having to assess the capital adequacy of a collective pension fund: differ-
ent participant groups have a different capacity to absorb the losses from unhedgeable

16Simulations by Westerhout and Beetsma (2019) suggest that the public debt - GDP ratio is more
stable under indexed debt.
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Table 5: Welfare effects from unhedgeable inflation risk in a DC pension scheme with a
fixed contribution rate χ

Parameter setting σu(in %) σE(in %)

Lifetime welfare effect (in %)

γ = 3 γ = 5 γ = 7 γ = 10

χ = 4.4% χ = 7.9% χ = 9.9% χ = 12.4%

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.28 -0.46 -0.57 -1.57

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.04 -0.20 -0.22 -0.65

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.27 -0.52 -0.68 -5.96

σu(in %) σE(in %)

Welfare effect during retirement (in %)

γ = 3 γ = 5 γ = 7 γ = 10

χ = 4.4% χ = 7.9% χ = 9.9% χ = 12.4%

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.62 -1.44 -1.96 -5.26

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.09 -0.57 -0.53 -2.07

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.59 -1.58 -2.30 -14.85

Note: the welfare effects are relative to the setting without unhedgeable inflation risk,
i.e. σu = σE = 0. The welfare effect during retirement is evaluated at the moment of
retirement.

inflation risks. For example, the wage income of young cohorts absorbs part of the un-
hedgeable inflation risk, implying that they attach less value to eliminating unhedgeable
risk than retirees. Moreover, since there are no market prices available for the unhedge-
able component of inflation risk and the standard risk-neutral approach is not applicable
in an incomplete market setting, with differences in risk aversion the regulator will have
to choose a degree of risk aversion; but then the regulator unavoidably will run into
objections by groups having a diffent attitude towards risk. Choose the average of the
degrees of risk aversion and the young will accuse the regulator of being overly cautious,
while in the optics of the old the pension fund may well be undercapitalized when the
regulator gives a green light. Our analysis also highlights that the willingness to volun-
tarily participate in a collective pension scheme is likely to come under pressure when
differences in risk preferences between groups of participants cannot be resolved through
trades in outside capital markets because of market incompleteness.
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A Appendix

A.1 Discretization
In continuous time, the model can be summarized to

dΨt = (α + Γ′Ψt) dt+ ΣΨdZt, (33)

where

Ψt =


Xt

log Πt

logSt

logP (t, t+ s)



α =


03×1

δ0,π − 1
2
σ′
ΠσΠ

δ0,r + ηS − 1
2
σ′
SσS

δ0,r +B (s)′ Λ̃0 − 1
2
B (s)′ B (s)



Γ =


−K 03×3

δ′1,π 01×3

δ′1,r 01×3

δ′1,π +B (s)′ Λ̃1 01×3



ΣΨ =


I3×3 01×2

σ′
Π

σ′
S

B (s)′ 01×3

 . (34)

Following Koijen et al. (2010), we can rewrite the model in discrete form with time
steps h which is necessary for its implementation:

Ψt =α̂(h) + Γ̂(h)Ψt−h + εt, εt ∼ N
(
0, Σ̂

(h)
Ψ

)
Γ̂(h) =exp (Γh) = U exp (Dh)U−1

α̂ =UFU−1α (35)
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where D is derived from the eigenvalue decomposition, Γ = UDU−1, and F is a matrix
with elements:

Fi,j =

{
exp(hDi,i)−1

Di,i
, for i = j,

0, for i ̸= j.
(36)

Finally, we have Σ̂
(h)
Ψ = UV U ′ where V is a matrix with elements

Vi,j =
[
U−1ΣΨΣ

′
Ψ

(
U−1

)′]
i,j

exp [h (Di,i +Dj,j)]− 1

Di,i +Dj,j

. (37)

A.2 Derivation UFR
The derivation of the UFR is as follows

lim
s→∞

Et [y (t, t+ s)] =− lim
s→∞

Et

[
A (s)

s

]
− lim

s→∞
Et

[
B (s)′

s

]
Xt

=− lim
s→∞

A (s)

s

=− lim
s→∞

∂A (s)

