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1 Introduction

In many situations, different agents who are linked through a common “space” (e.g., a spatial
or a social or a ethnic space) are involved in conflictual relationships. One could think of R&D,
rent seeking, political campaigns, patent races, advertisement, ethnic conflicts, etc.1 For example,
in the case of geographical conflicts, different countries may face distinct border issues and fight
with different neighboring countries to claim territory. In multi-party electoral campaigns, the
same party may face heterogeneous populations of voters across districts, and must optimally
allocate limited resources to maximize the total number of votes. In R&D races with multiple
technologies and non-identical market values and participants, a firm may strategically choose
to close the R&D office of one technology with low-market potential and fierce competition, in
order to focus on more promising avenues. In ethnic conflicts, military alliances and enmities
affect the intensity of a conflict. Each group may put all its resources in one conflict and neglect
other conflicts.

In order to study these issues, we need a general framework in which the conflict structure
is arbitrary and the conflict game involves multiple players competing in multiple battles. This
is what we do in this paper by using an arbitrary network to model the conflict structure.

In our model, there is a finite number of players who compete against each other on different
battles. Each battle has a certain value, and the probability of each participant winning a battle is
described by a general contest success function. The conflict structure is modeled as a network in
which each node corresponds to a player and each edge (or link) between two players means that
these two players participate in a battle against each other. For example, in a complete network,
all players compete simultaneously in all battles. Thus, each player can be involved in multiple
battles and different battles may involve different subsets of players. Each player cares about the
expected values of winning battles net of the cost of efforts. We study the Nash equilibrium of
this game in which each player optimally decides how much effort she exerts in each battle she
is involved in.

Observe that, since the equilibrium in a single-battle contest does not exhibit a closed form
solution unless symmetry is assumed, our general conflict game does not have an explicit solu-
tion either. Given the high dimensionality of efforts, the heterogeneity of players and battles, and
the arbitrariness of the conflict topology (network), providing the existence and uniqueness of a
Nash equilibrium is very challenging. The standard fixed-point theorem for existence does not
work here because the payoff function is not continuous due to a jump in the winning probabili-
ties at the origin and because of the multi-dimensional and possibly unbounded strategy space.
Since there is more than one battle, the conflict game is not an aggregate game. Moreover, our
game is not supermodular so we cannot use the techniques from this literature.

Our first result is to provide a theorem that shows that there always exists a Nash equilib-
rium under mild assumptions on the general contest function and the cost function. To prove
this existence theorem, we use results from the discontinuous game literature (see Reny (1999)).
More specifically, we verify that our conflict game satisfies all the conditions imposed in this

1See Tullock (1980); Snyder (1989); Nti (1999); Konrad (2009).
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literature, that is compactness, quasi-concaveness, reciprocally upper semi-continuity and payoff
security, so that we can apply Reny (1999)’s main theorem.

Our second main result is to characterize the set of equilibria and to show under which
conditions a Nash equilibrium is unique. As each player joins multiple battles with increasing
marginal cost of efforts, it is possible for her to strategically abandon some battles. As a result,
it is very likely that corner solutions (no effort in some battles) may exist in equilibrium, which
implies that the first order conditions do not always hold with equality. This, clearly, complicates
the equilibrium characterization. To address this technical challenge, we employ techniques
from Variational Inequality (VI) to re-formulate the equilibrium condition so that the solution
of the Nash equilibrium is equivalent to the solution to a VI problem. The VI, defined on the
strategy space, is associated with an operator F that is linked to the gradients of the payoffs of
the original conflict game. Since the solution to the VI problem is not limited to interior points,
we do not need to artificially distinguish interior equilibria from corner ones. Interestingly,
the operator defining this VI naturally satisfies some monotonicity properties, which limits the
possible solution set. Given the equivalence between the VI solution and the Nash equilibrium,
we are able to characterize the set of equilibria. In particular, we show that the operator F
is weakly monotone such that the set of equilibria is always convex. The convexity of the set
of equilibria implies that an equilibrium, if not unique, is never isolated. The multiplicity of
equilibria arises due to the lack of strict monotonicity of the operator F. However, if the cost
is strongly monotone, the equilibrium always lies in the space where the operator F is strictly
monotone; hence uniqueness is obtained. On the other hand, given any conflict structure, we
can always pin down the cost function such that the resulting conflict game has a continuum of
equilibria. As a result, to characterize the equilibrium set, we need to combine both techniques
from VI and necessary conditions imposed on equilibrium from the cost function and the conflict
topology.

Our third main result is to provide general comparative statics results. As different battles
are linked to each other, any local shock in one battle or one player naturally propagates to the
rest of the conflict network. For policy applications and welfare analysis, it is important to mea-
sure these direct and indirect network effects analytically. Without a closed form solution, the
comparative statics analysis usually relies on the Implicit Function Theorem applied to the first
order conditions. However, since the equilibrium is not always interior, this standard approach
does not directly work. The VI formulation of equilibrium is not only useful for equilibrium
characterization, but also for comparative statics results. We show that near any non-degeneracy
equilibrium, the mapping from the parameter space to the equilibrium is continuously differ-
entiable. Moreover, we provide exact formulas for the comparative statics analysis. These ex-
pressions enable us to conduct further comparative statics on aggregate effort and payoffs. As
applications, we briefly discuss optimal battle subsidy problems and provide some examples.

1.1 Literature

This paper is closely related to two branches of literature: multi-battle contests, and games played
on networks. Also, the paper is linked to the recent literature using VI techniques in economics.
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In the literature on multi-battle contests, the structure of conflict is often very special. For
example, it can have a complete structure so that every player join every battle. Moreover, the
focus tends to be on the valuation linkages among battles, dynamics, and alternative contest
success functions such as all-pay, instead of conflict topology (Konrad and Kovenock (2009), Fu,
Lu, and Pan (2015), Roberson (2006); Kvasov (2007); Roberson and Kvasov (2012)).2 Typically, in
these contest papers, the equilibrium is usually solved in explicit forms under certain symmetry
assumptions on players. Therefore, their proof techniques cannot be applied to heterogeneous
players and general conflict structures. For the same reason, comparative statics exercises are
carried out only in some special cases due to tractability. The VI approach we adopt in this paper
does not rely on the symmetry of the players or on some specific restrictions on the conflict
structure and, therefore, has broader applications. Moreover, the VI approach derives sharper
predictions on the set of equilibria, as well as extensive comparative statics analysis.

In the literature on games played on networks,3 the network summarizes social relations
among players in a group, and thus can be represented by a graph. In our paper, the conflict
topology, in general, is an hyper-graph, as each (hyper-)edge (battle in our model) could in-
volve more than two players. Apart from this distinction, most papers on network games do
not have contest components.4 Exceptions include Goyal and Vigier (2014), Jackson and Nei
(2015), Franke and Öztürk (2015), Hiller (2017), König, Rohner, Thoenig, and Zilibotti (2017),
Rietzke and Matros (2018), Kovenock and Roberson (2018), all of which have a different focus
and use specific forms.5 For example, König, Rohner, Thoenig, and Zilibotti (2017) only consider
a single Tullock lottery contest with positive (negative) spillovers by friends (enemies) so that
they can derive closed-form solutions, which allow them to structural estimate the model for the
great war of Africa. Goyal and Vigier (2014) also use the Tullock contest function and focus on
optimal network design. Hiller (2017) develops a game-theoretic model of signed network forma-
tion. Rietzke and Matros (2018) focus on the Tullock and all-pay auction contest functions and
study special families of networks such as biregular graph, star, etc, with linear cost functions, so
that closed form solutions of equilibrium can be obtained. Our paper is more closely related to
Franke and Öztürk (2015), which model conflicts on graphs using quadratic total cost functions
and use examples to show that peacefully resolution of a battle may induce intensified conflicts
in other battles. Our paper goes much further both on the generality of the model and on the
completeness of the analysis on equilibrium characterization and comparative statics.

Early adopters of the VI approach in economics include Gabay and Moulin (1978) and
Harker (1984, 1991).6 The strict monotonicity of the operator in VI is closely related to Rosen
(1965)’s diagonal strict concave condition for uniqueness in concave games. However, our contest
model does not satisfy strict monotonicity in the entire strategy space, and thus uniqueness is
not always guaranteed. In fact, we construct examples with a continuum of equilibria. Moreover,
the VI approach enables us to establish the convexity of equilibrium set and to conduct exten-

2See Kovenock and Roberson (2012) for a recent survey.
3For an overview, see Jackson and Zenou (2015).
4See Jackson (2008), Dziubiński, Goyal, and Minarsch (2016), Dziubiński and Goyal (2017), Bimpikis, Ehsani, and

Ilkılıç (2019), Bimpikis, Ozdaglar, and Yildiz (2016), Malamud and Rostek (2017).
5For an overview, see Dziubiński, Goyal, and Vigier (2016)
6For recent applications of VI in economics, see Ui (2016) for Bayesian games, Ewerhart (2014) and Ewerhart and

Quartieri (2015) for Tullock contest models, and Nagurney (1999) for an overview.
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sive comparative statics analysis, which are not considered in Rosen (1965). There is also a very
recent literature that use VI techniques to analyze network games (see Melo (2019); Parise and
Ozdaglar (2019) and Zenou and Zhou (2019)). The network structure in these papers specifies
how the neighbors’ actions affect a player’s payoff, while in our model, the conflict topology is
represented by a hypergraph, which captures who participates in which battle. As a result, the
conflict game in our paper does not have the local aggregation properties, which are essential for
proving existence and uniqueness of equilibrium in these papers.

