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1 Introduction

The 2008-2010 financial crisis has highlighted the need for an orderly insolvency resolu-

tion process for large financial institutions. When the crisis broke out, the FDIC only

had the power to place an insured depository institution into receivership; it could not

resolve failing banks or other nonbank financial companies that posed a systemic risk.

The bankruptcy of Lehman sent, however, shockwaves through the financial system.

To contain the financial crisis, the US and several European authorities supported

failing financial institutions with public money by providing capital injections or “bailouts”

in exchange for full or partial ownership. These bailouts were met with widespread

public anger as they allowed banks to “privatize profits and socialize losses”.

In response to the crisis, regulators on both sides of the Atlantic devised new

regulatory frameworks that attempt to minimize the use of public money to recapitalize

failing banks (see Philippon and Salord (2017) for an overview). In this context the bail-

in tool is probably the most important regulatory innovation.1 Bail-in is a statutory

power in the hands of resolution authorities that permits them to write down part of

the bank’s liabilities or to convert them into equity in order to preserve the bank as

a going concern.2,3 Legal safeguards ensure that creditors recover no less than they

would under insolvency. Culpable senior management are replaced, possibly after a

transition period. Existing equityholders are wiped out (or at least heavily diluted).

The new regulatory frameworks aim to avoid future bailouts by reducing the amount

banks lend and the riskiness of their loans. The subprime mortgage crisis and the

1Another regulatory innovation is the Orderly Liquidation Authority (OLA) established by the

Dodd-Frank Act. The OLA provisions authorize the FDIC, instead of a bankruptcy court, to admin-

ister swift wind-downs of systemically important financial institutions. An OLA may involve a bail-in

allowing the recapitalized bank to return to private hands under new management. We do not study

OLAs separately in this paper as they are some combination of liquidation and bail-in.
2It is important to distinguish bail-in from contingent convertible debt obligations (CoCos). CoCos

are financial instruments in which the trigger event and the conversion rate are identified in advance

in the debt contract (see Flannery (2014) for a review of the literature on CoCos).
3In the EU, all financial contracts concluded after 1/1/2016 must have a “bail-in” clause, which

means that certain obligations and liabilities may be subject to “bail-in”.
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phenomenon of liar’s loans (see Mian and Sufi (2009)) have shown that, from bank

lenders’ and regulators’ perspective, moral hazard is linked primarily to loan risk.

According to Kashyap et al. (2008) banks’ failure to offload subprime risk is a symptom

of deeper governance and managerial agency problems.

Conventional wisdom says that the guarantees and safety net provided by bailouts

encourage excessive lending and risk-taking, whereas liquidations and bail-ins mitigate

these types of moral hazard. Is this indeed the case? How do insolvency resolution

mechanisms (hereafter referred to as IRMs) affect the bank insolvency rate, the loss in

default, and value at risk (VaR)? These questions remain unanswered because existing

models focus on one specific IRM and do not compare the effect of different IRMs on

bank policies. This paper develops a unifying, dynamic model for IRMs that addresses

these questions from a microprudential perspective, i.e. we study the effects of insol-

vency regulation on the lending behavior and net value created by an individual bank,

and not the effects on the financial system or economy as a whole. We also explore

whether bailouts necessarily have to rely on public money, or whether they could be

self-financed by banks.

Our paper explores how three different IRMs (i.e. liquidation, bailout and bail-in)

affect a bank’s payout rate, as well as the quantity and quality of loans when these

three decision variables are set by risk averse inside equityholders. Insiders can invest in

risky assets (loans) of which the return follows a jump diffusion process. The diffusion

process reflects continuous shocks to loan returns, whereas the jumps correspond to

rare, negative shocks (hereafter referred to as “crashes”). Crashes arrive according to

an exogenous Poisson process, but the fraction of the bank assets that is destroyed

by the crash (i.e. the crash risk exposure, a proxy for “loan quality”) is a decision

variable under insiders’ control (e.g. through collateral requirements). Loans with a

higher exposure to crash risk carry a higher expected return.

We show that insiders follow an optimal asset to net worth ratio. Banks making
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profits issue additional loans that are financed by debt and retained earnings. Loss

making banks sell assets and use the proceeds to pay down debt. This continuous,

dynamic rebalancing mechanism ensures that the target asset to net worth ratio is

maintained and banks remain solvent in the absence of crashes. Following a crash,

banks with low exposure remain solvent and rebalance their capital structure by selling

assets. Banks with assets that are (too) highly exposed to crashes become insolvent.

Whether insiders choose to put the bank at risk of insolvency depends on the reward

for taking on crash risk. A high reward not only encourages banks to lend a lot but

also to issue loans that become impaired in crashes (e.g. subprime mortgages). A small

reward for crash risk incentivizes insiders to lend much less and to focus on high quality

loans that are relatively immune to downturns. Incentives to put the bank at risk of

insolvency are strongest (weakest) under the bailout (liquidation) regime. Banks are

therefore most (least) prone to insolvency under the bailout (liquidation) regime, in

line with conventional wisdom.

Our findings regarding loan quality turn some of the conventional wisdom on its

head, however. Insiders’ limited liability in the liquidation regime creates incentives

to take on as much crash risk as possible by issuing low quality loans. This is a moral

hazard problem from the depositors and lenders’ perspective. Low quality loans give

the bank a higher return in good times. However, when loans default in a crash, low

recovery rates push the bank deep into insolvency. Although loan volume remains

relatively low under the liquidation regime (due to the high risk-adjusted cost of bor-

rowing), the loss in default is most severe under the liquidation regime because insiders

do not care whether the bank is a little or a lot insolvent in liquidation. Moreover,

payout to inside and outside equityholders is high because insiders want to milk the

bank before a crash arrives and the “music stops”.

With bailouts and bail-ins, on the other hand, banks remain a going concern, and

managers retain “skin in the game” even in retirement.4 Negative consequences or

4Following the bailout of the Royal Bank of Scotland, its CEO Sir Fred Goodwin retired in 2008
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severe penalties imposed on inside equityholders when banks become insolvent mitigate

insiders’ incentives to take risks that crystallize in crashes. This leads to the lowest

loan issuance, lowest leverage, and lowest crash risk exposure under the bail-in regime.

With bailouts, the implicit government guarantee keeps the bank’s cost of borrowing

artificially low, causing lending activity and leverage to be highest. The payout rate to

inside and outside equityholders are lowest under the bailout regime because insiders

are happy to reinvest profits to stimulate long term growth.

We analyze the bank’s value at risk (VaR). For short horizons VaR is primarily

determined by the bank’s exposure to diffusion risk and therefore by the amount of

risky loans it issues. As the horizon increases, exposure to rare crash risk -and therefore

loan quality- becomes relatively more important. Since the bail-in regime leads to the

lowest quantity and highest quality of loans, it also coincides with the lowest VaR. The

bailout and liquidation regimes lead to higher VaRs than bail-ins, but the ranking of

their VaRs is not monotonic due to the interplay between diffusion and crash risk. The

bailout regime generates the higher VaR for short horizons, whereas the liquidation

regime generates the higher VaR for long horizons. Short term VaR measures do not

convey much information about the importance of rare, adverse shocks, especially for

the liquidation regime. The VaR measures complement the information contained in

the credit spread of the bank debt. We show that credit spreads are highest and lowest

under, respectively, the liquidation and bailout regimes.

The value created (net of recapitalizations) by an individual bank is by far highest

under the bailout regime. Importantly, by distributing a fraction of all bank divi-

dends into a bailout fund, it is possible to cover expected bailout costs without tax

payers’ money provided that banking (net of recapitalization costs) is a positive NPV

activity. We therefore believe that “pre-funded” bailouts could be a viable way of res-

at the age of 50 with a pension entitlement of £693,000 per year. Had the government not stopped

RBS from going bankrupt, Sir Fred would have received a yearly pension of £28,000 from the pension-

protection fund, starting at age 65.

4



cuing insolvent banks.5 Furthermore, a dividend financed bailout fund does not alter

equityholders’ incentives (unlike deposit guarantee schemes).

Our dynamic, continuous-time, open-horizon model captures optimal balance sheet

rebalancing and recapitalizations for banks facing continuous diffusion risk and rare

jump (crash) risk. To boost returns, insiders take ex ante risks that materialize ex post

in states when the bank will be insolvent and managers ousted. Our model delivers

tractable analytical results as well as quantitative comparative statics, allowing clear

comparisons across regimes. We are unable to achieve all of this with a static two-date

model.

Our paper is closely related to a growing literature on dynamic models of banks

and their optimal investment and financing policies. De Nicolo, Gamba, and Lucchetta

(2014) show that a resolution procedure contingent on observed levels of bank capi-

tal dominates both capital and liquidity requirements in efficiency and welfare terms.

Hugonnier and Morellec (2017) develop a continuous-time dynamic model of banking

and find that imposing liquidity requirements leads to lower bank losses in default at

the cost of an increased likelihood of default. Combining liquidity and leverage re-

quirements reduces both the likelihood of default and the magnitude of bank losses in

default.6 Our paper does not consider regulatory liquidity and leverage requirements

but studies the role of different IRMs for loan issuance and loan quality. A comple-

5We only consider recapitalizations by the government or by a bailout fund. There are a variety

of reasons (such as debt overhang, high uncertainty about bank asset value, and time pressure) why

standard equity issues are not a realistic option for insolvent banks. Troubled banks that issued equity

during the financial crisis did so after returning to solvency.
6While losses are usually exogenously allocated across stakeholders in the literature, a number

of complementary papers endogenize the sharing rule and negotiation between the banks’ claimants

(e.g. Bolton and Oehmke (2018), Keister and Mitkov (2016), Colliard and Gromb (2018)). Several

papers model the optimal design of insolvency resolution, bank regulation or government intervention

(Gorton and Huang (2004), Kahn and Santos (2005), Acharya and Yorulmazer (2008), Philippon and

Schnabl (2013), Walther and White (2016), Lucchetta, Parigi, and Rochet (2018)).
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mentary working paper by Berger et al. (2018) examines theoretically and empirically

how IRMs affect the initial capitalization decision, the size of the subordinated debt,

the future recapitalization strategy, and the bank’s net market value. Their analysis

focuses on the capital structure decisions, keeping investment, payout and the riskiness

of assets exogenously given. Banks do not sell assets to rebalance. Our analysis focuses

on the role of IRMs for managerial risk taking and bank lending. We show that results

may be significantly different depending on whether or not managers control asset risk.

Earlier dynamic banking models include Merton (1977, 1978), Fries, Mella-Barral, and

Perraudin (1997), Bhattacharya, Plank, Strobl, and Zechner (2002), and Décamps, Ro-

chet and Roger (2004). These papers assume, however, the banks’ asset and liability

structure to be exogenously given. Unlike our model, all the above papers assume risk

neutral agents. In our model high leverage results from low managerial risk aversion

or high tax benefits from debt.

Our paper also relates to a recent literature that jointly models a firm’s investment,

payout, and borrowing decisions in a dynamic framework. Continuous-time papers in

this strand include Gryglewicz (2011), Bolton, Chen, and Wang (2011), Décamps,

Mariotti, et al. (2011), Décamps, Gryglewicz, et al. (2016), and Lambrecht and

Myers (2017). These papers do not examine IRMs and assume that risk-neutral owners

maximize market value. Lambrecht and Myers (2017) consider risk averse managers,

but only consider safe debt.

There is a large literature on bank leverage, bank capital requirements and their

role for bank risk taking (e.g. Gorton and Pennacchi (1990), Dewatripont and Tirole

(1994), Calem and Rob (1999), Diamond and Rajan (2001), Kashyap, Rajan and Stein

(2008), among others). These models, however, assume that defaulting banks cease

to exists, and are usually static in nature. Several papers (e.g. Hellmann, Murdock

and Stiglitz (2000)) make the point that undercapitalized or distressed banks may be

more prone to moral hazard, because equityholders have “no skin in the game” and
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may have an incentive to “gamble for resurrection”. In Davila and Walther (2017)

large banks anticipate that their actions affect the government’s bailout response and

therefore take on more leverage than small banks. Allen et al. (2018) analyze the effect

of government guarantees on the interconnection between banks’ liquidity creation and

likelihood of runs. For a review of the literature on bank capital regulation we refer

to Santos (2001) and VanHoose (2007). Allen, Carletti and Leonello (2011) review

the literature on deposit insurance and risk taking. In our model moral hazard arises

before banks are undercapitalized or distressed. Insiders take risk linked to an event (in

our case a crash) that will cause distress. Knowing that their game is up if a particular

event arises, insiders have an incentive to ensure little or no capital is left when this

event occurs.

2 Model setup

Consider a bank that invests an amount At in risky assets (loans) that generate an

after-tax rate of return given by the following jump-diffusion process:

dAt
At

= [(µ′ + κ′λf)dt+ σ′dBt] (1− τ)− fdyt (1)

≡ (µ+ κλf)dt+ σdBt − fdyt (2)

where Bt is a Brownian motion and yt is a pure Poisson jump process with intensity

λ and E[dyt] = λdt. The parameter τ is the corporate tax rate (with 0 ≤ τ < 1). The

other parameters satisfy the conditions µ, λ, σ > 0 and 0 ≤ f ≤ 1 < κ.7

Hence, most of the time the after-tax return follows a continuous diffusion process

with drift µ + λκf and volatility σ, but occasionally the loan portfolio is subject to

a large negative shock (i.e. crash). f captures the sensitivity of the loan portfolio’s

7Our model does not rely on the presence of taxes. Corporate taxes help us to generate more

realistic numbers for the comparative statics regarding bank leverage.

7



value to such a crash, i.e. f equals the fractional loss in loan portfolio’s value due to an

adverse shock. We allow the bank optimally to set f . In practice f can be controlled

through the bank’s collateral requirements (a bank with highly secured loans has a low

f , whereas loans with little or no collateral generate a high f). More generally, f is

determined by the quality of the loans issued. We will show that the optimal policy for

f does not depend on time, and as such we can treat f to be constant in our exposition.

