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1 Introduction

Climate change is one of the main risks the economy will face in the upcoming decades
or possibly even centuries. However, there is still much uncertainty about climate
change. While (almost) all scientists agree on the fact that climate change will have
possibly dramatic negative consequences for the environment and economic growth,
we are still not able to accurately estimate the extent and timing of future damages
induced by climate change. But one thing we do know is that such consequences
will take place far in the future, while if they are to be avoided policies need to be
implemented today. This has made the issue of discounting future uncertain costs
of climate change back towards today arguably the most important element of the
climate change debate and that is the subject of this paper. We show that taking into
account ambiguity aversion leads to a sizeable increase in the social cost of carbon.

Rather than arguing about specific numerical values for parameters such as time
preference, we challenge the structure of preferences commonly assumed to derive the
appropriate discounting procedures and discount rates.1 Specifically, in this paper
we model climate damages as disaster risk and assume that there is ambiguity about
the arrival rate and size of future climate disasters. We show that implementing
these extensions leads to estimates of the social cost of carbon that are substantially
larger than have been derived so far using conventional approaches to time and risk
discounting.

The impact of climate change on the economy is often modeled using combined
economy/climate models called Integrated Assessment Models (IAMs). IAMs inte-
grate the knowledge of different domains into one model. In the case of climate
change, IAMs combine an economic model with a climate model. Three well-known
IAMs are DICE (W. Nordhaus, 2014), PAGE (Hope, 2006) and FUND (Tol, 2002).2

These models are, among others, used as policy tools for cost-benefit analyses. They
provide a conceptual framework to better understand the complex problem of climate
change by combining different fields and allowing for feedback effects between those
fields.

But IAMs also have major drawbacks. To quote Pindyck (2017): “IAM-based
analyses of climate policy create a perception of knowledge and precision that is illu-
sory, and can fool policy-makers into thinking that the forecasts the models generate
have some kind of scientific legitimacy.” His critique is that the models are (1) very
sensitive to the choices of parameters and functional forms, especially the discount
rate. Besides, we know very little about (2) climate sensitivity and (3) damage func-
tions. Lastly, (4) IAMs don’t incorporate tail risk. He recommends simplifying the
problem by focusing on the catastrophic outcomes of climate change, instead of mod-
eling the underlying causes. In line with that view we focus on disaster risks and the
associated ambiguities and risks.

1For a very different (and strongly worded) view focusing on the social welfare aspects of the
rate of time preference rather than on individual preferences, see Stern (2015) and Chichilnisky,
Hammond, and Stern (2018) who look at a positive rate of time preference as discrimination between
generations that happen to have been born at different moments in time.

2The references do not contain the most recent versions of the IAMs.
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The three main IAMs are deterministic, largely because stochastic models with
many state variables are more difficult to solve than deterministic models. To nev-
ertheless capture uncertainty, some authors perform a Monte Carlo-like approach by
analyzing several deterministic runs with different parameter values and then taking
a weighted average of all runs (Dietz, 2011; W. D. Nordhaus, 2014). Such an analysis
is useful if we are interested in the sensitivity of the models to different parameter
values. However, it is conceptually different from explicitly using stochastic variables,
since for each run all uncertainty is resolved at time 0. Crost and Traeger (2013) com-
pare the Monte Carlo approach to a model that actually uses random variables and
find that the Monte Carlo approach underestimates the impact of climate damages.
And as we will discuss below, particularly under the structure of preferences we are
analyzing, the timing of the resolution of uncertainty matters a great deal.

We propose an analytically solvable IAM (Integrated Assessment Model) that
addresses both the critiques of Pindyck (2017) and of Crost and Traeger (2013) on the
use of deterministic IAMs. Since there is so little known about the damage functions,
we investigate the impact of both attitudes towards well defined measurable risks
and ambiguity aversion towards unmeasurable uncertainty on the willingness to pay
for avoiding climate risk. Furthermore we model climate risk as disaster risk instead
of assuming that temperature increases generate a certain amount of damage every
year. The model is transparent due to the closed form solutions for the social cost
of carbon. Where stochastic numerical IAMs commonly take hours or more to be
solved, solving this model only requires numerical integration and is therefore solved
within seconds.

The economy is modeled as a pure exchange economy with exogenous but stochas-
tic endowments. We extend the general equilibrium Consumption-based Capital As-
set Pricing Model (CCAPM), also known as Lucas-tree model, developed in Lucas Jr
(1978) in several directions. In the literature, this model is widely used in conjunction
with a lognormal distribution.3 The diffusion component of the endowment captures
fluctuations in consumption. But we take into account that the nature of climate
risk is different from ‘normal’ economic risk as captured by a diffusion term. Climate
disasters are events that occur rarely and take place abruptly (Goosse, 2015). To
model this feature, we add a jump process to the endowment consumption stream to
capture the climate disaster risk.

The intensity of the disasters is temperature-dependent. We model emissions,
atmospheric carbon concentration and the temperature anomaly. The arrival rate of
climate disasters is increasing in temperature. Furthermore we explicitly take into
account that it is hard to estimate the probability that a disaster occurs and its
expected impact by assuming that the agent does not know the exact probability dis-
tributions of the arrival rate of climate disasters and the size of the disasters: there
is so called ambiguity about the characteristics of the jump risk component. And
the agent is assumed to be averse to this ambiguity or Knightian uncertainty. Fi-
nally we use the continuous time version of Epstein-Zin utility, also called stochastic
differential utility (SDU), which allows us to separate the intertemporal elasticity of

3Although Lucas Jr (1978) doesn’t assume a specific distribution for the endowment stream.

3



substitution from the degree of risk aversion. In the widely used power utility speci-
fication risk aversion and elasticity of intertemporal substitution (EIS) are captured
by one parameter, they are equal to each other’s inverse. There is strong empirical
evidence placing the relative degree of risk aversion in the range of 5 - 10 (Cochrane,
2009). Using such estimates in combination with power utility then results in implied
estimates for the EIS much lower than direct empirical estimates of the EIS suggest.
But especially for long term problems such as climate change intertemporal choices
play an important role and restricting parameters such as the EIS is a severe limita-
tion. SDU preferences make it possible to separate risk aversion and the elasticity of
intertemporal substitution. We can therefore disentangle risk aversion effects (known
probabilities), ambiguity aversion effects (unknown probabilities) and substitution ef-
fects. The Epstein-Zin preferences also allow for the possibility that the agent has a
preference for early resolution of risk, clearly of relevance in a discussion on climate
risks. We show that the specification of the agent’s preferences in combination with
stochastic disaster risk has large effects on how much one is willing to pay to reduce
climate risk.

We explicitly focus on the valuation of climate risk in the Business As Usual (BAU)
scenario, like in W. Nordhaus (2014) and do not analyse optimal abatement policies
at this stage yet. The idea is that an analysis of the environmental costs of current
policies (not current plans...) is useful in the climate policy debate. A commonly used
measure for the cost of carbon emissions is the social cost of carbon (SCC), the long
term discounted damage in dollar terms of emitting one ton of carbon today. Note that
the social cost of carbon in our model is not equal to the globally optimal Pigouvian
carbon tax, since we do not consider abatement policy in this model. The social
cost of carbon using a baseline scenario can be interpreted as the monetized welfare
loss of emitting one additional unit of carbon today, given the current global carbon
abatement policy scenario under the assumption that no measures will be taken in
the future either, like in W. Nordhaus (2014). This seems to us an important first
step to take for as long as effective international policies are not yet agreed upon and
future agreement is not yet certain. The cost of doing nothing surely is an important
input in the debate, but we elaborate on the differences between the SCC under the
BAU scenario and the SCC assuming optimal abatement policies in Olijslagers (2020)
and Olijslagers, van der Ploeg, and van Wijnbergen (2020).

Our base calibration yields a sizable social cost of carbon. Similar to the numerical
IAMs, the SCC in our model is very sensitive to the choice of the input parameters.
But in addition we can easily explore the implications of ambiguity aversion, pref-
erences for early resolution of uncertainty and (related to that) a higher EIS than
implied by commonly accepted values for the degree of risk aversion. In spite of in-
corporating all these generalizations we can still derive analytic expressions for the
SCC, up to an integral, in our core model setup, making it transparent how ambigu-
ity aversion and Epstein-Zin preferences influence the SCC. Our numerical example
using best estimates of the various parameters indicates that introducing ambiguity
aversion yields a SCC that is between 28% and 36% higher depending on the struc-
ture of climate risk. Moreover we highlight that the social cost of carbon is also
sensitive to choices about time discounting, either via the pure rate of time prefer-
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ence, risk aversion or the elasticity of intertemporal substitution, and that all these
parameters interact with the cost of ambiguity aversion in complicated ways. But the
overall conclusion remains: insufficient attention to risk pricing leads to substantial
underestimation of the SCC.

2 Related literature

This paper is related to two strands of literature. First, our methodology is related
to consumption based asset pricing models with disaster risk and/or non-expected
utility. And second, the paper is related to research on the impact of climate change
on the economy.

The model we develop is an extension of the Consumption based Capital Asset
Pricing Model (CCAPM) by Lucas Jr (1978). Mehra and Prescott (1985) point out
that for plausible parameter values, the CCAPM produces a way too low equity
premium and correspondingly a too high risk-free rate. These puzzles are called
respectively the Equity Premium Puzzle and the Risk-Free Rate Puzzle. Jump risk
or disaster risk has been proposed as a possible solution of these puzzles (Barro,
2006; Rietz, 1988). Extensions to the early disaster/jump risk models are the use of
Stochastic Differential Utility (SDU) instead of power utility, and the introduction of
time-varying disaster probabilities and multi-period (i.e. persistent) disasters (Barro,
2009; Tsai & Wachter, 2015; Wachter, 2013). Climate change induced disasters fit
in the rare disaster literature since climate change is increasingly thought to give
rise to abrupt destructive changes in the Earth’s environment (Goosse, 2015). We
define disaster shocks as shocks whose occurrence has a small probability at any given
moment of time but with possibly large and persistent negative effects on the economy
once they do take place.

Ambiguity aversion, aversion of unmeasurable or Knightian uncertainty, is the
second extension of the CCAPM we introduce to our climate model. Liu, Pan, and
Wang (2004) consider a general equilibrium model with rare disasters and ambiguity
aversion in their analysis of option pricing ‘smirks’. Their agent is only concerned
about misspecification of the jump process, a logical choice that we follow, since the
probability distribution of rare events is by their very nature much harder to estimate
than the diffusion component.

Risk aversion and ambiguity aversion are obviously important in a climate change
setting, but since abrupt climate change is anticipated to take place far into the future,
intertemporal choices play an important role as well. Power utility is therefore an
unsatisfactory framework since with that structure of preferences, risk aversion and
EIS cannot be varied independently. This is why we adopt the Stochastic Differential
Utility framework introduced by Duffie and Epstein (1992b) since with SDU the risk
aversion parameter and the elasticity of intertemporal substitution (EIS) are no longer
restricted to be each other’s inverse. We go beyond the setting of Tsai and Wachter
(2015) who also use SDU to analyze the consequences of disaster risk for asset prices
by in addition introducing ambiguity aversion. This extension is especially relevant
in a climate disaster model since there is no clear history of events on which we can
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base our estimates of the damages.
The second strand in the literature our paper is obviously related to is the liter-

ature on climate change economics and especially to the part of that literature that
considers climate disaster risk, non-expected utility and analytic approaches to solve
their models. This paper is to the best of our knowledge the first paper to consider
ambiguity aversion in a framework with climate disaster risk.

Barro (2015) extends his disaster risk model with environmental disasters and
focuses on discount rates and optimal environmental investment. He does not incor-
porate a climate model but rather assumes that the disaster probability is constant
and that it can be reduced by environmental investment. Bansal, Kiku, and Ochoa
(2016) propose a climate model based on the Long-Run-Risk (LRR) model of Bansal
and Yaron (2004). In the LRR-model, the agent has Epstein-Zin preferences and
consumption growth contains persistent shocks. Bansal et al. (2016) model climate
disasters as a jump process that affects both consumption itself and the growth rate
of consumption. They show that the outcomes of their model are very sensitive to
choices of the EIS. Karydas and Xepapadeas (2019) consider a dynamic asset pricing
framework with both macroeconomic disasters and climate change related disasters
and analyze the implications for portfolio allocation. Our approach differs from these
papers by including ambiguity aversion.