∂s

=δ0,r + lim
s→∞

B (s)′
(
Λ̃0 −

1

2
B (s)

)
=δ0,r −

((
K ′ + Λ̃′

1

)−1

δ1,r

)′(
Λ̃0 +

1

2

(
K ′ + Λ̃′

1

)−1

δ1,r

)
using lim

s→∞
B (s) =−

(
K ′ + Λ̃′

1

)−1

δ1,r. (38)

A.3 Derivation Certainty-Equivalent Consumption
We obtain certainty-equivalent consumption from

TD−1∑
t=0

βtu (CEC) =
1

Q

Q∑
q=1

TD−1∑
t=0

βtu (cq,t)

 , (39)

where the utility function is given by u (c) = c1−γ

1−γ
. Then, after rearranging we obtain

CEC =

(1− γ)
1− β

1− βTD

1

Q

Q∑
q=1

TD−1∑
t=0

βt c
1−γ
q,t

1− γ


1/(1−γ)

=

 1− β

Q
(
1− βTD

) Q∑
q=1

TD−1∑
t=0

βtc1−γ
q,t

 .1/(1−γ) (40)

A.4 Estimating Dutch CPI using Foreign CPI and Commodity
Indices

Figure 18 shows the actual Dutch inflation and two estimated Dutch inflation series. The
first estimation is based on a regression of Dutch inflation on inflation of the U.K., Ger-
many, France, Italy, Spain, Australia, New Zealand, Denmark, Sweden, Japan, the U.S.
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Figure 18: Quarterly Dutch inflation rates from January 1999 to January 2018 after
seasonality correction

and Canada. The second also includes the following commodity indices as explanatory
variables: (i) Brent Crude Oil, (ii) General Crude Oil, (iii) Gold index, and (iv) General
Commodity Price Index.17 From the first estimation we obtain an R-squared of 43% and
a standard deviation of the residuals of 0.30%. From the second estimation we obtain an
R-squared of 47% and a standard deviation of residuals of 0.29%.

A.5 Staggered Contract
Under the staggered contract by Taylor (1979) the nominal wage process is

Yt = λYt−1 + (1− λ)mt,

mt = mt−1 + εm,t,

εm,t ∼ N
(
0, σ2

m

)
, (41)

where mt denotes the stochastic money supply. Hence, if λ = 1, there is perfect nominal
rigidity, while for λ < 1, the nominal wages adjust to their new state. In our setting,
we replace this stochastic money supply by unexpected inflation

(
Πt−Πt−1

Πt−1
− πt

)
and

we model the wage rate in real terms. Hence, inspired by the staggered nominal wage
contracting approach by Taylor (1979) we define

νt = −λ

(
Πt − Πt−1

Πt−1

− πt

)
. (42)

By replacing λ by (1− ρ), we arrive at the expression defined in Equation (30). This
means that for λ = (1− ρ) = 0, Equation (20) becomes

yt =exp (gt + κt) . (43)

This way, the real wage is (exponential of) the sum of a deterministic wage profile and
idiosyncratic shocks only. If we take λ = (1− ρ) = 1, then Equation (20) becomes

yt =exp (gt + κt) exp

[
−
(
Πt − Πt−1

Πt−1

− πt

)]
, (44)

hence unexpected inflation erodes the real wage rate.
17The data is obtained from IndexMundi on October 19, 2018 from

https://www.indexmundi.com/commodities
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B Appendix

B.1 Solution Method Optimal Portfolio and Consumption Prob-
lem

We follow the solution method as described by Koijen et al. (2010).
We define Jt (wt, ft) as the value function. At time t = TD − 1, we have c∗t = wt, as

there is no bequest motive. In other words, the individual-optimally consumes all wealth
in the last period, so

JTD−1 (wTD−1, fTD−1) =u (wTD−1) . (45)

The Bellman equation for periods t = 0, . . . , TD − 2 is

Jt (wt, ft) = max
ct,xt∈Υ

u (ct) + βEt [Jt+1 (wt+1, ft+1)] ,

with Υ(wt) =
{
(c, x) : c ≤ wt, x ≥ 0,

∑
x ≤ 1

}
. (46)

Following Carroll (2006), we define the amount of savings st ≡ wt − ct, i.e. whatever
is not consumed out of beginning of period wealth. We set up a grid for s with size nS

and elements j = 1, . . . , nS. We also set up a grid with H portfolios, i.e. x1, . . . , xH ∈ Υ.