κ is an exogenously given parameter that determines the risk premium associated

with crash risk. This premium also captures any tax deductible provisions for loan

losses. The expected return is given by: E
[
dAt
At

]
= (µ+ λf(κ− 1)) dt > µdt. Since

κ > 1, banks are compensated with a higher expected return for issuing loans with a

higher exposure to crash risk (i.e. higher f).8

The bank finances its investment in risky loans with equity capital (Nt) and debt

(Dt), i.e. At = Nt + Dt. Banks can borrow and continuously roll over the debt. As

such our model captures the short term nature of a lot of bank debt.9 Interest on debt

is a tax deductible expense:

dDt = ρ′t(1− τ)Dtdt ≡ ρtDtdt (3)

The cost of debt equals the after-tax risk-free rate ρ if the debt is safe. A higher,

risk-adjusted rate of interest (to be derived) is paid on risky bank debt.

At each instant in time inside equityholders (i.e. managers) decide how much to

invest in risky loans (At) and how much to pay out to inside (rt) and outside (dt)

equityholders, given the amount of equity capital (net worth, Nt) in place. Following

8We remain agnostic as to whether crash risk is systematic (e.g. economic downturns) or idiosyn-

chratic (e.g. fraud or operational risk) in nature. In the latter case the risk premium could represent

rents from relationship banking relative to transaction or capital market lending (see Boot and Thakor

(2000)).
9If Dt is negative then the bank holds a net cash position. Holding a net cash position is, however,

not optimal under restrictions we later impose on the model parameters.
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Myers (2000), we assume that outsiders and insiders, respectively, get a fraction α and

1−α of the firm’s free cash flow and value.10 The combined payout flow to outside and

inside equityholders therefore equals dt + rt = [α/(1− α) + 1] rt = [1/(1− α)] rt ≡

mrt. Payouts to outsiders are under the form of dividends, whereas payouts to insiders,

hereafter referred to as “rents”, may, in practice, be a combination of dividends and

other managerial compensation.

We will show that, under the optimal investment and payout policies, net worth

Nt follows a continuous diffusion process in the absence of crashes. A crash causes,

however, a discrete fall in the bank’s net worth giving rise to two possible scenarios.

Under scenario 1, the bank has a strictly positive net worth position following the

shock, and optimally delevers by executing asset sales and using the proceeds to reduce

outstanding debt. Under scenario 2, the bank’s equity capital is wiped out and the

bank is insolvent.

Consider first the scenario where net worth remains positive following a crash. If

Nt and At are, respectively, the bank’s net worth and risky assets before the shock

then net worth immediately after the shock, N+
t , is given by:

N+
t = Nt − f At = Nt

(
1 − f

At
Nt

)
≡ Nt (1 − flt) ≡ NtΦs(lt, f) (4)

where lt ≡ At
Nt
≡ 1 + Dt

Nt
is the bank’s gearing ratio. Variables under the safe (i.e.

solvency) regime are denoted by a subscript s. The bank’s net worth remains non-

negative if and only if Φs(lt, f) ≥ 0 ⇐⇒ lt ≤ 1
f
≡ l̂. Using the balance sheet

identity Dt = At − Nt, and the fact that safe debt earns the risk-free rate, the process

for the bank’s net worth under the positive net worth condition is:

dNt = dAt − dDt − mrtdt

= [(µ+ λκf − ρ)At + ρNt − mqtNt] dt + σAtdBt + (Φs(lt, f)− 1)Ntdyt

10This sharing rule, which we assume exogenously given, can be derived as the outcome of a repeated

bargaining game where insiders make take-it-or-leave-it offers to outsiders subject to the threat of

collective action by outsiders (see Lambrecht and Myers (2012, 2017)).
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where qt ≡ rt
Nt

denotes insiders’ payout yield. Hence:

dNt

Nt

= [(µ+ λκf − ρ) lt + ρ − mqt] dt + σltdBt + (Φs(lt, f)− 1) dyt

≡ gs(lt, qt, f) dt + σltdBt + (Φs(lt, f)− 1) dyt for lt ≤
1

f
(5)

Consider next the scenario where the drop in the bank’s risky assets exceeds its net

worth, i.e. fAt > Nt (or lt > l̂). Bank debt may no longer be safe and the cost

of debt becomes a function of the firm’s gearing ratio and loan quality, i.e. ρj(lt, f)

where j ∈ b, o, i. Variables referring to the liquidation (i.e. bankruptcy), bailout and

bail-in regimes are denoted, respectively, by the subscripts b, o and i. Similar to (5),

the process for net worth is given by:

dNt

Nt

= [(µ+ λκf − ρj(lt, f)) lt + ρj(lt, f) − mqt] dt

+ σltdBt + (Φj(lt, f)− 1) dyt

≡ gj(lt, qt, f) dt + σltdBt + (Φj(lt, f)− 1) dyt for lt >
1

f
(6)

A crash now wipes out the bank’s net worth. The bank is recapitalized under a bailout

or bail-in (i.e. Φj(lt, f) > 0 for j = o, i) but not in liquidation (Φb(lt, f) ≡ 0). We

derive the functions for ρj(lt, f) and Φj(lt, f) later in the paper.

2.1 Insiders’ optimization problem

We assume insiders have a power utility function (and therefore constant relative risk

aversion) with coefficient of risk aversion η ∈ (0, 1), i.e. U(r) = r1−η

1−η .11 δ > 0 is

the insiders’ subjective discount rate. Recall the index j ∈ {s, b, o, i} for labeling the

four regimes under consideration which are asset sales, liquidation, bailout and bail-in

11We do not explicitly consider η ≥ 1 in our analysis (the special case of η = 1 corresponds to log

utility). When η ≥ 1, insiders’ utility goes to negative infinity as the rents extracted approach zero.

Insiders therefore avoid insolvency at all costs, and always adopt safe debt.

10



respectively. Let T1 be the random arrival time of the first crash. The general form of

insiders’ (managers’) optimization problem under regime j is:

Mj(N) = max
qt,lt,f

E

[∫ T1

0

e−δtU(qtNt)dt+ e−δT1pjMj(φj(lT1−, f)NT1−)
∣∣∣N0 = N

]
(7)

subject to 0 ≤ f ≤ 1, the (in)solvency constraint lt ≤ (>)1/f when j = s (b, o, i), the

intertemporal budget constraint:

dNt

Nt

= [(µ+ κλf − ρj(lt, f))lt + ρj(lt, f)−mqt]dt+ σltdBt for t < T1 (8)

and the transversality condition limt→∞E
[
e−δtMj(Nt)

]
= 0.

Equation (7) implicitly defines managers’ claim value Mj which consists of two

components. The first component is the expected discounted utility of rents extracted

up to the arrival of the first crash. The second component reflects the residual claim

value to the managers after a shock has realized, and can be understood as a con-

tinuation value originating from the dynamic programming principle. As we explain

next, the residual claim value depends on (1) the probability pj of managers having a

continuation claim and (2) managers’ net worth recovery rate φj(lT1−, f) following a

shock. Since a shock causes net worth to shrink and some restructuring mechanisms

may further dilute managers’ stake, it is the case that 0 ≤ φj < 1.

When solving the optimization problem (7), the only modeling specifications re-

quired at this stage are that under each regime ρj(l, f), φj(l, f) and Φj(l, f) are func-

tions of the gearing ratio l and the loan quality f only. In Subsection 2.2, we describe

each regime in detail and give the corresponding expressions for ρj(·, ·), φj(·, ·), and

Φj(·, ·). Table 1 in Section 2.2.5 provides a summary of the definitions.

Managers solve for optimal policies and the corresponding claim values under the

solvency and insolvency regimes respectively. They compare Ms(N) and Mj(N) (where

j = b, o, or i is given) and ultimately adopt the policies that maximize their private

value. This completes the formulation of managers’ optimization problem. In what
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follows we solve for managers’ optimal rents (qt) policy, the optimal gearing ratio (lt)

and the optimal jump risk exposure (f) under the various restructuring mechanisms.

We assume that the IRM is exogenously given. In other words, managers know ex ante

whether insolvency will be resolved through liquidation, bailout or bail-in.

The proposition below gives a general characterization of the managers’ optimal

policies. Each restructuring mechanism is explored in detail in the subsequent sections.

We define the following functions, which allow us conveniently to characterize the

solutions to the managers’ problem throughout the paper:

C(H) ≡
[

η

λ+ δ − (1− η)H

]η
m−(1−η) (9)

Q(H) ≡
(

1

mC(H)

) 1
η

=
λ+ δ − (1− η)H

mη
(10)

Proposition 1 The optimal investment (At), payout to insiders (rt), debt (Dt), crash

risk exposure (f) and insiders’ life-time utility (Mj) are, respectively, At = ljNt, rt =

qjNt, Dt = (lj − 1)Nt, f = fj, and Mj(Nt) =
cjN

1−η
t

1−η , where cj = C(Hj), qj = Q(Hj)

(with C(·) and Q(·) given by (9) and (10)). lj and fj are the constants solving the

optimization problem:

max
l,f

Gj(l, f) ≡ max
l,f

{
[µ+ κλf − ρj(l, f)]l − ησ2

2
l2 + ρj(l, f) +

λpj
1− η

[φj(l, f)]1−η
}
(11)

and Hj ≡ Gj(lj, fj). The subscript j takes value of either s (when it is optimal for the

bank to stay solvent and the policy space in problem (11) is restricted to l ≤ 1/f) or

{b, o, i} (when it is optimal to put the bank at risk of insolvency and the policy space

in problem (11) is restricted to l > 1/f).

Proposition 1 states the bank’s optimal investment, loan quality decision, payout and

financing policy conditional on a particular restructuring mechanism j being adopted

(where j = b, o, i or s). The general structure of the optimal policies is the same across
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mechanisms. The bank’s optimal loan portfolio size At is a constant multiple lj of the

bank’s net worth Nt. We define and examine this constant lj as well as the optimal

loan quality determinant fj in subsequent sections. Payout to insiders (“rents”) and

to outsiders (“dividends”) are a constant fraction of net worth (i.e. rt = qj Nt and

dt = αmqjNt). Since the bank’s net worth is determined by the sum of the bank’s

initial capital and its cumulative retained earnings, dividends are smooth and relatively

insensitive to shocks in current income, except when there is a crash that reduces the

bank’s asset base and net worth by a discrete amount. The bank follows a constant

debt to net worth ratio, which is given by Dt/Nt = lj − 1. Finally, the private value

of insiders’ claim Mj is a concave increasing function of the bank’s net worth Nt. The

degree of concavity increases with insiders’ coefficient of risk aversion η.

Proposition 1 does not tell us whether it is optimal to restructure through asset

sales or whether it is optimal to put the bank at risk of insolvency instead. We consider

this question in Section 4, but first define the various restructuring mechanisms.

2.2 Definitions of the restructuring mechanisms

We now formally define asset sales, liquidation, bailout and bail-in. A restructuring

mechanism j at time T1 is fully characterized by the following four elements: (1) the

adjustment in net worth due to the restructuring, denoted by Φj(l, f), (2) insiders’

continuation probability pj under mechanism j, (3) insiders’ net worth recovery rate,

φj(l, f), and (4) lenders’ recovery rate on the bank debt, Ωj(l, f).

We now define each mechanism in turn. We adopt what we believe to be plausible

assumptions regarding the specifications for Φj, φj and Ωj. It should be clear, how-

ever, that our framework is sufficiently flexible and general to accommodate different

assumptions.
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2.2.1 Asset Sales

Under the asset sales regime, net worth remains positive following a crash, and the

bank optimally delevers by selling some assets and using the proceeds to pay off debt.

Net worth drops by a factor of Φs(lt, f) = 1 − flt as in (4). Since the bank is always

solvent, lenders incur no losses, i.e. Ωs(lt, f) = 1, and therefore debt is safe (ρs = ρ).

Managers are sure to continue, i.e. ps = 1, but suffer a fractional loss on their net

worth in the bank as reflected by the recovery rate φs(lt, f) = 1 − flt. The asset sale

restores the bank’s optimal gearing and allows managers to carry on as before, but with

a reduced amount of net worth. Substitution of these expressions into (7) completes

the formulation of the dynamic programming problem.

2.2.2 Liquidation

Since the bank is insolvent and not recapitalized in the liquidation regime, it follows

that Φb(lt, f) = 0. Lenders receive the value of the assets in liquidation, (1 − f)At.
12

Inside (and outside) equityholders get nothing. Therefore, φb(lt, f) = 0 and pb = 0.

The amount of debt prior to default is Dt = At − Nt = (lt− 1)Nt. Therefore, lenders’

recovery rate on bank debt is Ωb(lt, f) = (1− f)At/Dt = (1− f)lt/(lt− 1). Assuming

the debt is priced competitively by risk neutral lenders, the bank faces the following

after-tax interest rate on its debt:

ρb(lt, f) = ρ+ λ(1− τ) [1− Ωb(lt, f)] = ρ+ λ(1− τ)

(
flt − 1

lt − 1

)
(12)

12We assume there are no liquidation costs to allow for a clean comparison with bail-ins and bailouts.

Introducing liquidation costs is straightforward. For example, with a proportional liquidation cost cb

the net proceeds from liquidation to bondholders are At(1− f)(1− cb).

14



2.2.3 Bailout

Recall that, following a crash, assets drop from At to (1 − f)At. We assume that

under the bailout regime, the government recapitalizes the entire bank which now has

assets amounting to (1− f)At.
13 If the optimal asset to net worth ratio lo is constant

(which we prove below) then the bank’s net worth before and after the bailout are,

respectively, At/lo and (1 − f)At/lo. It follows that the bank’s net worth drops by a

factor 1− f , and therefore Φo(lt, f) ≡ 1− f in the budget constraint (6).