Furthermore, our paper is related to the literature on climate change economics
that considers risk and non-expected utility. The most well-known integrated assess-
ment model is the DICE model W. D. Nordhaus (2017). This model is deterministic
and the representative agent is assumed to have power utility. Several papers have
recently studied the impact of risk and more complex preference structures on the
social cost of carbon. For instance Cai and Lontzek (2019), Hambel, Kraft, and
Schwartz (2019) and Jensen and Traeger (2014) study integrated assessment mod-
els with Epstein-Zin preferences and different types of economic and climate risk.
Epstein-Zin preferences can have a substantial effect on the discount rate, for obvi-
ous reasons a very important parameter in climate models. Traeger (2014) studies
the effect of ambiguity aversion on discount rates. Millner, Dietz, and Heal (2013)
look at the effect of ambiguity about the climate sensitivity on optimal policy, where
Lemoine and Traeger (2016) focus on ambiguity about tipping points that affect the
climate dynamics. All three papers use the smooth ambiguity approach proposed by
Klibanoff, Marinacci, and Mukerji (2005). In contrast, we consider the multiple priors
approach to model ambiguity aversion, in which the worst case within a specified set
of priors is chosen following Gilboa and Schmeidler (1989). Lastly, Barnett, Brock,
and Hansen (2020) introduce ambiguity aversion into a climate-economy model, also
based on the smooth ambiguity approach of Klibanoff et al. (2005). Barnett et al.
(2020) consider even three different types of uncertainty: they distinguish between
risk, ambiguity and model misspecification. Our key contribution to this literature
is that 1) we study ambiguity aversion in a climate disaster risk framework, 2) we
use a different ambiguity approach (the multiple priors approach), and 3) we pro-
vide a closed form expression for the social cost of carbon (up to solving an integral)
which facilitates conceptual understanding of the results particularly where non-linear
effects are at play.
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The three IAMs that were mentioned in the introduction are all solved using
numerical methods. However, since it has become clear that the choice of the in-
put parameters has a large influence on the results, we think it is useful to know
how these parameters exactly influence the outcomes and therefore opt for models
allowing for analytical solutions. There are a few recent papers that also focused
on obtaining analytic solutions. Golosov, Hassler, Krusell, and Tsyvinski (2014) were
the first to obtain closed form solutions in an IAM. However, this required quite strict
assumptions such as logarithmic utility and full depreciation of capital every decade.
Bretscher and Vinogradova (2018) develop a stylized production-based model where
the current carbon concentration directly enters the damage function and obtain
closed form solutions for the optimal abatement policy. Bremer and van der Ploeg
(2018) consider a rich stochastic production-based model with Epstein-Zin prefer-
ences, convex damages, uncertainty in state variables, correlated risks and skewed
distributions to capture climate feedbacks. Since the model is too complex to ob-
tain exact analytic solutions, they obtain closed form approximate solutions using
perturbation methods. Lastly, Traeger (2018) extends the model of Golosov et al.
(2014). Where in other analytic other models the atmospheric carbon concentration
often directly enters the damage function (Bretscher & Vinogradova, 2018; Golosov
et al., 2014), ACE explicitly models the carbon cycle and the temperature anomaly
while damages are induced by an increasing temperature. Additionally Traeger (2018)
considers the effect of stochastic state variables.

3 The Model

In this section we first outline the setup for the economy, then extend that setup to
incorporate a climate model and finally discuss the utility specification.

Since we do not consider mitigation policies in this paper, we opt for assuming
a pure exchange economy, where agents are endowed with an exogenous stochastic
income stream. Agents can buy risky stocks, which give a claim on the endowment.
Consumption goods are perishable, transferring wealth to the future is only possible
by buying stocks. The income stream can intuitively be seen as a tree that produces
an uncertain amount of fruit every time period. All agents can buy stocks, which are
shares in the tree. The fruit is non-storable, so it must be consumed at the period of
the endowment. This implies that aggregate endowment equals aggregate consump-
tion at every moment in time. It is assumed that all agents have identical preferences
and endowments, so the separate agents can be replaced by one representative agent.
We extend the standard pure exchange model by assuming that the stochastic en-
dowment stream is subject to climate disasters, where the probability of a climate
disaster depends on the temperature level.

3.1 The economy

The aggregate endowment process follows a geometric Brownian motion with an ad-
ditional jump component that represents climate disasters. Suppose we have a proba-
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bility space (Ω,F ,P) on which a standard Brownian motion Zt, a Poisson process Nt

with arrival rate λt and a random variable Jt are defined. The arrival rate of climate
disasters is a function of the temperature level. The distribution of the size of disas-
ters is assumed to be the same for any t. The three types of shocks, namely Brownian
motions, Poisson arrivals and disaster sizes, are assumed to be independent. Assume
there is a filtration F = {Ft : t ≥ 0}. We will use the following notation throughout
this paper: Et[.] = E[.|Ft]. Consider the following process for aggregate endowments:

dCt = µCtdt+ σCtdZt + JtCt−dNt. (1)

The endowment follows the usual geometric Brownian motion dynamics, with
an additional jump process. Ct− denotes aggregate endowment just before a jump
(Ct− = limh↓0Ct−h). In equilibrium aggregate consumption must equal aggregate
endowment and therefore the process is also referred to as the aggregate consumption
process. The growth rate µ ≥ 0 and the volatility σ > 0 are constant. When a
climate disaster arrives at time t, the size of the disaster is controlled by the random
variable Jt. We assume that Jt has the following density: f(x) = η(1 + x)η−1 where
−1 < x < 0. Jt can thus be seen as the percentage loss of aggregate consumption
after a disaster. The expected disaster size equals Et[Jt] = −1

η+1
and the moments

Et

[
(1 + Jt)

n
]

= η
η+n

can be easily calculated. In line with the subject of climate

disasters, jumps can only be negative.

3.2 The climate model

The arrival rate of disasters is assumed to be temperature dependent. We assume that
damages are linearly increasing in temperature: λt = λTTt. However, our derivations
remain valid for non-linear specifications of the arrival rate. We discuss this as-
sumption in the calibration section. We make some simplifying assumptions to allow
for analytic solution of the model. The main requirement for that is that the state
variables of the climate submodel are deterministic, an assumption we have relaxed
elsewhere (Olijslagers, 2020; Olijslagers et al., 2020).

Industrial emissions (from fossil fuel burning) are usually modeled as the prod-
uct of the carbon intensity of aggregate output and aggregate output (or aggregate
consumption) itself. In addition to industrial emissions, land-use change such as
deforestation also causes carbon emissions.4 We simplify the problem by modeling
emissions as exogenous, which in the current setting is not all that important because
output growth itself is not yet endogenized. Thus we directly model total emissions,
which are the sum of industrial emissions and emissions caused by for example land-
use change. This simplification is necessary to keep the state variables deterministic,
which in turn is necessary for analytical solvability. If we would not make this as-
sumption, emissions are stochastic and this would make it impossible to solve the
model analytically. We therefore assume that emissions are growing at a rate gE,t.

4For an extensive report on the relation between land-use change and emissions we refer to the
special IPCC report (Noble, Bolin, Ravindranath, Verardo, & Dokken, 2000).
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The growth rate itself moves towards the long-run equilibrium gE,∞ at a rate δE. By
assuming that gE,∞ < 0, this specification allows us to have growing emissions today,
but in the long run the growth rate will then become negative and emissions will go
to zero. This is a logical assumption since there is a point where the stock of fossil
fuels will be depleted. This gives us the following process for emissions:

dEt = gE,tEtdt,

dgE,t = δE(gE,∞ − gE,t)dt.
(2)

We calibrate exogenous emissions to match the baseline scenario in W. D. Nordhaus
(2017). In our setup, it is not a great loss to lose the direct connection between
the economy and the carbon emissions since we use a Lucas-tree model where the
economy already has an exogenous growth rate. We do not analyse optimal policy
and therefore the causes of economic growth and emissions are not of first order
importance. What is important for the valuation of the risk is that the climate model
is in line with reality.

Since we focus on disaster risks which through our climate model depend on cu-
mulative emissions, not incorporating any short term correlation between economic
growth and emissions has no major consequences for the answers to the questions
addressed in this paper. It does matter once abatement policies are incorporated,
even for our narrow focus on discount rates since the correlation of abatement costs
with consumption growth clearly is going to have an impact on the risk premium. We
consider this issue elsewhere (Olijslagers, 2020). In reality, emissions are low when
the economy is in a recession and vice-versa, there is a substantial correlation between
economic growth and worldwide carbon emissions. However, due to thermal inertia
it takes some time for temperature to react on emissions and the contemporaneous
correlation between consumption and temperature will be lower. When climate risk
is high in good states, one would be willing to pay less to reduce the risk. So the
correlation between temperature and the consumption process does play a role in the
valuation of damages. However, since the contemporaneous correlation between ag-
gregate consumption and temperature is smaller compared to the correlation between
aggregate consumption and emissions we expect that this does not play a large role
given our focus on disaster risks.

We use the climate model (carbon cycle and temperature model) discussed in
Mattauch et al. (2018), which they call the IPCC AR5 impulse-response model. This
model is in line with recent insights from the climate literature and is also used
in IPCC (2013). Specifically, this climate model incorporates the fact that thermal
inertia play a smaller role than commonly assumed in the climate modules in economic
models. Climate modules commonly used in economic models tend to overstate the
time it takes for the earth to warm in response to carbon emissions (cf Dietz, van der
Ploeg, Rezai, and Venmans (2020)).

The first step is to model how the carbon concentration evolves over time given a
path of carbon emissions. Define by Mt the atmospheric carbon concentration com-
pared to the pre-industrial level Mpre. We then assume that the carbon concentration
is the sum of four artificial carbon boxes: Mt =

∑3
i=0 Mi,t. This specification can
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capture that the decay of carbon has multiple time scales and that a fraction of emis-
sions will stay in the atmosphere forever. The dynamics of carbon box i are given
by:

dMi,t = νi

(
Et − δM,iMi,t

)
dt. (3)

νi is the fraction of emissions that ends up in carbon box i, which implies that∑3
i=0 νi = 1. δM,i controls the decay rate of carbon in box i. We assume that all

carbon that ends up in box 0 will permanently stay in the atmosphere, such that
δM,0 = 0. The other three boxes have a positive decay rate: δM,i > 0, i = {1, 2, 3}.

The next step is to model the impact of carbon concentration on temperature.
This requires modeling what is called radiative forcing: radiative forcing is the dif-
ference between energy absorbed by the earth from sunlight and the energy that
is radiated back to space. A higher atmospheric carbon concentration strengthens
the greenhouse effect and therefore leads to higher radiative forcing. We propose a
logarithmic relation between atmospheric carbon concentration and radiative forcing:

FM,t = α
υ

log(2)
log
(Mt +Mpre

Mpre

)
. (4)

α equals the climate sensitivity: the long-run change in temperature due to a doubling
of the carbon concentration compared to the pre-industrial level. υ is a parameter
that is also part of the temperature module and this parameter will be discussed later.
We also include non-carbon related (exogenous) forcing FE,t, which follows:

dFE,t = δF (FE,∞ − FE,t)dt. (5)

Total radiative forcing is the sum of carbon-related radiative forcing and exogenous
forcing: Ft = FM,t + FE,t.

The final step moves from Ft to the actual surface temperature Tt. Tt is the
difference between the actual temperature compared to the pre-industrial temperature
level. The change in surface temperature is a delayed response to radiative forcing.
Call the heat capacity of the surface and the upper layers of the ocean τ while τoc
equals the heat capacity of the deeper layers of the ocean. The parameter κ captures
the speed of temperature transfer between the upper layers and the deep layers of the
ocean. The dynamics of temperature are then given by:

dTt =
1

τ

(
Ft − υTt − κ(Tt − T oct )

)
dt,

dT oct =
κ

τoc
(Tt − T oct )dt.

(6)

From this equation, one can verify that the long run equilibrium temperature for a
given level of radiative forcing equals: T eqt = Ft

υ
. The parameter υ therefore controls

the equilibrium temperature response to a given level of forcing. Note that when

Mt = 2Mpre, we obtain that Ft = αυ + FE
t and T eqt = α +

FEt
υ

. Therefore the
parameter α can indeed be interpreted as the equilibrium temperature response to
doubling of the carbon concentration. We can rewrite the first equation to:
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dTt =
1

τ

(
υ(T eqt − Tt)− κ(Tt − T oct )

)
. (7)

This equation is more intuitive, since it captures the fact that the temperature moves
towards its equilibrium level at a rate proportional to T eqt − Tt. The second part
shows that the oceans are delaying this convergence. It takes time for T oct to adjust
towards Tt and this will also delay the convergence of Tt towards the equilibrium level
T eqt . As specified earlier, the arrival rate of climate disasters is a linear function of
temperature Tt.