The rest of the paper unfolds as follows. In the next section, we present the model and
discuss our main assumptions. Section 3 studies the existence and uniqueness of the Nash equi-
librium of our game and provides some examples to illustrate our results. Section 4 investigates
the comparative statics properties of the Nash equilibrium of our conflict game. Section 5 dis-
cusses some of our results. Finally, Section 6 concludes. Appendix A provides some notations
and some preliminary results. Appendix B gives all the proofs for the existence and uniqueness
of equilibrium, and the comparative statics results. Appendix C provides additional examples
and results.

2 Model

2.1 Setup and notations7

Players and battles Consider a set of players, N , and a set of battles, T . We use i = 1, 2, 3, . . . , n
to denote players, with N = |N | ≥ 2 and t = a, b, c, . . . , to denote battles, with T = |T | ≥ 1.

Conflict structure Let the N × T matrix Γ = (γt
i ) represent the conflict structure. Specifically,

γt
i = 1 if player i is a participant of battle t; otherwise γt

i = 0. Each player can be involved in
multiple battles and different battles may involve different subsets of players. Let

N t = {i ∈ N : γt
i = 1} ⊆ N

denote the set of players involved in battle t. Let nt = |N t| ≥ 2 denote its cardinality. Similarly,
let

Ti = {t ∈ T : γt
i = 1} ⊆ T

denote the set of battles that player i takes part in. Let ti = |Ti| ≥ 1 denote the cardinality.
Clearly, i ∈ N t if and only if t ∈ Ti.

Let vt denote the value of battle t, which might be heterogeneous across battles. Taking the
conflict structure Γ as given, player i’s strategy is to choose a battle-specific nonnegative effort xt

i
for each battle t ∈ Ti she is involved in. Thus, player i’s strategy is a vector xi = {xt

i}t∈Ti ∈ Rti
+.8

Given player i’s strategy xi, we denote x = (x1, · · · , xn) ∈ Rn̄
+ as the whole strategy profile, and

xt = {xt
i}i∈N t ∈ Rnt

+ as the effort vector in battle t. Let n̄ = ∑t∈T nt = ∑i∈N ti = ∑i∈N ,t∈T γt
i

denote the dimension of the strategy profile x.

7For notations of special classes of matrices and vectors and some preliminary results, see Appendix A.
8This is different from Rietzke and Matros (2018), who study a contest model on networks in which each player

chooses a single action instead of battle-specific actions.
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Contest technology Given xt, the profile of efforts in battle t, the probability of winning battle t
for player i, also known as the Contest Success Function (CSF), is given by:9

pt
i(x

t) =


f t(xt

i )

∑j∈N t f t(xt
j)

when xt 6= (0, 0, · · · , 0)

1
|N t| =

1
nt otherwise

(1)

for some increasing function f t(·), which is called the contest production function.10

Payoffs The payoff function of player i ∈ N equals

Πi(xi, x−i) = ∑
t∈Ti

vt pt
i(x

t)− Ci(xi), (2)

where the first term is the sum of battle values multiplied by the corresponding probability of
winning, and the second part is just the cost of efforts.11 Here the cost Ci(xi) : Rti

+ 7→ [0,+∞]

depends on all the efforts player i exerts in each battle she is involved in. Note that we allow
the possibility of Ci(x̂i) = +∞ for some x̂i, which simply means that x̂i is infeasible for player i
due to either resource constraints or technological constraints. We will specify the cost functions
thoroughly in the next subsection.

Conflict Game We now formally define the conflict game and introduce the equilibrium concept.

Definition 1. A conflict game is a tuple CF = (N , T , Γ, {vt, f t(·)}t∈T , {Ci(·)}i∈N ) in which N is the
set of players, T , the set of battles, Γ, the structure (network) of the conflicts, vt, the value of battle t, f t(·),
the production technology of battle t ∈ T , and Ci(·), the cost function for player i ∈ N .

The timing of the game is straightforward: players simultaneously choose efforts, and their
payoffs are given by (2). We are interested in the pure strategy Nash equilibrium of this conflict
game. A strategy profile x∗ = (x∗1 , · · · , x∗n) is an equilibrium of the conflict game CF if for every
player i ∈ N ,

Πi(x∗i , x∗−i) ≥ Πi(xi, x∗−i), ∀xi. (3)

Our main objective is to fully characterize the set of equilibria, and to perform extensive
comparative statics exercises with respect to the primitives of the model, such as battle valuations,
contest technology, cost functions, and conflict structure.

2.2 Assumptions and examples

In this subsection, we present a few examples to illustrate the generality of our model, and
discuss some technical assumptions for our analysis.

9See Section A.3 of the Appendix A for an analysis of the properties of the Contest Success Function.
10This logit form of the CSF is widely used in modeling contests and conflicts. See e.g.,Tullock (1980); Dixit (1987);

Hirshleifer (1989); Clark and Riis (1998); Konrad (2009); Franke and Öztürk (2015); König et al. (2017). See Skaperdas
(1996) for the axiomatization of this logit form.

11Since the main focus of this paper is to study the impact of conflict topology, we assume, for simplicity, no
valuation linkage between winning different battles. See Kovenock and Roberson (2012) for the case where the
marginal value of winning a certain battle depends on the probabilities of winning other battles.
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2.2.1 On the conflict structure Γ

The conflict structure considered in this paper can be arbitrary, hence it, in particular, nests
several structures studied in the existing literature as special cases.

Definition 2 (Complete conflict structure). A conflict structure Γ is called complete if γt
i = 1 for

every i ∈ N , t ∈ T .

For instance, Γ =

[
1 1 1
1 1 1

]
is complete since players 1 and 2 compete simultaneously in

three battles a, b and c. Complete conflict structures, which are a particular case of our conflict
structure Γ, have been extensively studied in several contest models with multiple battlefields.
See e.g. Friedman (1958); Roberson (2006); Kvasov (2007); Roberson and Kvasov (2012).

Definition 3 (Conflicts on graphs). For any undirected graph G = (N , E), where N is the set of nodes,
and E ⊂ N ×N is the set of edges, we can define a conflict structure as follows: N is the set of nodes,
and T = E is the set of edges in graph G. For each edge e = (i, j) ∈ E between i and j, there exists a
battle between i and j.

Figure 1 illustrates a circle graph with four nodes and four battles so that

Γ =


1 1 0 0
1 0 1 0
0 0 1 1
0 1 0 1


where rows correspond to players (1, 2, 3, 4) and columns to battles (a, b, a′, b′). We see, for
example, that player 1 is involved in battles a and b while player 2 is involved in battles a and a′.
We have: N = {1, 2, 3, 4}, T = {a, a′, b, b′}, N a = {1, 2}, N b = {1, 4}, N a′ = {2, 3}, N b′ = {3, 4},
T1 = {a, b}, T2 = {a, a′}, T3 = {a′, b′}, T4 = {b, b′}.

Adding a new edge in a graph implies that a new battle is introduced. The new conflict
structure constructed from adding an edge from 2 to 4 in the network is shown in Figure 2 with
new conflict structure Γ′ given by

Γ′ =


1 1 0 0 0
1 0 1 0 1
0 0 1 1 0
0 1 0 1 1

 .

Example 1 (Geographic conflicts). A geographic conflict Γ is not directly given, but constructed from
the geographic relations among countries involved in battles. Figure 3 illustrates a geographic conflict for
three countries: 1, 2, 3 in which each pair of countries shares a border while all of them have a common
border d. See Figure 4 for a representation of the conflict structure Γ.

Notice that there exist alternative ways of representing the same conflict structure. For ex-
ample, in Figure 4, we display three equivalent representations of conflict structure from left to
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a a′

b b′

1

2

3

4

Figure 1: A ring graph

a a′

c

b b′

1

2

3

4

Figure 2: Adding one edge

country 1 country 2

country 3

border a

border c border b

common border d

Figure 3: An example of geographic conflicts among countries 1, 2, and 3.
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right: bipartite graph,12 hypergraph,13 and matrix representation. The former two graphical pre-
sentations are easier to visualize, while the matrix version is mathematically simpler. Depending
on the specific context and concrete applications, we will adopt the most convenient form.

