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1 Introduction

At least since Schmookler (1966), strategy, innovation, and economics scholars have emphasized the links

between market demand, innovation incentives, and technological progress. The broad consensus is that

market demand plays a crucial role in selecting from among the potential alternative paths opened up by

scienti�c and technological progress (Dosi, 1982; Kline and Rosenberg, 1986; Di Stefano, Gambardella

and Verona, 2012).

Empirical research has shown that demand may steer technological progress through a variety of

mechanisms. These include: market size (Acemoglu and Linn, 2004; Costinot, et al., forthcoming); het-

erogeneity in consumer needs (Adner and Levinthal, 2001); knowledge regarding local demand patterns

(Fabrizio and Thomas, 2012); and feedback from customers and lead users (von Hippel, 1986; Chatterji

and Fabrizio, 2012). Despite this extensive literature, shifts in demand driven by the perception of risk

in using a product have, thus far, received little empirical and theoretical attention. Our paper �lls this

gap by examining �rms�innovation responses to a signi�cant change in perceived product safety and by

characterizing the nature of the resulting innovations.

Health and safety concerns are of �rst-order importance in many aspects of our lives. With product

liability accounting for the majority of civil personal injury cases in the U.S. (70 percent in 2016,

for example), such concerns are critically important to �rms that produce these products. Moreover,

prominent product failures tend to attract extensive media coverage and public attention� such as the

fatal accident in March 2018 involving Uber�s autonomous vehicle and the recent Boeing 737 MAX

crashes in Indonesia and Ethiopia� and such attention can have profound impacts on the perceived

safety level of the underlying technologies.

Changes in risk perception potentially di¤er from other demand-pull forces in a number of dimensions.

First, consumers rarely have the full information about risk, and their learning process is typically

subject to biases, such as the over-weighting of small-probability events and events that have been

highly publicized (Lichtenstein et al., 1978; Slovic et al., 1982). Second, the impact of risk perception

on product demand and, hence, innovation incentives is potentially ambiguous. On the one hand, the

overall demand for the product is likely to drop, especially with large upward changes in the perceived
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risk. On the other hand, the willingness to pay for safety features and safer products will increase

(Viscusi, 1993). Third, changes in risk perception may exhibit externalities that potentially a¤ect the

entire product category. As a result, negative events may have far-reaching impact beyond �rms that

are directly involved (Jarrell and Peltzman, 1985), and their impact on innovation activities is also

likely to be shaped by non-market forces such as regulation, the liability systems, and standard-setting

organizations (Viscusi and Moore, 1993; Barnett and King, 2008; Berrone et al., 2013; Galasso and

Luo, 2017, 2018). These features of risk perception may have important implications for the direction

of technological progress, competitive advantage, and market structure.

We de�ne innovations that reduce the probability of negative events and/or the severity of the con-

sequences as risk-mitigating technologies (henceforth, RMTs). RMTs may take various forms, ranging

from incremental to radical innovations (Henderson, 1993) and from process to product innovations

(Cohen and Klepper, 1996). To examine the incentives to develop RMTs, our paper exploits a quasi-

exogenous surge in risk perception that a¤ected diagnostic medical devices emitting radiation. In Octo-

ber 2009, a medical center in Los Angeles disclosed that it had administered up to eight times the normal

radiation dose to over 200 patients undergoing CT brain perfusion because of erroneous scanner settings

caused by the hospital. We document a variety of evidence based on industry accounts, congressional

hearings, surveys, and �eld interviews, suggesting that the extensive media coverage of this and other

overdose accidents uncovered at the time increased patients�and medical providers�perceived risk of

CT and other radiation-emitting technologies.

Our empirical analysis proceeds in multiple steps. We begin with an examination of the shock�s

impact on �rm innovation in terms of both patenting and new product introductions. For patenting,

we leverage the detailed patent classi�cation system to de�ne RMTs� that is, patent subclasses related

to technologies aimed at protecting against radiation, controlling the level of radiation exposure, and

detecting device malfunctions. Our baseline result is based on a di¤erence-in-di¤erences analysis that

compares patenting in RMT subclasses (treatment group) to patenting in subclasses related to other

features of diagnostic radiology devices (control group) before and after the over-radiation shock. We

�nd that after the shock, relative to control subclasses, patenting in RMT subclasses experienced a

large and statistically signi�cant increase of over 100 percent. We show that this surge was not driven
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by di¤erential patenting trends in treated and control subclasses before the shock and that the �nding

is robust to a number of di¤erent speci�cations and alternative ways to de�ne treatment subclasses.

Importantly, we exploit alternative control subclasses to show that potential within-�rm substitution

e¤ects (e.g., through reallocation of R&D resources from other research activities to RMTs) are likely

to be moderate. This implies an overall increase in innovation in radiation diagnostic devices.

Using FDA data on pre-market noti�cations, we show that the over-radiation shock also led to an

increase in new product introductions. In particular, the number of new radiology diagnostic devices

emitting ionizing radiation increased signi�cantly after the shock relative to other types of devices.

Furthermore, using information extracted from the FDA application summary �les, we con�rm two

�ndings: that the increase is driven by products for which radiation safety features are prominent; and

that the e¤ect is economically and statistically more signi�cant for devices emitting higher levels of

radiation.

Next, we provide more-direct evidence for the economic mechanism at play: the over-radiation

shock led to an increase in users� perceived risk of CT scans, which, in turn, a¤ected demand. In

particular, we show that demand changed at two di¤erent margins. In terms of technology use (the

intensive margin), we show that the number of services rendered for diagnostic procedures involving

high radiation experienced a large and sharp drop after 2010. In terms of technology upgrade (the

extensive margin), however, we �nd that, after the shock, hospitals�and clinics�propensity to replace

or upgrade CT systems increased signi�cantly relative to equipment emitting lower levels of radiation.

The joint presence of a decline in usage and an increase in equipment upgrade is consistent with an

increase in risk perception and is hard to reconcile with alternative mechanisms.

We further complement our aggregate, quantitative analysis with an in-depth characterization of the

nature of these RMTs. Speci�cally, we document two types of RMTs. The �rst type can be thought

of as �low-hanging fruit,� as their goal is to prevent over-radiation errors or to manage dosage more

e¢ ciently without a substantial departure from existing technologies. Many of these new features,

including alerts and noti�cation systems, are implemented by the CT industry through a series of new

standards set by the industry association. The second type of RMTs is qualitatively di¤erent because

it requires a substantial departure from the method that has dominated the CT industry for the last 30
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years. This alternative method involves the adoption of a long-shelved technique to reconstruct image

data, which requires a signi�cant sacri�ce in speed and other aspects of image quality, at least initially.

However, it allows for levels of radiation dose reduction that are not achievable by simply �tweaking�the

existing technologies. This evidence is consistent with the idea that market demand can play a role in

the selection and establishment of dominant designs (Utterback and Abernathy, 1975) or technological

paradigms (Dosi, 1982).

We conclude our empirical analysis by examining the role of large �rms in the development of RMTs.

We show that (i) innovation activities in RMTs are economically substantial for both the largest �rms

and smaller patentees; and (ii) relative to the patenting stage, the largest �rms play a more prominent

role in the commercialization stage. The latter result is especially true for the type of RMTs that require

substantial R&D investment. These patterns are consistent with the idea that the shock a¤ected the

entire product category and that dominant players were better equipped to incorporate new technologies

into new products. These results also suggest that the over-radiation shock may have perpetuated the

market dominance of large �rms, rather than diminishing it.

The paper is organized as follows. Section 2 reviews the literature. Section 3 discusses the theoretical

insights that guide our empirical analysis. Section 4 provides background information on CT and the

over-radiation shock. Section 5 describes the data and our empirical approach. Section 6 presents the

empirical results linking the shock to innovation measures using patent and FDA data. Section 7 reports

results on demand changes in terms of equipment upgrades and their usage. Section 8 focuses on CT

scanners and provides a characterization of di¤erent types of RMTs, and section 9 discusses the role of

large incumbents and smaller players. Section 10 concludes.

2 Related literature

Our paper is related to studies that investigate the relationship between tort liability risk and innovation.

Despite much theoretical and policy attention (Huber, 1989; Porter, 1990; Daughety and Reinganum,

1995; Hay and Spier, 2005; Parchomovsky and Stein, 2008), large-sample empirical evidence on this

topic is scarce. Examining a sample of large U.S. manufacturing �rms in the 1980s, Viscusi and Moore

5



(1993) �nd a positive relationship between product liability insurance costs and R&D expenditure.

Their results suggest that, on average, product liability promotes rather than discourages innovation.

Galasso and Luo (2017) re-examine this issue and also �nd a positive relationship between liability

risk and innovation; in particular, they show that, on average, states passing tort reforms that decrease

physicians�exposure to medical malpractice liability are associated with a signi�cant decrease in medical-

device patenting. Theoretical frameworks in both papers show o¤setting e¤ects of higher liability risks on

innovation: on the one hand, higher liability risks may chill the development and adoption of innovation

due to higher costs and uncertainties; on the other hand, they may also incentivize the development

of safer products or complementary technologies that reduce the likelihood and severity of injuries.

Galasso and Luo (2018) exploit a major quasi-exogenous increase in liability risk faced by US suppliers

of polymers used to manufacture medical implants. In contrast to previous studies, they �nd a large

and negative impact on downstream innovation in medical implants. Galasso and Luo (2018) argue that

an unexpected, substantial surge in liability faced by large upstream general-purpose input suppliers

may restrict supply or even foreclosure to downstream markets with the greatest risks, and such supply

restriction may negatively a¤ect downstream innovation. This paper makes two contributions to the

understanding of liability risk and innovation. First, while Viscusi and Moore (1993) and Galasso

and Luo (2017) suggest that liabilities may incentivize the development of risk-mitigating technologies,

neither paper directly measures this type of innovation. This paper characterizes and measures risk-

mitigating technologies and provides direct evidence for a change in the direction of innovation. Second,

we show that even in the absence of changes in the liability rules, changes in risk perception of a product

may impact the e¤ective liability risk faced by both the producers and users (CT scanner producers

and hospitals/physicians, respectively, in our setting) of the product, leading to changes in technological

development and industry standards.

More broadly, our analysis relates to the vast economics and management literatures on the deter-

minants and directions of technological change. Ahuja, et al. (2008), Cohen (2010), and Di Stefano,

Gambardella and Verona (2012) provide comprehensive overviews of the academic debate on the sources

of innovation. While Schmookler�s seminal work on the primary role of market demand raised a number

of important empirical and theoretical concerns, more-recent studies have made progress in addressing
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these issues and providing new evidence for the linkages between market demand and innovation (Sut-

ton, 1998; Acemoglu and Linn, 2004; Finkelstein, 2004). While most of these studies have focused on

market size and factor prices, the economics and strategy literatures on the environment have examined

the innovation responses to climate change and natural disasters (Miao and Popp, 2014; Popp, 2019),

as well as to regulatory and normative pressures (Berrone et al., 2013). We contribute to this line of

research by examining the innovation impacts of demand shifts driven by increases in the risk perception

of product use.

Our paper also relates to the literature on product recalls, especially the stream of research that

explores the spillover e¤ect on competitors who do not su¤er direct costs but may experience reduced

demand due to consumers� revised beliefs about the safety of the product category. Using sales or

stock price data, the literature produces mixed results on the existence of such a spillover e¤ect (e.g.,

Jarrell and Peltzman; 1985; Ho¤er et al., 1988). Later studies focusing on the mechanisms �nd that

the spillover e¤ect is more likely to be present when consumers�prior of rival �rms�product safety is

less precise, which, in turn, depends on factors such as the stringency of government regulation and

the development stage of an industry, as well as whether �rms share common practices (Borenstein and

Zimmerman, 1988; Freedman et al., 2012). Dranove and Olsen (1994) provide a supply-side explanation

for a negative e¤ect on rival �rms�market value: concerns about more-stringent FDA regulation that is

costly for �rms. We add to this literature by exploring accidents that are likely to increase the perceived

risk of the entire category and show that the innovation response is industry-wide. It is worth noting

that there are no product recalls in our setting, as the accidents are caused by user errors. This allows

us to also study the response of the producers directly involved, with limited concern about the direct

costs of product recalls, such as legal and �nancial losses. The only paper we are aware of that studies

the impacts of product recalls on innovation is Ball et al. (2018), which is also in the context of medical

devices. They show that product recalls have negative impacts on innovations of focal �rms (likely due

to �nancial and operational disruptions) but positive e¤ects on their rivals (likely due to competitive

e¤ects). Our paper is di¤erent from theirs in terms of the nature of the shocks, our focus on innovations

that speci�cally address safety concerns, and the underlying mechanisms.