Step 1: set up grids For the portfolio grid, we take all possible combinations with step
size 20%.18 For savings we take a non-linear grid which is finer on the lower values than
on the higher values, in order to be more accurate at the relevant values for determining
welfare and to be more accurate for the majority of scenarios. First, we make a linear
grid ŝ =

{
0, log(100)

ns−1
, 2 log(100)

ns−1
, . . . , (ns−1) log(100)

ns−1

}
. Then, we define element j of the grid for

savings as exp (ŝj)− 1. Hence, the largest grid value is 100 and the lowest value is 0. We
take ns = 40 grid points. The step size of the grid points strictly increases, where the
first step size of the grid is 0.125, while the last step size is 11.27.19

Step 2: last period At time t = TD − 1, we have c∗t = wt as there is no bequest
motive. In other words, the individual optimally consumes all wealth in the last period.
The value function is

JTD−1 (wTD−1, fTD−1) = u (wTD−1) . (47)

As there are no savings in the last period, there is no portfolio to optimize.

Step 3a: first to last period At time t = TD − 2, the problem given sTD−2 = sj is

max
c
TD−2

,x
TD−2

∈Υ
u (cTD−2) + βETD−2 [u (wTD−1) |fTD−2, sTD−2 = sj] (48)

18We also calculated the result from Section 4.2 with a finer grid, by adjusting the step size to 12.5%.
The obtained results are identical, but computation time increases substantially.

19We also calculated the result from Section 4.2 with a finer grid, by increasing the number of grid
points for savings to ns = 50. The obtained results are identical, but computation time heavily increases.
The difference in lifetime CEC is negligible (less than 0.005%).
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Step 3b: optimize asset allocation The FOC’s for the asset allocation reads

ETD−2

[
reTD−1w

−γ
TD−1

|fTD−2, sTD−2 = sj

]
+ ξ − ζι = 03×0, (49)

where ξ and ζ are the Kuhn-Tucker multipliers corresponding to x ≥ 0 and
∑

x ≤ 1,
respectively. We then approximate for each asset i and each grid portfolio xh the following:

ETD−2

[
rei,TD−1w

−γ
TD−1

|fTD−2, sTD−2, xh

]
≈ β′

i,x,s (1, X1, X2, X3) . (50)

Since β̂i,x,s is a function of the portfolio weights x we can parameterize these coefficients
as a function of x as follows:20

β̂i,x,sj ≈g (x)αsj ,i. (51)

Then we should solve the following

g (x∗) α̂sj ,i (1, X1, X2, X3) + ξi − ζ = 0

ξixi = 0,∀i, and ζ (x′ι− 1) = 0

ξ ≥ 0 and ζ ≥ 0. (52)

We take a linear function of g (·) as follows

(1, x∗
1, x

∗
2, x

∗
3)

′ α̂sj ,i (1, X1, X2, X3) + ξi − ζ = 0

ξixi = 0,∀i, and ζ (x′ι− 1) = 0

ξ ≥ 0 and ζ ≥ 0. (53)

This can be rewritten into the following form

03×1 =Ξ0 + Ξ1x
∗ + ξ − ζι

Ξ0 =
(
α̂sj ,1,1, α̂sj ,2,1, α̂sj ,3,1

)′
(1, X1, X2, X3)

Ξ1,i =
(
α̂sj ,i,2, α̂sj ,i,3, α̂sj ,i,4

)′
(1, X1, X2, X3)

Ξ1 =
[
Ξ1,1 Ξ1,2 Ξ1,3

]′
. (54)

We can solve this numerically, to obtain the optimal portfolio x∗.