1

2

3

a

b

c

d

a c

b

d

1

2 3

Γ =

1 0 1 1
1 1 0 1
0 1 1 1



Figure 4: Equivalent representations

2.2.2 On the contest production function

A commonly used specification of contest production function is the following:

Example 2. (Tullock, 1980) f (z) = zr for some r > 0.

In this example, f is concave (convex) if r ≤ (≥)1. Larger r implies more precise technology
of mapping efforts into wining probabilities. It is well documented in contest models that pure
strategy equilibrium may fail to exist for large enough r. In applications, r is often restricted to
be in (0, 1]. In general, we make the following assumption on the contest production function f t.

Assumption 1. For every battle t, f t(·) satisfies:

f t(0) = 0, d f t(z)/dz > 0, d2 f t(z)/dz2 ≤ 0 for all z > 0. (4)

In particular, f t(·) is strictly increasing and concave (including linear case). Assumption 1

is often adopted to guarantee the existence of a pure strategy equilibrium.14 Clearly, f (z) = zr

in Example 2 satisfies Assumption 1 if and only if 0 < r ≤ 1. Our results about equilibrium
existence and uniqueness do not critically rely on this Tullock form, although in many examples,
we will adopt this form with r = 1 for convenience.

12Formally, the set of nodes in the constructed bipartite graph is N ∪T and the adjacency matrix is
[

0 Γ

ΓT 0

]
, where

ΓT is the transpose of Γ.
13Different battles may involve the same subset of contestants (like the complete case), so the hypergraph in this

paper allows multiple “hyper-edges” with the same subset of nodes.
14See Szidarovszky and Okuguchi (1997); Nti (1999); Cornes and Hartley (2005), among others.
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2.2.3 On the cost function

Since our specification of the cost function allows for infeasible effort profile, it is natural to focus
on the following cost function:

Ci(xi) =

{
ci(xi) if xi ∈ ∆i,

+∞ if otherwise
(5)

for a finite-valued function ci(·) : Rti
+ 7→ [0,+∞). ∆i = {xi = {xt

i} ∈ Rti
+ : ∑t∈Ti

xt
i ≤ ki} denotes

the strategy that is feasible for player i,15 where ki ∈ (0,+∞]. Obviously any xi /∈ ∆i will never be
chosen in equilibrium as the cost is infinite. The specification in (5) includes the following three
cases, which are commonly adopted in the literature.

(i) Pure-budget case

There is a finite cap on i’s total effort but there is no additional cost, i.e., ki < +∞ and
ci(·) ≡ 0. This just means that each agent i chooses xi = {xt

i}t∈Ti ∈ Rti
+ that maximizes

∑t∈Ti
vt pt

i(x
t) under the budget constraint: ∑t∈Ti

xt
i ≤ ki.

(ii) Pure-cost case

There is no budget constraint, ki = +∞, i.e., any strategy xi is feasible for player i, with
potentially high but finite cost ci(xi). This implies that each agent i chooses xi = {xt

i}t∈Ti ∈
Rti
+ that maximizes ∑t∈Ti

vt pt
i(x

t)− ci(xi).

(iii) Mixed case

There is a budget constraint, i.e., ki < +∞ and ci(·) is not identically zero. In that case, each
agent i chooses xi = {xt

i}t∈Ti ∈ Rti
+ that maximizes ∑t∈Ti

vt pt
i(x

t)− ci(xi) under the budget
constraint: ∑t∈Ti

xt
i ≤ ki.

Next, we impose a mild assumption on the ci.

Assumption 2. The cost function ci(·) is twice continuously differentiable and is monotone and convex.
In addition, if ki = +∞, we assume that ci(xi) is strongly monotone.16

The conditions in Assumption 2 are fairly weak. In some applications, we need a slightly
strengthened version.

Assumption 3. The cost function ci(·) is twice continuously differentiable, convex and strongly mono-
tone.

Assumption 3 is stronger than Assumption 2 because it imposes strong monotonicity of the
cost function, even if ki < +∞.

15In computing the total effort in (5), we normalize the weight on the effort exerted in each battle xt
i to be one,

mainly for the ease of the presentation. The analysis and results can be easily extended to heterogeneous weights.
16Specifically, ci(·) satisfies strong monotonicity if ci(x′i) > ci(x′′i ) whenever x′i ≥ x′′i but x′i 6= x′′i . And ci(·) satisfies

monotonicity if ci(x′i) ≥ ci(x′′i ) whenever x′i ≥ x′′i . For example, ci(·) ≡ 0 is monotone but not strongly monotone.
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We now illustrate the cost function given by (5) using some examples considered in the
literature.

Example 3. Kovenock and Roberson (2012) consider the following cost structure:

Ci(xi) =

{
c ∑t∈Ti

xt
i if ∑t∈Ti

xt
i ≤ ki

+∞ if ∑t∈Ti
xt

i > ki
, (6)

This is referred to as the budget-constrained linear costs, for finite ki > 0 and nonnegative constant
marginal opportunity cost c. This cost function clearly satisfies Assumption 2. When c = 0, we are in the
pure-budget case (i), also known as the budget-constrained use-it-or-lose-it costs as each unit of effort
up to the budget constraint has a zero opportunity cost. For a strictly positive c, this cost function belongs
to the mixed case (iii).17

Example 4. Suppose that the cost function only depends on total effort, i.e.,

Ci(xi) = gi

(
∑

a∈Ti

xa
i

)
(7)

for a single-variable function gi(·). This cost function belongs to the pure-cost case (ii) and satisfies
Assumption 2 if and only if gi(·) is convex and strictly increasing.18

3 Equilibrium analysis

In this section, we conduct an analysis of the equilibrium of this multiple-battle multi-player
conflict game. In Section 3.1, we show the existence of equilibrium. In Section 3.2, we study the
issue of equilibrium uniqueness using techniques from Variational Inequality.

3.1 Existence of equilibrium

Let NE denote the set of equilibria for this conflict game CF. Given the generality of our conflict
model, existence of equilibrium is obviously the first major issue to investigate. Our first Theorem
shows that

NE 6= ∅.

Theorem 1 (Existence). Suppose that Assumptions 1 and 2 hold. The conflict game CF has at least one
equilibrium.

Assumptions 1 (on the contest technology) and 2 (on the cost function) are fairly easy to
satisfy, but they are sufficient for existence by Theorem 1. Note that no restriction is imposed on
the conflict structure Γ.

17See Friedman (1958); Roberson (2006); Kvasov (2007); Kovenock and Roberson (2012); Roberson and Kvasov (2012).
18For example, Franke and Öztürk (2015) consider a quadratic form with gi(z) = 1

2 z2.
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Before presenting our proof technique for existence, we discuss a few challenging issues in
showing the existence of an equilibrium. First (i), the winning probability function pt

i(·) in battle
t has a discrete jump when contestants exert zero effort in that battle. Therefore, the payoffs in
the conflict game CF are not continuous.19 Furthermore, the dimensionality of the discontinuity
can be very high as each player simultaneously participates in multiple battles. Also, the strategy
space can be unbounded. Second (ii), due to multiple battles and multi-dimensional efforts, the
conflict game CF is not an aggregate game. Third (iii), the conflict game CF is not supermodular.20

The first challenge (i) implies that standard existence theorems based on Kakutani’s fixed-point
theorem cannot be used here (see Glicksberg, 1952). The second one (ii) implies that techniques
from aggregate games are not applicable (see Jensen, 2010).21 The third challenge (iii) implies
that we cannot use existence theorems based on lattice approach and Tarski’s fixed-point theorem
(see Milgrom and Roberts, 1990; Vives, 1990, 2001).

To deal with these technical challenges, we utilize results from discontinuous games; see
Reny (1999). More specifically, we verify that the conflict game satisfies all the conditions such
as compactness, quasi-concaveness, reciprocally upper semi-continuity and payoff security, so
that Reny (1999)’s result is applicable. Here, we briefly provide some intuition behind the proof
and highlight the roles played by Assumptions 1 and 2. First, it is without loss of generality
that we restrict players’ efforts to belong to a bounded strategy space as the winning probability
is bounded above by one, while larger effort is associated with a higher cost. Second, winning
probabilities always add up to unity, so that the sum of payoffs over all players does not exhibit
any discontinuity, which implies reciprocally upper semi-continuity. Third, Assumption 1 on
the contest production function guarantees that the winning probability pa

i (·) in battle a ∈ Ti is
concave in xa

i , hence the payoff of each player i is concave as the benefit of efforts is linear in these
winning probabilities and the cost function is convex. Since the payoff has points of discontinuity,
the proof of payoff security is non-trivial and rather technical, and utilizes special properties of
the contest success function. The formal definitions of these properties and verifications of these
conditions are given in Section B.1 of the Appendix B.