3.3 Utility Specification

The representative agent maximizes his utility of consumption over an infinite plan-
ning horizon. We consider the continuous time version of Epstein-Zin preferences
(Epstein & Zin, 1989), called stochastic differential utility (SDU) by (Duffie & Ep-
stein, 1992b). Epstein and Zin (1989) consider the following class of preferences in

discrete time: Vt = [(1 − β)C
1−1/ε
t + βcet(Vt+1)1−1/ε]

1
1−1/ε where ε = EIS, β is the

time preference parameter and cet(.) is a certainty equivalent function. When consid-
ering a deterministic consumption program, Vt is a constant elasticity of substitution
(CES) utility function. In the other extreme case where only a static gamble is con-
sidered, there are no intertemporal choices and the utility is entirely determined by
the certainty equivalent function cet(.). The certainty equivalent function (or risk

aggregator) that is widely used throughout the literature is cet(Vt+1) = Et(V
1−γ
t+1 )

1
1−γ

where γ is the coefficient of relative risk-aversion, which we assume to be constant.
This specification of cet(.) yields a special case of the preferences studied by Kreps
and Porteus (1978) and is therefore also called Kreps-Porteus utility. Static gambles
are evaluated as if the agent has power utility, but in a dynamic stochastic setting EIS
and risk aversion are decoupled under SDU: this specification allows to separate risk
aversion γ from the elasticity of intertemporal substitution ε. An important property
of this utility specification is that the agent has preferences for early resolution of
uncertainty if ε > 1

γ
and for late resolution if ε < 1

γ
.

We consider a special case of SDU, the continuous time equivalent of Kreps-
Porteus utility, or rather an ordinally equivalent utility process. Similar to the dis-
crete time case, SDU can be represented by a combination of an aggregator f that
determines the degree of intertemporal substitution and a certainty equivalent op-
erator ce. In the case of Kreps-Porteus utility, f(C, V ) = β

1−1/ε
C1−1/ε−V 1−1/ε

V −1/ε and

ce(∼ V ) = [E(V 1−γ)]
1

1−γ . In this case the drift of the value function consists of the
aggregator f(C, V ) and a variance multiplier A that belongs to ce. Duffie and Epstein
(1992b) show that there exists an ordinally equivalent utility process with aggregator
f as in (8). In this case ce(∼ V ) = E(V ) and the variance multiplier A that belongs
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to c is zero. The agent’s utility or value function then becomes:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]

where

f(C, V ) =
β

1− 1/ε

C1−1/ε −
(
(1− γ)V

) 1
ζ(

(1− γ)V
) 1
ζ
−1

for ε 6= 1

with ζ =
1− γ

1− 1/ε
.

(8)

Throughout this paper, we refer to this utility specification as stochastic differential
utility (SDU) although Duffie and Epstein (1992b) actually consider a more general
class of utilities under that label. Similar to the discrete time counterpart, γ denotes
risk-aversion, ε is the elasticity of intertemporal substitution and β equals the time
preference parameter. We will focus on the case where ε 6= 1 and therefore will derive
our results only for this case. For the case ε = 1 we can take the limit ε→ 1 or follow

the same derivation but with f(C, V ) = β(1 − γ)V
(

logC − 1
1−γ log

(
(1 − γ)V

))
. If

γ = 1
ε
, the utility specification reduces to standard power utility.

3.4 Ambiguity

There is much uncertainty regarding the arrival rate and magnitude of climate dis-
asters. And, as stressed by Pindyck (2017), we know very little about the damage
functions. Where consumption growth and volatility can be estimated more accu-
rately from historical data, the estimation of the climate disaster parameters will be
much harder since climate disasters do not happen that often. It is fair to state that
we simply do not know the exact distribution of climate damages. We consider it
therefore desirable to account for the possibility that the ‘best estimate’ model is
not the true model: there is ambiguity. We assume that the representative agent is
ambiguity averse.

It is important to stress the difference between risk and ambiguity. When we
are talking about risk, an agent knows the probabilities and possible outcomes of
all events. When the agent has to deal with ambiguity, the probabilities attached to
particular events are unknown. The distinction between risk and ambiguity is already
extensively discussed in Knight (1921), which is why ambiguity is often referred to as
Knightian uncertainty. Ellsberg (1961) shows using the Ellsberg Paradox that people
are ambiguity averse, i.e. they prefer known probabilities over unknown probabilities.

We use the recursive multiple priors utility developed in continuous time by Chen
and Epstein (2002) to model ambiguity. For an overview of different methods to
model ambiguity we refer to appendix A. An advantage of this method compared to
other methods is that it preserves the homotheticity of the value function.

To apply approach of Chen and Epstein (2002) to model ambiguity, we begin by
defining the ‘best estimate’ model or reference model as the agent’s most reliable
model with probability measure P. But the agent also takes into account other,
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alternative models. The alternative models have measure Qa,b; the jump arrival rate
becomes λQt = atλt and the jump size parameter becomes ηQt = btη. Remember
that the expected jump size equals −1

η+1
, which implies that a low bt leads to a more

negative jump size. The agent takes into account that his reference model is not the
true model and he therefore specifies a set of models that he considers possible. Given
the set of models, he then considers the worst case (Chen & Epstein, 2002; Gilboa &
Schmeidler, 1989).

The size of the set of models is assumed to depend on the ambiguity aversion
parameter θ. All models with a distance smaller than θ are allowed in the set of
admissible models. The distance between the reference model P and an alternative
model Qa,b is measured using the concept of relative entropy, a common metric for
the distance between two probability measure (see for example Hansen and Sargent
(2008)). The distance or relative entropy between the reference and alternative model
depends on the parameters at and bt and can therefore be written as RE(at, bt). The
relative entropy metric satisfiesRE(at, bt) ≥ 0 ∀(at, bt) andRE(1, 1) = 0: the distance
of the reference model to itself is by definition equal to 0. If θ is large, the agent is
very ambiguity averse and thus considers a large set of models. The preferences of
the agent then become:

Vt = min
Q∈Pθ

V Q
t

where V Q
t = EQ

t

[ ∫ ∞
t

f(Cs, V
Q
s )ds

]
and Pθ = {Qa,b : RE(at, bt) ≤ θ ∀t}.

(9)

Here V Q
t is the SDU utility process given the measure Q. θ = 0 implies that

Pθ = {P} and the agent only considers one measure, namely the reference measure.
Thus there is no ambiguity aversion when θ = 0. Where the risk aversion parameter
γ can be seen a parameter that is relevant for any risky bet, the parameter θ cap-
tures intrinsic ambiguity aversion (one person might be more ambiguity averse than
another), but it is also source dependent. If there is a lot of information and data
available about a process, the set of admissible priors will be smaller compared to a
process about which not much is known.

It is not necessary to have a constant θ, one could for example incorporate learn-
ing by assuming that θt is a decreasing function over time as the actual stochastic
processes unfold. The agent then obtains more information about a process over time
and therefore one could argue it is plausible that the set of priors will be shrinking
over time. However, there does not (yet) seem to exist a generally accepted framework
to determine how the set of priors should shrink over time based on new observations.
In particular the multiple prior approach does not lend itself to Bayesian updating
since we do not define model probabilities in this approach. Similar to Chen and
Epstein (2002) we will therefore focus on the case with a constant θ.

In appendix B we derive that relative entropy equals:

RE(at, bt) = (1− at)λt + atλt

(
log(atbt) +

1

bt
− 1
)
. (10)
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Figure 1: Relative entropy for different values of at and bt. Results are given for
λt = 0.1.
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If we take a look at this expression for the relative entropy, it is clear that for (at, bt) =
(1, 1), the relative entropy equals zero. When one or both of the two variables deviate
from the reference model, the relative entropy increases. Every contour in figure 1
gives a set of combinations (at, bt) that yields the same relative entropy. If for example
θ = 0.01, then all (at, bt) combinations within that contour line are included in the
set of admissible priors. The worst case probability measure will be the probability
measure for which either at is large (high arrival rate) and/or bt is small, since the
expectation of the jump size under the alternative measure is inversely related to bt:
EQ
t [Jt] = −1

btη+1
.

From the current setup, it is hard to argue what a reasonable value for ambiguity
aversion θ would be. In order to give more guidance about reasonable values for θ,
we use the concept of detection error probabilities introduced by Anderson, Hansen,
and Sargent (2003).5 Consider the following thought experiment. Assume that the
representative agent would be able to observe the process of consumption over the
next N years, and after observing the process the agent has to choose which of
the two models (the reference model or the worst-case model) is most likely. There
are two types of errors in this case. The agent could choose the reference model
while the process was actually generated by the worst-case model and he could also
make the opposite error. The detection error probability is defined as the average
of the probability of the two errors. Appendix C describes how the detection error
probability is calculated.

5See for example Maenhout (2006) for another application of detection error probabilities.
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The detection error probability depends on N , since when the agent observes the
process for a longer period, the probability of a mistake will be smaller. The detection
error probability also depends on the ambiguity aversion parameter. When θ is small,
the reference and worst-case model are similar to each other and the probability of a
mistake is large. On the other hand, when the agent is extremely ambiguity averse the
reference and worst-case models are very different and the detection error probability
becomes small. The representative agent wants to make the set of models sufficiently
large to make a robust decision, but on the other hand does not want to take into
account implausible models. Since the detection error also depends on the other
parameters of the model, we come back to the issue of calibrating the ambiguity
aversion parameter in the calibration section.

4 Solving the model

We first derive for each alternative probability measure Qa,b the corresponding Hamilton-
Jacobi-Bellman (HJB) equation and find an expression for the value function V Q

t .
Then we derive the HJB-equation for Vt = minQ∈Pθ V

Q
t . At the end of the section we

discuss our solution method.

4.1 The HJB-equation

The value function is a function of aggregate consumption and all the climate state
variables. Let V Q

C denote the first derivative of the value function with respect to
aggregate consumption, similar notation is used for the second derivative. For nota-
tional purposes, define the vector of climate state variables:

Xt = [gE,t Et M0,t M1,t M2,t M3,t FE,t Tt T
oc
t ]′. (11)

The vector of state variables then follows: dXt = µX(Xt)dt. Denote by V Q
X the row

vector of partial derivatives of the value function V Q
t with respect to the vector of

state variables Xt: V
Q
X =

[
∂V Q(Ct,Xt)

∂gE,t
... ∂V Q(Ct,Xt)

∂T oct

]
.

We show in appendix D that under the measure Qa,b, the value function V Q
t

satisfies the following Hamilton-Jacobi-Bellman (HJB) equation:

0 = f(Ct, V
Q
t ) + V Q

C µCtdt+
1

2
V Q
CCσ

2C2
t + V Q

X µX(Xt)

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
.

(12)

The HJB equation is a partial differential equation. We conjecture and verify that
the value function under the measure Qa,b is of the following form:

V Q(Ct) = gQ(Xt)
C1−γ
t

1− γ
, (13)

where gQ(Xt) is some function of Xt. Substituting this form of the value function
into the HJB-equation and calculating the expectation gives the following reduced
HJB-equation (see appendix E):
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0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2 +

gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt)

+ atλt
−1

btη + 1− γ
.

(14)

Given a probability measure Qa,b, we could solve this equation to find gQ(Xt) . Now
let us return to the problem with ambiguity. We are not interested in the solution
for every single measure Qa,b, but we want to find the solution to Vt = minQ∈Pθ V

Q
t .

We can replace the global minimization problem of equation (9) by an instantaneous
optimization problem at every time period t, since relative entropy is a function of
at, bt and λt, which are all three known at time t . The HJB-equation of the problem
with ambiguity then becomes:

0 = min
(at,bt) s.t. RE(at,bt)≤θ

{ β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2

+
gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt) + atλt

−1

btη + 1− γ

}
.

(15)

4.2 Optimal control variables

From the HJB-equation we can then calculate the optimal control variables a∗t and
b∗t . This is a constrained optimization problem with Lagrangian:

L(at, bt, lt) = atλt
−1

btη + 1− γ
− lt

(
RE(at, bt)− θ

)
. (16)

Here lt is the Lagrange multiplier. a∗t and b∗t and the Lagrange-multiplier lt are the
solutions to the following first order conditions:

∂

∂at
L(at, bt, lt) = λt

−1

btη + 1− γ
− ltλt

(
log(atbt) +

1

bt
− 1
)

= 0,

∂

∂bt
L(at, bt, lt) = atλt

η

(btη + 1− γ)2
− ltatλt

b− 1

b2
= 0,

∂

∂lt
L(at, bt, lt) = θ − (1− at)λt − atλt

(
log(atbt) +

1

bt
− 1
)

= 0.