Step 3c: optimize consumption Using the FOC and the optimal asset allocation
x∗
TD−2, the optimal consumption is then given by

c∗TD−2 (fTD−2, sj) =
{
βETD−2

[(
x∗
TD−2r

e
TD−1 + rf

TD−1

)
w∗−γ

TD−1
|fTD−2, sTD−2 = sj

]}−1/γ

(55)
where w∗

TD−1 corresponds to the optimal portfolio strategy obtained one step before. This
conditional expectation is approximated in a similar way as we approximated the asset
allocation in steps 2 and 3. However, in order to ensure strictly positive consumption in
the approximation, we take the logarithm of Equation (55):

log

({
βETD−2

[(
xTD−2r

e
TD−1 + rf

TD−1

)
w∗−γ

TD−1
|fTD−2, sTD−2 = sj

]}−1/γ
)

≈ βc′
i,x,s (1, X1, X2, X3) .

20A similar approach is performed by Diris, Palm, and Schotman (2014).
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Again, since β̂c
i,x,s is a function of the portfolio weights x we can parameterize these

coefficients as a function of x:

β̂c
i,x,sj

≈ (1, x1, x2, x3)
′ αc

sj
. (56)

Then, we obtain the optimal consumption, using x∗
TD−2, from

c∗TD−2 (fTD−2, sj) = exp
[
(1, x∗

1, x
∗
2, x

∗
3)

′ α̂c
sj
(1, X1, X2, X3)

]
.

Step 3d: endogenous grid solution Determine the endogenous grid by

wTD−2 (fTD−2, sj) = c∗TD−2 (fTD−2, sj) + sj. (57)

Step 4a: other periods At time t, the problem given st = sj is

Jt (wt, ft) = max
ct,xt∈Υ

u (ct) + βEt [Jt+1 (wt+1, ft+1) |ft, st = sj] (58)

The FOC’s are

Et

[
ret+1J

′
t+1 (wt+1, ft+1)

]
+ ξ − ζι =0,{

βEt

[(
x∗′
t r

e
t+1 + rft+1

)
J ′
t+1 (wt+1, ft+1)

]}−1/γ

=c∗t . (59)

The Kuhn-Tucker multipliers are non-negative and satisfy

ξixi = 0,∀i, and ζ (x′ι− 1) = 0. (60)

The envelope theorem implies that

J ′
t+1 (wt+1, ft+1) = u′ (c∗t+1

)
. (61)

This we can use to rewrite the FOC’s, yielding

Et

[
ret+1c

∗−γ
t+1

]
+ ξ − ζι =0,{

βEt

[(
x∗′
t r

e
t+1 + rft+1

)
c∗−γ
t+1

]}−1/γ

=c∗t . (62)

Step 4b: optimize asset allocation Again, we approximate for each asset i and each
grid portfolio xh the following:

Et

[
ret+1c

∗−γ
t+1 |ft, st, xh

]
≈ β′

i,x,s (1, X1, X2, X3) . (63)

Similar to step 3, we can parameterize the coefficients β̂i,x,s as a function of x as
follows:

β̂i,x,sj ≈ (1, x1, x2, x3)
′ αsj ,i. (64)

Then we should solve

(1, x∗
1, x

∗
2, x

∗
3)

′ α̂sj ,i (1, X1, X2, X3) + ξi − ζ = 0

ξixi = 0,∀i, and ζ (x′ι− 1) = 0

ξ ≥ 0 and ζ ≥ 0. (65)
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Again we use the rewritten form

03×1 =Ξ0 + Ξ1x
∗ + ξ − ζι

Ξ0 =
(
α̂sj ,1,1, α̂sj ,2,1, α̂sj ,3,1

)′
(1, X1, X2, X3)

Ξ1,i =
(
α̂sj ,i,2, α̂sj ,i,3, α̂sj ,i,4

)′
(1, X1, X2, X3)

Ξ1 =
[
Ξ1,1 Ξ1,2 Ξ1,3

]′
, (66)

which can be solved numerically, to obtain the optimal portfolio x∗.