Finally, our analysis is also related to the literature studying the relationship between legal liabilities
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and medical practice. Most studies in this literature exploit the variations provided by state tort reforms.

Results are mixed, suggesting a nuanced relationship between liability risk and the intensity of medical

practice, depending on the providers� incentives (Kessler and McClellan, 1996; Currie and MacLeod,

2008; Frakes, 2013). Our paper contributes to this literature by providing evidence that links liability

concerns with medical technology development, adoption, and usage.

3 Theoretical considerations

Risk perceptions may have important impacts on consumer choices, especially when markets fail to

provide full insurance against uncertainty (Arrow, 1970). In the context of product safety, one can

think of the risk associated with the use of a product as the probability of a negative event and the

severity of the consequences (e.g., minor injuries, major injuries, or even death). Such negative events

may occur to the user of the product directly or to a third party for which the user of the product bears

the cost indirectly, such as through legal liabilities.

Often, consumers do not have precise risk information, and their choices of products to purchase

and their intensity of use are based on the consumers�perception of risk. Risk perception evolves as

new information is revealed over time through, for example, personal experience, news reporting of

accidents, and publication of new scienti�c studies. This new information can serve as either good

news or bad news, leading to an upward or downward revision in risk perception, depending on how

the new information compares to consumers�prior belief. The magnitudes of these revisions depend

on the precision of consumers�prior belief and the precision of the new information. Thus, a couple of

fatal accidents may result in large downward revisions about risk associated with emerging technologies,

such as driverless cars, but may have little in�uence on consumers�assessment of products for which

rich statistical data are available. Two commonly cited results in the risk perception literature are that

individuals tend to over-assess the risks of low-probability events and under-assess the risks of high-

probability events (Lichtenstein et al., 1978; Tverskey and Kahneman, 1982); in addition, some of the

over-assessed risks are those that have been highly publicized (Slovic et al., 1982). These patterns of

risk assessment are shown to be consistent with a Bayesian learning process even with fully rational
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agents, unless they acquire full information about the riskiness of the product (Viscusi, 1985).

Learning about risk implies that informational shocks that increase the risk that consumers perceive

about a product may generate shifts in market demand. In particular, consumers�willingness to pay for

risk reduction will increase (Viscusi, 1993). If this increase in willingness to pay for safety is su¢ ciently

large, demand changes may serve as a �pull� force for innovation and incentivize the development of

RMTs (Schmookler, 1966). Conceptually, RMTs reduce the probability of negative events and/or the

severity of the consequences. Seatbelts and airbags, for example, reduce the risk of fatal accidents in

automobiles. Often, RMTs involve tradeo¤s between di¤erent characteristics of a product. For example,

installing a speed limiter on a motorcycle reduces the likelihood of serious accidents but also reduces

the pleasure that some consumers derive from high speed. As we will explain in detail later, one type

of RMT that addresses the increased perception of radiation risk requires certain sacri�ces in the speed

and quality of CT images.

RMTs may take various forms, depending on the nature of the hazards, the magnitudes of the demand

changes, the technological possibilities, and the associated development costs. They can be incremental

or modular innovations that re�ne existing technologies or radical innovations that may establish new,

dominant designs (Utterback and Abernathy, 1975; Dosi, 1982; and Anderson and Tushman, 1990).

Moreover, while many examples of RMTs are product innovations, process innovations� e.g., new fea-

tures of an assembly line that are more e¤ective at identifying product defects� can also be RTMs

(Cohen and Klepper, 1996).

The impact of increased risk perception on product demand and, hence, overall innovation incen-

tives, is potentially ambiguous. Within a set of existing products, higher perceived risk is likely to

reduce demand for riskier products and increase it for safer ones; but if this substitution is limited, the

overall demand for the product category is likely to drop. The development of RMTs may partially,

or completely, o¤set the demand drop, depending on how the safety of the new products incorporating

RMTs is perceived. In the case of durable goods, we also need to distinguish demand at two di¤erent

margins� the purchase of the products and the intensity of use. When it is not easy for the users to

consolidate use or to �nd substitute products, we may observe an increase in the demand for products

incorporating RMTs, despite a lower intensity of use. For example, a substantial increase in the per-
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ceived risk of automobile crashes may lead consumers to replace their cars with safer models and to

drive their new cars less often. These opposite e¤ects at the intensive and extensive margins would not

be present in the canonical case of quality-enhancing product innovation.

Finally, information shocks such as accidents and product failures may exhibit externalities that can

impact the entire product category or even related categories. For instance, new information revealing

widespread failures of hip implants may increase the risk perception of all implanted medical devices

(breast implants, pacemakers, etc.). Uber�s fatal accident killing a pedestrian in March 2018 led not only

Uber, but also other companies, such as Toyota, to pause public road testing immediately afterwards.1

Such externality has important implications for risk perception, learning, and innovative responses.

First, we may expect that innovative responses will likely come from �rms beyond the focal �rms

directly implicated by the negative events. Second, this process is also likely to be shaped by non-

market forces such as regulators, standard-setting associations, consumer-protection groups, and legal

liability systems. Third, large �rms may play an important role in the development of RMTs both

because accidents are more likely to involve products of �rms with the largest market share and because

large �rms are more likely to internalize the externalities a¤ecting the entire product category.

4 Background

Computed tomography (CT) is a medical imaging method that combines multiple X-ray projections

taken from di¤erent angles to produce detailed cross-sectional images of areas inside the body. Judged

by primary care physicians to be one of the most important technical innovations in medicine (Fuchs

and Sox, 2001), more than 62 million CT scans were performed in 2006 in the U.S.� a dramatic increase

from about three million in 1980 (Brenner and Hall, 2007).

A key advantage of CT over standard X-rays and ultrasound is its superior image quality� high-

contrast resolution that detects tissue types di¤ering only slightly in physical densities; elimination

of possible obstructions; and the ability to see from di¤erent angles and planes. Magnetic resonance

imaging (MRI) generates more-detailed images of soft tissues and ligaments and is more suitable for

1Source: �Toyota Takes Self-Driving Cars O¤Road After Uber Accident," Neal E. Boudette, March 20, 2018, NYTimes,
https://www.nytimes.com/2018/03/20/business/uber-driverless-car-accident.html.
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examining, for example, the spinal cord and nerves, but it takes 30 minutes to an hour and usually

cannot be used for patients with metal implants and pacemakers. In contrast, CT often takes seconds

or minutes, is cheaper and more available than MRI, and can be used safely on patients with implants.

A key disadvantage of CT is the relatively high levels of radiation required. As Pelc (2014) puts it,

�[A]n underlying principle of all X-ray imaging, and especially CT, is that we �pay for�image quality with

radiation dose." E¤ective dose varies by procedure, patient size, CT system, and operating technique.

The dose of a CT chest exam, for example, is about 350 times that of a chest X-ray.2

4.1 Over-radiation accidents, extensive media coverage, and subsequent events

In early October 2009, the Cedars-Sinai Medical Center in Los Angeles disclosed that, due to erroneous

scanner settings, it had mistakenly administered up to eight times the normal radiation to 206 patients

undergoing CT brain perfusion. The error had been made a year prior to the disclosure, when the

hospital had recon�gured a scanner to improve doctors�ability to see blood �ow in the brain.3 These

accidents received widespread media coverage, together with coverage of a contemporaneous case in

Northern California of a 2.5-year-old boy who was scanned for 68 minutes for a procedure normally

taking only a few minutes (Bogdanich, 2009). Following his �rst New York Times article on these events

in October 2009, Walt Bogdanich, by then a three-time Pulitzer Prize winner, wrote a series of reports

in the span of two years. Titled �The Radiation Boom," the series reported on the medical radiation

risk associated with imaging technologies and radiation therapies.4 Bogdanich was a 2011 Pulitzer Prize

�nalist for �his spotlighting of medical radiation errors that injure thousands of Americans, sparking

national discussion and remedial steps."5

Patients over-exposed to radiation at Cedars-Sinai �led a class action lawsuit against the hospital

and the device manufacturer, GE Healthcare, in October 2009. Moreover, public concerns raised by

these events led to a series of responses by regulators and the industry. In February 2010, the United

States House of Representatives held a congressional hearing discussing the risk of medical radiation

2U.S. Food and Drug Administration, �What are the Radiation Risks from CT?" https://www.fda.gov/radiation-
emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115329.htm.

3Alan Zarembo, �Cedars-Sinai radiation overdoses went unseen at several points," Los Angeles Times, October 14.
4Radiation therapies are very di¤erent from CT imaging technologies; they irradiate tumors with particle beams

produced by linear accelerators.
5Source: www.pulitzer.org/�nalists/walt-bogdanich.
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to the U.S. population. The testimonies by industry representatives emphasized innovations that the

industry had already introduced� such as weight- and age-based protocols and automatic exposure

control� that could help reduce the radiation dose; they also testi�ed that they were collaborating with

various stakeholders, including the FDA, on measures to prevent future medical errors.

The FDA initiated an immediate investigation of scanners involved in these events and held a public

hearing on this issue in March 2010. The investigation revealed more widespread overexposure: as

of October 26, 2010, the agency was aware of approximately 385 patients from six di¤erent hospitals

who were exposed to excess radiation during CT brain perfusion scans; and the reported cases involved

scanners manufactured by GE Healthcare and Toshiba America Medical Systems. This investigation

concluded that these companies had not violated FDA laws and regulations. In particular, it concluded

that these scanners, if used according to the manufacturers� speci�cations, would not result in over-

exposure. The investigation did, however, suggest improvements that the industry could make to its

equipment and user training. In November 2010, the FDA sent a letter to the Medical Imaging Tech-

nology Alliance (MITA), a leading industry association of medical imaging equipment manufacturers,

with recommendations for improving the safety of their devices.

As a �rst response to these events, MITA published a technical standard known as the CT Dose

Check (NEMA XR-25) in October 2010 that automatically checks for potentially high dose levels and

noti�es the CT operators. The CT Dose Check and another standard published in 2013 later became

part of the MITA Smart Dose standard (NEMA XR-29, 2013).

4.2 Cancer risks of CT scans� scienti�c evidence and perception

Radiation concerns about CT scans arise because of the known association between ionizing radiation,

such as X-ray, that damages DNA and the increased lifetime risk of developing cancer, especially for

children and younger people. However, to establish a clear causal link between CT scans and excess

cancer risk is challenging. The literature has examined this issue exploiting survivors of Hiroshima�s

atomic bombing (Brenner and Hall, 2007) or following cohorts of people who have undergone CT scans

for a long period of time (Harbron, 2016). These studies are subject to criticisms, including selection bias,

measurement error, and uncertainty associated with extrapolating estimates from other settings that
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involve doses higher than the diagnostic levels. These caveats notwithstanding, the overall assessment

is that an association exists between radiation exposure from CT and the risk of developing cancer and

that the e¤ect appears small but statistically detectable (Harbron, 2016).

Anecdotal and survey evidence suggests that the overexposure accidents and their extensive media

coverage have increased the awareness levels of both patients and medical providers about the potential

risks associated with CT. In a highly-cited study based on a 2002 survey of adult patients seen in the

emergency department of a U.S. academic medical center, Lee, et al. (2004) show that 47% of the

radiologists and 9% of the emergency-room physicians believed that CT scans increased the lifetime

risk of cancer; and roughly 75% of both groups signi�cantly underestimated the radiation dose from a

CT scan. In contrast, Boutis, et al. (2014), based on a 2012 survey of pediatric emergency medicine

physicians in Canada, show that almost all responding physicians are aware of the potential malignancy

risk from a head CT, and only 25% underestimated the associated radiation dose. For patients, Zwank,

et al. (2014), using a 2010 survey of adult patients at a single tertiary care emergency department,

show that 14.5% of the patients reported that their physicians discussed radiation risks with them, and

25% of the patients believed that radiation from CT can increase overall lifetime risk of cancer. These

numbers are also signi�cantly higher than those (7% and 3%, respectively) reported in Lee et al. (2004).

Both studies conducted after 2010 refer to mass media coverage as among the likely reasons for the

signi�cant increase in patient and physician awareness.

Reacting to these series of events, the medical community stresses that we should not lose sight of

the contributions of CT to more-e¤ective surgeries, shorter hospital stays, elimination of exploratory

surgery, and better diagnosis and treatment of cancer. At the same time, it agrees that CT should be

used only when appropriate and with correct dose speci�cations (Thrall, 2012). According to Freiherr

(2010), the radiation overdose events seem to have also led to a fundamental change in radiologists�

mindset� �from requesting the highest image quality to requesting �good enough�images obtained with

minimal radiation doses."