In return for recapitalizing the bank the government receives equity alongside exist-

ing shareholders whose share is diluted by a factor ξo(≤ 1).14 The fraction ξo depends,

for instance, on existing outside shareholders’ bargaining power and how crucial it is for

the government to save the bank to avoid negative externalities for the wider economy.

We take ξo as exogenously given. Lenders’ (bondholders and depositors) claims are

protected, and therefore Ωo(lt, f) = 1. This implies that debt is risk free and therefore

ρo(lt, f) ≡ ρ.15

We assume the government appoints new managers that replace some existing man-

agers and dilute the stake of those managers that survive. Managers survive a bailout

with some probability po ∈ [0, 1] and their stake in the inside equity is diluted by

a factor ξo(≤ 1), giving a net worth recovery rate of insiders upon continuation of

φo(lt, f) = (1 − f)ξo. The effect of dismissal and stake dilution upon the arrival of a

13Our results are qualitatively the same if only a fraction of the bank is recapitalized, with the

remaining assets being liquidated.
14E.g. during the recent financial crisis the UK government bailed out the Royal Bank of Scotland

and Lloyds Banking Group and acquired an equity stake of 72% and 43%, respectively.
15The model could be generalized by assuming that bailouts occur with a probability less than 1,

and that liquidation is the alternative to a bailout. The model could also be extended to allow for

the possibility that unsecured bondholders are not bailed out. The government should guarantee the

claim of all depositors, though. If some deposits are unprotected then depositors may rush to get their

money out of the bank after a shock because the last depositors in the queue are left with nothing.
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shock can be captured by a random variable X which takes on value ξo with probability

po or value 0 otherwise. In the former case insiders still have a claim after the shock,

albeit a reduced one as reflected by the factor ξo ≤ 1. In the latter case insiders lose

their claim entirely.

Managers’ optimization problem under the bailout regime can be stated as:

Mo(N) = max
qt,lt,f

E

(∫ T1

0

e−δtU(qtNt)dt+
∞∑
k=1

∫ Tk+1

Tk

e−δtU(ΛkqtNt)dt
∣∣∣N0 = N

)
(13)

Tk is the random arrival time of the kth crash. Λk ≡
∏k

n=1Xn is the cumulative

dismissal-adjusted dilution factor after k shocks have arrived. Xn ∼ X are i.i.d random

variables independent of the net worth dynamics.

Due to the power form of the utility function, and Xn and Nt being independent,

(13) can be expressed as:

Mo(N) = max
qt,lt,f

E

(∫ T1

0

e−δtU(qtNt)dt+
∞∑
k=1

∫ Tk+1

Tk

e−δt[poξ
1−η
o ]kU(qtNt)dt

∣∣∣N0 = N

)
(14)

The second term in Equation (14) corresponds to the term e−δT1 pjMj(φj(lT1−, f)NT1−)

in the managers’ general optimization problem (7).

In summary, insolvency resolution through bailout differs from liquidation in several

ways. First, the capital injection in a bailout ensures the bank’s continuation rather

than its liquidation. Second, following a bailout managers are able to stay in post with

some probability po ∈ [0, 1], albeit with a reduced net worth stake φo = (1 − f)ξo.

Third, the government’s promise to bail out insolvent banks, guarantees lenders’ claim

D, and therefore debt is risk-free (ρo = ρ).
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2.2.4 Bail-in

In a bail-in, the claims of the creditors of the failed bank are written down and converted

into equity in order to absorb the losses and recapitalize the bank. A bail-in is not

negotiated (it is imposed upon the firm and its creditors by the authority responsible

for resolution). The bail-in not only significantly changes the ownership structure of

the firm but may coincide with restructurings (e.g. splitting up the bank) that alter the

bank’s investment and payout policy. Unfortunately, it is not known in advance exactly

how the resolution authority will restructure the bank. This poses a real challenge for

pricing bail-in bonds. We do not attempt to model the restructuring process but take

its outcome as exogenously given. In particular, we assume that the optimal asset

to net worth ratio after the bail-in is l∗. The corresponding market to book value is

assumed to be w∗, which means that the market value of the total (inside plus outside)

equity after the bail-in is given by: F+
t ≡ w∗(1− f)At/l

∗.

As with the bailout we assume that just enough debt is converted into equity to

achieve the optimal gearing ratio l∗ of risky assets to net worth. To avoid a run on the

bank when a crash occurs, the bank needs at least two classes of debt: secured, senior

debt (e.g. deposits) that is protected and will not be bailed in, and unsecured, junior

debt (e.g. long term bonds) that can be converted into equity. The amounts of senior

and junior debt are denoted by D1 and D2, respectively, with the total amount of debt

equal to D = D1 +D2.

To avoid a bank run, full protection is given to senior creditors. Therefore the

amount of junior debt must (at least) equal the amount of debt that has to be bailed

in. Assuming that the bank has a constant optimal gearing ratio li prior to the bail-in

(a claim we verify below) the amount of debt prior to the shock is: D = A − N =

liN − N = (li − 1)A/li. The bank’s assets after the shock are A+ = (1 − f)A.

Hence, the optimal amount of debt and net worth after the bail-in are, respectively:

D+ = (l∗ − 1)(1− f)A/l∗ and N+ = (1− f)A/l∗. To enable the bail-in we therefore
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require that:

D1 = A

[
(l∗ − 1)(1− f)

l∗

]
and D2 = D − D1 = A

[
li − 1

li
− (l∗ − 1)(1− f)

l∗

]
To recapitalize the bank, the bail-in forcibly converts unsecured debt into equity and

dilutes existing equityholders. We assume that unsecured lenders and existing equi-

tyholders (inside as well as outside) receive, respectively, a fraction 1 − ξi and ξi of

the firm’s equity. Secured lenders (e.g. depositors) are fully protected and earn a rate

of interest ρ′. Assuming lenders are risk neutral and debt is issued competitively, the

after-tax cost of debt is given by:

ρi(li, f) =
D1

D
ρ′(1− τ) +

D2

D

{
ρ′(1− τ) + λ(1− τ)

[
1− (1− ξi)w∗(1− f)A/l∗

D2

]}
= ρ + λ(1− τ)

[
1 − (1− f)li(1 + h)

li − 1

]
where h ≡ (1− ξi)w∗ − 1

l∗
(15)

Or equivalently, the recovery rate on the total bank debt is:

Ωi(li, f) =
D1 + (1− ξi)w∗(1− f)A/l∗

D
=

(1− f)(1 + h)li
li − 1

(16)

Bail-ins only make economic sense if the junior debt is risky. This requires that

ρi(li, f) > ρ, or equivalently:

ρi(li, f) > ρ ⇐⇒ h <
fli − 1

(1− f)li
⇐⇒ li >

1

(1 + h)f − h
≡ l̂i(f ;h) (17)

We verify later (see Proposition 4) that junior debt is indeed risky.

For bail-ins to go through, no creditor or shareholder should be worse off under the

bail-in compared to what he or she would get under a hypothetical liquidation scenario

(this is the so-called “No Creditor Worse off than under Liquidation” (NCWOL) test

of the Bank Recovery and Resolution Directive (BRRD) in the European Union).

The payoff to junior creditors in liquidation equals (1 − f)A − D1 = (1 − f)A/l∗,

whereas their payoff in a bail-in equals (1− ξi)w∗(1− f)A/l∗. Consequently, a bail-in

is acceptable to junior creditors if and only if 1 ≤ (1− ξi)w∗, or equivalently if h ≥ 0.
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The net worth process under the bail-in regime is given by:

dNt

Nt

= [(µ+ λκf − ρi(lt, f)) lt + ρi(lt, f) −mqt] dt+ σltdBt +

[
(1− f)

At/Nt

l∗
− 1

]
dyt

≡ gi(lt, qt, f) dt + σltdBt + (Φi(lt, f)− 1) dyt for lt > 1/f (18)

Managers’ objective function under the bail-in regime becomes:

Mi(N) = max
qt,lt,f

E

(∫ T1

0

e−δtU(qtNt)dt+ e−δT1 piMi((1− f)ξiNT1−)
∣∣∣N0 = N

)
(19)

which exactly has the general form of Equation (7). Managers have a continuation

claim with probability pi ∈ [0, 1] and their net worth stake is diluted by a factor

ξi(< 1).16

Note that φi(lt, f) ≡ (1 − f)ξi. Therefore, φi(lt, f) does not equal Φi(lt, f) ≡

(1 − f)li/l
∗), i.e. managers’ continuation or severance claim (implicitly defined by

Equation (19)) relates to the bank’s net worth after the shock, but assuming the bank’s

original gearing li is maintained. Since a bail-in typically reduces leverage (lt/l
∗ > 1)

linking managers’ continuation or severance claim to the post bail-in gearing l∗ would

allow managers to freeride on unsecured creditors.

2.2.5 Summary of definitions

Table 1 below summarizes our assumptions regarding Φj, pj, φj and Ωj across the

four restructuring mechanisms. Figure 1 illustrates the effect of each restructuring

mechanism on the bank’s balance sheet. The figure shows the bank’s balance sheet 1)

before the crash, 2) immediately after the crash, and 3) after the restructuring. Under

16The BRRD stipulates that management should in principle be replaced following a bail-in, unless

their expertise is crucial for the restructuring. If managers are sure to be replaced then piMi could

be interpreted as managers’ severance claim consisting of pension rights and other outstanding con-

tractual payments. In that case pi is not a probability, but to be interpreted as the recovery rate for

their claim in the firm.
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liquidation all assets are sold off. Notice how also the asset sale regime leads to a

significant contraction in the firm’s assets. With bailouts and bail-ins the restructuring

focuses on the bank’s liabilities.

IRM j Φj(l, f) pj φj(l, f) Ωj(l, f)

Asset sales j = s 1− fl ps = 1 1− fl 1

Liquidation j = b 0 pb = 0 0 (1−f)l
l−1

Bailout j = o 1− f 0 ≤ p0 ≤ 1 (1− f)ξo 1

Bail-in j = i (1−f)l
l∗

0 ≤ pi ≤ 1 (1− f)ξi
(1−f)(1+h)l

l−1

Table 1: Summary of definitions of different IRMs. Φj is the net worth adjustment

due to restructuring, pj is insiders’ continuation probability, φj is insiders’ net worth

recovery rate, Ωj is lenders’ recovery rate on bank debt and ξj is the dilution factor of

insiders’ equity stake.

3 Optimal policies without insolvency: asset sales

Under the asset sale regime banks do not become insolvent. Following a crash, banks

sell off assets to pay down debt and to delever. The following proposition characterizes

the bank’s optimal gearing ratio (ls) and its optimal jump risk exposure (fs). For the

bank to take on debt, it is necessary that the Merton ratio is larger than one. We

therefore impose the standing assumption (µ − ρ)/(σ2η) > 1 throughout the rest of

the paper. Some of our results presented in the next section require a higher Merton

ratio. Any additional assumptions will be explicitly stated when needed.

Proposition 2 If the bank has to stay solvent in crashes then the optimal asset to net

worth ratio, ls, is (implicitly) given by:

ls =
µ+ κλfs − ρ − fsλ

(1−fsls)η

ησ2
with ls <

1

fs
(20)
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The assets’ optimal exposure to crashes, fs, and corresponding investment level, ls, are:

fs ≡
σ2η

µ− ρ

(
1− κ−

1
η

)
< 1 and ls(fs) =

µ− ρ
σ2η

Whenever the bank’s asset base drops by a factor (1− fs) from A to (1− fs)A due to a

crash, the bank’s net worth drops by a factor (1− fsls). The bank restores the optimal

asset to net worth ratio, ls, by selling an amount of assets equal to Afs(ls − 1) and

using the proceeds to pay off debt.

According to the bank’s optimal investment policy the amount of risky loans issued (At)

equals a constant multiple ls of the bank’s net worth (Nt). In the absence of crashes, net

worth follows a geometric Brownian motion under the optimal investment and payout

policies. Therefore, absent jumps, net worth always stays positive. The optimal value

for ls under the asset sales regime is always strictly less than 1/fs to ensure the bank

remains solvent also when a crash occurs.17 Nevertheless, leverage amplifies the effect

of a loss in the firm’s loan portfolio on the bank’s net worth and asset base. Consider

a levered firm with A = 100, N = 20 and suppose ls = 5 and fs = 0.1. A 10% loss

in assets due to a crash reduces net worth by a factor 1 − fsls = 0.5 from 20 to 10.

This causes the asset to net worth ratio to jump to l = 90/10 = 9, making the bank

too risky. Managers rebalance by selling off an amount Afs(ls − 1) = 40 in loans, and

using the proceeds to pay off debt, restoring the asset to net worth ratio to its optimal

level ls = 50/10 = 5. The example illustrates how leverage amplifies contractions in

the bank’s balance sheet following losses in its loan portfolio. An initial loss fsA of the

bank’s loans leads to a subsequent loan sale of (ls − 1)fsA. This is illustrated in panel

A of Figure 1.18

17It is impossible for a levered bank to maintain solvency if f is too high. For example, when f = 1

the bank’s asset value drops to zero in a crash, and banks with debt become insolvent. We prove in

the internet appendix that there exists a critical level of jump size f above which a bank can no longer

optimally take on debt if it prefers to stay solvent during a crash. See the discussion in Section 4.
18Asset sales happen in a frictionless manner in our model. The internet appendix shows that

proportional transaction costs associated with selling assets after a jump reduce the level of the optimal
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The optimal exposure to crashes increases in the premium κ associated with jump

risk. A higher expected return µ and lower volatility σ associated with the diffusion

risk reduce fs. Under the optimal policies the fraction of net worth at risk in a crash

equals fs ls = 1 − κ−
1
η . Consequently, as we approach risk neutrality (i.e. η → 0)

close to 100% of the bank’s net worth is at risk if κ > 1. Risk averse managers, on the

other hand, put significantly less net worth at stake. As the risk premium associated

with crash risk disappears (κ→ 1) the bank’s optimal exposure to crashes goes to zero

(fs → 0), i.e. insiders issue loans of the highest quality.