(17)

Figure 2 illustrates the optimization problem. Given an entropy budget θ and
the arrival rate λt, one can determine the feasible set of (at, bt). Figure 1 shows the
feasible sets for several budgets. A contour plot of the objective function for several
(at, bt) combinations is given in subfigure 2a. Clearly combinations in the bottom right
corner (high at, low bt) give the lowest objective function. The goal is to minimize this
function, given the relative entropy constraint. Subfigure 2b shows how the optimal
combination (a∗t , b

∗
t ) is determined. The point where objective function touches the

feasible region is the optimal solution. From now on we use the following notation for
the optimal arrival rate and jump size: λ∗t = a∗tλt and η∗t = b∗tη. Since a∗t and b∗t are a
function of λt, they are implicitly a function of temperature Tt as well. Furthermore
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Figure 2: Selection of the optimal a and b.
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(a) Contour plot of the objective function of the
constrained minimization problem for different
values of at and bt.
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(b) Illustration of selection of optimal (at, bt).
The oval area shows all admissible values for
at and bt that are within the relative entropy
budget of 0.01. The straight line is the objective
function.

we define by g(Xt) the function that solves that HJB-equation with parameters a∗t
and b∗t .

Figure 3 shows the optimal a∗t and b∗t as a function of λt. For each λt one finds
the corresponding a∗t and b∗t by solving the first order conditions. A constant relative
entropy budget implies that at is decreasing in λt and bt is increasing in λt. The idea
behind the time-varying parameters is illustrated in the following example. Assume
θ = 0.01. At time t, the arrival rate equals 0.05 and at time t′ the arrival rate
equals 0.1. At every time point the following equality must hold at the optimum:
RE(at, bt, λt) = θ. For λt = 0.05 the optimal parameters are (a∗t , b

∗
t ) = (1.41, 0.68)

and RE(1.41, 0.68, 0.05) = 0.01. Now consider time t′ with arrival rate 0.1. If we
would use the same optimal parameters as at time t, the relative entropy exceeds
the budget: RE(1.41, 0.68, 0.1) > 0.01. The distance or relative entropy between the
reference model and the worst-case model is increasing in the arrival rate λt. For
a larger arrival rate, an x% increase in the arrival rate generates a larger ‘distance’
between the two measures. Intuitively, when the arrival rate is larger, more disasters
are observed. With the same a∗t and b∗t , detecting which probability distribution is the
true distribution is easier when disasters occur frequently. Therefore the optimal at
and bt must adjust to make sure that the relative entropy remains within the constant
budget. At time t′, the optimal parameters become: (a∗t , b

∗
t ) = (1.30, 0.75).

4.3 Solution method

It is typically not possible to solve the partial differential equation of the problem with
climate state variables (except when the highly restrictive assumption assumption of
a unit EIS is made). However we are able to obtain exact solutions for the value
function and the consumption-to-wealth ratio without making restrictive assumptions
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Figure 3: Optimal parameters at and bt with time-varying arrival rate λt and constant
ambiguity aversion parameter θ. Input parameters: θ = 0.01, η = 62, γ = 5.
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like EIS = 1, and the consumption-to-wealth ratio is what we need for assessing the
SCC. We will now sketch our approach.

Duffie and Epstein (1992a) derive that the pricing kernel (or stochastic discount

factor) with stochastic differential utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt).

However, the pricing kernel has to be adjusted for the ambiguity aversion preferences.
Chen and Epstein (2002) show that the pricing kernel in the ambiguity setting should
be multiplied by the Radon-Nikodym derivative ξa

∗,b∗

t of the measure corresponding
to the optimal a∗ and b∗. ξa,bt is defined in (36). When calculating the pricing kernel,
we obtain an expression that depends on the unknown function g(Xt). But by sub-
stituting the HJB-equation into the pricing kernel we obtain an expression that only
depends on known parameters.

As an intermediate step it is helpful to introduce the concept of consumption
strips. A consumption strip is an asset that pays a unit of aggregate consumption Cs
at time time s > t. Call its value at time t: Ht(Ct, Xt, u), where u denotes the time
to maturity; u = s − t. The price of a consumption strip paying out at time s > t
equals:

Ht = H(Ct, Xt, u)

= Et

[πs
πt
Cs

]
= exp

{
−
∫ t+u

t

CDRsds
}
Ct.

(18)

We will refer to CDRt as the consumption discount rate. We can use the fact that
every asset multiplied by the pricing kernel must be a martingale to calculate the
value of such an asset.

Furthermore, we can define a stock St that gives a claim to the Lucas-tree and
therefore it pays a continuous stream of dividends Ct. The value of such a stock then
obviously becomes:

St =

∫ ∞
0

H(Ct, Xt, u)du. (19)
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In equilibrium aggregate wealth must be equal to the value of the stock. The state-
dependent consumption-wealth ratio therefore equals:

k(Xt) =
Ct
St

=
Ct∫∞

0
H(Ct, Xt, u)du

=

(∫ ∞
0

exp
{
−
∫ t+u

t

CDRsds
}
du

)−1

. (20)

Using the expression for the consumption-wealth ratio, we can calculate the value
function. At the optimum (see for example Munk (2015), Ch. 17), we have the

envelope condition that fC = VS. Furthermore, we derived that V (Ct, Xt) =
g(Xt)C

1−γ
t

1−γ .
Using the chain rule we get:

VS = VC
∂C

∂S
= VCk(Xt) = g(Xt)C

−γ
t k(Xt). (21)

Also we have for the intertemporal aggregator:

fC = βg(Xt)
1/ε−γ
1−γ C−γt . (22)

Together this gives us:

g(Xt) =
(k(Xt)

β

)− 1−γ
1−1/ε

. (23)

We can now derive an expression for the pricing kernel in terms of known parameters
and using this pricing kernel, we can calculate the price of a consumption strip. We
will analyse the consumption strips in detail in subsection 5.2. Integrating over the
maturities of consumption strips with different maturities gives us the value of the
stock, which in turn enables us to calculate the consumption-wealth ratio. Lastly, we
can link g(Xt) to the consumption-wealth ratio, which then allows us to derive an
expression for the value function.

5 Asset prices and discounting

5.1 Asset market

Before going to the main part of this paper, the analysis of the Social Cost of Carbon,
we first calculate the risk-free rate and the risk premium as an input in the analysis
of the SCC. Assume that the representative agent has the possibility to invest in two
assets, namely a risk-free asset and a risky stock. The risk-free asset with price Bt

pays a continuously compounded interest rate rt. The stock pays continuous dividends
at a rate Ct and has ex-dividend price St. We denote the cum-dividend stock price
by Sdt . Using equation (20) we can write St = Ct

k(Xt)
. The assets have the following

distribution:

dBt = rtdt, (24)
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dSdt = dSt + Ctdt =
1

k(Xt)
dCt −

Ct
k(Xt)2

dk(Xt) + k(Xt)Stdt

=
(
µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

)
Stdt+ σStdZt + JtSt−dNt.

(25)

Chen and Epstein (2002) show that the pricing kernel with ambiguity and stochas-

tic differential utility equals πt = ξa
∗,b∗

t exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). This allows

us to derive an explicit stochastic differential equation for the pricing kernel. Using
this pricing kernel, we can calculate the endogenous risk-free rate and the endogenous
risk premium of the stock. 6 The interest rate rt equals:

rt = β +
µ

ε
−
(

1 +
1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
a∗tλt

−1

b∗tη + 1− γ

− a∗tλt
( b∗tη

b∗tη − γ
− 1
)
.

(26)

The risk premium of the dividend paying stock (the expected excess return of that
asset compared to investing in the risk-free asset) then equals:

rpt = γσ2 + a∗tλt

( −1

b∗tη + 1
− b∗tη

b∗tη + 1− γ
+

b∗tη

b∗tη − γ

)
. (27)

5.2 The consumption discount rate

As shown in appendix appendix F, the price of a consumption strip at time t that
pays aggregate consumption Cs and has time to maturity u = s− t equals:

Ht = exp
{
−
∫ t+u

t

CDRsds
}
Ct, where

CDRt = rt︸︷︷︸
A

+ rpt︸︷︷︸
B

−
(
µ+ a∗tλt

−1

b∗tη + 1

)
︸ ︷︷ ︸

C

= β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
.

(28)

We discuss the consumption discount rate CDRt in detail, since it is also an
essential component of the social cost of carbon. The effective discount rate on a
consumption strip consists of three terms, labeled A, B and C. Part A is the risk-free
rate, which is used to discount a risk-free cashflow. The consumption strip is a risky
asset and therefore the risk-free rate is increased with a risk-premium, part B. Lastly,
the discount rate should be corrected for the growth of the aggregate consumption
process. On average, consumption grows at a rate µ + a∗tλt

−1
b∗t η+1

. Note that the

average growth rate is smaller than µ since climate disasters have a negative impact
on consumption.

6The derivations are given in appendix F.
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Consider first the most simple case without climate disasters and risk, i.e. the
case with (σ, λT ) = (0, 0); then consumption strips are not risky anymore so the risk
premium is zero. The interest rate reduces to the well-known Ramsey rule for the
interest rate (Ramsey, 1928):

rt = β +
µ

ε
, (28a)

which implies a growth corrected discount rate rn,t for the case of (σ, λT ) = (0, 0)
equal to:

rn,t = β + (1/ε− 1)µ. (28b)

Now add just diffusion risk: σ > 0, λT = 0. In a general equilibrium setting this will
both affect the interest rate (due to a flight to safety) and the risk premium, in this
case γσ2:

rt = β +
µ

ε
− (1 + 1/ε)

γ

2
σ2, (28c)

rpt = γσ2. (28d)

Adding the risk premium to the risk-free rate but correcting for the growth rate once
again gives the growth-adjusted discount rate, now for σ > 0, λT = 0:

rn,t = β + (1/ε− 1)
(
µ− γ

2
σ2
)
. (28e)

One would intuitively expect that adding risk to the consumption stream and the
associated risk premium γσ2 to the interest rate would lead to a higher risk-adjusted
discount rate. However, due to the flight to safety effect the risk-free rate decreases
which in itself lowers the discount rate. Which of the two effects dominates depends
on the elasticity of intertemporal substitution.

- When ε = 1, both the interest rate and risk premium effect cancel out and the
discount rate simply becomes β.

- When ε < 1, the discount rate in the presence of risk (σ > 0) is actually smaller
than the discount rate in the absence of risk (σ = 0). This implies that for ε < 1
adding risk to the consumption stream increases the value of the consumption strip.

- When ε > 1 we get the more intuitive outcome. In that case the risk premium
effect dominates and the discount rate in the presence of risk is larger than the dis-
count rate in the absence of risk.

But for empirically plausible parameter values for the growth rate and consump-
tion variance7, we also need to take the impact of the growth rate into account.
Taking the impact of growth and risk both into account, and reasonably assuming

7µ− γ
2σ

2 > 0.
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µ − γ
2
σ2 > 0, it becomes clear from 28 that the overall effect of a higher value for ε

implies a lower growth adjusted discount rate.
Where ε determines the relative importance of the interest rate and risk premium

effects, risk aversion γ determines the magnitude. A large risk aversion amplifies the
effect of risk on the discount rate. When the agent is risk neutral (γ = 0), risk has
no effect on the discount rate. The preceding discussion makes abundantly clear that
using a General Equilibrium framework endogenizing the risk-free rate is essential in
this context.

Assume now that in addition to adding risk, climate disasters also play a role: σ >
0, λT > 0; the discount rate of the consumption strip then becomes state dependent.

First assume that there is no ambiguity aversion (θ = 0). Once again, adding
climate disaster risk has an effect on both the interest rate and the risk premium.
And similarly to the changes in the σ case, when ε < 1 the interest rate effect
dominates so that in that case adding disasters leads to a lower discount rate. But
when ε > 1, the risk premium effect dominates and adding climate disasters actually
leads to higher discount rates.

Equation (28) indicates that the climate-risk related term in the discount rate for
the reference case a∗t = 1, b∗t = 1 equals λt

−1
η+1−γ . The term scales with the arrival rate

λt: more frequent disasters have a larger effect on discount rates. The term −1
η+1−γ

can be interpreted as the certainty equivalent of the climate shock. When γ = 0, the
certainty equivalent is equal to Et[Jt] = −1

η+1
.