Interviews with anonymous industry sources suggest that before 2010, even though manufacturers

were conscious of safety in designing new CT systems, avoidance of over-radiation exposure was a

secondary concern compared to the key objective of helping doctors �see more stu¤." As summarized
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in Pelc (2014), �historically, the main drivers for technological improvements have been the physicians�

demand for improved image quality, speed, and new clinical applications.� The events around 2010

emphasized the goal of minimizing radiation exposure and may have in�uenced the direction of the

technological progress of CT and, likely, other diagnostic technologies using radiation.

5 Data and methods

We investigate the impacts of the series of events in late 2009 and 2010 (referred to as the �over-radiation

shock�hereafter) on a number of outcome variables, ranging from innovation by �rms, to equipment

upgrade by hospitals and clinics, and to the ordering of medical imaging services by physicians. This

section describes the two datasets used to examine the impacts on innovation: (i) patent applications

�led at (and eventually granted by) the US Patents and Trademarks O¢ ce (USPTO), which capture

patentable technologies close to their invention stage; and (ii) pre-market noti�cations submitted to and

approved by the Food and Drug Administration (FDA) that measure new product introductions. We

will provide details on the datasets for equipment upgrade and use in section 7.

5.1 Patent applications

The USPTO assigns each patent to one or more technology classes following the Cooperative Patent

Classi�cation (CPC) scheme. Aggregation levels of CPC include sections (A), subsections (A61B),

groups (A61B6), and subgroups (A61B6/10). We use the lowest level, CPC subgroups, and refer to

them as patent subclasses. The data provided by the USPTO in July 2018 include 130,674 subclasses.

Our analysis will focus mainly on the 140 subclasses covered by A61B6, �Apparatus for radiation

diagnosis," which captures diagnostic devices using radiation, including standard X-rays and CT.

Based on the class descriptions provided by the USPTO, we identify eight patent subclasses of

technologies related to reducing radiation risk or other safety features. We refer to them as RMT

subclasses and allocate them to the treatment group. Two examples are A61B 6/542 �Control of devices

for radiation diagnosis involving control of exposure" and A61B6/107 �Protection against radiation,

e.g. shielding." The complete list of treated subclasses is provided in the data appendix with additional

details on the selection process. In section 6, we will show that our results are robust to a di¤erent
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method of de�ning treated subclasses, based on keyword matches in patent titles.

The main control group in our patent analysis includes subclasses in A61B6 that are not classi�ed

as RMTs (that is, non-RMT features of radiation diagnostic devices). In section 6.2, we examine

the robustness of our �ndings to using alternative control groups, including patent subclasses that are

technologically more distant from the treatment group.

We assign patents to treatment versus control groups based on their primary CPC subclasses. In

section 6.3, we provide a separate analysis utilizing patents�secondary classi�cations. Because of grant

delays, we date the patents using their application year rather than their grant year. The �rst panel of

Table 1 provides summary statistics of our main patent sample, which spans 2005-2015. Patent data

after 2015 are very sparse due to long grant delays. On average, there are 2.96 patent applications per

year per subclass, and about six percent of the observations (subclass-year) belong to RMT subclasses.

5.2 FDA premarket noti�cations

The FDA classi�es each device with a speci�c product code, which identi�es the generic category of

the device. CT scanners and other X-ray diagnostic devices are classi�ed as class-II �moderate to high

risk" devices. For such devices, a manufacturer intending to market in the U.S. must submit premarket

noti�cation (510k) to the FDA. There are approximately 1,700 unique product codes associated with

class-II devices, grouped into 19 medical specialties, including radiology.6 Our FDA sample is based

on the 35,431 class-II 510k applications submitted between 2005 and 2017. Approval time of class-II

devices is typically a few months, allowing us to extend the analysis until 2017.

The strength of the FDA data lies in the fact that they are about new product introductions and

capture innovations that are not necessarily patentable. The challenge, however, is that each new

product embodies various features, making it di¢ cult to capture RMT features separately from the

other features of a product, as we can do with patents. As a result, our analysis of the FDA data is at

the product level. In section 6.4, we explain additional data collection and analysis that help con�rm

that changes we detect are likely to be driven by products for which RMTs are prominent features.

We de�ne a product code as treated if it involves radiology diagnostic devices that emit ionizing

6Source: www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM284443.pdf.
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radiation.7 There are 19 treated product codes (1,242 applications), and examples include computed

tomography (CT) X-ray system, emission computed tomography system (PET/CT), mammographic

X-ray system, and diagnostic X-ray high voltage generator.

The control group for our analysis of the FDA data includes product codes that are classi�ed as

radiology diagnostic devices but do not emit ionizing radiation, as well as all class-II devices in non-

radiology medical specialties such as cardiovascular, general and plastic surgery and orthopedics. The

dataset is a panel spanning 2005-2017 (we use the application year, not the decision year by the FDA);

it includes 1,477 product codes and 19,474 code-year observations. On average, there are 1.8 pre-market

noti�cations per year in a product code (second panel of Table 1).

5.3 Econometric model

Our empirical strategy relies on a standard di¤erence-in-di¤erences estimation:

Yc;t = �+ �Treatedc �After2010t + �t + fc + "c;t; (1)

where the dependent variable, Yc;t, captures innovation activities in technology area c and year t: As

explained above, the unit of the panel is subclass-year for the patent analysis, whereas for the FDA data,

it is product code-year. The treatment group, Treatedc, identi�es technology areas that are expected to

respond to the over-radiation shock. For patents, the treatment group includes technological features of

radiation diagnostic devices that control radiation risk, whereas for the FDA data, it includes diagnostic

devices in radiology emitting ionizing radiation. The dummy After2010t equals 1 for every year after

(and including) 2010; and �t and fc are year and technology area �xed e¤ects. The coe¢ cient � of the

interaction term between Treatedc and After2010t is the standard di¤erence-in-di¤erences estimator.

We cluster the standard errors at the technology area level for all regressions.

7We identify diagnostic devices based on the regulation numbers associated with each product code. For radiology,
see https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=892. Furthermore, information
on whether devices in a product code emit radiation and on the type of radiation (e.g. ionizing, optical, microwave or
acoustic) is provided by the FDA Radiation-Emitting Electronic Product Codes Database.

16



5.4 Identi�cation challenges

Identifying the e¤ects of the over-radiation shock presents a number of challenges. The �rst important

concern is that the control group might be �contaminated� in certain ways, and this could a¤ect the

interpretation of our estimated e¤ect. On the supply side, for example, budget constraints may result in

a decrease in investment in non-RMT areas if �rms need to allocate more resources for RMT innovation.

Alternatively, development e¤orts in RMT may induce �rms to redesign their products overall, which

may actually result in an increase of investment in control technologies. On the demand side, users

may use diagnostic tools without radiation (e.g., MRI) more. This demand substitution may also

increase investment in these alternative imaging technologies. For our purposes, we are less concerned

about spillover e¤ects that tend to increase investment in control technologies, as they are likely to

result in an underestimation of a positive e¤ect of the shock on innovation activities in RMTs and

overall. In contrast, spillover e¤ects that decrease investment in control technologies are more worrisome

because they may lead to an overestimation. In section 6.2, we provide robustness checks of our results

against a number of di¤erent control groups, especially those that help mitigate concerns about potential

overestimation.

A second concern relates to the exogeneity of the shock and its timing. The accidental nature of these

incidents and the rich documentation at the time of the regulator�s and industry association�s responses

already provide quite convincing evidence for the exogeneity of the shock. Panel (a) of Appendix Figure

A1 plots the timing of news articles referring to CT scan and X-ray radiation risk, retrieved from the

Factiva (Dow Jones) database. The �gure shows that following the �rst wave of reporting in October

2009, media coverage of radiation and dosage of imaging devices spiked in 2010. This also provides

support for our choice of the treatment timing being around 2010. We provide two more pieces of

evidence in support of this timing. Panel (b) of the same �gure shows that, relative to control devices,

the average number of months that the FDA took to approve an application increased substantially for

radiation diagnostic devices starting from the fourth quarter of 2009. This is consistent with the idea

that the regulator scrutinized these devices more after 2010. Lastly, panel (c) plots the Google search

trend for the term �CT scan radiation," which also suggests that public interest became more intense
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after late 2009.

A third concern is about potential confounding factors. For instance, there could be concurrent

supply-side shocks, such as scienti�c progress or drops in the costs speci�cally related to RMT. As we

discuss in detail in section 8, an important type of response was the introduction of safety checks and dose

displays. These are relatively inexpensive technologies that do not rely on scienti�c breakthroughs. A

substantial increase in this type of RMT after 2010 is not consistent with the idea that technology-speci�c

supply shocks are the major driving force of our result. Demand shocks unrelated to the over-radiation

shock may also potentially confound our estimates. For example, one may worry that investment in

RMTs is pro�table only if the market is su¢ ciently large. Section 7.1 provides evidence against this

alternative explanation, documenting how the overall use of the technology declined substantially after

the shock.

6 Innovation responses to the over-radiation shock

Figure 1 compares the average number of patent applications between RMT subclasses and control

subclasses (i.e., other subclasses in radiation diagnostic devices �A61B6�) during our sample period. The

�gure shows that patenting in control subclasses was relatively stable throughout the period, whereas

patenting in RMT subclasses was stable before 2009, dropped slightly in 2009 and 2010, and increased

substantially after 2010. While this �gure provides a �rst look at our main result, we turn to regression

analysis below� �rst, on the average e¤ect of the over-radiation shock and then, in the next section, on

the pre-treatment trend and time-speci�c e¤ects.

Table 2 presents the di¤erence-in-di¤erences estimates speci�ed in equation (1). Column 1 shows

that after 2010, patenting in RMT subclasses experienced an average increase of 1.78 patents per year

relative to control subclasses (p-value is 0.029). Assuming the same average di¤erence between the two

groups before and after 2010, the hypothetical average number of patents for RMT subclasses would

have been 1.63 per year after 2010. This implies that the average increase in RMT patenting after 2010

was about 110 percent.8 Column 2 produces a similar estimate, dropping subclasses with zero patents

8The average number of patents for non-RMT subclasses after 2010 is 2.92, and the pre-2010 di¤erence between RMT
and non-RMT subclasses is -1.29 patents per year.
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during the entire sample period (about two percent of the observations). In column 3, following Moser

and Voena (2012), we show that our baseline result is robust in an unbalanced panel that includes only

observations for which we observe at least one patent in this particular subclass in previous years.

Because the over-radiation shock involves CT scanners, we expect the surge in RMT patenting to

be driven mostly by CT technology. We de�ne CT patents as those referring to subclass A61B6/032

�Transmission computed tomography [CT]" either as primary or as secondary classi�cation. The DID

coe¢ cient of this much smaller sample is reported in column 4 of Table 2. The estimate is economically

large (corresponding to an increase of about 300 percent), with a p-value of 0.07. This result adds

con�dence to our interpretation that the increase in RMT patenting is related to the CT scanner over-

radiation shock.9

Appendix Table A1 reports additional robustness tests for our baseline regression. To address the

skewed and count nature of our dependent variable, column 1 replaces the patent count with its log-

arithm transformation; column 2 uses a negative binomial estimation; and column 3 uses a Poisson

quasi maximum-likelihood estimation. In all three speci�cations, we �nd a positive, large, and statis-

tically signi�cant di¤erence-in-di¤erences coe¢ cient.10 To account for heterogeneous sizes of di¤erent

subclasses, column 4 uses a weighted regression, with each observation weighted by the (square root of)

total patenting in the subclass during the pre-sample period of 1995-2004, and it shows a slightly larger

estimate. In column 5, we con�rm our results using a block-bootstrapping estimation that maintains

the autocorrelation structure within subclasses (as suggested by Bertrand et al., 2004). The standard

errors are essentially identical to those estimated with our baseline clustering procedure, indicating that

serial correlation is not a signi�cant problem in our setting.