Step 4c: optimize consumption Using the FOC and the optimal asset allocation
x∗
t , the optimal consumption is then given by

log (c∗t ) = log

({
βEt

[(
x∗′
t r

e
t+1 + rft+1

)
c∗−γ
t+1

]}−1/γ
)
. (67)

where c∗t+1 corresponds to the optimal consumption obtained one step before. This con-
ditional expectation is approximated as:

log

({
βEt

[(
x∗′
t r

e
t+1 + rft+1

)
c∗−γ
t+1

]}−1/γ
)

≈ βc′
i,x,s (1, X1, X2, X3) .

Again, since β̂c
i,x,s is a function of the portfolio weights x we can parameterize these

coefficients as a function of x:

β̂c
i,x,sj

≈ (1, x1, x2, x3)
′ αc

sj
. (68)

Then, we obtain the optimal consumption, using x∗
t , from

c∗t (ft, sj) = exp
[
(1, x∗

1, x
∗
2, x

∗
3)

′ α̂c
sj
(1, X1, X2, X3)

]
.

Step 4d: endogenous grid solution Determine the endogenous grid by

wt (ft, sj) = c∗t (ft, sj) + sj. (69)

Step 5: solving recursively Repeat steps 4a to 4d up to t = 0.

B.2 Variations on the benchmark
The benchmark asset allocation pattern is quite robust as can be seen from the impact
of the following parametric changes. First, we simulate the model with a higher equity
premium (ηS), resulting into a higher optimal allocation in stocks, but optimal portfolio
and consumption trajectories over the life cycle that are qualitatively similar to the
benchmark trajectories in Section 4.2. Second, simulating the model with a lower interest
rate volatility (δ1,r), results in a lower optimal allocation to stocks due to a better risk-
return trade-off for bonds. Third, replacing the 30-year bond by a 10-year bond produces
a slightly higher stock exposure and a slightly higher allocation towards 5-year bonds
within the fixed-income portfolio. The portfolio share allocated to 5-year debt rises
substantially when we replace the 30-year bond by a 3-year bond. Figures 19 to 22 in
Appendix B.3 show the effects of these variations in the asset menu.
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Figure 19: Optimal lifetime portfolios without unhedgeable risk and with alternative
bond portfolio (with a 3 year and 5 year index-linked bond)

B.3 Additional Figures
The Figures 19 up to 34 and Table 6 are provided in this appendix in order to present a
more comprehensive and complete overview of the results.
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Figure 20: Optimal lifetime consumption, wealth and savings trajectories without un-
hedgeable risk and with alternative bond portfolio (with a 3 year and 5 year index-linked
bond)
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Figure 21: Optimal lifetime portfolios without unhedgeable risk and with alternative
bond portfolio (with a 5 year and 10 year index-linked bond)
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Figure 22: Optimal lifetime consumption, wealth and savings trajectories without un-
hedgeable risk and with alternative bond portfolio (with a 5 year and 10 year index-linked
bond)
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Figure 23: Optimal lifetime portfolios with unhedgeable inflation risk with σu =
√
4 ∗

0.36% and σE = 0
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Figure 24: Optimal lifetime consumption, wealth and savings trajectories with unhedge-
able inflation risk with σu =

√
4 ∗ 0.36% and σE = 0
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Figure 25: Optimal lifetime portfolios with unhedgeable inflation risk stemming from
the differences in consumption between workers and retired. Note: we assume σE =√
4 ∗ 0.30% and σu = 0.
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Figure 26: Optimal lifetime consumption, wealth and savings trajectories with unhedge-
able inflation risk stemming from the differences in consumption between workers and
retired. Note: we assume σE =

√
4 ∗ 0.30% and σu = 0.
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Figure 27: Optimal lifetime portfolios with unhedgeable inflation risk stemming from
the differences in consumption between young and old with σE =

√
4 ∗ 0.30% and also

unhedgeable overall inflation risk with σu =
√
4 ∗ 0.36%
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Figure 28: Optimal lifetime consumption, wealth and savings trajectories with unhedge-
able inflation risk stemming from the differences in consumption between young and old
with σE =