Including ambiguity aversion leads to a larger worst case arrival rate: a∗t > 1 =>
a∗tλt > λt and a more negative certainty equivalent term since b∗t < bt. Therefore
we can unambiguously conclude that ambiguity aversion amplifies the effect of cli-
mate risk on discounting. And once again assuming a reasonable parameterization8,
increasing ε still leads to a lower discount rate.

6 The social cost of carbon

Given the value function, we can calculate the Social Cost of Carbon (SCC), which
we define as the marginal cost (in terms of reduced welfare) of increasing carbon
emissions by one ton carbon scaled by the marginal welfare effect of one additional
unit of consumption to obtain the social cost of carbon in terms of the price of time
t consumption units terms (to which we refer as ‘in dollar terms’, for brevity’s sake).
With a single carbon box, the marginal cost of increasing carbon emissions by one
unit is the derivative of the value function with respect to the carbon concentration
Mt:

∂Vt
∂Mt

. However, with multiple carbon boxes, emitting one unit of carbon leads to
an increase of νi units in box i, i = 0, 1, 2, 3. We slightly abuse notation and define
∂

∂Mt
≡ ν0

∂
∂M0,t

+ν1
∂

∂M1,t
+ν2

∂
∂M2,t

+ν3
∂

∂M3,t
. Differentiation of the value function gives:

8Specifically, we assume throughout the rest of the analysis that µ− γ
2σ

2 + a∗tλt
−1

b∗t η+1−γ > 0 ∀t.
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SCCt = − ∂Vt/∂Mt

fC(Ct, Vt)
= −

∂
∂Mt

g(Xt)

(1− γ)g(Xt)k(Xt)
Ct = −

∂
∂Mt

(k(Xt)
β

)−
1−γ

1−1/ε

(1− γ)(k(Xt)
β

)−
1−γ

1−1/εk(Xt)
Ct

= − Ct
1/ε− 1

∂
∂Mt

k(Xt)

k(Xt)2
=

Ct
1/ε− 1

∂

∂Mt

∫ ∞
0

exp
{
−
∫ t+u

t

CDRsds
}
du

= Ct

∫ ∞
0

exp
{
−
∫ t+u

t

CDRsds
}

︸ ︷︷ ︸
A

∫ t+u

t

∂

∂Mt

(
a∗sλs︸︷︷︸
B

1

b∗sη + 1− γ︸ ︷︷ ︸
C

)
dsdu

(29)
We will first discuss the general formula and then the implications of different pref-
erences.

Equation (29) shows that the social cost of carbon is proportional to Ct, the
aggregate consumption level: when the current aggregate consumption level doubles,
the SCC doubles as well. For a given consumption level, the SCC depends on three
terms, labeled A, B and C respectively. The social cost of carbon measures the
marginal welfare loss of emitting an additional unit of carbon today. It is, in discrete
time terms, the discounted sum of all future damages done by emitting one ton of
carbon today. The outer integral indicates that all future marginal damages are
included in the SCC. Future damages are discounted with the consumption discount
rate (term A). The integral over the terms B and C captures the marginal damage
for a given maturity u. What matters is the cumulative effect of a unit of carbon
emissions at time t on the terms B and C over the time period t to t + u. Not only
the impact of Mt on Tt+u plays a role, but the whole path of the temperature between
t and t + u, since any climate damages that occur within this period have an effect
on consumption at time t+ u.

Without ambiguity aversion (θ = 0) the marginal effect of Mt on terms B and
C has a simple expression. Term C is independent of Mt and ∂

∂Mt
λs = λT

∂
∂Mt

Ts.
If we now consider the marginal damages, λT captures the increase in the arrival
rate when temperature increases by one degree. ∂

∂Mt
Ts gives the marginal increase

of temperature at time s due to an increase of atmospheric carbon concentration at
time t. In the case without ambiguity, term C equals 1

η+1−γ . Without risk aversion,
this is equal to the expected value of a climate disaster.

Consider first the impact of γ and ε. When the agent is risk averse, term C can
be interpreted as the certainty equivalent of the loss after a disaster. The certainty
equivalent is clearly increasing in risk aversion. But risk aversion also has an effect
on the discount rate CDRt. As discussed before, increasing risk aversion increases
the discount rate when ε > 1. In this case the discounting effect works in opposite
direction of the effect on the certainty equivalent: for ε > 1 the impact of γ on the
SCC is therefore ambiguous. But for ε < 1 the two effects reinforce each other and
the SCC is then an increasing function of γ. Consider next the impact of ε. The
elasticity of intertemporal substitution ε only plays a role in the discount rate. When
ε increases, the willingness to substitute over time increases which leads to lower
discount rates. So a higher ε unambiguously leads to a higher SCC.
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When ambiguity aversion is present, i.e. θ > 0, we obtain that a∗s > 1 (higher
worst-case arrival rate) and b∗s < 1 (higher worst-case jump size). The ambiguity
aversion parameter θ does not directly show up in the formula, but its effect works
via a∗s and b∗s. With θ > 0 both the arrival rate of disasters in the expression is higher
(so term B is larger) and the certainty equivalent, which with ambiguity aversion
becomes 1

b∗sη+1−γ , is also higher. Through these two channels ambiguity aversion leads
to a higher social cost of carbon. But similar to risk aversion, ambiguity aversion also
affects discount rates and the sign again depends on the elasticity of intertemporal
subtitution ε. When ε < 1, ambiguity aversion additionally leads to a lower discount
rate and thus an even higher SCC. When ε = 1, the discount rate is simply β and
ambiguity has no effect on the discount rate. Lastly, when ε > 1, increasing θ leads
to higher discount rates. Therefore increasing ambiguity aversion has two offsetting
effects in this case. We will focus in the numerical section on the empirically supported
case where ε > 1.

Summarizing, when considering the effect of ambiguity aversion on the social cost
of carbon we can identify two effects. First, including ambiguity aversion leads to a
higher arrival rate and a larger certainty equivalent, which pushes the social cost of
carbon up. We call this effect the direct effect of ambiguity aversion. Second, there is
a more indirect general equilibrium effect through the impact of ambiguity aversion on
discount rates. We call this the discounting effect. The discount rate that should be
used to discount future climate disasters is the consumption discount rate, and when
the elasticity of substitution is larger than 1, ambiguity aversion leads to a higher
consumption discount rate. This is an intuitive result: if the representative agent
is very ambiguity averse about climate disasters, he would rather like to consume
today than to postpone consumption since the future consumption level is uncertain.
Ambiguity aversion therefore increases the consumption discount rate and decreases
the price of a future consumption strip. Thus for ε > 1 it is ultimately a numerical
issue which of the two effects will dominate. We will highlight both effects separately
in the numerical section and show that for our calibration, the first effect dominates.
In our numerical analysis the net impact is positive: more ambiguity aversion leads
to a higher SCC. We turn to that numerical analysis in the next section.

7 Climate change and the social cost of carbon:

numerical results

7.1 Calibration

Appendix G gives the full details of the calibration of the climate model. Parameters
for the growth rate of emissions and the initial level are chosen to match the baseline
scenario of the DICE-2016 calibration (W. D. Nordhaus, 2017). The parameters of
the carbon cycle and temperature model are taken from Mattauch et al. (2018). In
addition, and different from Mattauch et al. (2018), we also include a base level of
non-carbon related radiative forcing and calibrate it to match exogenous forcing in
DICE-2016. Figure 4 shows the future path of the climate state variables using our
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Figure 4: Future path of climate variables.
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emissions path and climate model. Under the Business-As-Usual scenario, emissions
are projected to peak at the end of the century, and decline from then on. The surface
temperature will then rise by almost 4 degrees in 2100.

The calibration of the economic parameters is given in table 1. Since we consider
an exogenous endowment economy, output and consumption are the same thing in our
model. That leaves the question open whether we should calibrate the endowment to
output or to consumption data. The focus of the paper is on the social cost of carbon.
What ultimately matters for the social cost of carbon is consumption, since utility
depends on consumption and not on output. To make our results more comparable
to other models, we therefore calibrate endowment to consumption data. The next
choice to be made is whether one should aggregate output or consumption data using
market exchange rates or using purchasing power parities (PPP). In line with the
DICE-2016 model we use purchasing power parity exchange rates. Consumption
data is not directly available in PPP. To obtain a proxy for world consumption in
PPP we first obtain output data in PPP. Then we determine the world consumption
ratio using market exchange rates. Our proxy for world consumption in PPP is then
output in PPP multiplied by the world consumption ratio. Real world GDP (PPP)
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Table 1: Parameters for the economic model

Par. Description Value
Ct Initial consumption level (PPP, in trillion 2015$) 83.07
λT Arrival rate parameter 0.02 / 0.04
η Disaster size parameter 30.25 / 62.5
E[J ] Expected disaster size -0.016
γ Risk aversion 5
θ Ambiguity aversion 0.01
ε Elasticity of substitution 1.5
CDR0 Consumption discount rate 1.5%

in 2015 equals 114.137 trillion 2015$ (IMF World Economic Outlook October 2016).
World consumption in 2015 using market exchange rates equals 55.167 (in trillion
2010 $), while world GDP using market exchange rates equals 75.803 (in trillion
2010 $) (Worldbank Database). This yields a consumption-output ratio of 72.78%.
Applying this ratio to World GDP (PPP) then gives 83.065 (in trillion 2015 $) for
aggregate consumption in PPP terms.

The next step is to calibrate the climate disaster distribution, and in particular
the parameters λT and η. Our setup does allow for an arrival rate that is convex
in temperature, but we do not consider this extension since it would give another
free parameter to calibrate. Karydas and Xepapadeas (2019) also consider climate
disasters and assume, based on natural disaster data, that for every degree warming
the arrival rate increases by 6%. The disaster size is calibrated to 1.6%. This implies
that the expected growth loss due to climate change would be 6%× 1.6% = 0.096%
per degree global warming. W. D. Nordhaus (2017) models the economic impact of
climate change as the percentage loss of output as a function of temperature (level
impact). Hambel et al. (2019) consider both a level and a growth impact of climate
damages. They find that a loss of 0.026% per degree warming gives the same GDP
loss in the year 2100 as the level impact of W. D. Nordhaus (2017). Setting the
disaster size to 1.6% and calibrating λT such that on average climate disasters lead
to a loss of 0.026% gives λT = 1.63%, much lower than the arrival rate assumed
in Karydas and Xepapadeas (2019). The latter obviously get much higher expected
damages than the calibration of W. Nordhaus (2014) yields.

We decide to choose λT = 4%, which is in between these two calibrations and set
η = 62.5 which yields Et[Jt] = −1.6%, in line with Karydas and Xepapadeas (2019).
Additionally, we consider a variant with less frequent but on average larger disasters:
λT = 2%, and a disaster size parameter η = 30.25 which gives Et[Jt] = −3.2%. While
both calibrations have on average the same impact, their impact on risk premia is
very different.

We now turn to the calibration of risk aversion and ambiguity aversion. We set
risk aversion equal to 5. This level of risk aversion can be seen as conservative if we
compare it to common values in the asset pricing literature.9

9A coefficient of relative risk aversion between 5 and 10 is common in the asset pricing literature
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Figure 5: Detection error probabilities as a function of θ.
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The level of ambiguity aversion is harder to calibrate. To get a feeling for reason-
able values of ambiguity aversion, we use the concept of detection error probabilities.
The ambiguity aversion parameter θ pins down the arrival rate and the expected jump
size in the worst-case scenario. A higher θ leads to a higher worst-case arrival rate
and a more negative worst-case expected jump size. The detection error probability
is the probability of choosing the wrong model (so choosing the reference model P
when the worst-case Q is true and vice-versa). When θ is higher, the two models are
more different and the probability of making a mistake is therefore lower. When the
detection error probability is close to 50%, the two models are very similar. This is
an indication of a low ambiguity aversion parameter. On the other hand, when the
detection error probability is close to 0, it is easy to distinguish the worst-case model
from the reference model. This indicates that the worst-case model is extreme and
the ambiguity aversion parameter very high.