A potential concern is that RMT subclasses have been identi�ed based on our interpretation of the

subclass description provided by the USPTO. As an alternative approach, we identify RMT subclasses

using a textual analysis algorithm. We �rst construct a dictionary of keywords related to dose and

radiation control (e.g., �dose control," �reducing radiation," and �X-ray exposure"). The full list of

keywords is reported in the appendix. We then classify a patent as an RMT patent if its title contains

9To account for the large number of zeros in this smaller sample, we re-estimated the regression with a Poisson
speci�cation. The di¤erence-in-di¤erences coe¢ cient is 1.368 and signi�cant at the 0.01 level.
10Quantitatively, the implied elasticities range from 0.54 to 1.45, a range that is in line with our baseline estimates.
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at least one of the keywords. Finally, we compute the fraction of RMT patents in each subclass based

on all patents in A61B6 applied between 1975 and 2015. Column 1 of Appendix Table A2 con�rms the

results of Table 2, with eight treated subclasses de�ned as those in the top �ve percent of the RMT

fraction distribution. In column 2, we use the same de�nition of RMT subclasses as in column 1, but

we drop subclasses from the control group if more than two percent of their patents are RMTs. The

estimated coe¢ cient is larger than, but not statistically di¤erent from, that in column 1. We then show

that results are similar if we de�ne the treatment group as including those in the top ten percent of

the RMT fraction distribution (15 subclasses; column 3) and top 15 percent (22 subclasses; column 4).

Once we relax the threshold to the top 20 percent (column 5), the di¤erence-in-di¤erences coe¢ cient

becomes smaller and loses statistical signi�cance.11

6.1 Pre-treatment trend and time-speci�c treatment e¤ects

Results in the previous section show that the over-radiation shock increased innovation activities sub-

stantially in RMT subclasses. In this section, we estimate the year-speci�c di¤erences between the

treatment and control groups, �t. Speci�cally, we estimate:

Patentsc;t = �+
X
t

�tRMTc � Y eart + �t + fc + "c;t; (2)

where 2009 is the baseline year.

Figure 2 provides a graphical illustration of the estimated coe¢ cients and their 95-percent con�dence

intervals. Before the over-radiation shock, the estimated di¤erences between treatment and control

subclasses are not statistically di¤erent from those in 2009; the year-speci�c di¤erence-in-di¤erences

coe¢ cients after 2010 are positive and increasingly larger, and they become statistically signi�cant in

2013.

We want to bring attention to two issues related to Figure 2. First, even though the coe¢ cients for

2005-2008 are not statistically di¤erent from zero (that is, the baseline year 2009), the drop in 2009

breaks the stable pattern in prior years and seems non-trivial. This could be potentially concerning if the

11The results in Appendix Table A2 are similar using a Poisson model. Furthermore, if RMT patents are de�ned by
�nding a keyword match in titles as well as in abstracts, the estimated coe¢ cients are of similar magnitudes but less
precisely estimated (p-values in regressions analogous to columns 1-3 of Appendix Table A2 range from 0.06 to 0.14).
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common-trend assumption is violated. One complication of assigning 2009 to the pre-treatment regime

is that the overdose accidents were reported in early October that year; thus, the last quarter of 2009

is actually in the post-treatment period. If patenting in RMT subclasses actually declined immediately

after the shock, we may observe a lower total patent count in 2009. To further investigate this issue,

we rerun equation (2) but count only patents in the �rst three quarters for each application year. This

robustness check treats all years equally by including only patents applied in the �rst nine months;

and it addresses the concern of 2009 straddling the pre- and post-treatment regimes. The (unreported)

results con�rm that there is little concern for any pre-trend (that is, the coe¢ cients for 2005-2008 are

economically very small).

The second observation is that patenting in 2010 (the entire year is in the post-treatment period)

was also lower than the average level of 2005-2008. This, together with the conjecture in the previous

paragraph, also suggests that there may have been some initial chilling e¤ect on innovation. This might

have happened if �rms wanted to wait for the conclusions of the FDA investigation as they considered

the directions in which to further innovate to mitigate risk. Judging by Figure 2, the drop, even though

present, was small and not statistically signi�cant. To further provide an estimate of the longer-term

e¤ects of the over-radiation shock, we ran another variant of our baseline regression (1), dropping

observations from 2009 and 2010. The result shows a large and statistically signi�cant increase of 2.06

patents per year in RMT subclasses after 2011 relative to the level in 2005-2008.

6.2 Potential spillover e¤ects on the control group

As discussed in section 5.4, a challenge with our identi�cation strategy is that patenting in the control

group may also have been a¤ected by the over-radiation shock. Spillover e¤ects that decrease invest-

ments in control technologies (e.g., �rms facing �xed R&D budgets) are the most problematic because

they can lead to an over-estimation of the positive e¤ect of an increase in risk perception on RMT

innovation. In the presence of such supply-side spillovers, our baseline estimates may capture a substi-

tution between innovation in RMTs and other research investments rather than an overall increase in

innovation activities. In this section, we show that our main �nding is robust to exploiting a variety of

alternative control groups for which such spillover concerns are more limited.
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In column 1 of Table 3, we contrast our treatment group (i.e., RMT subclasses in radiation diagnostic

devices) with a di¤erent control group consisting of non-radiation imaging technologies captured by two

di¤erent CPC groups: (i) A61B5 "Detecting, measuring or recording for diagnostic purposes," which

includes diagnostic devices not using radiation or ultrasonic waves (e.g., MRI); and (ii) A61B8 "Diagnosis

using ultrasonic, sonic or infrasonic waves." This control group is technologically more distant from CT

and, hence, may be less likely to experience the supply-side substitution e¤ect that most concerns us (e.g.,

because �rms are di¤erent or if �rms allocate research budgets and personnel relatively independently

across technology groups). Indeed, only one percent of the assignees in A61B5 and four percent in

A61B8 also patent in our treatment group. To further mitigate the supply-side substitution e¤ect, we

remove the common patentees� i.e., patentees active in both the treatment and control groups� from

the control group only (column 2) and from both the control and the treatment groups (column 3).

In all three columns, the estimated coe¢ cients are slightly smaller, but statistically similar to, our

baseline estimate in column 1 of Table 2.12 Note that demand-side spillover may also be at play if

the shock induced hospitals and clinics to increase the use of diagnostics tools without radiation. Such

contamination is less concerning, as it is likely to increase innovation in alternative technologies that

would make our estimate more conservative.

To further mitigate potential supply-side and demand-side spillovers, the last three columns of Table

3 replicate the �rst three columns but use patent subclasses related to medical implants� CPC subsection

�A61F�� as the control group. These patent classes relate to devices placed inside or on the surface of

the body, such as replacement joints, intraocular lenses, and heart valves, which are technologically very

di¤erent from CT scanners. The results across all columns are consistent with our baseline conclusion.13

The di¤erence in the magnitudes between our baseline estimate and the smallest coe¢ cient of Table 3

(column 6) provides an upper bound for the shift in patenting from RMTs to non-RMTs in radiation

diagnostic technologies; this suggests that such substitution may account for, at most, 31 percent of the

total e¤ect estimated in the baseline.
12The estimate becomes noisier in column 3, probably because removing common patentees (which are mostly large

�rms that develop a wide range of imaging products) results in a lower number of patents in an (already) small number
of RMT subclasses.
13Unreported results on the matched control group using medical implants, as well as changing the control group to

include surgical instruments, also show consistent results.
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6.3 Secondary classi�cations of patents

Previous analysis allocates patents to treatment and control groups based on their primary subclasses.

Even though a patent can be assigned to only one primary class based on its main inventive concept, it

can be assigned to multiple secondary classi�cations if it also relates to other inventive concepts.14 In

fact, a vast majority of patents (90 percent) in radiation diagnostic devices (A61B6) applied between

2005 and 2015 have at least one secondary subclass; the average is 4.7 and the median is 4. In this

section, we focus on patents� secondary classes and examine whether risk mitigation became a more

prominent feature for radiation diagnostic devices more generally after 2010; that is, even though not

the primary goal, risk mitigation may be part of the invention.

The raw data show that in 2005-09, about nine percent of the patents in A61B6 listed an RMT

subclass as a secondary classi�cation (but not as the primary classi�cation), whereas 19 percent did

so between 2010 and 2015. Furthermore, the unique number of primary subclasses for which an RMT

subclass was listed as a secondary classi�cation by at least one patent increased from 52 to 93, suggesting

that risk mitigation had become a more prevalent feature across di¤erent types of radiation diagnostic

devices.

Table 4 presents a series of patent-level regressions estimating the following linear probability model:

SecondaryRMTitcj = Y eart + �NSeconditcj + 
NClaimsitcj + �c + fj + "itcj ;

where SecondaryRMTitcj is a dummy that equals one when patent i, with application year t, primary

subclass c and owned by �rm j lists at least one risk-mitigating subclass for secondary classi�cation.

The dummies Y eart are the coe¢ cients of interest� they capture the application- year e¤ects with

2009 as the baseline. The sample is cross-sectional and includes all the patents in A61B6 with a non-

RMT primary subclass. The regressions control for the number of secondary subclasses of a patent,

NSeconditcj , which is important because the propensity to have an RMT subclass as the secondary

classi�cation mechanically increases with the number of secondary subclasses. The regressions also

include the number of claims in the patent, NClaimsitcj ; primary subclasses e¤ects, �c; and patent

14The �Manual of patent examiner procedure�(Chapter 9/Section 903) describes how the USPTO assigns each patent
to a primary class and multiple secondary subclasses.
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owner (assignee) e¤ects, fj .

Column 1 of Table 4 estimates the above speci�cation without including primary subclass or assignee

�xed e¤ects; column 2 includes primary subclass �xed e¤ects; and column 3 includes both primary

subclass and assignee �xed e¤ects. Across all speci�cations, the application-year coe¢ cients before 2010

are small, both positive and negative, and statistically insigni�cant. After 2010, the application-year

coe¢ cients are all positive, and the magnitude increases substantially over time (except for the last year

2015). These results con�rm our baseline result that patents �led after the over-radiation shock were

substantially more likely to include risk-mitigating features in the invention.15

Overall, results in this section provide further support for the idea that RMTs became a more

prominent goal of research activities after the over-radiation shock.

6.4 Analysis of FDA pre-market noti�cations

In this section, we present di¤erence-in-di¤erences estimates on new product introductions using the

FDA data. The dependent variable in column 1 of Table 5 is the number of 510k applications in a

given product code-year. As explained previously, our treatment group includes the 19 product codes of

radiology diagnostic devices that emit ionizing radiation, and the control group includes non-radiation

radiology diagnostic devices and all class-II devices outside radiology. The result shows that after 2010,

the average number of applications in treated product codes increased by 1.25 per year relative to the

control group (p-value is 0.07). This increase represents a 30-percent di¤erence, assuming the same

di¤erence between the treatment and control devices before and after 2010.16

In columns 2 and 3, we run the same regression and use the same control group as in column 1,

but focus on two speci�c sub-samples of the treatment group. In particular, column 2 excludes devices

emitting high levels of radiation from the treatment group, whereas column 3 excludes devices emitting

low levels of radiation.17 Though not statistically di¤erent from each other, the di¤erence-in-di¤erences

15As a robustness test, we replicated the regression in column 3 in a smaller sample of patents with at least one reference
to the class A61B6/032 �Transmission computed tomography [CT]�. The estimates (unreported) are qualitatively and
quantitatively similar to those obtained for the full sample.
16The pre-2010 di¤erence in the average number of applications between treatment and control product codes is 2.52, and

the actual number of applications in the control group is 1.74 after 2010, leading to a hypothetical number of applications
for the treatment group after 2010 to be 4.26.
17To distinguish between devices with high or low radiation levels, we follow the FDA 2010 White Paper that lists

computed tomography (CT), �uoroscopy, and nuclear medicine imaging exams (such as a positron emission tomography
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coe¢ cient in column 3 (i.e., treatment group containing only devices emitting high levels of radiation)

is substantially greater in magnitude and more statistically signi�cant than that in column 2. This is

consistent with the idea that the increase in applications documented in column 1 was driven mostly by

devices more a¤ected by the over-radiation shock.

To provide additional evidence that the increase in applications for the treatment group was, indeed,

linked to the over-radiation shock, we further identify applications that emphasize radiation safety

features. In particular, for each of the 1,242 applications in the treatment group, we search for the

keyword �dose�in the �Summary of Safety and E¤ectiveness," a document that includes the description

of the device, indication of use, and a comparison to predicate devices. Example phrases including

this keyword are �dose check,��dose e¢ ciency,�and �dose reduction.� Overall, 18 percent of the 1,242

applications included this keyword. The regression in column 4 counts only the number of applications

in a treated product code that did not mention �dose� in their summary �les, and column 5 counts

only applications that did; and the dependent variable of the control group is the same as in previous

columns. The coe¢ cient in column 4 is small and statistically insigni�cant, whereas that in column 5

is large and signi�cant at the 0.05 level. This contrast further corroborates the idea that the relative

increase in radiation diagnostic devices is associated with a stronger emphasis on dose and radiation

control.