Equation (20) is the first-order condition with respect to ls, and allows us to analyze

how the optimal investment varies as a function of f when the asset sale regime pre-

vails. No closed-form solution for ls exists, except for the cases λ = 0, f = 0, or f = fs,

for which we obtain the standard Merton (1969) investment policy. The multiple ls

increases with the excess return µ − ρ and decreases with volatility σ and insiders’

risk aversion η. The optimal asset to net worth ratio ls for the optimal jump exposure

fs equals exactly the Merton (1969) investment policy. Hence, the optimal level of

investment declines with managers’ risk aversion. Furthermore, under managers’ opti-

mal exposure fs the optimal investment policy is independent of the frequency λ with

which crashes occur. This highlights that the gearing ratio ls can be very different

depending on whether or not insiders control the bank’s risk exposure.

4 Optimal policies with insolvency

The solution developed in previous section assumes that the bank must remain solvent

in crashes. The optimal gearing ratio, ls, is therefore strictly less than 1
fs

. From

managers’ point of view it is, however, not always optimal to adopt an investment and

asset to net worth ratio. The qualitative properties associated with the bank’s optimal policies remain,

however, largely the same.
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payout policy that guarantees the bank’s solvency in crashes.

Let us assume for a moment that f is exogenously given, and consider the polar

cases of highest (f = 0) and lowest (f = 1) loan quality. For f = 0 (crashes cause

zero losses in the loan portfolio), the problem collapses to the standard Merton (1969)

problem. One can verify that ls indeed coincides with the Merton solution for f = 0.

The solvency constraint ls < l̂ ≡ 1/f does not constrain the gearing ratio since l̂ = +∞

for f = 0. Therefore, the bank’s policy ls is optimal for zero jump exposure. The bank

remains solvent at all times given that net worth follows a geometric Brownian motion.

Intuitively, it is clear that the asset sale policy remains optimal for sufficiently small

f , because the solvency constraint ls < l̂ = 1
f

is unlikely to matter when l̂ is large.

Consider next the polar case f = 1 (i.e. crashes cause a total loss in the loan

portfolio). To remain solvent in crashes the bank should now adopt a negative debt

level (i.e. net cash position) by setting ls < l̂ = 1. It is intuitively clear that such a

conservative investment policy is unlikely to be optimal, particularly if crashes are rare

(small λ). Instead the bank may wish to adopt a more aggressive investment policy

and accept the specter of insolvency in crashes.

We know that managers’ desire to expose loans to jump risk is driven by the reward

κ for taking on crash risk. A higher reward κ induces higher exposure f . The following

proposition proves that there exists a critical reward threshold κj such that for κ ≤ κj

managers prefer to issue high quality loans to keep the bank solvent at all times,

whereas for κ ≥ κj managers prefer to issue low quality loans such that the bank may

become insolvent and undergo IRM j (j ∈ {b, o, i}).

Proposition 3 There exists a critical risk premium κj ≥ 1 for IRM j (j=b,o,i) such

that managers keep the bank solvent by adopting low leverage and issuing high quality

loans if the reward for taking on crash risk exposure is sufficiently low (1 ≤ κ < κj).

Managers put the bank at risk of insolvency by adopting high leverage and issuing
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low quality loans if the rewards are sufficiently high (i.e. κ ≥ κj). For the safe regime

(1 ≤ κ < κj) the bank optimally adopts the policies ls and fs as described in Proposition

2.

We now consider three IRMs (liquidation, bailout and bail-in) and examine how they

affect the bank’s optimal level of investment l and jump risk exposure f . The prevail-

ing IRM is common knowledge. In what follows we impose the following parameter

restrictions for, respectively, the bailout and bail-in cases:

µ− ρ
σ2η

> 1 +
poξ

1−η
o

κ
(21)

µ− ρ
σ2η

> 1 +
piξ

1−η
i (1 + h)

κ− (1 + h)(1− τ)
and κ > (1 + h)(1− τ) (22)

Conditions (21) and (22) ensure that managers’ objective function (Mj(N)) has a

unique interior maximum ((lj, fj)) under the bailout and bail-in regimes, respectively,

when managers have a strictly positive probability of continuation and strictly positive

residual equity stake after restructuring (i.e. if poξo, piξi > 0).

Proposition 4 For the insolvency regime (i.e. κ ≥ κj), the optimal investment policy

(lj) under the liquidation, bailout and bail-in regime is:

lb(fb) =
µ− ρ
ησ2

+
[κ− (1− τ)]λfb

ησ2
(liquidation) (23)

lo(fo) =
µ− ρ
ησ2

+
κλfo
ησ2

(bailout) (24)

li(fi) =
µ− ρ
ησ2

+
[κ− (1− τ)]λfi + λh(1− τ)(1− fi)

σ2η
(bail − in) (25)

If managers have a zero continuation probability or zero residual equity stake (pjξj = 0),

then they adopt maximum crash risk exposure (fj = 1). Since managers have no claim

in liquidation (pb = 0) they adopt maximum exposure under the liquidation regime, i.e.

fb = 1. If poξo, piξi > 0, then the optimal exposure level under bailout or bail-in is given
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by some fo, fi ∈ (0, 1) which is the unique solution to the equation

lo(fo) − poξ
1−η
o

κ(1−fo)η = 0 (for bailouts) (26)

li(fi) − piξ
1−η
i

[κ−(1+h)(1−τ)](1−fi)η = 0 (for bail − ins) (27)

Junior debt is always risky under bail-ins.

The asset to net worth ratio l exceeds the Merton solution (l = (µ − ρ)/(ησ2)) under

all three IRMs. Since firms adopt the Merton investment policy under the asset sale

regime (see Proposition 2), it follows there is a discrete upward jump in investment

and leverage when we move at κj from the asset sale regime to one of the three IRMs.

This discrete increase in loan issuance coincides with a drop in loan quality. Under

the liquidation regime banks even adopt the maximum possible risk exposure (fb =

1). Given managers’ limited liability and zero payoff in liquidation, they do not care

whether the bank ends up insolvent a little or a lot. This creates a serious moral hazard

problem from lenders’ viewpoint.

Importantly, high (low) crash risk exposure is combined with high (low) leverage.

In particular, if the reward for crash risk is low (κ < κj) then we obtain an equilibrium

where banks issue a low volume of high quality loans. If jump risk premiums are high

(κ > κj) banks issue high volumes of low quality loans, which is a toxic combination

of high financial risk (leverage) and high business risk (exposure to crashes).

Banks do not adopt maximum crash risk exposure under the bailout and bail-in

regime (i.e. fo, fi < 1) if managers retain some “skin in the game” after the restruc-

turing (i.e. if poξo, piξi > 0) because doing so would wipe out all the firm’s assets and

leave no bank to be bailed out (or to be bailed-in). Only when managers are sure to

lose everything (poξo, piξi = 0) do they adopt 100% exposure (i.e. fo = fi = 1) to

crashes. Using Eq. (26) and Eq. (27) one can show that the optimal exposure to

crashes (fo and fi) increases with µ, λ and κ, and decreases with ρ, σ, η and insiders’

dilution adjusted probability of continuation (poξo
1−η and piξi

1−η).
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4.1 A comparison of the insolvency resolution mechanisms

Previously, we showed that managers choose a low (high) loan volume and a low (high)

jump exposure level if the reward κ for taking on crash risk is below (above) a critical

threshold κj that depends on the prevailing IRM. If κ varies across banks (due to

differences in banks’ operating efficiency or loan selection skills), and follows some

distribution, then all banks with a κ below (above) κj are (in)solvent following a crash.

As such, an IRM with a lower threshold κj leads to a higher insolvency rate in the

banking industry.

In what follows we compare the critical thresholds κj, the cost of debt, the bank’s

optimal investment and payout policies, its exposure to crashes, and managers’ claim

value across the three IRMs.

Proposition 5 If the parameters are such that conditions (21) and (22) hold, then we

have the following comparison results across different IRMs where vj ≡ pjξ
1−η
j denotes

the dilution-adjusted continuation probability of insiders:

i ) Loan quality is highest (lowest) under the bail-in (liquidation) regime, i.e.:

fb ≥ fo ≥ fi if either vi ≥ vo, or vo > vi and (1 + h)(1− τ) < κ < vo(1+h)(1−τ)
vo−vi .

ii ) The cost of bank debt is highest (lowest) under the liquidation (bailout) regime:

ρb(lb, fb) > ρi(li, fi) ≥ ρo(lo, fo) = ρ

iii ) The asset to net worth ratio is highest (lowest) under the bailout (bail-in) regime:

lo(fo) ≥ lb(fb) ≥ li(fi)

iv ) Managers’ claim value is highest (lowest) under the bailout (liquidation) regime:

Mo(N) > Mi(N) > Mb(N) if vo ≥ vi

v ) The payout yield is highest (lowest) under the liquidation (bailout) regime:

qb > qi > qo if vo ≥ vi
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vi ) The critical crash risk premium above which managers put the bank at risk of

insolvency is highest (lowest) under the liqidation (bailout) regime, i.e.:

κb > κi > κo if vo ≥ vi

i) Managers face a tradeoff when setting the optimal loan quality. On the one hand, a

high crash exposure f (i.e. low loan quality) improves the risk-adjusted performance

of the leveraged equity.19 On the other hand, managers’ residual claim value after a

resolution is proportional to (1− f)1−η and as such a low f preserves a larger fraction

of residual value. For example, the choice of f = 1 delivers the best risk-adjusted

performance of the leveraged equity but at the same time the assets are completely

wiped out in a crash leaving managers with nothing in the aftermath. The tradeoff

depends on the managers’ (dilution-adjusted) continuation probability vj which acts

as a weighting attached to the residual claim value.

If managers anticipate an insolvent bank is always liquidated then there is no trade-

off involved. They simply expose 100% of the firm’s assets to crash risk for maximum

return (i.e. fb = 1). Under bailout with vo > 0, however, the residual claim and

managers’ infinite marginal utility near zero provide them with an incentive to keep

some “skin” in the game. This explains why fo < 1 = fb (and similarly why fi < 1 for

bail-in). Therefore, the liquidation IRM leads to the lowest loan quality.

The comparison of fo and fi is more subtle and crucially depends on vo and vi.

Consider first the case vi ≥ vo. Increasing f generates a higher risk adjusted per-

formance of the equity under bailouts than bail-ins. If vi ≥ vo the managers have a

stronger incentive to retain a residual claim under bail-ins than under bailouts. Hence,

the trade-off that determines the optimal f unambiguously implies that fi ≤ fo.

19The relevant criterion here is: (µ+ κλf − ρj)lj + ρj − ησ2

2 l2j which resembles the classical mean-

variance performance measure adopted by a risk averse agent. In the cases of liquidation and bail-in,

a higher f increases both the loan return and cost of debt, but the net effect on the performance

measure is positive at the optimally chosen lj .
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The intuition is less clear when vo > vi. Bailouts favor a higher f than bail-ins

in terms of risk-adjusted performance but a lower f in terms of their residual claim

value (since vo > vi). The ranking of fi and fo becomes ambiguous in general, but

fi < fo still holds under an additional condition κ < vo(1+h)(1−τ)
(vo−vi) which can be restated

as vo−vi
vi

< (1+h)(1−τ)
κ

. Hence, fi < fo as long as vo does not exceed vi too much.

ii) The cost of debt is highest in the liquidation regime, because (1) lenders only receive

the proceeds from liquidation and (2) there are no liquidation proceeds (since fb = 1).

In a bail-in lenders acquire a claim on the assets of the restructured bank. Creditors

are strictly better off than under the liquidation regime because (1) h > 0 and (2)

the bailed-in bank has a positive asset base (fi ≤ 1). Therefore, ρi(li, fi) < ρb(lb, fb).

Finally, debt is risk free in the bailout regime, and therefore ρo = ρ.

iii) Loan issuance (i.e. the asset to net worth ratio) is highest under the bailout regime

because of the low cost of debt (ρo = ρ). Next, the amount of loans issued under

the liquidation regime is higher than under the bail-in regime. Even though the cost

of debt is highest under the liquidation regime, crash risk exposure is much higher

under the liquidation regime (fb = 1) than under the bail-in regime. Since investment

increases in f , the higher risk exposure f under the liquidation regime dominates and

causes investment to be higher under liquidation than bail-in (i.e. lb(fb) ≥ li(fi)).

iv) Consider next managers’ claim value Mj. Managers are best (worst) off if insolven-

cies are resolved through bailouts (liquidation). Under the liquidation regime managers

get nothing when the bank becomes insolvent. Under a bail-in, the restructuring cre-

ates extra value to creditors. This reduces the cost of debt. Furthermore, under a

bail-in the bank carries on as a going concern, which creates space for a managerial

severance claim. Finally, managers fare best under the bailout regime because the

cost of debt is lowest, loan issuance is highest generating higher growth, and managers

remain in post with some positive probability vo.
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v) Total payout equals dt+rt = (1+αm)qjNt and is proportional to managers’ rent pay-

out yield qj (≡ rt/Nt). From Proposition 1 it follows that Mj = N1−η/
[
(1− η)mqηj

]
.

Therefore (see iv), payout is inversely related to managers’ claim Mj. Consequently,

payout is highest under the liquidation regime and lowest under the bailout regime.

Under the former managers want to milk the firm before it is liquidated, whereas under

the latter managers prefer to reinvest profits for long term growth.

vi) The ranking for κj shows that managers are most (least) likely to put the bank at

risk of insolvency under the bailout (liquidation) regime. The explanation mirrors the

previous argument why managers most (least) prefer the bailout (liquidation) regime.