Remark 1. To show existence, there are alternative proofs based on approximation either on the strategy
space or the contest success functions.

1. The first approach is based on an approximation and truncation of the strategy space. To be more
precise, for each ε ∈ (0, 1), let us consider a modified conflict game CFε by imposing a uniform low
bound ε on the efforts. We first show that the modified game CFε is well-behaved, and thus has a
pure strategy Nash equilibrium x(ε).22 Next, we can show that there exists a subsequence {x(ε)}
that converges to some limiting profile x∗. Finally, we can prove that x∗ is an equilibrium of the
original game CF.23

19This type of discontinuity is well documented in the contest literature.
20The payoff (2) is not (log)-supermodular. Moreover when ki is finite, the feasible set ∆i is not even a lattice.
21When there is only a single battle, the contest game is an aggregate game using the sum of efforts as the aggregator.

Several proofs in the contest literature on equilibrium existence utilize this aggregation property; see, for example,
Szidarovszky and Okuguchi (1997); Cornes and Hartley (2005).

22For uniqueness in CFε, see Proposition C2 in Appendix C.
23At the end of Section B.1 of the Appendix B, we give a sketch of the proof of existence using this modified conflict

game CFε.
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2. The second approach uses approximation of the CSF. More precisely, for each δ > 0, we can modify
the CSF as follows:24

p̃a
i (x

a) =
f a(xa

i )

δ + ∑j∈N a f a(xa
j )

, ∀xa ∈ Rna

+ . (8)

Denote by CFδ the resulting conflict game with the modified winning function defined in (8) and
by NE δ the set of equilibria. Thus δ can be interpreted as the exogenous probability of a tie. This
modification removes the discontinuity in CF, and thus we can show that under Assumptions 1 and
2, for every δ > 0, CFδ has at least one equilibrium, i.e., NE δ 6= ∅. Moreover, following similar
steps of the proof of the existence of equilibrium using CFε, we can identify an equilibrium of CF by
taking δ to zero. However, the equilibrium correspondence NE δ may not be continuous at δ = 0, as
we will see in Example 5 later.25

3.2 Uniqueness versus multiplicity of equilibria

Before stating our results about the uniqueness of equilibrium, we would like to discuss the
properties of the equilibrium, provide a simple model that highlights our results and explains
the Variational Inequality techniques.

3.2.1 Preliminary results on equilibrium strategy profile

Given the existence of equilibrium, what can we say about the properties of equilibria? Is the
equilibrium locally unique? Do multiple equilibria exist? What can we say about the geometry
of the NE?

Recall that ∆i = {xi ∈ Rti
+|∑t∈Ti

xt
i ≤ ki} is the strategy space of player i. Let S = ∏i ∆i

denote the whole strategy space. We highlight the distinction between different types of strategy
profiles. The importance of such distinction will soon be clear.

Definition 4.

1. A player i is active in battle t if xt
i > 0, i.e, her effort in battle t is strictly positive. A strategy profile

x is interior if every player is active in every battle she is involved in, i.e., xt
i > 0, ∀i, t with γt

i = 1.

2. A strategy profile x is of type S1 if, for every battle t, there exists at least one active player under x.
A strategy profile x is of type S2 if, for every battle t, there are at least two active players under x.

In our general conflict game with heterogeneous battle valuations and asymmetric players,
we should not always expect an interior equilibrium (see, for instance, Example 9 below). Fac-
ing multiple battles and competitors, a player i must allocate her efforts by balancing marginal
benefits and marginal costs. If the marginal benefit from exerting effort in battle a is low relative
to the marginal cost or the shadow price of the effort (for the budget case of cost functions), a

24Similar results hold if we assume battle-specific tie parameter δa > 0, a ∈ T .
25Furthermore, we can prove that the equilibrium in CFδ is unique for every δ > 0 using the Variational Inequality

approach; see Proposition C3 in Appendix C.
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player might strategically choose to become inactive in battle a. However, the marginal benefit of
winning battle a depends on the battle value va, and the efforts of other active participants in the
same battle, as well as the marginal cost, which depends on her effort choices in other battles.
It is thus possible that a player might strategically abandon certain battles to better concentrate
on battles in which she holds an advantageous position. Note that for any interior strategy pro-
file which is of type S2, the reverse holds only when each battle has only two participants (for
instance, in conflicts on graphs, Definition 3).

Let S1 and S2 denote the set of strategy profiles satisfying types S1 and S2, respectively. It
is easily verified that both S1 and S2 are convex and relatively dense and open subsets of S .26

If a strategy profile x is not in S1, then there exists at least one battle with no active participant.
Given the discrete jump of the winning probability at the origin, having a battle with no active
players certainly will not occur at any equilibrium. In other words, in equilibrium, each battle
has at least one active player, formally shown in Lemma 1.

Lemma 1. Under Assumptions 1 and 2, any equilibrium of the conflict game is of type S1. Formally,
NE ⊆ S1.

Next, should we expect any equilibrium to be of type S2? Suppose that x is of type S1,
but not S2. Then there exists a battle, say a, and a player, say i, such that i is the only active
contestant in battle a. Since player i faces no competitor in battle a, clearly she could reduce her
effort in a slightly and still win battle a with probability one. This deviation reduces her cost at
least weakly, without affecting her expected winning values. When i’s cost function is strongly
monotone, this deviation is strictly profitable for i. Therefore, such x cannot be an equilibrium.
Formally, we have:

Lemma 2. Under Assumptions 1 and 3, every equilibrium is of type S2. Formally, NE ⊆ S2.

However, when the cost is monotone, but not strongly monotone, the equilibrium strat-
egy may be of type S1. An equilibrium in S1 but not in S2 places several restrictions on the
equilibrium. For example, if player i is the only active contestant in battle a, and her cost is a
pure-budget case, then she must be the single active contestant in any other battle b ∈ Ti. Oth-
erwise, she could reduce xa

i and increase xb
i by the same amount accordingly to meet the budget

constraint while strictly improving her winning probability in battle b. We will see equilibrium
of type S1 in Example 5 below.

The distinction between these two types of equilibria has major consequence on the geome-
try of the equilibrium, as we demonstrate in Theorem 2 and Figure 5 below.

3.2.2 A simple toy model illustrating the uniqueness of equilibrium

Before discussing the technical aspects associated with the uniqueness of the equilibrium, let
us highlight several subtle issues and motivate our approach using Variational Inequality with

26The properties of both sets are summarized in Lemma A3.
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a simple toy model. Although such a simple model is well studied in contest literature, the
approach we take below is different from existing ones.

Consider the setting with one battle with value v and two players, 1 and 2. Let p(x, y) =
f (x)

f (x)+ f (y) be the winning probability of player 1, and x, y be the efforts of players 1 and 2, respec-
tively. An interior equilibrium (x∗, y∗) must satisfy the following system of equations

F1(x, y) =: c′1(x)− vpx = 0, (9)

F2(x, y) =: c′2(y) + vpy = 0

where we use the fact that the winning probability of player 2 is simply 1− p(x, y). In general,
the above system F(x, y) = (F1, F2) is non-linear even with a simple specification of f (.) and the
cost functions. Suppose that f (.) satisfies Assumption 1 and costs are convex. Then, we claim
that F(x, y) is injective on R2

++, which immediately implies the uniqueness of the solution to
(9) and, therefore, the uniqueness of interior equilibrium in this model with one battle and two
players. To verify the claim, we note that the Jacobian of the mapping F is given by:

M(x, y) :=
∂(F1, F2)

∂(x, y)
=

[
c′′1 (x) 0

0 c′′2 (y)

]
+ v

[
−pxx −pxy

pxy pyy

]
The convexity of the cost function implies that c′′1 (.) ≥ 0, c′′2 (.) ≥ 0. Assumption 1 on f (.) implies
that pxx < 0, pyy > 0 (See Lemma A2 in Section A.3 of the Appendix A for details). Since the off
diagonal entries pxy and −pxy have opposite sign, the symmetric part of this Jacobian matrix M,
(M + MT)/2, is a diagonal matrix with positive entries:

(M + MT)/2 =

[
c′′1 (x) 0

0 c′′2 (y)

]
+ v

[
−pxx 0

0 pyy

]
Thus, matrix M is positive definite. And it implies that F is a monotone operator in the following
sense

(x′ − x)(F1(x′, y′)− F1(x, y)) + (y′ − y)(F2(x′, y′)− F2(x, y)) > 0, ∀(x′, y′) 6= (x, y). (10)

The above inequality implies the injectiveness of the mapping F, i.e., if F1(x′, y′) = F1(x, y), and
F2(x′, y′) = F2(x, y), then it must be the case that x′ = x and y′ = y.27

Of course, this simple toy model is just an example to highlight the main ideas. Many other
issues in the general conflict model are not illustrated here. For example, each battle could have
more than three participants, instead of two, so that the positive definiteness of matrix M is more
difficult to show. Moreover, equilibrium may not be interior, and hence it will not always satisfy
F = 0. How to deal with these issues in the general framework is the goal of the next subsection
using the Variational Inequality approach.