As in the patent analysis, the 2010 shock may also have a¤ected some of our control devices. Col-

umn 6, building on the speci�cation in column 5, further excludes from the control group non-ionizing

radiology diagnostic devices that may have experienced potential demand substitution. The estimate

con�rms the result in column 5. Based on the sample of column 6, Figure 3 examines the timing of the

e¤ect of the 2010 shock. There is no evidence of pre-trends: the coe¢ cients before 2010 are small and

statistically insigni�cant. The number of applications with ionizing radiation including safety features

began to increase after 2010, with an increasing magnitude over time. Appendix Table A3 con�rms the

robustness of our �ndings in this section to a number of alternative speci�cations.18

(PET) scan) as imaging procedures with relatively high radiation levels, versus other radiation-emitting procedures such
as standard X-rays. We link product codes to procedures using the regulation numbers available on the FDA website.
There are 669 applications in seven unique product codes linked to high levels of radiation.
18These include: (i) using the 2005-15 sample period, which is equivalent to that used in our patent analysis; (ii)

dropping product codes with no applications during our sample period; and (iii) alternative econometric models� using
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Overall, our analysis of the FDA data shows an increase in the number of new products after 2010 for

diagnostic devices emitting ionizing radiation. Additional evidence suggests that this increase was driven

by applications explicitly referring to radiation control. It is worth noting that, because there is typically

a delay between invention and commercialization, the relative fast response in product introduction (as

illustrated in Figure 3) suggests that the response in the short run was likely to have been based on

non-patentable technologies (therefore, not captured by the patent data) or on patentable technologies

that were readily available prior to 2010. In section 8, we provide a more-detailed description of RMTs

in the case of CT scanners that is consistent with this interpretation.

7 Demand e¤ects of an increase in risk perception

Our analysis of the patent and FDA data shows that the 2010 over-radiation shock led to a signi�cant

increase in innovation activities� we not only observe an increase in the development of RMTs but

also more patenting and more new product introductions overall for radiation diagnostic devices. In

principle, innovation may have increased for a number of reasons. In this paper, we highlight one

particular channel: an increase in the perceived risk of the product that a¤ects its demand. In section 4,

we discuss a variety of evidence from survey studies and industry sources suggesting a signi�cant increase

in users�(physicians, radiologists, and patients) risk perception after the over-radiation shock. In this

section, we provide more direct evidence for this mechanism by unbundling the shock�s impact on

demand. In particular, we show that after 2010, at the intensive margin, there was a large decline in the

number of high-radiation imaging services performed; at the extensive margin, however, hospitals and

clinics appeared to exhibit a greater propensity to upgrade equipment emitting relatively high levels

of radiation. As we discuss at the end of this section, these demand changes, together with what we

observe in the innovation responses, are hard to reconcile with alternative explanations.

7.1 Equipment use

To the best of our knowledge, comprehensive datasets on the usage of diagnostic imaging services are

not available. Our main analysis uses data provided by Medicare, a federal health insurance program

the logarithm of (one plus) the number of applications as the dependent variable or a Poisson model.
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covering people who are 65 or older. We cross-validate our result with an alternative dataset provided

by the Organization for Economic Co-operation and Development (OECD).

Medicare Part B National Summary Data provide the total number of services rendered (and

processed) to Medicare bene�ciaries during a calendar year at the procedure level. Procedures are

identi�ed by �current procedural terminology� (CPT) codes. The codes specify the technology type,

organ or body part, and techniques of an exam (e.g., CT chest without contrast). Between 2005 and

2017, 572 unique CPT codes that pertain to diagnostic radiology were recorded in the Medicare data.

Using the descriptions of each CPT code licensed from the American Medical Association (AMA), we

categorize 507 codes into seven technology types, such as CT and MRI. This covers 95.2 percent of the

total number of services rendered in 2005-2017.19 To construct a balanced panel, we keep codes that

are present throughout the 13 years, which leaves 340 codes corresponding to 76 percent of the total

number of services. The �nal balanced panel dataset includes 4,420 year-procedure observations.20

Table 6 presents the di¤erence-in-di¤erences coe¢ cients for the logarithm of the number of services

provided, controlling for CPT and year �xed e¤ects. Column 1 compares high-radiation procedures

(including CT, PET/CT, and �uoroscopy) to low-radiation standard X-rays; and column 2 replicates

the �rst column but uses non-radiation procedures� MRI and ultrasound� as the control group. The

results show that, relative to low-radiation procedures and procedures that do not use radiation, the

number of services in high-radiation procedures dropped signi�cantly after 2010 (by about 20 percent).

Columns 3 and 4 replicate the �rst two columns but use only control procedures that match treated,

high-radiation procedures in terms of pre-trends. These produce estimates that are qualitatively similar

19We de�ne the number of services of a given procedure as the sum of the number of services with the modi�er �TC�
(technical component) and the modi�er �GlOBL�(including professional and technical components). We do not include the
number of services coded only as the professional component because it refers to services such as readings and interpretation
of a given CT exam (e.g., if the exam is performed at a separate clinic and requires second-opinion readings).
20This sample excludes CT procedures related to three body areas� abdomen, pelvis, and chest� for the following

reasons. First, in 2011 and 2012, the AMA combined two sets of CT codes related to abdomen and pelvis into one. This is
a pure coding change and is not related to any technological changes. Because these two sets of CT exams are often done
together, the health literature suggests multiplying the number in the combined code by two to obtain the actual number
of services conducted (Horný, et al., 2015). Second, the AMA also created a set of new codes in 2011 related to heart.
These additions are likely due to new clinical applications but may substitute for some of the regular chest CT scans. To
be conservative, we exclude all CT procedures related to these three body areas in the main analysis. Adding them back
into the sample provides qualitatively similar results. We do not observe such changes in other technology types. It is
also worthwhile noting that any substitution due to addition of new codes in the control procedures will also make the
following result of a decline in the use of CT and high-radiation procedures more conservative.
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to using unmatched controls.

Based on the sample used in column 4, Appendix Figure A2 plots the year-speci�c e¤ect of the over-

dose shock on high-radiation procedures relative to matched control procedures of MRI and ultrasound.

The results show little pre-trend, a slight drop in 2010 and 2011 (p-value is 0.115), and a large decline

starting in 2012 that had yet to recover as of 2017.

We cross-validate the above result with the OECD data. The downside of these data is that they are

extrapolated from surveys covering only about 200 sites. On the positive side, the data include services

for patients of all ages, unlike the Medicare data, which cover only the elderly. The raw data (Appendix

Figure A3) paint a picture similar to our �ndings in the Medicare sample� relative to MRIs�increasing

trend throughout our sample period, CT broke the increasing trend in 2012 and declined afterwards.

Relative to the peak in 2011, the average number of CT exams between 2012 and 2017 represents a

ten-percent reduction, a likely underestimation because it does not take into account the hypothetical

continuation of the increasing trend in the absence of the over-radiation shock.

Overall, results in this section show a relative decline in the use of high-radiation procedures after

the over-radiation shock. The medical literature also suggests that fear of radiation was an important

factor behind the slower growth of CT use (Lee and Levy, 2012; Levin et al., 2012). Potentially,

the decline in high-radiation procedures could have been driven by drops in Medicare payments. To

address this concern, we run a series of di¤erence-in-di¤erences regressions on the average payment for

high-radiation procedures relative to low-radiation or non-radiation procedures. We do not �nd any

di¤erential drops in the payment for high-radiation procedures after 2010. For example, relative to MRI

and ultrasound, payments for high-radiation procedures actually increased by nine dollars after 2010,

though the di¤erence is not statistically signi�cant.21

7.2 Equipment upgrade

The key data source used in the analysis of equipment upgrade and replacement is the X-ray assembler

dataset provided by the FDA. Manufacturers of diagnostic X-ray systems are required to �le reports of

21Reimbursement reductions took place with the passage of the De�cit Reduction Act, but the Act was not speci�cally
targeted at procedures using radiation. Furthermore, this policy was enacted in 2005, a timing inconsistent with the e¤ects
described in Figure A2.
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assembly upon installation of a certi�able system or component(s). The data provide information on

the location of the site, the intended use (e.g., CT whole body scan, mammography, chest, and urology),

and a list of the installed components (e.g., X-ray control, high voltage generator, �lm charger).

A key limitation of this dataset is that it contains only X-ray equipment and lacks non-radiation

equipment such as MRI or ultrasound. We address this gap by comparing the propensity to upgrade

CT equipment to that of chest X-ray and dental X-ray equipment. This approach is consistent with the

fact that radiation exposure from CT is substantially greater than standard X-rays and is in line with

our �nding that low-radiation X-ray devices were less a¤ected by the shock.22 Another limitation of the

data is that, for con�dentiality reasons, they do not contain information on whether the report is for

a new system or the replacement of a component in an existing system. The data also lack identifying

information for the manufacturers and the model. To address these issues, we exploit the available

information on installed components to identify reports that are likely to capture the installation of new

CT systems or substantial upgrades of existing CT systems. Speci�cally, we identify reports for which

the intended use of the components is �CT whole body scanner" and for which the installation involves

at least three major components (X-ray control, high voltage generator and tube housing). With a

similar approach, we identify records that are likely to capture replacement or substantial upgrades of

non-�uoroscopic chest X-ray and dental X-ray systems. The �nal sample is based on 6,161 CT assembly

reports and 4,389 chest X-ray and 2,246 dental X-ray assembly reports for 2008-18 (data before 2008

are not systematically available).

We generate a balanced panel, where the unit of observation is a site-equipment type-year.23 Appen-

dix Figure A4 plots the number of assembly reports for CT, dental X-ray, and chest X-ray systems over

time. The CT and chest X-ray series appear to have very similar trends up to 2012, but the frequency

of new CT systems increases substantially in the last few years of our sample. We observe a similar

pattern comparing the number of new CT and dental X-ray systems.

Using a regression framework, column 1 of Table 7 contrasts the number of assembly reports on

22According to a 2012 FDA report (FDA, 2012), the radiation exposure from a CT scan is 100 to 800 times more than
that from a chest X-ray. In turn, a dental X-ray involves about a quarter to half of the radiation from a chest X-ray
23Sites (hospitals or clinics) are de�ned as unique combinations of �rm name, city and state in which the equipment is

installed.
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CT systems versus chest X-ray systems, controlling for year and site-equipment type �xed e¤ects. The

result shows that, within a site, the propensity to replace or upgrade a CT system after 2010 exceeds

that for a chest X-ray system; and the magnitude of the di¤erence-in-di¤erences coe¢ cient is equivalent

to a 25-percent di¤erence. Column 2 shows a similar result contrasting CT systems with dental X-ray

systems. Columns 3 and 4 con�rm these �ndings with linear probability models, in which the dependent

variable is a dummy that equals one if the location has at least one assembly report for the speci�c

equipment type.

Appendix Table A4 provides a number of robustness checks for these �ndings. Column 1 contrasts

the number of assembly reports for CT and chest X-ray systems, controlling for the number of assembly

reports for dental X-ray systems in the site. This additional variable partially controls for site-speci�c

shocks a¤ecting the demand for various types of devices. Column 2 performs a similar exercise contrast-

ing new CT and dental X-ray systems, controlling for the number of new chest X-ray systems. Columns

3-6 provide robustness checks using smaller samples of larger sites.24

In principle, the higher propensity to upgrade CT scanners could have been a result of lower prices

charged by CT producers. Historical prices for CT prices turn out to be very di¢ cult to obtain. The

only information we are able to obtain is from the 2014 IBIS Procurement Report, which estimates that

the benchmark price of CT scanners had been rising monotonically between 2005 and 2014.25 Even

though we cannot completely rule it out, the available price information is not consistent with this

explanation. Moreover, it is important to note that we have encountered no mentions of this factor in

industry accounts around the time or in the interviews we have conducted.

It is also possible that the higher propensity to upgrade CT scanners is partially explained by

regulatory pressures. As discussed previously, involvement of regulators and the potential �demand-

forcing�e¤ect of new industry standards are inherently important for safety-related innovations. It is

challenging to precisely di¤erentiate hospitals�genuine demand for safer machines from extra regulatory

requirements beyond that. That said, qualitative evidence from the industry suggests that demand for

24Columns 3 and 4 replicate the analysis using sites with at least one assembly report for one of our three procedures
(7,292 sites). Columns 5 and 6 focus on the 2,988 sites with at least four assembly reports (top three percent of our
sample).
25�IBISWorld Procurement Report: 30105050 CT Scanners," by Keiko Cadby, July 2014, IBIS World.
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safer CT scanners by physicians and hospitals, rather than pure regulatory pressure, is likely to be a key

channel behind the equipment upgrade. For example, following the over-radiation shock, the American

Association of Physicists in Medicine and the American Society of Radiation Oncology released a series of

recommendations that included a request to vendors to incorporate warning systems to alert operators

to unusual features of the scans or possible malfunctions of the devices (Hendee and Heman, 2011).