If one considers an industry of banks with different levels of κ then the critical threshold

κj determines the insolvency rate in a crash. The bailout (liquidation) regime generates

the highest (lowest) insolvency rate. Put differently, one could say that the bailout

(liquidation) regime makes managers most (least) prone to put the bank at risk of

insolvency. This is an important caveat that should be kept in mind when evaluating

the results regarding value creation in Section 6.

4.2 Comparative statics

Table 2 numerically illustrates our model and shows the net debt ratio (Dj/Aj), the

crash risk exposure (fj), and insiders’ payout yield (qj) for the three IRMs. An asterix

in the table indicates that the bank is safe and engages in asset sales when a crash

happens.

Although our parameter values for µ′, σ′, ρ′ and τ are standard, some model pa-

rameters values are less standard and set to reproduce the rich spectrum of possible

outcomes that our model encapsulates. In particular, we choose a relatively low co-

efficient of relative risk aversion (η = 0.65) because for η ≥ 1 banks never become

insolvent and always operate within the asset sales regime. Insiders’ subjective dis-
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count rate (δ = 0.4) is set high enough to ensure that the transversality condition

is satisfied for all parameter combinations. This condition imposes a restriction on

the rate of growth of the net worth process to ensure insiders’ claim value remains

bounded. δ does not affect the net debt ratio (NDR), nor the bank’s crash risk expo-

sure f . A lower δ does, however, reduce insiders’ payout yield q as it makes insiders

more patient.20 The base values for the crash arrival rate (λ = 0.05) and the risk

premium parameter (κ = 2) imply that for f = 0.9, the expected before-tax return on

the bank’s assets is E[dA/A] = µ′+λf(κ′− 1) = 0.145. For the bail-in regime we need

to make additional assumptions regarding the bank’s market to book value (MBV) w∗

and the gearing ratio l∗ adopted by the resolution authority after the bail-in. MBVs

and gearing (l) within the banking industry are empirically observed and reported. We

set w∗ = 1.3 and l∗ = 5.21

The table illustrates that the safe regime occurs most (least) often in the liquidation

(bailout) regime, reflecting our earlier result that κb > κi > κo. For our parameter

combinations, banks are safe under the bailout regime only if there is no crash risk

(λ = 0). Under the bail-in regime, banks remain safe for zero crash risk, and for high

insider risk aversion (η = 0.8). Under the liquidation regime, banks remain safe for

zero crash risk, high insider risk aversion, low expected return on assets (µ = 0.08) and

a low crash risk premium (κ = 1.8). The absence of a safety net under the liquidation

regime discourages insiders from putting the bank at risk of insolvency and mitigates

risk taking, but only up to some point, as we show below.

Under the asset sale regime banks adopt a low NDR and low crash risk exposure.

20Reducing δ from 0.4 to 0.35 for the base parameter case reduces the payout yields in, respectively,

the liquidation, bailout, and bail-in regimes from 11.1%, 8.7% and 10.8% to 9.5%, 7.2% and 9.3%.
21MBVs in the banking industry are relatively low. Bogdanova, Fender and Takats (2018) show

that price-to-book ratios of major US banks averaged about 1.3 in 2017. Banks have been delevering

since the financial crisis. For example, Cohen and Scatigna (2016) report that the ratio of capital to

total risk-weighted assets for US commercial banks rose from 13.9% in 2009 to 17.4% in 2012. Capital

is defined as common equity and does not include preferred shares or hybrid securities.

30



The NDR of safe banks ranges under the three IRMs from 43.7% to 66.2%. Crash risk

exposure ranges from 7.2% to 18.7%. Payout yield ranges from 11.4% to 11.7%. A low

NDR and low crash risk exposure means that the bank’s equity cushion is sufficiently

large to withstand a sudden drop in the value of the bank’s assets.

Introducing insolvency risk causes a discrete upward shift in both the NDR and

crash risk exposure, and generates a larger dispersion in the payout yield. The NDR

now ranges from 77.6% to 93.2. Crash risk exposure ranges from 89.1% to 100%.

Insiders’ payout yield ranges from 1.9% (for λ = 0.1 under the bailout regime) to

11.7% (for µ′ = 0.08 under the liquidation regime). Under the bailout regime, insiders

prefer to reinvest income for future growth and therefore pay out very little. This has

important implication for the bank’s market value (see Section 6).

Comparing the three IRMs the table confirms the results in Proposition 5. Condi-

tional on the bank being at risk of insolvency, the NDR is highest (lowest) for bailout

(bail-in). For the base case parameters the NDR equals 83.1%, 88.6% and 82.6% for

respectively the liquidation, bailout, and bail-in regime. Crash risk exposure is highest

(lowest) for the liquidation (bail-in) regime and equals 100%, 98.8% and 93.6% for the

liquidation, bailout and bail-in regimes, respectively. Payout yield is highest (lowest)

for the liquidation (bailout) regime and equals 11.1%, 8.7% and 10.8% for the liqui-

dation, bailout and bail-in regimes, respectively. The bail-in regime reduces leverage

and mitigates risk taking relative to the liquidation and bailout regime, but the effect

is modest for the parameter combinations we consider. As predicted, the liquidation

regime encourages maximum exposure to risk that crystalizes in bankruptcy.

The table allows us to gauge the effect of parameter changes on the control variables.

Increasing the expected return on assets (µ′), the crash risk premium (κ′), or the

crash arrival rate (λ) has a positive effect on the NDR and crash risk exposure, but

a negative effect on insiders’ payout yield. E.g., increasing µ′ from 8% to 12% under

the bail-in regime increases the optimal NDR from 77.6% to 85.6%, and crash risk

31



exposure from 90.7% to 95.3%, whereas insiders’ payout yield drops from 11.6% to

10%. Increasing return volatility (σ′) and risk aversion (η) decreases the NDR and

crash risk exposure, but increases the payout yield. For example, under the bail-

in regime increasing volatility σ′ from 0.18 to 0.22 reduces the NDR from 86.0% to

78.7%, and crash risk exposure from 95.5% to 91.3%, whereas insiders’ payout yield

increases from 10.4% to 11.2%. Finally, taxes increase the NDR but do not affect crash

risk exposure nor the payout yield.

5 Value at risk

Since its inception in the 1990s, value at risk (VaR) has become the standard by

which risk is managed by financial institutions and measured by regulators today. We

are not aware of any study that has examined the effect of the IRM on VaR. Our

analysis focuses on the change in the asset value of the bank and looks at its VaR

under different IRMs. Let Ãt be the asset value at time t. Since the bank adopts a

constant leverage target under each IRM, Ãt = ljNt for the liquidation and bailout

regimes (i.e. j = b, o). For the bail-in regime (j = i), the investment ratio changes

from li to l∗ after the bank is bailed-in at T1, and as such Ãt = l∗Nt for t > T1. Denote

by F j
t (x) ≡ P (Ãt/Ã0 ≤ x) the probability distribution function of the asset return at

time t under IRM j. We define V aRj
p(t) as the percentage loss threshold over a time

horizon t when the probability of breach is p, i.e:

P (1− Ãt/Ã0 ≥ V aRj
p(t)) = p (28)

This can be expressed in terms of the inverse of F j
t (x) as:

V aRj
p(t) = 1 − (F j

t )−1(p) (29)

Analytical expressions for V aRj
p(t) can be derived directly from equation (29) for the

liquidation and bailout regime. For the bail-in regime we need to make additional
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assumptions regarding the bank’s market to book value (MBV) w∗ and the corporate

policies (l∗, f ∗, q∗) adopted by the resolution authority after the bail-in.

The market value of the bank’s equity immediately after the bail-in is given by

w∗NT1 = E

[∫ ∞
T1

e−ρ(t−T1)(rt + dt)dt

∣∣∣∣NT1

]
= (1 + αm)q∗E

[∫ ∞
T1

e−ρ(t−T1)Ntdt

∣∣∣∣NT1

]
(30)

from which we can obtain:

w∗ =
(1 + αm)q∗

ρ− g∗ + λf ∗l∗
=

(1 + αm)q∗

mq∗ − [µ+ (κ− 1)λf ∗ − ρ]l∗
(31)

Finally, we assume that the resolution authority sets the loan quality f ∗ to maximize

the bank’s market value, but subject to the constraint that the bank will not become

insolvent in future, i.e. l∗ ≤ 1/f ∗. Since the MBV w∗ is increasing in f ∗, we obtain

the corner solution f ∗ = 1/l∗. This choice for f ∗ implies that the bank’s net worth

will drop exactly to zero when another crash hits a bank that was previously bailed in.

This means that the bank disappears after the second bail-in.22

The analytical expressions for V aRj
p(t) (j = b, i, o) in Appendix 8.2 are fairly com-

plicated and hard to interpret. The numerical plot for the term structure of VaR (see

Figure 2) conveys a clearer picture. The parameter values used to generate Figure

2 are the same as for Table 2. As to be expected, the VaR increases with the time

horizon t for all three IRMs. The VaR is determined by the bank loans’ exposure to

continuous diffusion risk and rare crash risk. The former affects VaR in the short run

through gearing (l), whereas the latter kicks in over the longer term through jump risk

exposure (f). Under the bail-in regime, banks have the lowest leverage and the lowest

crash risk exposure. Consequently, VaR is lowest under the bail-in regime. Under the

bailout regime, banks have higher gearing (lo > lb), but lower crash exposure (fb > fo)

22One could, under different assumptions, let the bank go through an infinite number of bail-ins.

E.g. we could assume that l∗ = li, q
∗ = qi, f

∗
i = fi, and then pin down w∗ using the condition

w∗NT1
=
∑∞
j=1E

[∫ Tj+1

Tj
ξj−1i e−ρ(t−T1)(rt + dt)dt

∣∣∣∣NT1

]
.
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than under the liquidation regime. As a result VaR is higher (lower) under the bailout

regime than under the liquidation regime for short (long) horizons. Note how VaR

shoots up to 100% VaR at t = 1.026 for the liquidation regime, because crashes result

in total loss (fb = 1) when a crash occurs. This critical time point is related to the

lower 5-percentile (p = 0.05) of the exponential distribution with arrival rate λ = 0.05.

This critical time point equals (1/λ) ∗ ln(1/(1 − p)), which is the mean time of jump

arrival multiplied by an adjustment factor for the p% VaR significance level.23

Our analysis demonstrates that IRMs have important implications for the VaR

of financial institutions. Furthermore, the bank’s VaR depends non-trivially on the

horizon being considered. Our results highlight the limitations of short horizon (e.g.

one day ahead) VaR measures. Finally, our VaR measure uncovers dimensions of risk

that are not captured by the credit spread on bank debt (ρj − ρ). For example, bank

debt may be subject to little or no credit risk under the bailout regime, and at the

same time the bank may have the highest VaR for short horizons.

6 Bank Value and IRMs

In this section we examine which IRM maximizes the bank’s total market value (net

of any recapitalizations). We find that the bailout regime generates the highest bank

value. We show that it is feasible to set up a self-financing bailout fund in which banks

make contributions during good times that cover the expected costs of bailouts. We

illustrate how such a bailout fund can be implemented in our setting without altering

insiders’ incentives regarding loan volume and loan quality.

23Under the bailout regime, VaR asymptotically approaches 100% (as t→∞) but never reaches this

level as the bank is being recapitalized after each crash. Under the bail-in regime VaR reaches 100%

after the second crash. This is not noticeable in the figure as the critical time point that corresponds

to the second crash equals 7.07 (as given by the solution to (49) in Appendix 8.2), which is in the

distant future.
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Under the optimal policies, the bank’s total net worth has the dynamics defined in

(6) (for j = b, o, i). Since debt is competitively priced, our analysis can be restricted to

the value created for inside and outside equityholders. Recall that the total payout to

both outside and inside equityholders is dt + rt = (1 +αm)qjNt. The net market value

created is the expected discounted value of the payout flow net of any capital injections.

We assume that market participants are well diversified and have a subjective discount

rate δ(> ρ).24 We calculate the net market value for each IRM using risk neutral

valuation and also compare the Internal Rate of Return (IRR) across mechanisms.

In liquidation all proceeds go to lenders.25 Hence, equityholders only receive a

payout up to the arrival time of the first crash. The net market value created under

the liquidation regime, Wb, is therefore:

Wb ≡ E

[∫ T1

0

e−δt(rt + dt)dt

]
−N0

where T1 is the random arrival time of the first shock.

Under the bailout regime the bank operates forever, but new capital is injected

after every crash. The net market value created is given by:

Wo ≡ E

[∫ ∞
0

e−δt(rt + dt)dt

]
− E

[
∞∑
k=0

e−δTkNTk

]
≡ Io − Co

where Tk is the k-th arrival time of the Poisson shock and T0 ≡ 0.

Under the bail-in regime inside and outside equityholders receive a combined payout

flow rt + dt up to the first shock, after which they receive a fraction ξi of the bank’s

24For example, if all market participants are mortal and subject to sudden death with Poisson arrival

rate ω, then δ ≡ ρ+ ω (assuming sudden death is uncorrelated with other shocks in the economy).
25We also considered the scenario where a new group of investors and managers step in after

liquidation to set up a new bank. The liquidation proceeds from the failed bank are taken as the new

asset base. In this case, the payout flow exists indefinitely but any subsequent capital injections have

to be taken into account. The net value created is higher in general, but the rate of return remains

the same.
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post bail-in equity. The net market value created is given by:

Wi ≡ E

[∫ T1

0

e−δt(rt + dt)dt

]
+ E

[
e−δT1ξiw

∗ (1− fi)AT1−
l∗

]
−N0

where
(1−fi)AT1−

l∗
is the book value of the equity after the bail-in and w∗ the correspond-

ing market to book value ratio. Note the change in net worth following a crash:

(1− fi)AT1−
l∗

=
(1− fi)AT1−

li

li
l∗

= (1− fi)
li
l∗
NT1− ≡ Φi(li, fi)NT1−. (32)

The following proposition states the net market value created and the IRR under each

IRM. The proposition holds for any constant target loan exposure level f , and thus

also for the optimally chosen fj under IRM j.