We calculate the detection error probability assuming that the consumption pro-
cess can be observed over a period of 100 years. The ambiguity aversion parameter
θ is varied between 0 and 0.02. The results are given in figure 5. Detection error
probabilities are decreasing in θ and are higher for a lower λT . This is intuitive,
since a lower λT implies that there are less disasters over the observed time period
and the probability of choosing the wrong model is therefore larger. We choose to set
θ = 0.01 in the base calibration, which gives a detection error probability of 26.7% for
(λT , η) = (0.02, 30.25) and 25.8% for (λT , η) = (0.04, 62.5) (cf figure 5). This level of
ambiguity aversion balances the trade-off between wanting to make a robust decision,
but not taking into account too extreme models. The detection error probabilities for
θ = 0.01 are sufficiently far away from 50%, which implies the two models are not too
close to each other. On the other hand, the detection error probabilities are also not
close to 0, which would indicate an extreme amount of ambiguity aversion. However,
since this parameter remains hard to calibrate we do vary θ in robustness checks.

according to (Cochrane, 2009).
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Figure 6: Arrival rate and expected disaster size over time with and without ambiguity
aversion.
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Figure 6 shows the resulting arrival rate and expected disaster size with ambiguity
aversion (θ = 0.01) and without ambiguity aversion (θ = 0) in both cases.

The parameters that still have to be calibrated affect the social cost of carbon
only indirectly, via the discount rate. Equation (28) shows that one can separate
the expression for the Consumption Discount Rate (the relevant discount rate for the
social cost of carbon) CDRt in a time-independent part CDR0 and a part that does
depend on time as:

CDRt = CDR0 + (1/ε− 1)a∗tλt
−1

b∗tη + 1− γ

CDR0 = β + (1/ε− 1)
(
µ− γ

2
σ2
)
.

(30)

CDR0 is the consumption discount rate in the absence of climate disasters. First, the
value of the elasticity of intertemporal substitution ε determines whether additional
risk increases or decreases the discount rate. Generally, there is strong empirical
evidence of an EIS larger than one (Van Binsbergen, Fernández-Villaverde, Koijen,
& Rubio-Ramı́rez, 2012; Vissing-Jørgensen & Attanasio, 2003). When ε > 1, we
are in the realistic situation that additional risk decreases asset prices. We choose
ε = 1.5, which is a common value in the literature on Epstein-Zin preferences. The
growth rate µ, the volatility σ and the pure rate of time preference β only affect
the social cost of carbon via CDR0. The calibration of β has been widely discussed
in the climate change literature. Additionally, we could calibrate σ from observed
consumption volatility. However, as Mehra and Prescott (1985) point out, the model
in that case would generate a way too low risk premium (the equity premium puzzle).
A way to circumvent this is to calibrate σ to the volatility of stock prices, but this
solution is also not very satisfactory. There have been several (partial) solutions
proposed to the equity premium puzzle, for example including economic disaster
risk. Solving the equity premium puzzle goes beyond the scope of this paper. Since
both β and σ only affect the SCC via CDR0, we choose to directly calibrate the
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consumption discount rate in the absence of climate risk. In our base calibration, we
choose CDR0 = 1.5%, but we show our results for values of CDR0 between 0.5%
and 2.5%. The parameter combinations (β, µ, σ) = (2.25%, 2.5%, 3%) and (β, µ, σ) =
(1.5%, 2.5%, 10%) for example yield a consumption discount rate CDR0 = 1.5%. Note
that the actual consumption discount rate CDRt is higher because of the impact of
climate disasters on discounting.

7.2 Social cost of carbon

Our base calibration yields a social cost of carbon of $461 per ton of carbon with
(λT , η) = (0.04, 62.5) and $533 per ton carbon with (λT , η) = (0.02, 30.25).10 Com-
paring the two cases shows that it matters whether the disasters are frequent but
small (large η) or more infrequent but larger (smaller η). The two sets of assump-
tions yield the same expected disaster shock, but in the low frequency/large-shock
case risk aversion and ambiguity aversion play a larger role and the social cost of
carbon is correspondingly higher.

Ambiguity aversion and the SCC
Figure 7 shows for each of the two sets of assumptions on the disaster risk parame-

ters the social cost of carbon for different values of θ. Ambiguity aversion clearly leads
to a substantially higher social cost of carbon. For the (λT , η) = (0.04, 62.5) case, the
SCC is 28% higher with θ = 0.01 compared no the case without ambiguity aversion.
The relative increase is even larger when we consider the (λT , η) = (0.02, 30.25) case:
the SCC is then 36% higher with ambiguity aversion. The intuition behind this dif-
ference is that the relative entropy between the reference model and the worst-case
model is increasing in λt. When the arrival rate is smaller, disasters happen less
frequently and the two probability distributions are harder to distinguish. With the
same ambiguity aversion level θ, this then implies that a∗t is larger for λT = 0.02
compared to the a∗t for λT = 0.04 and also that b∗t is lower for λT = 0.02 compared
to λT = 0.04. Therefore the relative increase in the SCC due to ambiguity aversion
is larger with λT = 0.02 than it is with λT = 0.04.

From equation (30) it is clear that ambiguity aversion does not only affect the
arrival rate and certainty equivalent of climate disasters, but also the discount rate:
in our calibration with ε = 1.5, more ambiguity aversion leads to a higher discount
rate. We disentangle the two effects on the SCC by first considering the discounting
only effect, in which we assume ambiguity aversion only affects the discount rate
CDRt, but we leave the arrival rate and the certainty equivalent in the SCC formula
unaffected by ambiguity aversion (the line with label discounting only in figure 7).
And second we consider the opposite case, where we leave the consumption discount
rate CDRt unchanged, but we do take into account the direct effect of ambiguity
aversion on the arrival rate and certainty equivalent of the climate disasters, with the
label direct only in figure 7. The two effects are combined in the base case where

10We express the social cost of carbon in dollars per ton carbon. To convert in dollars per ton
CO2, divide by 3.67.

29



Figure 7: Social cost of carbon as a function of θ.
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(b) (λT , η) = (0.02, 30.25)

This figure shows the social cost of carbon as a function of the ambiguity aversion parameter θ. The total effect of
ambiguity aversion on the SCC is given by the solid line (base). We additionally distinguish two special cases. In
the discounting effect only case (dashed line) we assume that increasing θ does lead to an increase in the discount

rate, but does not change the arrival rate and the certainty equivalent in the SCC formula. In the direct effect only
case (dotted line) we look at the opposite case, where increasing θ is assumed have an effect on the arrival rate and

the certainty equivalent, but not on the consumption discount rate CDRt.

both the direct effect and the impact via the discount rate are incorporated (labeled
Base in figure 7. Figure 7 clearly indicates that ambiguity aversion increases the
discount rate and therefore the SCC is decreasing in θ when only the discounting
effect of ambiguity aversion is considered. This also implies that when we look at the
direct only effect, the SCC is above the base case SCC since the negative impact of
discounting is left out. Overall we can conclude that ambiguity aversion does indeed
lead to a higher discount rate, but that the direct effect on the SCC dominates and
that ambiguity aversion therefore leads to a higher social cost of carbon, and in our
calibration substantially so.

The elasticity of intertemporal substitution ε and the SCC
The sign of the discounting effect depends on the choice of ε. When ε < 1, addi-

tional risk, more risk aversion or more ambiguity aversion would lower discount rates
and both the discounting effect and the direct effect of ambiguity aversion would
have the same sign. However, this would lead to counter-intuitive effects. For exam-
ple ε < 1 implies that the price of a consumption strip increases when the volatility
of consumption increases. For ε = 1, the consumption discount rate CDRt simply
equals β and risk, risk aversion and ambiguity aversion do not affect discount rates.

Risk aversion, ambiguity aversion and the SCC
In table 2 we compare the effect of risk aversion and of ambiguity aversion. By

definition, the SCC is the same for both calibrations when risk aversion γ and am-
biguity aversion θ are both 0. In that case the expected value of both calibrations is
the same and since risk is then not priced, the SCC is the same for both calibrations.
Introducing risk aversion has a negligible effect on the SCC for the frequent disasters
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Table 2: Social cost of carbon as function of risk aversion and ambiguity aversion

Social Cost of Carbon (λT , η) = (0.04, 62.5) (λT , η) = (0.02, 30.25)
γ = 0, θ = 0 363 363
γ = 5, θ = 0 360 392
γ = 5, θ = 0.01 461 533

with low disaster size: for (λT , η) = (0.04, 62.5) the direct impact of risk aversion
on the certainty equivalent is small and is canceled out by the discounting only ef-
fect: for this configuration the SCC is even slightly lower than what it is without
risk aversion. This changes when damages are more infrequent but larger. In the
alternative calibration with (λT , η) = (0.02, 30.25), risk aversion does increase the
social cost of carbon from $363 to $392. This increase is still modest compared to
the effect of ambiguity aversion. In both cases, introducing ambiguity aversion leads
to a significantly higher value of the social cost of carbon. The table shows the very
different implications that risk aversion and ambiguity aversion have for the valuation
of climate risk.

Discount rates and the SCC
Figure 8 shows the dependence of the SCC on the time-independent part of

the consumption discount rate CDR0, the core discount rate. Note that the actual
discount rate that is used to discount future damages (CDRt) is higher than CDR0

due to the effect of climate disasters itself on discounting. When core discount rates
are close to zero, the social cost of carbon becomes very high. With CDR0 = 0.5%,
the SCC is even above $2000 in both cases, around four times higher than in the
base calibration. On the other hand, setting CDR0 = 2.5% gives a social cost of
carbon that is less than half the value in the base calibration. This figure highlights
the importance of the discount rate when analyzing climate change and in particular
its impact on the social cost of carbon.

Figure 8: Social cost of carbon as a function of CDR0.
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8 Conclusions

Climate change will beyond reasonable doubt have a large impact on economic growth
in the future. However, because of the complex nature of the problem and the lack
of data, it is not possible to accurately estimate the timing and extent of its impact.
But one thing we do know is that potentially large and irreversible consequences are
likely to take place unless mitigating policies are implemented. But these changes
will happen far into the future, while mitigating policies are (or should be) under
consideration right now. That discrepancy puts the discussion on discounting at the
center of the debate about the social cost of carbon and what we should do about
climate change: to compare uncertain future damages with costs today, those future
damages need to be discounted back towards today. The debate in the literature
has largely zeroed in on the rate of time preference; the problem there is that to
be consistent with capital market data, discount rates must be relatively high which
in turn does not leave much once climate change consequences a century out are
discounted back towards today (cf Weitzman (2007) for a very lucid overview of this
debate). In this paper we squarely focus on the discounting question, but we take a
different approach. Rather than discussing numerical values of certain parameters,
we explore alternative specifications of preferences, and show the implications for the
social cost of carbon.

We focus on the effect of Epstein-Zin recursive preferences on outcomes of the
model, on the impact of unmeasurable risk (ambiguity) and the interaction between
those two. Both breaking the link between γ and the EIS (by introducing stochastic
differential utility, the continuous time implementation of Epstein-Zin preferences)
and introducing ambiguity aversion are conceptually relevant in the climate change
setting. The first extension is relevant because climate change problems have a very
long horizon and therefore the elasticity of intertemporal substitution (EIS) unavoid-
ably plays an important role. Arbitrarily restricting its value to 1/γ is then surely
unsatisfactory. Second, conceptually ambiguity aversion is a logical extension, since
we have no accurate estimation of climate damages nor in particular of their probabil-
ity density function in the future. The assumption of unmeasurable risk (“Knightian
uncertainty”) then is a natural framework to use. Finally we highlight the sometimes
complciated interactions between ambiguity aversion and intertemporal substitution
elasticities for the value of the Social Cost of Carbon.

To do all this we set up an analytic IAM by extending a disaster risk model
with a climate change model and a temperature dependent arrival rate. Furthermore
we model climate risk as tail risk instead of assuming that temperature increases
generate a certain amount of damage every year. The model is transparent because we
manage to derive closed form solutions for the social cost of carbon. Where stochastic
numerical IAMs can take hours to be solved, solving our model only requires numerical
integration and is therefore solved within seconds.

Our base calibration generates a substantial social cost of carbon which is between
$461 and $533 per ton of carbon. This is both much higher than for example the
estimate of $114 that is obtained using the DICE-2016R model (W. D. Nordhaus,
2017), and also much higher than current market prices in for example the European
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Emissions Trading System.11 Moreover we use our model to highlight how ambiguity
aversion changes the social cost of carbon.

Analysing the effect of ambiguity aversion on the SCC is a complicated exercise
since multiple potentially offsetting effects play a role: ambiguity aversion has both
an effect on the arrival rate and certainty equivalent of disasters for given discount
rates (more ambiguity aversion leads to a higher certainty equivalent) and on the
discounting component. The effect of ambiguity aversion on discounting depends on
the EIS. When EIS < 1, increasing ambiguity aversion leads to a smaller effective
discount rate on climate damages. For the more interesting (because empirically
supported) case EIS > 1, the opposite is true, in which case increasing ambiguity
aversion has two offsetting effects on the SCC. However we show that the direct
effect dominates and therefore that the presence of ambiguity aversion leads to a
(substantially) higher social cost of carbon.