27We could have used the global univalence theorem of Gale and Nikaido (1965) to prove injectiveness of F, as the
Jacobian of F is positive definite, hence a P-matrix.
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3.2.3 Preliminary results of the proof of uniqueness of equilibrium

As can be seen from the simple toy model above, a key step of the proof of uniqueness of
equilibrium is to show certain monotonicity properties of the mapping F, which is closely related
to the first-order conditions of the original game. The conditions on the cost and the CSF make
sure that such monotonicity condition indeed holds. In the general conflict game with multiple
battles and players, we would like to use a similar idea, except that we have to deal with the
case when efforts are zero in equilibrium. This is why we will use techniques from Variational
Inequalities.28

Indeed, to characterize the equilibrium, we pin down the equilibrium conditions. Suppose
x∗ ∈ NE . From (3), for each i, it holds that x∗i ∈ arg maxxi∈∆i Πi(xi, x∗−i). Moreover as each
battle has at least one active player under x∗ by Lemma 1, the payoff function Πi is continuously
differentiable at x∗. Hence there exists a scalar λi such that the following Karush–Kuhn–Tucker
(KKT) first-order conditions (FOCs) must hold:{

∂Πi(x∗)
∂xa

i
− λi ≤ 0 (with equality if x∗ai > 0), ∀a ∈ Ti

(∑a∈Ti
x∗ai − ki)λi = 0, λi ≥ 0, (∑a∈Ti

x∗ai − ki) ≤ 0.
(11)

Here, λi is the Lagrange multiplier for the budget constraint of player i.

It is very difficult, if not impossible, to use the system above to characterize the set of Nash
equilibria NE . As stated above, to move forward, we apply some techniques from Variational
Inequalities.

Definition 5 (Variational Inequality). A vector z∗ ∈ Rm solves the Variational Inequality VI(Ψ,K)
with set K ⊂ Rm, and operator Ψ : K → Rm if and only if

〈Ψ(z∗), z− z∗〉 ≥ 0, ∀z ∈ K (12)

The solution set of this VI problem is denoted as Sol(Ψ,K).

For our conflict game, we consider the following operator F:

F(x) = −


∇x1 Π1(x)
∇x2 Π2(x)

...
∇xn Πn(x)

 : S1 ⊆ Rn̄ → Rn̄.29 (13)

Due to the discontinuity of CSFs, F(x) is only defined when all the payoffs are continuously
differentiable, i.e., x ∈ S1. As each xi ∈ ∆i ⊂ Rti , ∇xi Πi is a column vector of dimension ti. The

28In our simple model with one battle and two players, any equilibrium was necessarily interior by Lemma 2.
29The negative sign here is used to make sure that the operator F is monotone, instead of anti-monotone. F is

sometimes called game Jacobian, see, for instance, Facchinei and Pang (2007); Melo (2019); Parise and Ozdaglar
(2019).
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operator F defines a mapping from set S1 ⊆ Rn̄ to Rn̄ as n̄ = ∑i∈N ti.30 This operator plays a key
role in our equilibrium analysis due to the result below:

Proposition 1. Under Assumptions 1 and 2, the following statements are equivalent:

(i) A strategy profile x∗ is a Nash equilibrium of the conflict game CF;

(ii) x∗ solves VI(F,S1), i.e.,

x∗ ∈ S1, and 〈F(x∗), x− x∗〉 ≥ 0, ∀x ∈ S1. (14)

The equivalent characterization of a Nash equilibrium of a generic smooth concave game
(not necessarily in a conflict game) using Variational Inequality is known in the literature.31 In
the standard definition of Variational Inequality, the domain K is usually assumed to be closed
(see Facchinei and Pang (2007)). However, in our model S1 is not closed. Thus many existing
results on Variational Inequality cannot be directly applied here.32 Our proposition extends the
VI characterization of equilibrium accommodating non-closeness of domain S1 and discontinuity
in payoffs. Since the closure of S1 is S , by continuity of inner product, equation (14) in item (ii)
can be replaced by the following equivalent one:

x∗ ∈ S1, and 〈F(x∗), x− x∗〉 ≥ 0, ∀x ∈ S . (15)

Formally, NE = Sol(F,S1). With slight abuse of notation, we might write NE = S1 ∩ Sol(F,S).
The benefit of this equivalent formulation hinges on the monotonicity of the operator F, which is
naturally satisfied in this conflict game.33

Definition 6. An operator Ψ, from K to Rm, is called monotone on set K̂ ⊆ K if

〈Ψ(z′)−Ψ(z′′), z′ − z′′〉 ≥ 0, ∀z′, z′′ ∈ K̂, z′ 6= z′′.

It is called strictly monotone on set K̂ if

〈Ψ(z′)−Ψ(z′′), z′ − z′′〉 > 0, ∀z′, z′′ ∈ K̂, z′ 6= z′′.
30Observe that, for each strategy profile x = (x1, · · · , xn) ∈ Rn̄

+, with xi = {xt
i}t∈Ti ∈ Rti

+, we present it as a column
vector of dimension n̄. Here we specify a concrete way to do so. By fixing a complete order on the set of battles, x
can be displayed using a lexicographic order by first listing player 1’s efforts sequentially according to the order of
the battles that she joins, then listing player 2’s efforts, and so on. Alternatively, we could use the lexicographic order
with first priority on battles, instead of on players.

31Proposition 1.4.2 in Facchinei and Pang (2007) presents a formal statement of the characterization of a Nash
equilibrium in smooth concave games using VI, where a smooth concave game is a game such that each player’s
strategy space Xi is closed and convex, each payoff is at least twice continuously differentiable in ∏Xi, and concave
in own strategy xi ∈ Xi, fixing any x−i ∈ X−i.

32To give an example, the conditions for the existence of solution to VI in Facchinei and Pang (2007) do not hold
here, so Theorem 1 (non-emptiness of NE ) is not a direct corollary of Proposition 1.

33In general, further assumptions on concave games are required in order to obtain monotonicity of this operator.
For example, see Melo (2019); Parise and Ozdaglar (2019) and Zenou and Zhou (2019) for applications of VI in games
played on networks by imposing certain restrictions on the spectral property of network matrix and the curvature of
payoffs.
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The monotonicity of the operator enables us to characterize the solution set Sol(Ψ,K) neatly.
Given our equivalent characterization of NE in Proposition 1, it is useful to check the monotonic-
ity properties of the operator F on its domain S1 and on a slightly smaller subdomain S2.

Proposition 2. Under Assumptions 1 and 2, F is monotone on S1, and strictly monotone on S2. Fur-
thermore, for any x′, x′′ ∈ S1 with x′ 6= x′′,

〈F(x′)− F(x′′), x′ − x′′〉 > 0, (16)

when at least one of x′ and x′′ is in S2.

Just as the monotonicity of a single-variable function is determined by the sign of its deriva-
tive, the monotonicity of F is reflected by the properties of its Jacobian matrix. As illustrated in
the toy model above, let us define

M(x) := ∇xF(x), x ∈ S1 (17)

as the Jacobian of the mapping F. Note that M(x) is a square matrix of dimension n̄, and it is
defined only when x is in S1. In general, M is not symmetric.34 The (strict) monotonicity of F is
closely related to the positive (semi-)definiteness of M. In fact, we can show the following result,
which directly implies Proposition 2.

Proposition 3. Under Assumptions 1 and 2, M(x) is positive semi-definite for any x ∈ S1, and is
positive definite for any x ∈ S2.

In Section 3.2.5, we provide several examples of Ms that illustrate this Proposition.

3.2.4 General results: Uniqueness of equilibrium

Let us now present our general result about the uniqueness of equilibrium.35

Theorem 2. Under Assumptions 1 and 2, one and only one of the following mutually exclusive statements
about NE is true:

(i) NE contains an equilibrium x∗ which is of type S2. In this case, NE is a singleton, i.e., this x∗

is the unique equilibrium;

(ii) all the equilibria are in the set S1\S2, i.e., any equilibrium is of type S1, but not S2.

Recall that NE is non-empty, so an immediate implication of Theorem 2 and Lemma 2 is:

Theorem 3 (Uniqueness). Suppose that Assumptions 1 and 3 hold. Then the equilibrium of a conflict
game CF is unique.

34See Example 7 below.
35All the proofs about the uniqueness of equilibrium can be found in Section B.2 of the Appendix B.
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Let us show the implication of this result in terms of characterizing NE , and more impor-
tantly in identifying conditions for uniqueness. Suppose the conflict game has two equilibria
x∗, x∗∗ in NE , then by (15)

〈F(x∗), y′ − x∗〉 ≥ 0, ∀y′ ∈ S

〈F(x∗∗), y′′ − x∗∗〉 ≥ 0, ∀y′′ ∈ S .