Proposition 6 Suppose that δ+λf − gj > 0,26 and that κ > κj for j = b, o, i then the

net market value created by the bank under IRM j is given by:

Wb(N0; f) =

(
qb(1 + αm)

δ + λ− gb
− 1

)
N0, (33)

Wo(N0; f) = Io − Co ≡
(1 + αm)qo
δ + λf − go

No −
δ + λ− go
δ + λf − go

N0 (34)

Wi(N0; f) =

[
(1 + αm)qi + λΦi(li, fi)ξiw

∗

δ + λ− gi
− 1

]
N0 (35)

The internal rate of return (IRR) is:

δj(f) = ρj + (µ+ κλf − ρj)lj − λ for j = b, o (36)

δi(f) = ρi + (µ+ κλf − ρi)li − λ [1− Φi(li, f)ξiw
∗] (37)

The expressions for the breakeven hurdle rate are very similar across the three mech-

anisms with the following components: ρj + (µ + κλf − ρj)lj is the leveraged return

of the loans, λ is the default intensity, and 1 − Φiξiw
∗ reflects the fractional loss to

existing equityholders and managers in bail-in. Note that equityholders are likely to

be wiped out in a bail-in and therefore ξi ≈ 0. We can prove the following proposition.

26Recall that gj is the growth rate of the net worth under IRM j as defined in (6) and (18).
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Proposition 7 If managers optimally choose the crash risk fj and the parameters are

such that ξi = 0, µ′−ρ′
(σ′)2η

> 2 and δ > gj − λfj for j ∈ {b, o, i} then the bank’s value

creation is highest (lowest) under the bailout (bail-in) regime for both the IRR and the

net market value criteria, i.e.:

δo(fo) > δb(fb) > δi(fi)

Wo(N0; fo) > Wb(N0; fb) > Wi(N0; fi)

The discount rate δ used for computation of Wj is restricted to δo(fo) > δ > δi(fi).

Under managers’ optimal risk exposure, bailouts and bail-ins create the highest and

lowest net value, respectively. At first sight, Wb(N ; fb) > Wi(N ; fi) might appear sur-

prising considering that managers prefer bail-in to bankruptcy (i.e. Mi(N) > Mb(N)).

This ranking is primarily driven by the fact that managers pick loans with 100% crash

exposure in the liquidation regime, and the associated high return is more favorable

under a risk-neutral market valuation criterion. It should be noted that we assumed

there are no bankruptcy costs. Introducing bankruptcy costs could cause the IRR and

net market value for liquidation to drop below the IRR and net market value for bail-in.

The highest net value is achieved under the bailout regime. The payout stream

generated under the bailout regime more than compensates for the recapitalizations in

crashes. Therefore, we can create a self-financing bailout fund. For instance, we can

make the fund a recipient of dividends alongside outside equityholders by splitting the

fraction α of free cash flows that currently accrue to outside equityholders into two

components: a fraction α1 going to outside equityholders and a fraction α2 going to

the bailout fund (with α1 + α2 = α). Since the optimal loan volume (lo) and loan

quality (reflected by fo) do not depend on α, the creation of the fund does not alter

insiders’ lending incentives. How big does α2 have to be to meet the expected costs

of recapitalizations? Using equation (34), α2 is the solution to α2qo/(1 − α1 − α2) =

(δ + λ− go). Solving for α2, and using the equation (10) for qo gives the following:
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Corollary 1 The expected costs of future bailouts can be covered by putting a fraction

α2 of total payouts into a bailout fund, where α2 is given by:

α2 =
(δ + λ− go)η

λ+ δ − (1− η)H0

≤ 1 ⇐⇒ δ ≤ δo (38)

The higher investors’ discount rate δ, the larger the bank’s required contribution to

the bailout fund. As δ converges to δo, the bank’s IRR, 100% of the bank’s payouts

go into the bailout fund (i.e. α2(δo) = 1), leaving nothing for inside and outside

equityholders. The corollary demonstrates that bailouts can be self-financing and need

not rely on tax payers’ money, provided that the bank generates a strictly positive

NPV net of recapitalization costs. Considering that bailouts also generate the most

value (compared to liquidation and bail-ins), our model suggests there is a strong case

for retaining bailouts as a possible tool for resolving bank insolvencies.

7 Policy implications and conclusion

In the wake of the financial crisis a new framework for resolving bank insolvencies is

being developed. Some politicians have argued that governments must commit never

to bail out banks again. This may be throwing out the baby with the bath water.

Leaving aside the fact that bailouts are a quick way to contain systemic risk, our

model shows that, from a micro-prudential perspective, banks create the most value

net of any recapitalization costs under the bailout regime. The implicit government

guarantee subsidizes the cost of borrowing, which increases loan issuance and growth.

On the downside, banks insolvency rates and VaR (for short horizons) are likely to be

highest under the bailout regime. The exposure of bank assets to crashes can be kept

low by giving insiders skin in the game in the event of a bailout. Excessive risk taking

can be curbed by penalizing (rather than rewarding) managers for failure. To avoid

that tax payers have to bail out banks, a fraction of total bank payouts during good

times can be put in a bailout fund to cover expected bailout costs. Such a bailout fund
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is viable if banking (net of recapitalization costs) is a positive NPV activity before

and after the bailout. Our model supports empirical evidence that bailouts can be an

efficient way of resolving bank crises.27

Banks are least prone to insolvency under the liquidation regime. However, given

that managers receive nothing in liquidation (lenders have a senior claim) they have

a strong incentive to take on maximum exposure to states of the world that lead to

liquidation by issuing loans of the lowest quality. Hence the liquidation regime leads

to the largest loss in default, and the highest VaR for long horizons.

If the aim is to keep the amount of lending as well as the banks’ exposure to crashes

low then bail-ins can be a superior alternative to liquidation or bailouts. Bail-ins also

lead to the lowest VaR. The price to pay is that banks grow more slowly and generate

less value under the bail-in regime. Our model also highlights a number of caveats

associated with bail-ins. First, banks need a sufficient amount of unsecured creditors

that can be bailed in. If managers know how large the shock and resulting losses in

crashes are (as is the case in our model), then they know how much unsecured, bail-

inable debt is required. Problems arise if losses are larger than expected and depositors

are at risk. This could trigger a bank run and cause the bail-in to unravel. Second,

whether bail-ins mitigate managers’ incentives to issue low quality loans, depends on

managers’ payoff in a bail-in. As with bailouts, it is important that managers’ fortunes

remain closely linked at all times to the state of the bank; managers may have to be

punished in the event of heavy losses. The BRRD stipulates that management should

in principle be replaced in a bail-in. If that means that managers have no liability and

27Dell’Ariccia, Detragiache and Rajan (2008) show that banking crises have real effects, partially

through the lending channel. Looking at various international cases of banking crisis, Dewatripont

(2014) finds that speedy recapitalization through a bailout is crucial to minimize the effect on the

economy. He shows that in many cases the public money is eventually repaid in full, and argues that

the negative impact of bailouts in terms of moral hazard and of taxpayer risk can be contained by

punishing managers and shareholders that receive bailouts.
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walk away scot-free then merely replacing managers could exacerbate moral hazard

problems. Third, while a bail-in turns an insolvent bank into a solvent one, it does not

inject any new capital (unlike bailouts). Bail-ins may therefore not resolve a bank’s

liquidity problems. Finally, a bail-in (or bailout for that matter) cannot turn a bank

that is inherently unprofitable into one that is profitable. If no part of the bank is

viable on its own, then liquidation is inevitable.

While bail-ins have some advantages over liquidation and bailouts, they also have

potential weaknesses that we overlooked. Gleeson (2012) and Avgouleas, Goodhart

and Schoenmaker (2013) note that the restructurings required in a bail-in (such as

breaking up the bank) may be hard to achieve for multinational banks in the absence

of an internationally agreed system. Furthermore, bail-ins could increase systemic risk

if bail-in debt is owned by other banks. This suggests that future research on IRMs

should attempt to study their effect on the global banking sector and wider economy.

8 Appendix

8.1 Proofs of the main results

Proof of Proposition 1. The Hamilton-Jacobi-Bellman (HJB) equation associated

with equation (7) has the following general form:

δMj(Nt) = max
qt,lt,f

{
u(qtNt) −mqtNt

∂Mj(Nt)

∂Nt

+ [µ+ κλf − ρj(lt, f)]ltNt
∂Mj(Nt)

∂Nt

+
1

2
σ2l2tN

2
t

∂2Mj(Nt)

∂N2
t

+ ρj(lt, f)Nt
∂Mj(Nt)

∂Nt

+ λ [pjMj(φj(lt, f)Nt)−Mj(Nt)]

}
(39)
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Conjecturing the value function in form of Mj(N) =
CjN

1−η

1−η , the HJB equation can be

written as:

λ+ δ

1− η
= max

q>0,l,f

{
q1−η

Cj(1− η)
−mq + [µ+ κλf − ρj(l, f)]l − σ2η

2
l2

+ ρj(l, f) +
λpj

1− η
[φj(l, f)]1−η

}
(40)

The right-hand-side of (40) decouples into:

max
q>0

{
q1−η

Cj(1− η)
−mq

}
+max

l,f

{
[µ+ κλf − ρj(l, f)]l − σ2η

2
l2 + ρj(l, f) +

λpj
1− η

[φj(l, f)]1−η
}

In every regime, the optimal q is given by a simple first order condition leading to

q∗ = (mCj)
−1/η. Meanwhile, the feasible domain of (l, f) depends on whether we

are in the solvency or insolvency regime. For j = s the constraint is l ≤ 1/f where

for j = b, o, i we have l > 1/f instead. The optimal (l, f) can then be obtained by

maximizing the following investment objective function on the relevant regime:

max
l,f

Gj(l, f) ≡ max
l,f

{
[µ+ κλf − ρj(l, f)]l − σ2η

2
l2 + ρj(l, f) +

λpj
1− η

[φj(l, f)]1−η
}

Denote the optimizers by lj and fj, and the optimized investment function by Hj ≡

Gj(lj, fj). The unknown claim value multiplier Cj can be solved by putting q = q∗,

l = lj and f = fj in (40) which gives η
1−ηm

1− 1
ηC
− 1
η

j + Hj − λ+δ
1−η = 0 and in turn

Cj =
[

η
λ+δ−(1−η)Hj

]η
mη−1. Cj is well-defined for as long as Hj <

λ+δ
1−η .28 Cj is increasing

in Hj since we work under η < 1. Thus to compare the managers’ claim value under

different regimes, it is sufficient to compare the Hj’s.

Proof of Proposition 2. In the asset sales regime, ρs = ρ, φs(l, f) = 1− fl and

ps = 1. Then the investment objective function is:

Gs(l, f) ≡ (µ+ κλf − ρ)l − σ2η

2
l2 + ρ+

λ

1− η
(1− fl)1−η

and our goal is to find the pair (l, f) satisfying l ≤ 1/f and 0 ≤ f ≤ 1 which maximizes

Gs(l, f).

28Indeed, Hj <
λ+δ
1−η is the necessary and sufficient condition for the managers’ claim to have finite

value under regime j.
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The solution strategy is the following sequential optimization approach which we

will also adopt for the other regimes. In the first stage, we consider f as a given constant

and we find l satisfying l ≤ 1/f which maximizes Gs(l, f). Denote the maximizer by

ls(f) which depends on the value of the fixed f . Then the second stage optimization

involves finding 0 ≤ f ≤ 1 which maximizes Gs(ls(f), f). Suppose the maximizer is fs.

Then the pair of optimizers to the original problem is given by (ls(fs), fs).

In the first stage problem, direct differentiation gives ∂
∂l
Gs(l, f) = µ + κλf − ρ −

σ2ηl− fλ
(1−fl)η and ∂2

∂l2
Gs(l) = −σ2η−f 2λη(1−fl)−η−1 < 0. Note that ∂

∂l
Gs(l, f)→ −∞

as l→ 1
f
, and since κ > 1 we have ∂

∂l
Gs(l, f)

∣∣∣
l=0

= µ+ (κ− 1)λf − ρ > µ− ρ > 0. The

first order condition:

µ+ κλf − ρ− σ2ηl − fλ

(1− fl)η
= 0 (41)

has exactly one root given by some ls(f) ∈ (0, 1/f) which is the maximizer of Gs(l, f)

on l ≤ 1/f under a fixed f .

Write Hs(f) ≡ Gs(ls(f), f). In the second stage problem we want to find 0 ≤ f ≤ 1

maximizingHs(f). Since ls(f) satisfies the first order condition ∂Gs
∂l

∣∣∣
l=ls(f)

= 0, we have:

H ′s(f) =
∂Gs

∂l

∣∣∣
l=ls(f)

× dls(f)

df
+
∂Gs

∂f

∣∣∣
l=ls(f)

= λls(f)

(
κ− 1

(1− fls(f))η

)
=
ls(f)

f

(
−µ+ ρ+ σ2ηls(f)

)
where the last equality is due to (41). The first order condition H ′s(f) = 0 gives

ls(f) = µ−ρ
σ2η

,29 and the associated f is obtained from κ − 1
(1−fls(f))η = 0 leading to a

candidate solution f = fs ≡ σ2η
µ−ρ

(
1− κ−

1
η

)
. Note that ls(fs)fs = 1 − κ−

1
η < 1. The

condition µ−ρ
σ2η

> 1 ensures fs < 1.

We have shown that H ′s(f) = 0 has a unique root at some 0 < fs < 1. It remains

to check this candidate solution fs indeed corresponds to a maximum of Hs(f). By

29It is easy to check that ls(f) = 0, the alternative solution of the first order condition, will lead to

a candidate optimizer f = − µ−ρ
λ(κ−1) < 0 which is not feasible.
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considering (41), it can be easily verified that ls(0) = µ−ρ
σ2η

> 0 and ls(1) < 1. Hence

H ′s(0) = (κ − 1)λls(0) > 0 and H ′s(1) = ls(1) (−µ+ ρ+ σ2ηls(1)) < 0. Then we must

have H ′s(f) ≥ 0 for 0 ≤ f ≤ fs and H ′s(f) ≤ 0 for fs ≤ f ≤ 1. We conclude a maximum

is attained at fs.