Similarly, the American College of Radiology mandated annual CT protocol reviews as part of its CT

accreditation program. Such reviews required each facility to set up a team to critically evaluate the

safety of available scanner technologies and to consider new machines introducing safety features (Ko�er

et al., 2014).26

7.3 Discussion

To summarize the results in this and the previous sections, after the 2010 over-radiation shock: (i) the

use of high-radiation imaging services experienced a large and sustained decline relative to non-radiation

technologies; (ii) �rms increased innovation aimed at mitigating radiation risk; and (iii) hospitals and

clinics increased their propensity to upgrade and replace their CT systems.

In isolation, the changes at the intensive and the extensive margin of demand may be explained

by a number of demand or supply shifters. For example, the drop in equipment use may be explained

by a decline in the overall demand for imaging services or a technological breakthrough in alternative

technologies. On the other hand, a higher propensity to upgrade equipment can potentially be explained

by an increase in the demand for superior image quality, by lower production costs, or by positive

�nancial shocks a¤ecting the hospitals. Each of these alternative explanations, however, cannot easily

explain the joint presence of all the above patterns� changes at the two margins of demand, as well

as the increase in RMT-related innovations. The overall evidence suggests that the increase in risk

perception, as corroborated by the anecdotal and survey evidence discussed in section 4, is likely to

26Evidence for hospitals�greater demand for safer machines is also present in a number of industry publications. For
instance, in a 2016 interview with Diagnostic and Interventional Cardiology magazine, Leslee Shaw, the co-director of
the Emory Clinical Cardiovascular Research Institute, stated that �There is a lot of concern today about the overuse
of CT and overexposure of patients to radiation. So, having as a marketing piece that you are very concerned about
patient-centered imaging and safety, and that you are using new technology to decrease dose� that is something you can
make a great business case for. Or, to tell people that you are updating your technology to look precisely for improved
patient care.� Source: https://www.dicardiology.com/article/what-consider-when-buying-new-ct-scanner.
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have been a key driver of the data patterns we observe.

As discussed in section 3, the overall e¤ect of risk perception on demand is potentially ambiguous.

In our empirical setting, the positive e¤ect on the demand at the extensive margin may have turned the

negative information shocks into opportunities for CT producers. One potential explanation for this

result is that imaging equipment such as CT scanners are durable goods, and, in the short run, hospitals

and clinics could easily consolidate use and reduce the demand for the number of machines. The impact

of risk perception on demand and, hence, innovation incentives, may be di¤erent in markets in which

usage can be easily consolidated or for consumable, rather than durable, goods. Our analysis, thus,

indicates that the link between risk perception and innovation depends on factors such as the nature of

the product and market structure.

Assessing the welfare impact of reduced CT use is beyond the scope of this paper. On the one

hand, it is possible that this reduction may have led to under-diagnosis of patients. On the other hand,

if the claim quoted by Brenner and Hall (2007) that roughly 30 percent of CT procedures are not

necessary is, indeed, true, it is possible that the reduction was due mostly to noncritical use. Then, the

over-radiation shock may have provided some sort of realignment of the incentives between physicians

and their patients. In other words, physicians and hospitals might have had a propensity to over-test

prior to 2010, and this may have been reduced due to the increase in perceived radiation risk (partly

due to concerns over patients�cumulative radiation exposure and partly due to liability concerns about

misuse).27

Finally, despite the innovation responses, the use of CT did not quite recover relative to non-radiation

technologies as of the end of our sample period. It is possible that it is still too soon to observe a positive

impact of safety innovation on the use of CT, and it is also hard to gauge what the counterfactual usage

level might have been in the absence of safety-related innovations. However, if the low level of CT use

sustains in the long run, it is possible that hospitals may start to demand CT scanners that require less

upfront payment or �nd ways to consolidate the number of machines to be purchased. These long-run

27Potential reasons for over-testing may include �nancial motives or fear of medical malpractice liability, which could
result from potential allegations of not doing enough (often labeled as �defensive medicine�). Assessing the interplay
between these various incentives, as well as the possible welfare costs of under-diagnosing, is potentially interesting for
future research.
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responses by the hospitals may, in turn, further in�uence �rms�innovation activities.

8 Characterizing RMTs: the case of CT scanners

In section 6 we document a link between the over-radiation shock and the increase in innovation activities

using aggregate data on patents and FDA applications. In this section, we complement that analysis

by providing a detailed characterization of the nature of RMTs. Our analysis focuses on CT scanners

and combines information from �eld interviews, industry and clinical publications, and textual analysis

of FDA application summary �les.

As we will explain in detail below, we uncover two types of RMTs that were developed after the

shock: (i) improvements along the existing, dominant technological path; and (ii) technologies that rely

on fundamentally di¤erent scienti�c principles and represent a substantial change in the technological

path. Many of the �rst type of changes followed recommendations by the regulator and were implemented

through a series of new standards set by the industry. The second type of changes, however, went

substantially beyond the level requested by the regulator; this re�ects the notion that market demand

for safer machines played an important role in shaping the direction of technological progress and led to

a new dimension in which �rms could innovate and compete. The second type of RMTs also relates to

important concepts proposed by the literature, including the distinction between technological paradigms

and trajectories (Dosi, 1982); dominant designs (Utterback and Abernathy, 1975); and technological

discontinuities (Anderson and Tushman, 1990).

8.1 Progress along the existing, dominant technological path

One type of RMTs developed by CT scanner producers appeared to tackle �low-hanging fruit,� in the

sense that the goal of the improvement was to prevent radiation overdose or to manage dosage more

e¢ ciently. These innovations, though important and likely to make a meaningful di¤erence, did not

require substantial R&D investment or substantial departure from existing technologies. An example is

the redesign of displays to show technologists the level of radiation before the scan begins (Mayo-Smith

et al., 2014). Other examples are alert systems that warn operators when scan settings exceed pre-

assigned dose thresholds; software that records post-exam dose information in a standardized electronic
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format; and redesigned use protocols for certain procedures (Mahesh, 2016).

The industry rapidly adopted these safety-check features through a series of new standards set by

the industry association. The nature of these safety checks is consistent with the complaints in lawsuits

brought by over-irradiated patients and the FDA�s recommendations after concluding the investigation

of the over-radiation events.28

A natural question is why these safety checks were not incorporated before the shock. A potential

explanation is that, though seemingly easy to develop, these safety checks may impose non-trivial costs

to manufacturers and users of CT scanners. For example, once an alert is triggered, the system requires

a facility supervisor to enter a diagnostic reason and passcode in order to proceed with the exam. This

additional step may disrupt the facility�s work�ow. Furthermore, what reference values to set and who

sets them may have implications for the allocation of liability in the case of negative events.29

8.2 Change in the technological path

The second type of RMTs di¤ers qualitatively from what we described in the previous section: it involves

a substantial departure from the existing technological path and allows for a reduction in radiation dose

of up to 80-90 percent (depending on the procedure and the technology), which is not achievable by

simply �tweaking�the existing technologies. Brie�y, the change involves shifting away from the previous,

dominant method of image reconstruction� i.e., the process through which the acquired X-ray data are

translated into three-dimensional image data. This method underlies the strong dependency of image

quality on radiation dose. After the over-radiation shock, CT manufacturers as a whole signi�cantly

accelerated the development of a methodology that breaks this dependency and, as GE Healthcare put

it, �establishes new rules in the relationship between image quality and dose reduction.�30

For over 30 years, the dominant method of image reconstruction had been �ltered back projection

28For example, plainti¤s in a lawsuit claimed that the devices �failed to contain adequate or proper warnings concerning
the defective condition, characteristics, and health risks associated with said products." Trevor Rees vs. Cedars Sinai
Medical Center, GE Healthcare, Inc., a Delaware corporation, et al. Case number BC424189, October 19, 2009, Superior
Court of California, County of Los Angeles.
29These concerns may be re�ected in how the standards evolved over time: in the 2010 NEMA XR-25 standard, the

manufacturers gave the operators the option, but not the obligation, to set noti�cation and alert values; furthermore, it
was also the operators who decided on the thresholds, not the manufacturers. In 2013, NEMA XR-28 was published in
response to a list of suggestions by the FDA, and these new standards required that the manufacturers pre-populated the
dose check alert and noti�cation values.
30"Introducing Veo on Discovery CT750 HD," GE Healthcare White Paper, 2011.
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(FBP). Simply speaking, FBP is a �linear�method that projects X-ray data directly into image data

(Ramirez-Giraldo et al., 2018). Although FBP is fast and robust, its image resolution (in terms of

absence of noise) is strongly dependent on the dosage used, which, therefore, established the �old�

rule of CT imaging� �we �pay for� image quality with radiation dose" (Pelc, 2014). An alternative

approach, called �iterative reconstruction (IR),�starts with an initial guess of an object and iteratively

improves on the initial estimate through a dynamic optimization process (Mayo-Smith et al., 2014).

This �non-linear�methodology breaks the strong dependence of noise on radiation dose and, therefore,

allows for substantial reductions in radiation dose (Pelc, 2014). IR was �rst introduced when CT was

invented in the 1970s. The reason that FBP, instead, became the dominant method is its drastically

lower computational intensity: IR took about 45 minutes to reconstruct just a single slice, given the

computing speeds at that time, while FBP could process slices in 30 seconds.31

Our interviews with industry practitioners, along with rich documentation by industry white papers

and clinical publications, suggest that CT manufacturers invested in and marketed IR algorithms heavily

after the over-radiation shock. As we will show below, about half of the CT systems introduced after

2010 included an IR option.

It is important to note that IR algorithms involve substantial reduction in other quality aspects,

at least initially. First, even with the immense advances in computing power, the speed of IR still

lags behind that of FBP. For example, in 2014 the typical speed for FBP was 2.9-6.6 images per

second, whereas the IR speed was 0.2-0.5 images per second (Ginat and Gupta, 2014; Geyer et al.,

2015). Such a long reconstruction time (ranging between ten to 90 minutes) may not be suitable for

emergency patients and could negatively impact clinical practice. Second, in clinical applications with

low contrast detectability, such as abdominal and brain CT examinations, the image quality generated

by IR is substantially inferior to that by full-dose FBP. Lastly, IR images appear �over-smoothed,�with

an �arti�cial� and �blotchy� appearance that may make the images di¢ cult to interpret and require

retraining of radiologists (Raman et al., 2013; Ramirez-Ghiraldo et al., 2018). In the few years after

the shock, we witnessed three generations of IR algorithms, each improving upon the previous one in

31Dave Fornell, �Iterative Reconstruction 101," Imaging Technology News, July 23, 2013,
https://www.itnonline.com/article/iterative-reconstruction-101-0, accessed January 23, 2019.
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speed or other aspects of image quality, including mimicking the image texture of a full-dose FBP image

to make it easier for radiologists to read the images and di¤erent options intended to strike a balance

between speed and the level of dose reduction.32

Overall, the fast integration of IR methodology into new CT systems and its rapid iteration, despite

the sacri�ce in speed or other aspects of image quality, is consistent with the increased demand for safer

machines that we documented in previous sections and is corroborated by various industry accounts

(Freiherr, 2010; Ramirez-Ghiraldo et al., 2018). Finally, it is important to note that while the develop-

ment of safety checks discussed in the previous section was also suggested by the FDA and standardized

by the industry association, this was not the case for the development of IR algorithms that were driven

by �rms� independent research programs. This distinction mitigates the concern that the innovation

response to the over-radiation shock was driven purely by regulatory interventions, rather than by a

shift in demand and consumer preferences.

8.3 FDA application data

To provide quantitative evidence for the two types of safety features described above, we conduct a

textual analysis using the 294 FDA applications �led between 2005 and 2017 in product code JAK

�Computed tomography X-ray system." These applications include new CT systems and software pack-

ages that complement existing CT systems. For each application, we examine all phrases in the summary

of the safety and e¤ectiveness information that include the term �dose�and determine, based on key-

words used together with �dose,�whether the product (i) achieves a dose reduction relative to previous

products; and/or (ii) provides safety checks or tools to manage radiation dose more e¢ ciently.33 Fur-

thermore, we de�ne a product as adopting the IR methodology if the summary �le contains the keyword

�iterative reconstruction" or other trade names that companies use for such algorithms.