Lastly, we also show the importance of the consumption discount rate on the social
cost of carbon. It is of course well known that the social cost of carbon is very sensitive
to changes in the discount rate. However we stress that analyzing the discount rate
impact of climate change involves more than a discussion of the pure rate of time
preference on the discount rate; a low discount rate can also be caused by a high
elasticity of intertemporal substitution, and additionally the discount rate depends
in elaborate ways on the growth rate of the economy, volatility, risk aversion, climate
disaster risk and ambiguity aversion. Disentangling these various effects and their
interactions is the key contribution of this paper. One major theme emerges: proper
risk pricing and incorporating ambiguity aversion leads to much higher estimates of
the Social Cost of Carbon, literally by orders of magnitude. These findings are surely
of more than just academic interest.
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A Overview of methods to model ambiguity

There are several different approaches that are commonly used in the literature to
model ambiguity about parameters. A widely used approach in the static setting
is the maxmin approach of Gilboa and Schmeidler (1989). Assume the agent does
not know the distribution of a random variable. The idea is to first specify a set
of reasonable probability measures Q. The agent is ambiguity averse and given this
set of measures he considers the worst case measure. Utility is then of the form
Vt = minQ∈P EQ[U(Ct)] for some utility specification U(.).

It is not straightforward to extend the Gilboa-Schmeidler maxmin preferences to
a dynamic setting. We will discuss two approaches that have been proposed by Chen
and Epstein (2002) and by Hansen, Sargent, Turmuhambetova, and Williams (2001)
in the setting of our model.

Consider the agent’s problem. In the setting without ambiguity, the value function
is given by:

Vt = Et

[ ∫ ∞
t

f(Cs, Vs)ds
]
. (31)

However, in the model with ambiguity the agent takes into account the fact that he
is not certain about the true value of the arrival rate λt and the jump size parameter
η.

Hansen et al. (2001) propose two approaches to model ambiguity: the multiplier
approach and constraint approach. We first consider the multiplier approach. The
‘best estimate’ model or reference model is the agent’s most reliable model with
measure P. But he also takes into account other, alternative models. The alternative
models have measure Qa,b, the jump arrival rate becomes λQt = atλt and the jump
size parameter becomes ηQt = btη. Deviating from the reference model is penalized
since the agent does not choose the ‘best estimate’ model. The size of the penalty
is proportional to d(at, bt), which represents the distance between the alternative
model and the reference model. An alternative model that has a large distance to
the reference model is considered less likely to be true and therefore using it receives
a larger penalty. The distance function should satisfy d(at, bt) ≥ 0 ∀(at, bt) and
d(1, 1) = 0. Therefore using the reference model carries a zero penalty. The penalty
is scaled by θ, which is the ambiguity aversion parameter. This parameter controls
the importance of the penalty term. Then the agent solves the following problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

(
f(Cs, Vs) + e−β(s−t)θd(as, bs)

)
ds
]
. (32)

EQ
t denotes the expectation under the alternative model with parameters λQt and ηQt .

The expected utility of consumption is lower for high at and low bt. We see that
the agent faces a trade-off between how likely a combination of (as, bs) is in terms of
distance to the reference model and how bad it is in terms of expected utility. This
trade-off results in optimal values of as and bs.

The constraint approach is closely related to the multiplier approach. Instead of
adding a penalty function, the agent can put a constraint on the distance function
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d(at, bt). Then the problem becomes:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]
,

s.t.

∫ ∞
t

e−β(s−t)d(as, bs)ds ≤ φ.

(33)

So in this approach, φ to controls the size of the set of alternative models that seem
reasonable to him. φ can again be seen as an ambiguity aversion parameter. A high
φ implies a large set of priors and therefore corresponds to high ambiguity aversion.
Given the constraint the worst-case model is chosen. This approach is very similar to
the penalty approach and the two problems are related via Lagrangian optimization
where θ can be seen as the Lagrange multiplier.

Hansen and Sargent (2001) consider how the penalty and constraint approaches
are related. They show that when the consumption process follows a pure geometric
Brownian motion (i.e. no jumps), there exists a φ for the constraint approach and
a θ for the multiplier approach such that both problems yield the same optimal
outcome. The constraint approach is directly motivated from the Gilboa-Schmeidler
maxmin utility. Since the multiplier approach is weakly related to the constraint
approach, these approaches are indirectly also motivated by the static maxmin utility.
Furthermore, the multiplier utility is axiomatized by Strzalecki (2011).

A disadvantage of both these approaches is that utility is not homothetic. Maen-
hout (2004) proposes to use a state-dependent Lagrange-multiplier θ(Vt) in the frame-
work of the multiplier approach to obtain homothetic utility. This approach is also
adopted by Liu et al. (2004). However, by assuming that the ambiguity aversion pa-
rameter θ can be state dependent, the relation with the constraint preferences is lost.
Pathak (2002) extensively discusses this issue. He argues that the main motivation of
the multiplier approach by Hansen et al. (2001) is through the constraint approach.
But with the state-dependent ambiguity aversion parameter this new utility speci-
fication cannot be seen anymore as a dynamic extension of the Gilboa-Schmeidler
utility. Furthermore, the axiomatic foundation is not valid anymore. Pathak (2002)
proposes an alternative method to model ambiguity: recursive multiple priors utility
developed in continuous time by Chen and Epstein (2002).

We follow the advise of Pathak (2002) and in contrast to Liu et al. (2004) we
choose to use the approach of Chen and Epstein (2002). The approach is closely
related to the constraint approach of Hansen et al. (2001), but does preserve the
homotheticity of the preferences. Consider the following problem:

Vt = min
{as,bs}s≥t

EQ
t

[ ∫ ∞
t

f(Cs, Vs)ds
]
,

s.t. d(at, bt) ≤ θ ∀t.
(34)

The main difference with the constraint approach of Hansen et al. (2001) is that
not the lifetime distance between the reference measure and the alternative measure
is bounded, but at every time period t the distance between the measures is bounded.
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This approach leads to more tractable solutions. The recursive multiple priors utility
is axiomatized by Epstein and Schneider (2003).

Lastly we will briefly discuss the smooth ambiguity model, since it is often used in
the literature as well. Assume that the agent does not know the true values of λ and
η. In this approach the agent first constructs a probability distribution that reflects
his beliefs on λ and η. Define p(x, y) = P (λ = x, η = y). To incorporate ambiguity
aversion, he then transforms this distribution to put more weight on the events that
give him low utility and less weight on the events that give high utility. This results
in the following problem:

Vt =

∫ ∞
0

∫ ∞
0

(
p(x, y)φ

(
Et

[ ∫ ∞
t

f(Ct, Vt)ds
∣∣∣λ = x, η = y

]))
dxdy. (35)

Here the function φ controls the ambiguity aversion of the agent. When φ is a concave
function, the agent is ambiguity averse. This approach was introduced by Klibanoff
et al. (2005). This may be a matter of taste, but we think that the assumption
of probabilities attached to the different priors is in fact at variance with the basic
assumption that ambiguity is about unmeasurable processes, i.e. we cannot map
events to probability densities, or in this case priors to model probabilities. And
since the recursive multiple priors utility is intuitive and leads to tractable results,
we chose not to move in the direction of the smooth ambiguity model.

B Derivation of Relative Entropy

For each a = (at)t≥0 and b = (bt)t≥0 we define the measure Qa,b which is equivalent

to P and has Radon-Nikodym derivative dQa,b
dP |Ft = ξa,bt where ξa,bt follows:

dξa,bt = (λt − λQt )ξa,bt dt+
(λQt fQ(Jt)

λtf(Jt)
− 1
)
ξa,bt− dNt. (36)

and ξa,b0 = 1. ξa,bt is chosen such that the jump distribution under Qa,b has arrival
rate λQt and such that the pdf of the jump distribution equals fQ(x). Specifically we
assume that λQt = atλt and ηQt = btη. We can calculate in this case the fraction of

the two probability distributions: fQ(x)
f(x)

=
ηQt (1+x)η

Q
t −1

η(1+x)η−1 = bt(1 + x)(bt−1)η. Substituting
this into 36 gives:

dξa,bt = (1− at)λtξa,bt dt+
(
atbt(1 + Jt)

(bt−1)η − 1
)
ξa,bt− dNt. (37)

The Radon-Nikodym derivative ξa,bt that we have specified is the ratio between the
alternative measure Qa,b and the reference measure P. We can use it to determine the
relative entropy between the two measures. The relative entropy between Qa,b and P
over time unit ∆ is defined as EQ

t

[
log(

ξa,bt+∆

ξa,bt
)
]
. Here EQ

t denotes the expectation with

respect to the alternative measure Qa,b. Then divide by ∆ and let ∆ → 0 to obtain

the instantaneous relative entropy: RE(at, bt) = lim∆→0
1
∆
EQ
t

[
log
(
ξa,bt+∆

ξa,bt

)]
.
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Applying Itô’s lemma for jump processes to ξa,bt , we obtain the following dynamics
for log(ξa,bt ):

d log(ξa,bt ) = (1− at)λtdt+
(

log(atbt) + (bt − 1)η log(1 + Jt)
)
dNt. (38)

Using integration by parts we can calculate that EQ
t [log(1 + Jt)] = − 1

ηQt
. Therefore

the (instantaneous) relative entropy at time t equals:

RE(at, bt) = lim
∆→0

1

∆
EQ
t

[
log
(ξa,bt+∆

ξa,bt

)]
=

(1− at)λt + atλt

(
log(atbt) +

1

bt
− 1
)
.

(39)

C Calculating the detection error probability

After observing the process of consumption over a period N years, what is the prob-
ability of choosing the wrong model? Let us start with the case that the reference
model P is the true model and the agent considers the alternative model Qa,b. Note
that the Radon-Nikodym derivative informs us about the likelihood ratio of both
models. When this derivative is larger than one after N years, the worst-case model
Qa,b is the most likely and the agent will choose the wrong model. The probability of
making this error is equal to (see for example Maenhout (2006)):

Pr
(
ξa,bN > 1|P

)
= Pr

(
log(ξa,bN ) > 0|P

)
. (40)

We calculate this probability by simulating the process of log(ξa,bt ) forward. Simu-
lation is done via a standard Euler method. Similarly, we can define the opposite
mistake where the alternative model is actually true and the agent chooses the ref-

erence model. We now define the inverse Radon-Nikodym derivative: dP
dQa,b |Ft = ξ̃t

a,b

where ξ̃t
a,b

follows:

dξ̃t
a,b

= (at − 1)λtξ̃t
a,b
dt+

( 1

atbt
(1 + J)(1−bt)η − 1

)
ξ̃t
a,b

− dNt. (41)

Applying Itô’s lemma gives:

d log(ξ̃a,bt ) = (at − 1)λtdt+
(
− log(atbt) + (1− bt)η log(1 + Jt)

)
dNt. (42)

The probability of choosing the wrong model when actually the alternative model
Qa,b is true equals:

Pr
(
ξ̃N

a,b
> 1|Q

)
= Pr

(
log(ξ̃N

a,b
) > 0|Q

)
. (43)

Again this probability can be calculated by simulating the process log(ξ̃t) forward.
The detection error probability is then defined as:

1

2
Pr
(

log(ξa,bN ) > 0|P
)

+
1

2
Pr
(

log(ξ̃N
a,b

) > 0|Q
)
. (44)
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D Hamilton-Jacobi-Bellman equation

We will first derive the Hamilton-Jacobi-Bellman equation for every measure Qa,b.
Duffie and Epstein (1992b) show that the HJB-equation for stochastic differential
utility equals:

0 = f(Ct, V
Q
t ) +DVQ. (45)

Here DVQ is the drift of the value function. In order to calculate the drift of the value
function, we will apply Itô’s lemma. By Itô’s lemma for jump processes we have:

dV Q
t = V Q

C

(
µCtdt+ σCtdZ

Q
t

)
+ V Q

X µX(Xt)dt+
1

2
V Q
CCσ

2C2
t dt

+
(
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

)
dNt

(46)

Then the drift under Qa,b equals:

DVQ = V Q
C µCt + V Q

X µX(Xt) +
1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

] (47)

This gives the following Hamilton-Jacobi-Bellman equation:

0 = f(Ct, V
Q
t ) + V Q

C µCt + V Q
X µX(Xt) +

1

2
V Q
CCσ

2C2
t

+ λQt E
Q
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

] (48)

E Reduced HJB-equation

Substituting our conjecture V Q(Ct, Xt) =
gQ(Xt)C

1−γ
t

1−γ into f(Ct, Vt) gives:

f(Ct, V
Q(Ct, Xt)) =

β

1− 1/ε

C
1−1/ε
t −

(
gQ(Xt)C

1−γ
t

) 1
ζ

(
gQ(Xt)C

1−γ
t

) 1
ζ
−1

=
β

1− 1/ε

(
gQ(Xt)

1− 1
ζC1−γ

t − gQ(Xt)C
1−γ
t

)
= βζ

(
gQ(Xt)

− 1
ζ − 1

)
V Q(Ct, Xt).