Proof of Proposition 3 and 4 (Complemented by the internet appendix).

In each of the following subsections, we will first prove for each IRM the form of the

optimal lj and fj (i.e. Proposition 4), and then verify the existence of κj above which

managers will put the bank at risk of insolvency (i.e. Proposition 3).

(i) Liquidation regime

In the liquidation regime, ρb(l, f) = ρ + λ(1 − τ)
[
fl−1
l−1

]
, φb = 0 and pb = 0. The

investment objective function is then:

Gb(l, f) ≡ (µ+ κλf − ρb(l, f))l − σ2η

2
l2 + ρb(l, f)

= (µ+ (κ− 1 + τ)λf − ρ)l − σ2η

2
l2 + ρ+ λ(1− τ)

We first find the maximizer of the above function over l > 1
f

under a fixed f . There

are two possibilities. If 1/f < lb(f) ≡ µ+(κ−1+τ)λf−ρ
σ2η

, then since l = lb(f) solves the

first order condition:

∂

∂l
Gb(l, f) = µ+ (κ− 1 + τ)λf − ρ− σ2ηl = 0 (42)

and Gb is concave in l, it must attain the maximum at l = lb(f) on l > 1/f . Otherwise if

1/f ≥ lb(f), then Gb is strictly decreasing in l on l > 1/f and the maximum is attained

at 1/f . If we define f̂b ∈ (0, 1) as the unique solution to the equation lb(f) = 1/f or

equivalently:

ζb(f) ≡ µ+ (κ− 1 + τ)λf − ρ
σ2η

− 1

f
= 0

then the condition 1/f < (≥)lb(f) is equivalent to f > (≤)f̂b. The optimized value
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function is hence given by:

Hb(f) ≡

Gb

(
1
f
, f
)

= (µ+(κ−1+τ)λf−ρ)
f

− σ2η
2f2

+ ρ+ λ(1− τ), f ≤ f̂b

Gb (lb(f), f) = (µ+(κ−1+τ)λf−ρ)2
2σ2η

+ ρ+ λ(1− τ), f > f̂b

In the second stage of the optimization problem we differentiate Hb(f) on f ≤ f̂b

and f > f̂b respectively. On f > f̂b, H
′
b(f) = λ(κ − 1 + τ)µ+(κ−1+τ)λf−ρ

σ2η
> 0. On

f ≤ f̂b:

H ′b(f) =
d

df
Gb

(
1

f
; f

)
=

∂

∂l
Gb(l, f)

∣∣∣
l=1/f

× d

df

(
1

f

)
+

∂

∂f
Gb(l, f)

∣∣∣
l=1/f

= − ∂
∂l
Gb(l, f)

∣∣∣
l=1/f

× 1

f 2
+ λ(κ− 1 + τ)

1

f
≥ 0

since Gb(l, f) is decreasing for all l ≥ 1/f when f ≤ f̂b and hence ∂
∂l
Gb(l, f)

∣∣∣
l=1/f

≤ 0.

In both cases, Hb is increasing in f such that it is maximized at f = fb ≡ 1. The

corresponding investment level is lb(fb) = µ+(κ−1+τ)λ−ρ
σ2η

.

To show the existence of κb above (below) which managers will prefer a risky (safe)

bank and engage in liquidation (asset sales) in a crash, view Hb = Gb(lb(fb), fb) and

Hs = Gs(ls(fs), fs) as functions of κ and let Jb(κ) = Hb −Hs = Hb(κ) −Hs(κ). The

general strategy of the proof, which we will also adopt for the other regimes, is to show

that the function Jb is increasing in κ and thus there exists critical κb ≥ 1 such that

Hb ≥ (<)Hs when κ ≥ κb (1 ≤ κ < κb).

Since fs and ls(fs) are available in closed-form from Proposition 2, we can compute:

Hs = Gs(ls(fs), fs) =
(µ− ρ)2

2σ2η
+ κλ+ ρ+

λη

1− η
κ−

1−η
η

and then we obtain dHs
dκ

= λ− λκ−
1
η . On the other hand:

dHb

dκ
=

d

dκ

(
(µ+ (κ− 1 + τ)λ− ρ)2

2σ2η
+ ρ+ λ(1− τ)

)
=
µ+ (κ− 1 + τ)λ− ρ

σ2η
λ = lbλ

such that J ′b(κ) = λκ−
1
η + λ(lb − 1) > 0. Hence Jb(κ) is strictly increasing and there

exists κb ≥ 1 such that Jb(κ) < (≥)0 for 1 ≤ κ < κb (κ ≥ κb).
30

30Strictly speaking, to rule out the case of κb = ∞ we should also verify that Jb(∞) > 0. This
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(ii) Bailout regime

In the bailout regime we have ρo = ρ, φo(l, f) = (1 − f)ξo and po ∈ [0, 1]. If we

define vo ≡ poξ
1−η
o as the dilution-adjusted continuation probability of insiders (the

same notation we have used in Proposition 5), the investment objective function is:

Go(l, f) ≡ (µ+ κλf − ρ)l +
σ2η

2
l2 + ρ+

λvo
1− η

(1− f)1−η

Similar to the analysis of the liquidation regime, we can define f̂o ∈ (0, 1) as the unique

solution to the equation:

ζo(f) ≡ µ+ κλf − ρ
σ2η

− 1

f
= 0

Then under a fixed f the maximizer of Go(l, f) on l > 1/f is given by l = lo(f) ≡
µ+κλf−ρ

σ2η
when f > f̂o, or l = 1/f when f ≤ f̂o. Substituting the maximizer into

Go(l, f) gives optimized value function under a fixed f as:

Ho(f) ≡

Go(1/f, f) = µ+κλf−ρ
f

− σ2η
2f2

+ ρ+ λvo
1−η (1− f)1−η, 0 ≤ f ≤ f̂o

Go(lo(f), f) = (µ+κλf−ρ)2
2σ2η

+ ρ+ λvo
1−η (1− f)1−η, f̂o < f ≤ 1

If vo = 0, the optimization problem then resembles the one in the liquidation regime

and it is straightforward to verify that Ho(f) is increasing such that the maximum is

attained at fo ≡ 1. We only outline the strategy of the proof here for the case of vo > 0

and defer the technical details to the internet appendix. The main complication here

originates from the piecewise definition of Ho(f) on f ≤ f̂o and f > f̂o respectively

leading to two different first order conditions. Under condition (21) on the Merton

ratio µ−ρ
σ2η

> 1 + vo
κ

, we can show that Ho(f) is indeed monotonically increasing on

f ≤ f̂o and attains a global maximum on f > f̂o. Hence fo ∈ (f̂o, 1) is given by the

first order condition derived over the second regime of f̂o < f ≤ 1:

H ′o(f) =
κλ(µ+ κλf − ρ)

σ2η
− voλ

(1− f)η
≡ λκΘo(f) = 0 (43)

result is not hard to be established, and can be done by making use of the analytical expression of

Hs and observing that Hb has a quadratic growth for large κ. Note that it is possible to have κb = 1

and in this case Hb ≥ Hs for all κ ≥ 1.
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and the corresponding investment level is lo(fo) = µ+κλfo−ρ
σ2η

.

Finally, similar to the proof of the liquidation regime, the existence of κo can be

verified by showing that Jo(κ) ≡ Ho(κ) − Hs(κ) is increasing. We give the proof for

the case of vo > 0 as an illustration. The case of vo = 0 is easier since fo = 1 which

leads to an analytical expression of Ho.

Note that:

Ho = Go(lo, fo) = Go(lo(fo(κ);κ), fo(κ);κ)

which depends on κ explicitly via the definition of Go as well as implicitly via fo =

fo(κ) and lo(fo) = lo(fo(κ);κ). But since fo and lo satisfy the first order condi-

tions ∂Go
∂l

∣∣∣
l=lo,f=fo

= ∂Go
∂f

∣∣∣
l=lo,f=fo

= 0 when vo > 0, envelope theorem leads to dHo
dκ

=

∂Go
∂κ

∣∣∣
l=lo,f=fo

= λfolo. Then:

J ′o(κ) = H ′o(κ)−H ′s(κ) = λκ−
1
η + λ(folo − 1) > 0

as folo > 1 on the insolvency regime. Hence Jo(κ) is strictly increasing.

(iii) Bail-in regime

Under bail-in, ρi is given by (15), φi = (1 − f)ξi and pi ∈ [0, 1]. If we define

vi ≡ piξ
1−η
i , the investment objective function is thus:

Gi(l, f) = [µ+ κλf − ρi(l, f)]l − σ2η

2
l2 + ρi(l, f) +

λvi
1− η

(1− f)1−η

= {µ+ [κ− (1− τ)(1 + h)]λf − ρ+ λh(1− τ)}l − σ2η

2
l2 + ρ+ λ(1− τ)

+
λvi

1− η
(1− f)1−η (44)

As before, we first solve for the l maximizing Gi(l, f) over l > 1/f under a fixed

f which can be derived using the exact same argument as in the bailout case. In
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particular, the optimizer is given by:

l =


1
f
, f ≤ f̂i

li(f) ≡ µ+[κ−(1−τ)(1+h)]λf+λh(1−τ)−ρ
σ2η

, f > f̂i

where f̂i ∈ (0, 1) is the solution to the equation:

ζi(f) ≡ µ+ [κ− (1− τ)(1 + h)]λf + λh(1− τ)− ρ
σ2η

− 1

f
= 0

In the second stage problem, we are solving for f which maximizes Hi(f) where:

Hi(f) ≡Gi(1/f, f) = µ+[κ−(1+h)(1−τ)]λf−ρ+λh(1−τ)
f

− σ2η
2f2

+ ρ+ λ(1− τ) + λvi
1−η (1− f)1−η, f ≤ f̂i

Gi(li(f), f) = {µ+[κ−(1+h)(1−τ)]λf−ρ+λh(1−τ)}2
2σ2η

+ ρ+ λ(1− τ) + λvi
1−η (1− f)1−η, f > f̂i

When vi = 0, it is easy to verify that Hi(f) is increasing under the condition (22)

that κ > (1 + h)(1 − τ) such that the maximizer is given by f = fi ≡ 1, and then

li = li(fi) = µ+(κ−1+τ)λ−ρ
σ2η

> 1 = 1
(1+h)fi−h = l̂i(fi;h) such that ρi(li, fi) > ρ.

Suppose vi > 0. Define f̂i,h ∈ ( h
1+h

, 1) as the solution to the equation:

ζi,h(f) ≡ µ+ [κ− (1− τ)(1 + h)]λf + λh(1− τ)− ρ
σ2η

− 1

(1 + h)f − h
= 0

It can be easily seen that f̂i,h > f̂i from their constructions. Under condition (22) that

µ−ρ
σ2η

> 1+ vi(1+h)
κ−(1+h)(1−τ) , we show in the internet appendix that Hi is increasing on f ≤ f̂i

and attains an interior maximum at f = fi on f > f̂i where fi is given by the solution

to the first order condition:

Θi(f) ≡ µ+ [κ− (1− τ)(1 + h)]λf − ρ
σ2η

− vi
[κ− (1− τ)(1 + h)](1− f)η

= 0 (45)

Moreover, the condition on µ−ρ
σ2η

indeed also implies fi > f̂i,h. Hence 0 < ζi,h(fi) =

li(fi)− l̂i(fi;h) and as such ρi(li, fi) > ρ.
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The existence of κi can be proven using the same method as in the case of bailout.

Proof of Proposition 5. i) Since fb = 1 we must have fb ≥ fo and fb ≥ fi.

Further recall again that under conditions (21) and (22), fo and fi are the unique roots

of the equations in (43) and (45):

Θo(f) ≡ µ+ κλf − ρ
σ2η

− vo
κ(1− f)η

= 0

Θi(f) ≡ µ+ [κ− (1 + h)(1− τ)]λf − ρ+ λh(1− τ)

σ2η
− vi

[κ− (1 + h)(1− τ)](1− f)η
= 0

respectively. Note that:

µ+ [κ− (1 + h)(1− τ)]λf − ρ+ λh(1− τ) = µ+ κλf − ρ− λ(1− τ)[(1 + h)f − h]

< µ+ κλf − ρ

on f > h
1+h

. Moreover, vo
κ
< vi

κ−(1+h)(1−τ) provided that either vi ≥ vo, or vo > vi and

(1 + h)(1 − τ) < κ < vo(1+h)(1−τ)
vo−vi . Then Θo(f) > Θi(f) and hence fi < fo since again

each root fj is given by a down-crossing of Θj(f) = 0 (j = o, i).

ii) We have shown in the bail-in regime that ρi(li, fi) > ρ. Moreover, it can be

easily verified from construction of ρi that ρi(l, f) ≤ ρ+λ(1−τ) for any l > 1/f . Then

the result follows since ρo = ρ and ρb(lb, fb) = ρb(lb, 1) = ρ+ λ(1− τ).

iii) On the one hand, we have:

li =
µ+ [κ− (1 + h)(1− τ)]λfi − ρ+ λh(1− τ)

σ2η

≤ µ+ [κ− (1 + h)(1− τ)]λ× 1− ρ+ λh(1− τ)

σ2η
=
µ+ (κ− 1 + τ)λ− ρ

σ2η
= lb

On the other hand, we want to show lo ≥ lb which is:

µ+ κλfo − ρ
σ2η

≥ µ+ (κ− 1 + τ)λfb − ρ
σ2η

=
µ+ (κ− 1 + τ)λ− ρ

σ2η
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or equivalently fo ≥ κ−1+τ
κ

. We make use of the function Θo(f) in (43) where fo is

defined as the solution to Θo(f) = 0. Check that

Θo

(
κ− 1 + τ

κ

)
=
µ+ (κ− 1 + τ)λ− ρ

σ2η
− voκη−1(1− τ)−η

≥ µ− ρ
σ2η

− vo
κ

(
κ

1− τ

)η
=

1

1− τ

(
µ′ − ρ′

σ′2η
− vo(κ′)η−1

)
≥ 0 = Θo(fo)

since µ′−ρ′
σ′2η
≥ 1 (recall each parameter with a prime symbol is its pre-tax value). The

result follows as fo is a down-crossing of Θo(f) = 0.

iv) For j = b, o, i, Gj(l, f) = [µ+ κλf − ρj(l, f)]l− σ2

2
ηl2 + ρj(l, f) +

λvj
1−η (1− f)1−η

with vb = 0 and 0 ≤ vo, vi ≤ 1. On l ≥ l̂i(f ;h) ≥ l̂ = 1/f ≥ 1, it is not hard to verify

that ρo(l, f) ≤ ρi(l, f) ≤ ρb(l, f) and in turn Go(l, f) ≥ Gi(l, f) ≥ Gb(l, f) for as long

as vo ≥ vi. This translates into the ordering of Gj(lj, fj), in turn Cj and finally Mj(N).

v) and vi) These follow immediately from the ranking of Mj(N ; fj) for j = b, o, i.