√
4 ∗ 0.30% and also unhedgeable overall inflation risk with σu =

√
4 ∗ 0.36%
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Figure 29: Optimal lifetime portfolios in the setting with stochastic labour income with-
out unhedgeable inflation risk stemming from the differences in consumption between
young and old (σE = 0), but with unhedgeable overall inflation risk with σu =

√
4∗0.36%
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Figure 30: Optimal lifetime consumption, wealth and savings trajectories in the setting
with stochastic labour income without unhedgeable inflation risk stemming from the
differences in consumption between young and old (σE = 0), but with unhedgeable overall
inflation risk with σu =

√
4 ∗ 0.36%
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Figure 31: Optimal lifetime portfolios in the setting with stochastic labour income with
unhedgeable inflation risk stemming from the differences in consumption between young
and old with σE =

√
4 ∗ 0.30%, but without unhedgeable overall inflation risk (σu = 0)
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Figure 32: Optimal lifetime consumption, wealth and savings trajectories in the setting
with stochastic labour income with unhedgeable inflation risk stemming from the dif-
ferences in consumption between young and old with σE =

√
4 ∗ 0.30%, but without

unhedgeable overall inflation risk (σu = 0)
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Figure 33: Optimal lifetime portfolios in the setting with stochastic labour income with
unhedgeable inflation risk stemming from the differences in consumption between young
and old with σE =

√
4 ∗ 0.30% and also unhedgeable overall inflation risk with σu =√

4 ∗ 0.36%

55



10 20 30 40 50 60
0

50

100

Age

C
on

su
m

pt
io

n

 

 
90%−CI
mean

10 20 30 40 50 60
0

500

1000

Age

W
ea

lth

 

 
90%−CI
mean

10 20 30 40 50 60
0

500

1000

Age

S
av

in
gs

 

 
90%−CI
mean

Figure 34: Optimal lifetime consumption, wealth and savings trajectories in the setting
with stochastic labour income with unhedgeable inflation risk stemming from the differ-
ences in consumption between young and old with σE =

√
4∗0.30% and also unhedgeable

overall inflation risk with σu =
√
4 ∗ 0.36%
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Table 6: Welfare effect from unhedgeable inflation risk in a DC pension scheme with fixed
contribution rate

Parameter setting (fixed contribution rate χ = 10%) σu(in %) σE(in %)
Lifetime welfare effect (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.08 -0.24 -0.55 -3.87

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.01 -0.11 -0.21 -1.06

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.08 -0.27 -0.65 -10.71

σu(in %) σE(in %)
Welfare effect during retirement (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.62 -1.41 -1.95 -5.62

Cohort specific inflation risk 0
√
4 ∗ 0.30 -0.02 -0.51 -0.52 -1.57

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.58 -1.55 -2.30 -13.94

Parameter setting (fixed contribution rate χ = 20%) σu(in %) σE(in %)
Lifetime welfare effect (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 −5 ∗ 10−3 -0.03 -0.10 -0.21

Cohort specific inflation risk 0
√
4 ∗ 0.30 0.02 -0.03 -0.11 -0.22

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.01 -0.04 -0.12 -0.37

σu(in %) σE(in %)
Welfare effect during retirement (in %)

γ = 3 γ = 5 γ = 7 γ = 10

No unhedgeable inflation risk (benchmark) 0 0 - - - -

Unhedgeable inflation risk overall price index
√
4 ∗ 0.36 0 -0.64 -1.27 -1.48 -4.63

Cohort specific inflation risk 0
√
4 ∗ 0.30 0.06 -0.31 -0.26 -2.89

Both sources of unhedgeable inflation risk
√
4 ∗ 0.36

√
4 ∗ 0.30 -0.59 -1.41 -1.80 -16.29

Note: the welfare effect is relative to the setting without unhedgeable inflation risk, i.e.
σu = σE = 0. Welfare effect during retirement is evaluated at the start of retirement.
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