Substituting y′ = x∗∗ into the first equation, and y′′ = x∗ into the second equation, and summing
both equations, we get the following key inequality:

〈F(x∗)− F(x∗∗), x∗ − x∗∗〉 ≤ 0. (18)

However, by Proposition 2, equation (18) cannot hold whenever x∗ 6= x∗∗, and at least one of
x∗, x∗∗ is in S2. An immediate implication is that there is at most one equilibrium in S2. The
characterization of NE in Theorem 2 immediately follows.

More generally, Theorem 3 proves uniqueness of equilibrium under fairly weak conditions,
which is only imposed on the cost structure, but not on the conflict structure Γ or on the val-
uations. For example, the cost structure considered in Example 4 above is strongly monotone,
and hence a unique equilibrium is obtained. Therefore, Theorem 3 immediately implies the exis-
tence and uniqueness theorems in Franke and Öztürk (2015). Note that Assumption 3 is slightly
stronger than Assumption 2. We point out that, without strongly monotone cost (Assumption 3),
multiple equilibria may arise even under very “regular” cases (see Example 5 below).

Moreover, a strong geometry restriction is imposed on NE :

Proposition 4. Under Assumptions 1 and 2, the set of equilibria NE is convex.

Based on the characterizations above, only two scenarios can possibly occur; see Figure 5.
Therefore, it is impossible to have one equilibrium in S2 and another equilibrium in S1\S2.
If either we prove that any equilibrium must be of type S2 (as in Lemma 2 and Corollary 2),
or a particular equilibrium of type S2 is identified (either through inspection or symmetry of
the underlying game), then case (i) of Theorem 2 immediately implies that there is no other
equilibrium to look for. Moreover, if there exist multiple equilibria, then any equilibrium cannot
be locally unique.

S1
S2 NE

singleton
S1

S2
NE convex{ }

Figure 5: Two scenarios for NE

3.2.5 Examples

In order to gain some intuition of our results, let us provide some specific examples.
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Example 5 (Uniqueness versus continuum of equilibria: pure budget case). Consider a conflict
game on a circle with three players: 1, 2, 3 and three battles: a, b, c as described in Figure 6.

For each battle t = a, b, c, assume the value vt = 1. We also assume a Tullock Contest Success
Function with r = 1, i.e.,

pt
i(x

t) =


xt

i
∑j∈N t xt

j
when xt 6= (0, 0, · · · , 0)

1
|N t| =

1
nt otherwise

(19)

The cost of every player is of the pure budget case, in which k1 = k3 = 1 and k2 = K̄ > 8. Define
x∗ = (xa

1, xc
1, xa

2, xb
2, xb

3, xc
3). It is straightforward to show that this conflict game CF has a continuum of

equilibria (of type S1)36 characterized by:

NE = {x∗ = (0, 1, xa
2, xb

2, 0, 1)|xa
2 ≥ 4, xb

2 ≥ 4, xa
2 + xb

2 ≤ K̄}. (20)

In any of the equilibria, player 2 is sure to win both battles a and b. Therefore, her best response is
not unique, as long as both xa

2 and xb
2 are large enough to deter players 1 and 3 from exerting strictly

positive efforts in battles a and b, respectively. Therefore, the multiplicity of equilibria arises here because
K̄ is relatively large and the budget difference between player 2 and the other players is too large. The
equilibrium is thus not unique and of type S1. Observe that NE is a convex set as showed in Proposition
4.

1

2

c

a

b

3

Figure 6: Conflict game on a circle

In Remark 1, we consider a modified game CFε by imposing that the effort of every player on each
battle has a minimal lower bound ε > 0, i.e., no player can provide zero effort. In this example, we can
show that, for each ε ∈ (0, 1/2), the modified game CFε has a unique equilibrium given by:

NE ε =

{
xε =

(
ε, 1− ε,

K̄
2

,
K̄
2

, ε, 1− ε

)}
.

Indeed, in that case, players 1 and 3 will provide the minimum effort ε in their battle with player 2 and
maximal effort 1− ε in the other battles. Because of the concavity of the Contest Success Function given
in (1) (Assumption 1), player 2 will exactly devotes half of budget, K̄/2, in each battle she is involves in.37

36If the equilibrium is of type S2, then it is unique by Theorem 2.
37Note that ε cannot be greater than 1/2, as player 1 (or 3) participates in two battles with minimal effort ε in one

of them with the constraint that k1 = 1.
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The fact that the modified game CFε has a unique Nash equilibrium is actually true for any network as
shown in Proposition C2 in Appendix C.

As also shown in Remark 1, we can prove the existence of equilibrium by modifying the CSF as in
(8), where δ can be interpreted as the probability of a tie. In this example, we can show that, for each δ > 0,
the modified game CFδ has a unique equilibrium given by:

NE δ =

{
xδ =

(
0, 1,

K̄
2

,
K̄
2

, 0, 1
)}

.

When δ > 0, the uniqueness of equilibrium is obtained as player 2 wants to minimize the probability of
ties in both battles a and b, even though her competitors are inactive in a and b.38 This result that the
modified conflict game CFδ with δ > 0 has a unique equilibrium can be shown to be true for any network
(See Proposition C3 in Appendix C for a general statement).

Furthermore, as ε or δ approaches zero, we have:

lim
ε→0

xε = lim
δ→0

xδ =

(
0, 1,

K̄
2

,
K̄
2

, 0, 1
)
∈ NE ,

i.e., the unique equilibrium converges to a particular equilibrium in NE of CF. Since there are many
other equilibria in NE , the equilibrium correspondence NE ε(NE δ) is not continuous at ε = 0 (δ = 0).
Consistent with Theorem 2, every equilibrium of CF is of type S1 in NE .

In Example 5, we show that multiple equilibria arise due to the existence of a powerful
player 2, who has excessive resource to deter her competitors from being active in any of 2’s
battles. We consider a variant of Example 5 where the resource of player 2 is moderate.

Example 6 (Variation of Example 5). Consider exactly the same conflict game as in Example 5 (see
Figure 6) but let us modify the value of k2. Assume, now, that k2 = K̄ < 8. 39 Then, the conflict game has
a Nash equilibrium given by:

NE =

{
x∗ =

(
xa

1, 1− xa
1,

K̄
2

,
K̄
2

, xb
3, 1− xb

3

)}
, (21)

where

xa
1 = xb

3 = −3K̄
2

+
√

2K̄(1 + K̄).

Given K̄ ∈ (0, 8), it is easy to show that this x∗ is interior, hence of type S2. As a consequence, such x∗

is the unique equilibrium by Theorem 2. Note that the cost function is not strongly monotone, so we can
not directly apply Theorem 3 to obtain uniqueness.

38Player 2’s unique best response is to split her budget equally: when δ > 0, z/(z + δ) is strictly concave in z, so
K̄
2 = arg maxxa

2∈[0,K̄]

{
xa

2
xa

2+δ +
K̄−xa

2
K̄−xa

2+δ

}
.

39When k2 = K̄ = 8, the conflict game has a unique equilibrium given by: NE = {x∗ = (0, 1, 4, 4, 0, 1)}, which is of
type S1 since player 2 will be the only active player in battles a and b. This example shows that a unique equilibrium
is not necessary of type S2.
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Example 6 shows that when the budget difference between player 2 and the other players is
not too large, then a unique equilibrium emerges. In that case, no player is able to win any battle
for sure, and the equilibrium will thus be of type S2.

In Section C.1 of the Appendix C, we provide two other examples with different networks
that illustrate the issue of multiple equilibria in our conflict game.

3.3 Discussions

We discuss several issues regarding the uniqueness or multiplicity of equilibria.

3.3.1 Cost function and conflict structure

First, does the existence of multiple equilibria in Example 5 hinges on a specific conflict structure
Γ? The answer is no, if we do not impose any restriction on the cost function.

Corollary 1. Given any conflict structure, contest technology and values, there exists a cost function
Ci(xi), for each i, that satisfies Assumption 2, such that the resulting conflict game has a continuum of
equilibria.

The constructive proof of Corollary 1 follows from a similar idea to Example 5. Pick any
player, say i. We assume that her cost is of the pure budget case with a very large ki. For
any player j 6= i, we assume that the cost is linear, i.e., cj(xj) = ∑t∈Tj

xt
j . Given the linearity and

separability of the cost function, we can rewrite player j’s payoff Πj as ∑t∈Tj
(vj pt

j(x
t)− xt

j), which
is separable across battles. So each j’s decision in different battles in Tj is fully independent.40

Thus we can only focus on the battles that i joins. As long as i’s effort in each battle t ∈ Ti is large
enough, other players in this battle t ∈ Ti will optimally choose to become inactive. Therefore
multiple equilibria arise for the same reason as in Example 5.