Proof of Proposition 6 (Complemented by the internet appendix). The

results under each IRM can be established somewhat similarly. We provide the proof

of the bailout case as an illustration. On the one hand:

Io = E

[∫ ∞
0

e−δt(rt + dt)dt

]
= (1 + αm)qo

∫ ∞
0

e−δtE(Nt)dt

= (1 + αm)qoN0

∫ ∞
0

exp [−(δ − go + λf)t] dt =
(1 + αm)qo
δ + λf − go

No

On the other hand:

E[e−δTkNTk ] = E[e−δTk−1e−δ(Tk−Tk−1)NTk ] = E
[
ETk−1

[
e−δTk−1e−δ(Tk−Tk−1)NTk

]]
= E

[
e−δTk−1NTk−1

ETk−1

[
e−δ(Tk−Tk−1)

NTk

NTk−1

]]
where we have used the law of iterated expectation. But conditioning on the infor-

mation up to time Tk−1, e
−δ(Tk−Tk−1)

NTk
NTk−1

d
= e−δT NT

N0
where T is an Exp(λ) random
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variable due to the stationary properties of the underling Brownian motion and the

Poisson process. Hence using an identity proven in the internet appendix:

ETk−1

[
e−δ(Tk−Tk−1)

NTk

NTk−1

]
= E

[
e−δT

NT

N0

]
=

(1− f)λ

δ + λ− go
≡ θ

and E[e−δTkNTk ] = θE[e−δTk−1NTk−1
]. Then we can deduce iteratively that E[e−δTkNTk ] =

θkN0. Finally:

Co = E

[
∞∑
k=0

e−δTkNTk

]
= N0

∞∑
k=0

θk =
1

1− θ
N0 =

δ + λ− go
δ + λf − go

N0

as θ = 1− δ+λf−go
δ+λ−go < 1, and we obtain Wo =

[
(1+αm)qo−(δ+λf−go)

δ+λf−go

]
N0.

The IRR is given by the value of δ leading to Wo = 0. The result can be obtained

after substituting go by its analytical formula and m = 1
1−α .

Proof of Proposition 7. We first verify the ranking of net market value in terms

of the IRR’s δj (we will simply write δj(fj) as δj for brevity). The ranking δi < δb can

be established easily using the fact that fi < fb = 1. We are going to establish that

δo > δb which is equivalent to:

(µ+ κλfo − ρ)2

σ2η
+ ρ >

(µ+ (κ− 1 + τ)λ− ρ)2

σ2η
+ ρ+ λ(1− τ)

⇐⇒ (µ+ κλfo − ρ)2 − (µ+ (κ− 1 + τ)λ− ρ)2 > λησ2(1− τ)

⇐⇒
(

2
µ− ρ
σ2η

+
κλfo + (κ− 1 + τ)λ

σ2η

)(
fo −

κ− 1 + τ

κ

)
>

1− τ
κ

⇐= 2

(
fo −

κ− 1 + τ

κ

)
>

1− τ
κ

It is hence sufficient to show fo > 1− 1−τ
2κ

. This can be done using the same argument

in the proof of part iii) of Proposition 5 under a stronger condition that µ′−ρ′
(σ′)2η

> 2.

The net market value associated with an IRM under arbitrary discount rate δ can

be expressed in terms of its IRR. For bailout versus liquidation, note that

Wo =
δo − δ

δ − λ(1− fo)− δo +mqo
>

δo − δ
δ − δo +mqo

>
δb − δ

δ − δb +mqb
= Wb
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for δ < δo(fo) since δo > δb and qo < qb (recall part v) of Proposition 5).

For liquidation versus bail-in, it is clear that Wb > Wi on δi < δ < δb since on this

range we have Wb > 0 > Wi. It remains to show that Wb > Wi on δ > δb. Expressing

the net market value Wj in terms of δj, it is required to show that

Wb > Wi ⇐⇒
δb − δ

δ − δb +mqb
>

δi − δ
δ − δi +mqi

⇐⇒ (δb − δ)(δ − δi +mqi) > (δi − δ)(δ − δb +mqb) (δ > δj −mqj by assumption)

⇐⇒ δ(qb − qi) > δiqb − δbqi

⇐⇒ δ >
δiqb − δbqi
qb − qi

(since qb > qi)

⇐= δ >
δbqb − δbqi
qb − qi

= δb (since δb > δi)

The result immediately follows.

8.2 Derivations of VaR under each IRM

In this section we derive the probability distribution function of the bank’s asset return

under each IRM, which in turn allows us to compute the VaR by (29).

Consider first the regimes of liquidation and bailout (j = b, o) where bank’s net

worth evolves as (6) with Φj = 1− fj such that:

Nt = N0(1− fj)Yt exp

[(
gj −

σ2l2j
2

)
t+ σljBt

]
Then:

F j
t (x) = P (Ãt/Ã0 ≤ x) = P (Nt/N0 ≤ x) =

∞∑
k=0

P (Yt = k)P (Nt/N0 ≤ x|Yt = k)

=
∞∑
k=0

P (Yt = k)P

{
(1− fj)k exp

[(
gj −

σ2l2j
2

)
t+ σljBt

]
≤ x

}

=
∞∑
k=0

e−λt(λt)k

k!
Z

 ln x
(1−fj)k −

(
gj −

σ2l2j
2

)
t

σlj
√
t

 (46)
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where Z(·) is the cumulative distribution function of a standard normal random vari-

able. For the liquidation regime, fb = 1 and hence:

F b
t (x) = e−λtZ

 lnx−
(
gb −

σ2l2b
2

)
t

σlb
√
t

+
∞∑
k=1

e−λt(λt)k

k!

= e−λtZ

 lnx−
(
gb −

σ2l2b
2

)
t

σlb
√
t

+ 1− e−λt

and we can easily invert the function to obtain:

V aRb
p(t) =

1− (F b
t )−1(p) p > 1− e−λt ⇐⇒ t < 1

λ
ln 1

1−p

100% p ≤ 1− e−λt ⇐⇒ t ≥ 1
λ

ln 1
1−p

For the bailout regime with fo < 1, the main difficulty here is that (46) is an infinite

sum, which makes the inversion of F o
t (x) non-trivial. However, for numerical imple-

mentation purposes it is sufficient to approximate (46) by only considering the first M

terms of the summation. See the internet appendix.

Now we proceed to consider the bail-in regime j = i. Recall the discussion in

Section 5 that the corporate policies before and after bail-in are given by (li, qi, fi) and

(l∗, q∗, f ∗) respectively, and that the bank will be sold down entirely on the first shock

after the bail-in. The net worth dynamics are therefore:

Nt =


N0 exp

[(
gi − σ2l2i

2

)
t+ σliBt

]
t < T1

NT−1
Φi exp

[(
g∗ − σ2(l∗)2

2

)
(t− T1) + σl∗Bt−T1

]
T1 ≤ t < T2

0 t ≥ T2

where Φi is the change in net worth during bail-in as in (32). Then:

F i
t (x) = P (Ãt/Ã0 ≤ x)

= P (t < T1)P (Ãt/Ã0 ≤ x|t < T1) + P (T1 ≤ t < T2)P (Ãt/Ã0 ≤ x|T1 ≤ t < T2)

+ P (t ≥ T2)P (Ãt/Ã0 ≤ x|t ≥ T2) (47)
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Each term in (47) can be computed where we defer the technical details to the internet

appendix. We can eventually deduce:

F i
t (x) = e−λtZ

 lnx−
(
gi − σ2l2i

2

)
t

σli
√
t

+ λe−λt
∫ t

0

ϑ(x, t;u)du+ 1− e−λt − λte−λt

(48)

where

ϑ(x, t;u) ≡ Z

 ln x
1−fi −

(
gi − σ2l2i

2

)
u−

(
g∗ − σ2(l∗)2

2

)
(t− u)

σ
√
l2i u+ (l∗)2(t− u)


with Z(·) again being the cumulative normal distribution function. Note that F i

t (0) =

1 − e−λt − λte−λt, which corresponds to P (Nt ≥ 2) = P (t ≥ T2). I.e., the probability

that the second shock has arrived by time t and that the net worth of the bank has

gone to zero as a result of the entire sell down of the bank during the second shock.

The value at risk is then given by:

V aRi
p(t) =

1− (F i
t )
−1(p) p > 1− e−λt − λte−λt ⇐⇒ t < t̄i

100% p ≤ 1− e−λt − λte−λt ⇐⇒ t ≥ t̄i

where t̄i is the solution to the equation:

p = 1− e−λt − λte−λt (49)
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Db/Ab Do/Ao Di/Ai fb fo fi qb qo qi

Baseline 83.10 88.64 82.57 100.00 98.79 93.65 11.08 8.70 10.85

µ′
0.08 43.67* 86.85 77.61 18.71* 98.48 90.68 11.74* 9.85 11.56

0.12 85.92 90.00 85.64 100.00 99.00 95.29 10.16 7.38 9.96

σ′
0.18 86.31 90.82 86.01 100.00 99.13 95.47 10.59 7.62 10.39

0.22 79.55 86.22 78.66 100.00 98.37 91.34 11.43 9.49 11.18

κ′
1.8 66.20* 87.80 80.31 7.25* 98.41 89.06 11.43* 9.28 11.20

2.2 84.64 89.37 84.30 100.00 99.05 95.96 10.64 8.07 10.45

λ
0 66.20* 66.20* 66.20* 11.23* 11.23* 11.23* 11.44* 11.44* 11.44*

0.1 88.73 93.21 88.48 100.00 99.45 96.65 9.67 1.88 9.31

τ
0.25 80.50 86.89 79.88 100.00 98.79 93.65 10.97 8.64 10.74

0.45 85.70 90.39 85.25 100.00 98.79 93.65 11.18 8.75 10.96

η
0.5 87.00 91.32 86.90 100.00 99.81 98.43 11.70 6.07 11.63

0.8 58.40 85.79 58.40 11.63 96.33 11.63 9.63 9.00 9.63

Table 2:

Comparative statics.

Optimal corporate policies under different model parameters. Base parameters used

are µ′ = 0.1, σ′ = 0.2, ρ′ = 0.05, κ′ = 2, τ = 0.35, λ = 0.05, η = 0.65, δ = 0.4, α = 0.8,

vo ≡ p0ξ
1−η
o = 0.65, vi ≡ piξ

1−η
i = 0.6, l∗ = 5, w∗ = 1.3 and ξi = 0.1. Numerical results

are all expressed in terms of percentage. An asterisk ∗ indicates that the bank is safe

and engages in asset sales when a crash arrives.

58



A

Assets

A
N = l

D

N

Liabilities

Small loss
(1 − f)A

fA

D

N − fA

Asset sale

(1 − fl)A

flA

(1−fl)A
N−fA = l

D+

N − fA
(a) ASSET SALES

A

A
N = l

D

N

Large loss

fA

(1 − f)A

D

Liquidation

Assets are
liquidated.
Lenders receive
D+ = (1− f)A.
Bank disappears.

(b) LIQUIDATION

A

A
N = l

D

N

Large loss

fA

(1 − f)A

D

Bailout

(1 − f)A

(1−f)A
N+ = l

Recapitalization

D −D+ = f(l−1)A
l

N+

D+

(c) BAILOUT

A

A
N = l

D1

D2

N

Large loss

fA

(1 − f)A

D1

D2

Bail-in

(1 − f)A

(1−f)A
N+ = l∗

D2 =Bailed-in debt

N+

D1

(d) BAIL-IN

Figure 1: Insert caption here.

1
Figure 1:

Balance sheet illustrations under each restructuring mechanism.

Panel A shows that after a small loss in assets the bank rebalances its capital structure

by selling assets and using the proceeds to pay off debt. After a large loss in assets, the

bank becomes insolvent. Insolvency is resolved through liquidation (panel B), bailout

(panel C) or bail-in (panel D).
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Figure 2:

95% VaR under each restructuring mechanism.

The figure plots the 95% VaR under the liquidation, bailout and bail-in regime as a

function of the time horizon t. The parameter values used to generate the plot are the

same as for Table 2, i.e.: µ′ = 0.1, σ′ = 0.2, ρ′ = 0.05, κ′ = 2, τ = 0.35, λ = 0.05,

η = 0.65, δ = 0.4, α = 0.8, vo ≡ p0ξ
1−η
o = 0.65, vi ≡ piξ

1−η
i = 0.6, l∗ = 5, w∗ = 1.3 and

ξi = 0.1.
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