Panel A of Appendix Figure A5 plots the percentage of the applications in a given year that con-

tain dose-e¢ ciency or dose-check features, and panel B plots the percentage containing dose-reduction

32Source: �Iterative Reconstruction in CT: What Does It Do? How Can I Use It?" by William P. Shu-
man, November 2010, Image Wisely, American College of Radiology. Source: https://www.imagewisely.org/Imaging-
Modalities/Computed-Tomography/Iterative-Reconstruction-in-CT.
33 In particular, we de�ne a feature as �dose reduction�if the word �dose�is used in conjunction with keywords including

�reduction,��lower,��reduced,��less,�and �little." The remaining incidences are de�ned as �dose e¢ ciency/check.� Keywords
used include �optimization,��e¢ ciency,��check,��veri�cation,��notify,��alert,�etc.
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features. The �gures show that both types of safety features were rarely mentioned in the application

summary �les before 2010, whereas they were increasingly more likely to appear afterwards. Between

2014 and 2017, for example, 37.5 percent of all applications mentioned dose check or e¢ ciency, and

25 percent mentioned dose reduction. The lower level of dose-reduction features is consistent with the

notion that they require more substantial investment than features related to dose e¢ ciency or dose

check.

Panel C of the same �gure illustrates an increasing adoption of the IR method after 2010. Overall,

52 percent of all CT systems adopted after 2010 included an IR option, and 20 percent of the software

packages were speci�cally related to this method. Moreover, the data show that all 118 applications

after 2010 without an IR option failed to mention dose reduction, whereas 38 out of 66 applications

(58 percent) that included an IR option did mention the term. This contrast is consistent with our

understanding that substantial dose reduction is achievable only with the IR methodology.

9 The role of large incumbents

In this section, we examine the extent to which the increase in RMT innovation� at both the invention

and commercialization stages� is driven by large incumbent �rms versus smaller players in the industry.

This analysis may provide further insights into the nature of RMTs and how shocks related to product

safety may a¤ect the dynamics of competitive advantage and market structure.

In particular, we distinguish between two groups of �rms� top �ve �rms versus smaller players,

including smaller incumbents, new entrants, individual inventors, and research entities. The top �ve

�rms are Toshiba, Siemens, Hitachi, GE, and Philips. These �rms had the highest numbers of patents in

radiation diagnostic devices during the pre-sample period 1995-2005; in addition, these �ve �rms were

major CT manufacturers and comprised the CT group of the industry association MITA at the time of

the shock (NEMA, 2010).

Columns 1 and 2 of Table 8 report the di¤erence-in-di¤erences regression results of the e¤ect of the

over-radiation shock on patenting for these two groups of patentees. The coe¢ cients show that about

one third of the aggregate increase in patent applications after 2010 was driven by the top �ve �rms,
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while the smaller patentees drove the rest. The estimates are less precise than those reported in Table 2

(p-values are 0.07 and 0.10, respectively), and we cannot reject equality of the two coe¢ cients. Relative

to the patenting rates in RMT subclasses before 2010, the increase in patenting was about 75 percent

for the top �ve �rms and 140 percent for smaller patentees. For new product introduction, columns 3

and 4 show that FDA applications by the top �ve �rms explain 44 percent of the aggregate increase

after 2010; and relative to the pre-shock levels, the increase was about 40 percent for the top �ve �rms

and 24 percent for smaller patentees. Finally, Appendix Figure A6 shows that large and small �rms

appear similar in their responses through incremental features such as safety checks and dose e¢ ciency

management, but responses by large �rms were faster and more intense for more-complex technologies,

such as the development and implementation of iterative reconstruction algorithms.

Overall, analysis by �rm size illustrates the following patterns: (i) innovation activities in RMTs

were economically substantial for both the largest �rms and smaller patentees; and (ii) relative to the

patenting stage, the largest �rms seem to have played a more prominent role than smaller patentees at

the commercialization stage. These patterns seem to suggest that the over-radiation shock may have

perpetuated the market dominance of large incumbents, rather than diminishing it. The following dis-

cusses potential explanations based on the nature of safety-related demand shocks and the characteristics

of the industry.

First, as discussed previously, information shock on product safety is likely to exhibit externalities

and to a¤ect the entire product category� in particular, the demand of mainstream customers served

by large incumbents. In other words, conditions often characterized in theories such as disruptive

innovation� that is, the innovation is initially not valued by mainstream customers� are not satis�ed

in our context (Christensen and Bower, 1996). Second, the types of RMTs described in section 8 do

not �t a situation in which incumbent �rms are less competent to respond in terms of organizational

capabilities or resources (Henderson and Clark, 1990). In contrast, large incumbents in our setting are

well-positioned, in terms of R&D resources and marketing and distribution capabilities, to develop and

incorporate these RMTs into their products. Lastly, the fact that the response from smaller patentees

is also economically substantial is consistent with a well-functioning market for technologies in which

knowledge can be transferred to �rms with manufacturing and commercialization assets (Gans and
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Stern, 2000; Arora, Fosfuri and Gambardella, 2004).

10 Conclusions

In this paper, we examine the impact of risk perception on innovation, taking advantage of the disclosure

and the extensive reporting of a set of unexpected CT scan over-radiation accidents in late 2009.

Our results show signi�cantly increased patenting of features of radiation diagnostic devices that

mitigate radiation risk, relative to patenting of other features� on the order of 110 percent. Using FDA

data, we also �nd a signi�cant increase in the number of new products for diagnostic devices emitting

ionizing radiation relative to control devices that do not use radiation, and this increase is driven by

products for which radiation control features are prominent. For the underlying mechanisms, we provide

survey, interview, and other qualitative evidence suggesting that risk perception by the users (physicians,

radiologists, and patients) changed substantially after the over-radiation shock. Quantitatively, we �nd

that the shock led to (i) fewer high-radiation diagnostic procedures performed (i.e., a decrease at the

intensive margin); and (ii) a greater propensity to upgrade CT scanners (i.e., an increase at the extensive

margin). These demand-side results are consistent with the idea that changes in risk perception played an

important role in driving �rms�innovation investments. Focusing on CT scanners, we further document

two di¤erent types of RMTs, encompassing both minor improvement of existing technologies and a

substantial redirection of the technological path.

Ultimately, our paper suggests that changes in risk perception can be an important driver of inno-

vation and shape the direction of technological progress. Increased risk perception, in principle, has

ambiguous e¤ects on the demand for a product. In settings such as ours� products are durable goods,

and it is costly for users to consolidate use or to �nd substitute products� the positive e¤ect of a higher

willingness to pay for safety may dominate the chilling e¤ect on innovation. Finally, large players may

play an important role in the development and, even more so, in the commercialization of risk-mitigating

technologies, and this has important implications for the dynamics of competitive advantage and market

structure.
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Data appendix

Risk mitigating technology subclasses

The following lists the subclasses that we manually classify as Risk Mitigating Technology subclasses:

A61B 6/10 �Application or adaptation of safety means�

A61B 6/107 �Protection against radiation, e.g. shielding (techniques for handling radiation not

otherwise provided for G21K�

A61B 6/54 �Control of devices for radiation diagnosis�

A61B 6/542 �involving control of exposure�

A61B 6/544 �dependent on patient size�

A61B 6/545 �involving automatic set-up of acquisition parameters�

A61B 6/58 �Testing, adjusting or calibrating devices for radiation diagnosis�

A61B 6/586 �Detection of faults or malfunction of the device�.

Theses subclasses were chosen exploiting a two-stage process. First, reading the description of the

subclasses from the USPTO web-site, we identi�ed subclasses A61B6/107, A61B6/542, A61B6/544,

A61B6/545 and A61B6/586 as subclasses including risk mitigating technologies. Second, for each of

these subclasses, we also included their related higher-level �parent�subclasses. This is because a parent

subclass contains residual patents that cannot be easily categorized into a speci�c children subclass and,

therefore, may include broader patents that involve features of various lower level children subclasses.

Keyword analysis

The keywords in the dictionary are: �safety monitor��radiation shield��radiation blocking��dose con-

trol��reducing electromagnetic radiation��reducing radiation��dose modulation��exposure control�

�radiation protection��low-dose��x-ray intensity��radiation exposure��x-ray exposure��x-ray dose�

�radiation attenuation��x-ray emissions��dose rate control��radiation dose��radiation minimization�

�x-ray irradiation� �dosage detection� �x-ray emission� �radiation shielding� �radiation protection�

�dose distribution��x-ray exposure��dose information��x-ray reduction�.
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Figure 1: Patenting in RMT subclasses vs. other subclasses in radiation diagnostic devices 

 

Notes: raw data. Average number of patents in risk-mitigating technology subclasses versus other 
subclasses in radiation diagnostic devices (i.e., CPC group A61B6).  
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Figure 2: Dynamic effects of the over-radiation shock on patenting  

 

Notes: year-specific DID coefficients estimated from equation (2). The treatment group includes RMT 
subclasses and the control group includes other subclasses in radiation diagnostic devices (i.e., CPC 
group A61B6). 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 3: Dynamic effects of the over-radiation shock on FDA pre-market notifications 

 

Notes: year-specific DID coefficients estimated from a specification analogous to equation (2). The 
treatment group includes all product codes of diagnostic devices in radiology that emit ionizing 
radiation, and the control group includes all product codes of class-II devices in non-radiology medical 
specialities. The model includes year and product code fixed effects.  
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Obs. Mean Std. Dev. Min Max

Patent applications 

Patents 1540 2.962 6.185 0 97

Year 1540 2010 3.163 2005 2015

Risk-Mitigating Technology Subclass 1540 0.057 0.232 0 1

FDA applications 

Applications 19474 1.819 5.327 0 110

Year 19474 2011 3.742 2005 2017

Ionizing Diagnostic Radiology Codes 19474 0.013 0.112 0 1

Table 1. Summary statistics 

Notes: Patents = the number of patent applications in a subclass-year. Risk-Mitigating Technology = 1
for subclasses reducing the risk of over-radiation, controlling the level of patient exposure, and
detecting faults or malfunctions. Applications = number of class II 510k applications in a product
code-year. Ionizing Diagnostic Radiology Codes = 1 for product codes related to radiology diagnostic
devices emitting ionizing radiation. 



 

 

 

 

 

Table 2. Patenting response to the over-radiation shock 

(1) (2) (3) (4)

Dependent variable Patents Patents Patents Patents

RMT x After 2010 1.783**  1.785**  2.650** 0.727*
(0.809) (0.814) (1.166) (0.402)

Year effects YES YES YES YES
Subclass effects YES YES YES YES

Note Baseline Drop if all zeros
Start at first 

patent
Only CT patents

Observations 1540 1507 1001 1540

Notes: OLS regressions with robust standard errors clustered at the subclass level. * significant at 10 percent, ** significant at 5
percent and *** significant at 1 percent. Patents = the number of patent applications in a subclass-year. RMT = 1 for patent
subclasses involving risk-mitigating technologies. Column 2 drops subclasses with zero patents during the entire sample period;
column 3 uses an unbalanced panel that includes only observations for which we observe at least one patent in this particular
subclass in previous years; and column 4 uses only CT patents (that is, those referring to subclass A61B6/032 as either primary or
secondary classification).



 

 

(1) (2) (3) (4) (5) (6)

Dependent variable Patents Patents Patents Patents Patents Patents

RMT X After 2010 1.522** 1.690** 1.544* 1.229* 1.424** 1.224**
(0.719) (0.719) (0.963) (0.720) (0.720) (0.492)

Control Group A61B5 and A61B8 A61B5 and A61B8 A61B5 and A61B8 A61F A61F A61F

Drop overlapping patentees NO  from control
from treatment 

and control
NO  from control

from treatment 
and control

Year effects YES YES YES YES YES YES
Subclass effects YES YES YES YES YES YES

Observations 7744 7744 7744 8767 8767 8767

Table 3.  Alternative control groups for the patent analysis

Notes: OLS regressions with robust standard errors clustered at the subclass level. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Patents = the number of patent 
applications in a subclass-year.  The control group used in columns 1-3 includes  diagnostic medical devices that do not use radiation or ultrasound (A61B5) and diagnostic devices that use ultrasound 
(A61B8). The control group used in columns 4-6 includes medical implant patents (A61F). 