Second, can we still obtain uniqueness without strongly monotonic cost functions? The
answer is yes, if we impose some restrictions on the conflict structure.

Corollary 2. Suppose Γ is complete (see Example 2), and each player’s cost is of the pure budget case.
Any equilibrium must be of type S2, therefore the equilibrium must be unique.

The intuition of Corollary 2 is straightforward. Under the given assumptions, it is impossible
to have any player who wins all the battles for sure. So, by the completeness of the conflict
structure, any equilibrium profile must be of type S2, hence uniqueness directly follows from
Theorem 2 part (i). Thus, the multiplicity issue highlighted in Example 5 does not occur for
any complete conflict structure. Moreover, the pure budget case of cost is also necessary, see
Corollary 1.

Uniqueness in this Corollary crucially relies on the completeness of Γ, which prevents the
emergence of a “super powerful” node such as player 2 in Example 5. Note that Corollary 2 does

40In addition, if player i’s cost happens to be separable across battles in Ti, the whole conflict game can be decom-
posed into T independent battles, and there will be no linkage between different battles.
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not contradict Corollary 1 as the cost structure considered in Corollary 1 is more general, and
not limited to the pure-budget case.

3.3.2 Technical discussion on the monotonicity property of F

As we have seen above, the characterization results on NE are all direct consequences of the
(strict) monotonicity of the operator F and the VI formulation of the equilibrium conditions. This
observation leads us to ask why monotonicity holds naturally in such a setting. Why is the
distinction between type S1 and S2 strategy profiles important? Recall that the conflict structure
is arbitrary and we only impose Assumptions 1 and 2.

Let us start with an example with only one battle.

Example 7 (Monotonicity of F: single battle case). Consider a conflict game with three players: 1, 2,
3 and one battle, say t = a, so Γ is complete and equal to:

Γ =

1
1
1


For the unique battle a, we assume that va = v. Since there is only one battle, xa

i := xi, for each i.
We also assume a Tullock Contest Success Function with r = 1 given by (19) and linear costs equal to:
ci(xi) = cixi, i = 1, 2, 341 so that the cost function is strongly monotone. The payoff function for each
agent i is thus given by: Πi(xi, x−i) = v xi

∑3
j=1 xj
− cixi. Then,

F(x1, x2, x3) = −

∂Π1/∂x1

∂Π2/∂x2

∂Π3/∂x3

 = −

v x2+x3
(x1+x2+x3)2 − c1

v x1+x3
(x1+x2+x3)2 − c2

v x1+x2
(x1+x2+x3)2 − c3

 .

The Jacobian of F is

M =
−v

(x1 + x2 + x3)3

 −2(x2 + x3) x1 − (x2 + x3) x1 − (x2 + x3)

x2 − (x1 + x3) −2(x1 + x3) x2 − (x1 + x3)

x3 − (x1 + x2) x3 − (x1 + x2) −2(x1 + x2)

 .

First, we note that, unless x1 = x2 = x3, M is not symmetric. As a result, to show that M is positive
semi-definite, we need to show that the symmetric part of M is positive semi-definite (see Definition A1 in
Appendix A). The latter is given by:42

M + MT

2
=

v
(x1 + x2 + x3)3

{[
(x2 + x3) 0 0

0 (x1 + x3) 0
0 0 (x1 + x2)

]
+

[
0 0 0
0 x1 x1
0 x1 x1

]
+

[
x2 0 x2
0 0 0
x2 0 x2

]
+

[
x3 x3 0
x3 x3 0
0 0 0

]}
.

41The case with convex ci is similar, except that there is an additional diagonal matrix in M due to the curvature of
the cost. See, for instance, the toy example in Section 3.2.2.

42Such decomposition is inspired by Goodman (1980).
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The last three matrices in the curly bracket are clearly positive semi-definite, while the first diagonal matrix
is positive definite when at least two of x1, x2, x3 are positive,43 in which case M+MT

2 , hence M, is positive
definite.

However, when x1 > 0, x2 = x3 = 0, then x is of type S1, and M is positive semi-definite, but not
positive definite as the first row/column of M+MT

2 is zero.

From this example, we show that the distinction between type S1 and type S2 is critical for
the positive definiteness versus the semi-definiteness of the matrix M. For a battle with more
than three players, we have a similar decomposition of the symmetric part of M into the sum of a
few simpler matrices, where each of them is shown to be either positive semi-definite, or positive
definite.

Next, we consider an example with multiple battles.

Example 8. Consider a conflict game on the following start network (see Figure 7) with three players, 1,
2, 3, and two battles, a and b.

a b1
2 3

Figure 7: A star

Assume a Tullock Contest Success Function with r = 1, and the following quadratic cost function:
c1(x1) =

s1
2 (xa

1 + cb
1)

2, c2(x2) =
s2
2 (xa

2)
2, c3(x3) =

s3
2 (xb

3)
2. Thus, each player’s payoff has the following

form:

Π1(x1, x−1) =va pa
1(xa

1, xa
2) + vb pb

1(xb
1, xb

3)− c1(x1),

Π2(x2, x−2) =va pa
2(xa

2, xa
1)− c2(x2),

Π3(x3, x−3) =vb pb
3(xb

3, xb
1)− c3(x3),

(22)

where x1 = (xa
1, xb

1), x2 = (xa
2) and x3 = (xb

3), and x = (xa
1, xb

1, xa
2, xb

3). We can show that

M + MT

2
= Jb + Jc (23)

where

Jb = va


2xa

2
(xa

1+xa
2)

3 0 0 0

0 0 0 0
0 0 2xa

1
(xa

1+xa
2)

3 0

0 0 0 0

+ vb


0 0 0 0

0 2xb
3

(xb
1+xb

3)
3 0 0

0 0 0 0

0 0 0 2xb
1

(xb
1+xb

3)
3


and

Jc =


s1 s1

s1 s1

s2

s3

 .

43This is equivalent to x = (x1, x2, x3) being of type S2.
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Clearly, each diagonal block matrix of Jc is the Hessian matrix of the cost of player i, which is positive
semi-definite by the convexity of the cost function. Together, we show that Jc is positive semi-definite.
Similarly, Jb can be decomposed as the sum of two matrices which corresponds to battle a and battle b
respectively. Each matrix is positive semi-definite following the same logic as in Example 7. Focusing on
type S2 strategy profile, Jb is positive definite, hence M+MT

2 is positive definite as well.

The proof of (strict) monotonicity of F in Proposition 3 with general conflict structure and
cost functions is just a generalization of Examples 7 and 8.

4 Comparative statics

Given the equilibrium characterization in the previous section, let us now investigate the com-
parative statics properties of the Nash equilibrium of our conflict game. Since an equilibrium
may not be interior, the standard tools for deriving comparative statics results using the Implicit
Function Theorem do not directly apply here. Moreover, since our conflict game is not supermod-
ular, we cannot use the lattice approach from this strand of the literature. In this section, by using
the equivalence of the solution between VI and Nash equilibrium, we show how to use the VI
approach to conduct comparative statics of the equilibrium of the conflict game, even if the latter
is not interior.

Formally, let θ summarize all the exogenous parameters of the conflict game that can be
adjusted smoothly in a set Θ. For example, θ could include the valuations vt of the battles, the
precision of the contest technology f t, the parameters in the functional form of the cost structure,
etc. As a result, we now define the payoff function, the vector of the gradients of the payoff
function and the Jacobian matrix as Πi(x; θ), F(x; θ), M(x; θ), respectively. Finally, let NE(θ) be
the set of equilibria for the game CF(θ). Our task is to examine the properties of the mapping

NE(θ) : Θ→ Rn̄
+. (24)

Let us first consider the pure-cost case and then, in Section 4.2, the general case.

4.1 Pure-cost case

Throughout this subsection, we assume that Assumptions 1 and 3 hold so that, by Theorem 3,
a unique equilibrium exists. So for any θ, NE(θ) = {x∗(θ)} contains a single element x∗(θ).
Also x∗(θ) is in S2 by Lemma 2. Moreover, since we are in a pure-cost case, we have for each i,
ki = +∞.

Recall that, from (15), x∗(θ) is an equilibrium if and only if

x ∈ S1, and x solves VI(F(·; θ), Rn̄
+),

as S = Rn̄
+ in this case. For this special domain Rn̄

+, the solution to VI(F(·; θ), Rn̄
+) can be
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equivalently characterized as

xt∗
i ≥ 0,

∂Πi(x∗; θ)

∂xt
i

≤ 0, and xt∗
i

∂Πi(x∗; θ)

∂xt
i

= 0, (25)

for all i, t such that γt
i = 1. The system above is obtained from the complementarity slackness

conditions for each player’s payoff maximization in equilibrium. This can be written as:44

F(x∗; θ) ≥ 0, x∗ ≥ 0, and 〈F(x∗; θ), x∗〉 = 0. (26)

Definition 7. An equilibrium point x∗(θ) satisfying (26) is called non-degenerate if x∗` + F`(x∗; θ) >

0, ∀` ∈ {1, 2, · · · , n̄}.