(49)

The partial derivatives of V are given by:

V Q
C = gQ(Xt)C

−γ
t , V Q

CC = −γgQ(Xt)C
−γ−1
t ,

V Q
X =

gQX(Xt)C
1−γ
t

1− γ
.

(50)
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Here gQX denotes the row vector with partial derivatives to each of the state variables,
similar to V Q

X . Additionally we can calculate the expectation:

EQ
t

[
V Q((1 + Jt)Ct−, Xt

)
− V Q(Ct−, Xt)

]
=
EQ
t

[
(1 + Jt)

1−γ]− 1

1− γ
gQ(Xt)C

1−γ
t

=

btη
btη+1−γ − 1

1− γ
gQ(Xt)C

1−γ
t =

−1

btη + 1− γ
gQ(Xt)C

1−γ
t .

(51)

Substituting f(Ct, V
Q(Ct, Xt)) together with the partial derivatives of V Q

t and the
expectation into (12) yields the following equation:

0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
gQ(Xt)C

1−γ
t + µgQ(Xt)C

1−γ
t

− γ

2
σ2gQ(Xt)C

1−γ
t +

gQX(Xt)C
1−γ
t

1− γ
µX(Xt) + atλt

−1

btη + 1− γ
gQ(Xt)C

1−γ
t .

(52)

Dividing by gQ(Xt)C
1−γ
t gives:

0 =
β

1− 1/ε

(
gQ(Xt)

− 1
ζ − 1

)
+ µ− γ

2
σ2 +

gQX(Xt)

gQ(Xt)(1− γ)
µX(Xt)

+ atλt
−1

btη + 1− γ
.

(53)

F Asset prices

F.1 The Pricing Kernel

Duffie and Epstein (1992a) derive that the pricing kernel with stochastic differential

utility equals πt = exp
{∫ t

0
fV (Cs, Vs)ds

}
fC(Ct, Vt). However, the pricing kernel has

to be adjusted for the ambiguity aversion preferences. Chen and Epstein (2002) show
that the pricing kernel in the ambiguity setting should be multiplied by the Radon-
Nikodym derivative ξa

∗,b∗

t of the measure corresponding to the optimal a∗ and b∗. ξa,bt
is defined in (36).

We will start with deriving the explicit stochastic differential equation of the
pricing kernel. First we calculate the derivatives of f(Ct, Vt) with respect to Ct and
Vt:

fC(C, V ) =
βC−1/ε(

(1− γ)V
) 1
ζ
−1
,

fV (C, V ) = βζ
{(

1− 1

ζ

)(
(1− γ)V

)− 1
ζ
C1−1/ε − 1

}
.

(54)

Substituting Vt = g(Xt)
C1−γ
t

1−γ into fC(Ct, Vt) and fV (Ct, Vt) we obtain:

fC(Ct, Vt) = βg(Xt)
1− 1

ζC−γt ,

fV (Ct, Vt) = βζ
{
g(Xt)

− 1
ζ

(
1− 1

ζ

)
− 1
}
.

(55)
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This gives:

πt = ξa
∗,b∗

t exp

(∫ t

0

βζ
(
g(Xs)

− 1
ζ
(
1− 1

ζ

)
− 1
)
ds

)
βg(Xt)

1− 1
ζC−γt . (56)

Take the logarithm and write as a differential equation:

d log(πt) = βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
dt− γd log(Ct) + d log(ξa

∗,b∗

t )

+ (1− 1

ζ
)d log

(
g(Xt)

)
.

(57)

Apply Ito’s lemma to log(Ct), log(ξa
∗,b∗

t ) and log
(
g(Xt)

)
and substitute the results;

this leads to the following differential equation:

d log(πt) =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− σ2

2

)
+ λt(1− a∗t )

+ (1/ε− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
dt

− γσdZt +
(

log(a∗t b
∗
t ) +

(
(b∗t − 1)η − γ

)
log(1 + Jt)

)
dNt.

(58)

After applying Ito’s lemma to log(πt) we find:

dπt =
{
βζ
(
g(Xt)

− 1
ζ
(
1− 1

ζ

)
− 1
)
− γ
(
µ− (γ + 1)

σ2

2

)
+ λt(1− a∗t )

+ (1/ε− γ)
gX(Xt)

g(Xt)(1− γ)
µX(Xt)

}
πtdt+−γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(59)

We can now substitute the HJB equation (53) into the pricing kernel. Several terms
cancel out and we are left with:

dπt =
{
− β − µ

ε
+
(

1 +
1

ε

)γ
2
σ2 +

(
γ − 1

ε

)
λ∗t

−1

b∗tη + 1− γ

+ λt(1− a∗t )
}
πtdt− γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(60)

F.2 The interest rate

By the no-arbitrage argument, rt should be such that πtBt is a martingale, where Bt

is the price of the risk-free asset. Now write dπt = µπ,tπtdt + σππtdZt + Jπ,tπt−dNt.
The product with Bt then follows:

dπtBt = (rt + µπ,t)πtBtdt+ σππtBtdZt + Jπ,tπt−BtdNt. (61)
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This is a martingale if rt +µπ +λtEt[Jπ,t] = rt +µπ +λt

(
a∗t

b∗t η
b∗t η−γ

− 1
)

= 0. Therefore

the interest rate equals:

rt =− µπ − λt
(
a∗t

b∗tη

b∗tη − γ
− 1
)

= β +
µ

ε
−
(

1 +
1

ε

)γ
2
σ2 −

(
γ − 1

ε

)
a∗tλt

−1

b∗tη + 1− γ

− a∗tλt
( b∗tη

b∗tη − γ
− 1
)
.

(62)

Substituting rt into the pricing kernel gives:

dπt =
{
− rt − λt

(
a∗t

b∗tη

b∗tη − γ
− 1
)}
πtdt− γσπtdZt

+
(
a∗t b
∗
t (1 + Jt)

(b∗t−1)η−γ − 1
)
πt−dNt.

(63)

F.3 The equity premium

Using equation (25), we know that the drift of the stock equals µS,t = µ−kX(Xt)
k(Xt)

µX(Xt)+

k(Xt). From (23) we have: k(Xt) = βg(Xt)
− 1−1/ε

1−γ . This gives: kX(Xt)
k(Xt)

= −1−1/ε
1−γ

gX(Xt)
g(Xt)

.

Rewriting the HJB equation (53) gives:

1− 1/ε

1− γ
gX(Xt)

g(Xt)
µX(Xt) + k(Xt) = β + (1/ε− 1)

(
µ− γ

2
σ2

+ a∗tλt
−1

b∗tη + 1− γ

)
.

(64)

Substituting this into µS,t gives:

µS,t = µ− kX(Xt)

k(Xt)
µX(Xt) + k(Xt)

= µ+ β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
.

(65)

The risk premium is then equal to the excess return of the stock over the interest
rate:

rpt = µS,t + a∗tλt
−1

b∗tη + 1
− rt

= γσ2 + a∗tλt

( −1

b∗tη + 1
− b∗tη

b∗tη + 1− γ
+

b∗tη

b∗tη − γ

) (66)

F.4 Consumption strips

Let Ht = H(Ct, Xt, s − t) = Et

[
πs
πt
Cs

]
be the price of an asset that pays out the

aggregate consumption at time s. Ht is also called a consumption strip. Conjecture
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that H(Ct, Xt, u) = exp
{
−
∫ t+u
t

CDRsds
}
Ct. u denotes the time to maturity of the

consumption strip. Clearly, H(Ct, Xt, 0) = Ct. Applying Ito’s lemma to Ht gives:

dHt = HCdCt +HXdXt −
∂Ht

∂u
dt =

1

Ct
HtdCt

− ∂

∂Xt

(∫ t+u

t

CDRsds

)
µX(Xt)Htdt

+
∂

∂u

(∫ t+u

t

CDRsds

)
Htdt.

(67)

We can calculate both derivatives:

∂

∂Xt

(∫ t+u

t

CDRsds
)
µX(Xt) =

∂

∂t

(∫ t+u

t

CDRsds
) ∂t

∂Xt

µX(Xt)

=
∂

∂t

(∫ t+u

t

CDRsds
)

= CDRt+u − CDRt,

(68)

∂

∂u

(∫ t+u

t

CDRsds
)

= CDRt+u. (69)

Therefore dHt becomes:

dHt =
(
µ+ CDRt

)
Htdt+ σHtdZt + JtHt−dNt. (70)

Now define dHt = µH,tHtdt + σHtdZt + JtHt−dNt. By the no arbitrage condition,
πtHt must be a martingale:

dπtHt = (µπ,t + µH + σσπ)πtHtdt+ (σ + σπ)πtHtdZt

+
(

(1 + Jt)(1 + Jπ,t)− 1
)
πt−Ht−dNt.

(71)

We can calculate the expectation of the jump term:

Et[(1 + Jt)(1 + Jπ,t)− 1] = Et[a
∗
t b
∗
t (1 + Jt)

(b∗t−1)η+1−γ − 1]

= a∗t
b∗tη

b∗tη + 1− γ
− 1.

(72)

Therefore πtHt is a martingale if:

0 = µπ + µH + σσπ + λt

(
a∗t

b∗tη

b∗tη + 1− γ
− 1
)
. (73)

Substituting µπ, µH and σσπ = −γσ2 gives:

0 = µ+ CDRt − rt − λt
(
a∗t

b∗tη

b∗tη − γ
− 1
)
− γσ2

+ λt

(
a∗t

b∗tη

b∗tη + 1− γ
− 1
)
.

(74)

Note that this implies that: CDRt = rt + rpt − (µ + a∗tλt
−1

b∗t η+1
). Lastly, we can

substitute rt and rpt, which yields:

CDRt = β + (1/ε− 1)
(
µ− γ

2
σ2 + a∗tλt

−1

b∗tη + 1− γ

)
. (75)
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G Calibration of Climate model

Table 3: Parameters for the Climate model

Par. Description Value
Et Initial level of total emissions (in GtC, 2015) 10.45
gEt Initial growth rate of emissions (2015) 0.017
gE∞ Long-run growth rate of emissions -0.02
δgE Speed of convergence of growth rate of emissions 0.0075
Mt Initial carbon concentration compared to pre-industrial (in GtC, 2015) 263
Mpre Pre-industrial atmospheric carbon concentration (in GtC) 588
M0,t Initial carbon concentration box 0 (in GtC, 2015) 139
M1,t Initial carbon concentration box 1 (in GtC, 2015) 90
M2,t Initial carbon concentration box 2 (in GtC, 2015) 29
M3,t Initial carbon concentration box 3 (in GtC, 2015) 4
δM,0 Decay rate of carbon box 0 0
δM,1 Decay rate of carbon box 1 0.0025
δM,2 Decay rate of carbon box 2 0.027
δM,3 Decay rate of carbon box 3 0.23
ν0 Fraction of emissions carbon box 0 0.217
ν1 Fraction of emissions carbon box 1 0.224
ν2 Fraction of emissions carbon box 2 0.282
ν3 Fraction of emissions carbon box 3 0.276
FE

0 Initial level of exogenous forcing (in W/m2, 2015) 0.5
FE
∞ Long-run level of exogenous forcing (in W/m2) 1
δF Speed of convergence exogenous forcing 0.02
T0 Initial surface temperature compared to pre-industrial (in ◦C, 2015) 0.85
T oc0 Initial ocean temperature compared to pre-industrial (in ◦C, 2015) 0.0068
κ Speed of temperature transfer between upper and deep ocean 0.73
υ Equilibrium temperature response to radiative forcing 1.13
α Equilibrium temperature impact of CO2 doubling (in ◦C) 3.05
τ Heat capacity of the surface 7.34
τoc Heat capacity of the oceans 105.5

46