Table 4.  Effects of the over-radiation shock using secondary patent classification 

(1) (2) (3)

Dependent variable 
at least one RMT 

secondary subclass
at least one RMT 

secondary subclass
at least one RMT 

secondary subclass

Year 2005 -0.014 -0.008 0.021
(0.020) (0.021) (0.034)

Year 2006 -0.007 0.003 -0.001
(0.020) (0.020) (0.031)

Year 2007 -0.018 -0.004 0.015
(0.020) (0.020) (0.030)

Year 2008 -0.021 -0.017 -0.028
(0.020) (0.020) (0.030)

Year 2010 0.031 0.040* 0.044
(0.023) (0.023) (0.033)

Year 2011 0.058** 0.063*** 0.063*  
(0.023) (0.024) (0.036)

Year 2012 0.085*** 0.094*** 0.097***
(0.024) (0.024) (0.037)

Year 2013 0.090*** 0.111*** 0.100** 
(0.027) (0.027) (0.040)

Year 2014 0.120*** 0.143*** 0.126***
(0.027) (0.027) (0.043)

Year 2015 0.059* 0.075** 0.033
(0.033) (0.032) (0.050)

Number of secondary subclasses 0.016*** 0.017*** 0.020***
(0.002) (0.002) (0.003)

Number of claims -0.001 0.001 0.001
(0.001) (0.001) (0.001)

Primary subclass effects NO YES YES
Assignee effects NO NO YES

Observations 4,131 4,131 4,131

Notes: Patent-level linear probability regressions. Sample includes all patents in radiation diagnostic medical devices (A61B6) for which the
primary subclass is not RMT. Dependent variable = 1 if patent lists at least one RMT subclass as secondary subclass. Robust standard
errors * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Year 2009 is the baseline year.



Table 5.  FDA Pre-market notifications  

(1) (2) (3) (4) (5) (6)

Dependent variable Apps Apps Apps
Apps (without 

dose)
Apps (with  dose) Apps (with  dose)

Ionizing diagnostic devices 1.250* 0.871 1.900* 0.234 1.091** 1.102** 
      *After 2010 (0.690) (0.873) (1.076) (0.580) (0.442) (0.441)

Year FE Y Y Y Y Y Y
Product code FE Y Y Y Y Y Y

Control group

Non-ionizing 
radiology and 
non-radiology 

devices

Non-ionizing 
radiology and 
non-radiology 

devices

Non-ionizing 
radiology and 
non-radiology 

devices

Non-ionizing 
radiology and 
non-radiology 

devices

Non-ionizing 
radiology and 
non-radiology 

devices

Non-radiology 
devices

Treatment group

All  radiation 
diagnostic 
devices in 
radiology

Only low-
radiation 

diagnostic 
devices 

Only high-
radiation 

diagnostic 
devices 

All  radiation 
diagnostic 
devices in 
radiology

All  radiation 
diagnostic 
devices in 
radiology

All  radiation 
diagnostic 
devices in 
radiology

Observations 19474 19383 19318 19474 19474 18876

Notes: OLS regressions with robust standard errors clustered at the product code level. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Apps
= the number of FDA applications in a subclass-year. In column 4, the dependent variable for ionizing diagnostic radiology product codes (i.e., the treatment group) counts only
applications not containing the word 'dose' in the summary files. In columns 5 and 6, the dependent variable for ionizing diagnostic radiology product codes counts only
applications containing the word 'dose' in the summary files. Ionizing diagnostic devices = 1 for product codes related to radiology devices emitting radiation. 



 

 

 

 

 

 

 

 

 

 

 

 

Table 6. Equipment usage in Medicare data

(1) (2) (3) (4)

Dependent Variable log(Services) log(Services) log(Services) log(Services)

Treated procedures * -0.214** -0.189* -0.224** -0.189
After 2010 (0.096) (0.100) (0.106) (0.116)

Year effects Y Y Y Y
CPT effects Y Y Y Y

Control group
low radiation MRI and 

ultrasound
Matched low 

radiation
Matched MRI 

ultrasound

Observations 3042 2054 1664 1378

Notes: OLS regressions with robust standard errors clustered at the CPT level. * significant at 10 percent, ** significant at 5 
percent and *** significant at 1 percent. Services = number of medicare services reported for the procedure in a given year. 
Treated procedures are high-radiation procedures including CT, PET/CT, and fluoroscopy. Control procedures in columns 1 and 3 
are standard X-ray procedures with low radiation; and control procedures in columns 2 and 4 include non-radiation procedures 
(that is, MRI and ultrasound).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7. Equipment upgrade

(1) (2) (3) (4)

Dependent variable 
Number of 
assembly 
reports

Number of 
assembly 
reports

Assembly 
dummy

Assembly 
dummy

CT Scanners X After 2010 0.004***  0.003*** 0.003***  0.005***
(0.001) (0.001) (0.001) (0.001)

Control Group Chest Dental Chest Dental 

Year effects YES YES YES YES
Site-equipment type effects YES YES YES YES

Observations 715330 715330 715330 715330

Notes: OLS regressions with robust standard errors clustered at the site (clinic or hospital) level. * significant at 10 percent, ** significant at 5
percent and *** significant at 1 percent. Assembly reports = the number of assembly reports related to a specific equipment type in the site-
year.  Assembly dummy = 1 if at least one assembly report in equipment type-site-year. 



 

 

 

 

 

 

 

 

 

 

 

 

Table 8. Heterogeneous effects by firm size 

(1) (2) (3) (4)

Dependent Variable
Patents by top 5 

firms
Patents by other 

firms
FDA applications by 

top 5 firms
FDA applications by 

other firms 

RMT x After 2010  0.600* 1.183 
(0.337) (0.722)

Ionizing radiology device 0.549* 0.701
      x After 2010 (0.329) (0.591)

Year effects YES YES YES YES
Subclass effects YES YES NO NO
Product code effects NO NO YES YES

Observations 1540 1540 19474 19474

Baseline 0.791 0.854 1.370 2.926

Notes: OLS regressions with robust standard errors clustered at the sublcass or product code level. * significant at 10 percent,
** significant at 5 percent and *** significant at 1 percent. Patents = the number of patent applications in a subclass-year. RMT
= 1 for patent subclasses involving risk-mitigating technologies. Ionizing radiology device = 1 for product codes related to
radiology devices emitting ionizing radiation. Top 5 firms: Toshiba, Hitachi, GE, Siemens, and Phill ips. Baseline: average number
of patents or FDA applications for treatment group before 2010.



Figure A1: Timing of the over-radiation shock 

a. Media mentions of CT scan and X-ray radiation  

 

Source: Factiva (Dow Jones) textual searches uses keywords (‘CT scan’ or ‘X-ray’) and ‘dose’ in headline and the leading 
paragraph of articles published in leading media outlets.  

b. FDA approval time (months) 

 

Notes: quarterly data on the average number of months from application to approval for our treatment group (ionizing radiation 
diagnostic product codes) and the control group (non-radiation diagnostic product codes and non-radiology devices). For each 
group, we subtract the data by the average approval time in the first quarter of 2005. Thus, the two series have the same starting 
point at zero. 

c. Google Trends of keyword “CT Scan Radiation” 
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Figure A2: Year-specific effects on the number of CT services relative to MRI and ultrasound  

 

     

 

Notes: The treatment group includes Current Procedural Terminology (CPT) codes for high-radiation procedures 
including CT, PET/CT, and fluoroscopy; and the control group includes CPT codes for MRI and ultrasound that match 
to the treated CPT codes in terms of pre-trends. The dependent variable of the difference-in-differences regression 
is log(number of services), and the regression controls for CPT and year fixed effects.  
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Figure A3:  Estimated numbers of CT and MRI exams per million people  

 

 

Source: https://data.oecd.org/healtheqt/computed-tomography-ct-scanners.htm. The data are based on IMV 
benchmark reports that extrapolate data to the national level based on a survey of over 200 sites. 
 

Figure A4: Average assembly reports for CT scanners, chest and dental X-ray equipment   

 

Notes: average number of assembly reports in a given site-equipment type-year. The data are based on the FDA X-
ray assembler dataset.  
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Figure A5: Risk-mitigating technologies in CT Scanners 

 

 

 

 
 
Notes: percentages of applications in a given year including a certain type of safety-related features in the 
summary files. The data are based on 294 510k applications in the product code JAK (CT scanners).  
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Figure A6: Risk-mitigating technologies in CT Scanners: top five firms versus smaller firms 

 

 

 

 

Notes: percentages of applications in a given year including a certain type of safety-related features in the 
summary files. The data are based on 294 510k applications in the product code JAK (CT scanners).  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A1. Patenting response to the over-radiation shock: robustness

(1) (2) (3) (4) (5)

Dependent variable log(Patents+1) Patents Patents Patents Patents

RMT x After 2010  0.219*  0.476** 0.708*** 4.607** 1.783**
(0.118) (0.205) (0.248) (2.104) (0.817)

Year effects YES YES YES YES YES
Subclass effects YES YES YES YES YES

Model OLS
Negative 
binomial

Poisson
Weigthed 

OLS
Bootstrap

Observations 1540 1507 1507 1540 1540

Notes: robust standard errors clustered at the subclass level. * significant at 10 percent, ** significant at 5 percent and *** 
significant at 1 percent. Patents = the number of patent applications in a subclass-year.



 

 

 

Table A2. Keyword approach to identifing RMT patent subclasses  

(1) (2) (2) (3) (4) 

Dependent variable Patents Patents Patents Patents Patents

RMT x After 2010  1.509** 1.688** 1.614** 1.845*** 0.734
(0.714) (0.743) (0.699) (0.681) (0.781)

Year effects YES YES YES YES
Subclass effects YES YES YES YES

RMT-patent fraction threshold 
for treatment subclasses

Top 5%
Top 5%  and 
drop mixed 

classes
Top 10% Top 15% Top 20%

Observations 1540 1320 1540 1540 1540

Notes: OLS regressions with robust standard errors clustered at the subclass level. * significant at 10 percent, **
significant at 5 percent and *** significant at 1 percent. Patents = the number of patent applications in a subclass-year.
RMT = 1 for patent subclasses involving risk-mitigating technologies. Column 2 defines the treatment group in the same
way as column 1 but drops subclasses from the control  group  if more than two percent of their patents are RMT patents.



 

 

 

 

 

 

 

 

 

 

 

Table A3. FDA Pre-market notifications: robustness

(1) (2) (3) (4)

Dependent variable 
Apps (with  

dose)
Apps (with  

dose)
log[Apps (with  

dose)+1]
Apps (with  

dose)

Ionizing radiology device  0.829** 1.373** 0.145** 1.774***
      *After 2010 (0.368) (0.536) (0.072) (0.370)

Year FE Y Y Y Y
Product code FE Y Y Y Y

Control group
Non-

radiology 
devices

Non-
radiology 

devices

Non-radiology 
devices

Non-
radiology 

devices

Note
Only years 
2005-15

Drop codes 
with no 

applications

Log dependent 
variable 

Poisson

Observations 15972 18824 18876 18824

Notes: OLS regressions with robust standard errors clustered at the product code level. * significant at 10 percent, ** significant
at 5 percent and *** significant at 1 percent. Apps (with dose) = the number of FDA applications in a product code-year, only
counting ionizing radiology applications containing the word 'dose' in the summary files. Ionizing radiology device = 1 for
product codes related to radiology devices emitting radiation. 



 

 

Table A4. Equipment upgrade: robustness

(1) (2) (3) (4) (5) (6)

Dependent variable Assembly dummy Assembly dummy Assembly dummy Assembly dummy Assembly dummy Assembly dummy

CT Scanners X After 2010 0.003*** 0.005*** 0.013*** 0.024***  0.028*** 0.040***
(0.001) (0.001) (0.002) (0.002) (0.003) (0.003)

Dental X-ray assembly reports -0.001***
(0.001)

Chest X-ray assembly reports 0.014***
(0.003)

Control group Chest X-ray Dental X-ray Chest X-ray Dental X-ray Chest X-ray Dental X-ray

Year effects YES YES YES YES YES YES
Sie-equipment type effects YES YES YES YES YES YES

Sample full full
at least 1 major 

assembly
at least 1 major 

assembly
at least 4 major 

assemblies
at least 4 major 

assemblies

Observations 715330 715330 160424 160424 65736 65736

Notes: OLS regressions with robust standard errors clustered at the clinic level. * significant at 10 percent, ** significant at 5 percent and *** significant at 1 percent. Assembly dummy = 1 if at least one 
assembly report in equipment type-site-year.  Assembly reports= the number of assembly reports related to a specific tpe of equipment in the site-year.  