Since both x∗` and F`(x∗; θ) are non-negative, this condition is equivalent to the set {` ∈
{1, 2, · · · , n̄} : x∗` = 0, F`(x∗; θ) = 0} being empty. In other words, we assume that the comple-
mentarity slackness condition holds strictly. We will now only focus on non-degenerate equilibria
for which, as in (25), either there is an interior solution, which is an extremum, or a corner so-
lution, which is not an extremum. For any non-degenerate equilibrium point x∗, it is useful to
partition efforts into two disjoint sets:

α := {` ∈ {1, 2, · · · , n̄} : x∗` > 0, F`(x∗; θ) = 0}, (27)

α̌ := {` ∈ {1, 2, · · · , n̄} : x∗` = 0, F`(x∗; θ) > 0}, (28)

with α ∩ α̌ = ∅, α ∪ α̌ = {1, 2, · · · , n̄} (due to non-degeneracy). Clearly, α is always non-empty
since, in equilibrium, there exists at least one active player in every battle by Lemma 1. Note that
α̌ is empty only when x∗ is an interior equilibrium.45

Theorem 4. Suppose that Assumptions 1 and 3 hold and that each cost function is of the pure-cost case.
If the equilibrium x∗(θ∗) is non-degenerate at θ∗, then there exists an open neighborhood O of θ∗ such
that, for any θ ∈ O, the unique equilibrium x∗(θ) is continuously differentiable with

∂x∗α(θ)
∂θ

= −(Mαα(x; θ))−1 ∂Fα(x; θ)

∂θ
|x=x(θ), and (29)

∂x∗α̌(θ)
∂θ

= 0, as xα̌(θ) = 0.

First, as stated above, the standard Implicit Function Theorem only works for interior equi-
libria when all the FOCs are satisfied with equalities. In our case, due to the possibility of corner
solutions, we need to distinguish the slack variables in α from the binding variables in α̌. By forc-
ing the variables in α̌ to remain binding, we can use the Implicit Function Theorem partially on
the set of slack variables to compute their trajectory as θ varies. The non-degeneracy condition
guarantees that the binding variables indeed remain binding for θ near θ∗. A critical prerequisite
to apply this “Partial Implicit Function Theorem approach” is that the submatrix Mαα is non-singular.

44This problem in (26) is called a nonlinear complementarity problem NLP(F, Rn̄
+), which is a special case of VI

when K is the cone Rn̄
+; see Facchinei and Pang (2007).

45All the proofs about the comparative statics results can be found in Section B.3 of the Appendix B.
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Note that α is endogenously determined in equilibrium; it is critical that Mαα is nonsingular for
any index α, which is indeed the case by the positive definiteness of M. This observation points
out another implication of the positive definiteness of M.

Second, the VI formulation of the equilibrium is the key step that enables us to apply this
“Partial Implicit Function Theorem approach”. We will see this connection further in the general case
that may include budget constraints. Finally, when x∗(θ∗) is non-degenerate, by our construction,
the index set α is locally constant. Therefore, if player i is inactive (active) in battle a at θ∗, she
remains inactive (active) in a neighborhood of θ∗. This shows the local robustness of active and
inactive players near a non-degenerate equilibrium. However, this is not the case when x∗(θ∗) is
degenerate. Indeed, a player can switch from inactive to active in a certain battle, at a point θ

arbitrarily close to θ∗ (see Example 9 below).

To illustrate these points, let us provide a brief sketch of the proof of Theorem 4. Consider
the following system:{

F`(x; θ) = 0, ` ∈ α;

x = 0,  ∈ α̌,
or equivalently

[
Fα(x; θ)

xα̌

]
=

[
0
0

]
. (30)

Clearly x∗(θ∗) satisfies this system of n̄ equations with n̄ unknowns at θ = θ∗ from equilibrium
conditions. Moreover, the Jacobian of the mapping with respect to x is just Diag{Mαα, Iα̌}, which
can be shown to be nonzero at (x, θ) = (x∗(θ∗), θ∗). So by the Implicit Function Theorem, the
system in (30) implicitly defines a smooth function x∗(θ) near (x∗(θ∗), θ∗). Next we can show that
the solution x∗(θ) to (30) indeed satisfies (26) under non-degeneracy, hence it is an equilibrium
of CF(θ) for θ close to θ∗.

An interior equilibrium is obviously non-degenerate, so we can state the following result:

Proposition 5. Suppose that Assumptions 1 and 3 hold and that each cost function is of the pure-cost
case. Assume also that x∗(θ∗) is an interior equilibrium at θ∗. Then, for θ in a small open neighborhood
of θ∗, x∗(θ) remains interior with

∂x∗(θ)
∂θ

:= −(M(x; θ))−1 ∂F(x; θ)

∂θ
|x=x∗(θ).

For the pure-cost case considered in this subsection, we can always prove that the unique
equilibrium x∗(θ) is continuous in θ, but may not always differentiable. Therefore, the non-
degeneracy assumption is not redundant, and, in fact, critical for the differentiability of x∗(θ) in
θ. Since degeneracy only occurs non-generically, x∗(θ) is continuously differentiable in θ almost
everywhere. These observations are illustrated in the following example.

Example 9 (Impact of an increase in the cost function in the pure-cost case for a complete net-
work). Consider a one-battle-three-player game and the Tullock lottery contest as in Example 7 but with
v = 4, c1(x1) = x1, c2(x2) = x2, and c3(x3) = θx3, where θ > 0 is the parameter of interest. It is easily
verified that there is a unique equilibrium given by:

x∗(θ) := (x1(θ), x2(θ), x3(θ)) =


(

8θ
(2+θ)2 , 8θ

(2+θ)2 , 8(2−θ)
(2+θ)2

)
if θ ∈ (0, 2];

(1, 1, 0) if θ ≥ 2.
(31)
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Indeed, if θ is not too large, player 3 is active and we have a unique interior equilibrium. However, as
θ increases, player 3 becomes weaker, and thus reduces her effort x3(θ). When θ ≥ 2, player 3 becomes
inactive. We show that x∗(θ) is non-degenerate if and only if θ 6= 2.46 Indeed, from (31), x∗(θ) is
continuously differentiable in θ except at θ = 2 , which is consistent with Theorem 4. At θ = 2, x∗(θ) is
continuous, but not differentiable.47

4.2 General case

In the general case with budget caps, multiple equilibria may arise. Moreover, whenever multiple
equilibria occur, due to the convexity of NE , an equilibrium is never locally unique. To facilitate
our comparative statics exercises , we make the following assumption throughout this subsection.

Assumption 4. Assume x∗(θ∗) is of type S2.

In particular, this assumption implies that x∗(θ∗) is the unique equilibrium of CF(θ) at
θ = θ∗ by Theorem 2. For ease of notation, we define the following

B =


1t1 0 · · · 0
0 1t2 · · · 0
...

...
. . .

...
0 0 · · · 1tn


n̄×n

, and k =

k1
...

kn


n×1

,

where ti is the dimension of the strategy space of player i and 1ti is the vector of 1 of dimension
ti. So the budget constraints can collectively be expressed as k − BTx ≥ 0. Since the budget
constraints are imposed on each player independently, the columns of B are linear independent,
and so the rank of B is equal to n. For the same reason, we can reformulate the Nash equilibrium
as the solution to a VI problem.

Proposition 6. x∗ is an equilibrium of the game if and only if x∗ is of type S1, and there exists λ∗ =

(λ∗1 , · · · , λ∗n)
T such that

(x∗, λ∗) solves VI(F̃, Rn̄
+ × Rn

+)

where

F̃(x, λ) =


λ11t1 −∇x1 Π1

...
λn1tn −∇xn Πn

k− BTx

 , Rn̄
+ × Rn

+ → Rn̄+n. (32)

Recall that in the original VI(F,S), the domain of the characterization of equilibrium in
Proposition 1 was S = ∏ ∆i, which potentially explicitly depends on θ, in particular ki, i ∈ N .
The advantage of this augmented VI(F̃, Rn̄+n

+ ) is that the domain Rn̄+n
+ is independent of θ.

46Indeed, when θ < 2, the equilibrium is interior, hence non-degenerate. For θ ≥ 2, x1(θ) = x2(θ) = 1 > 0, and

x3(θ) = 0 with F3(x∗(θ)) = −
∂{v x3

x1+x2+x3
−θx3}

∂x3
|x=x∗(θ) = θ − 2, which is zero only at θ = 2.

47 More precisely, x3(θ) is not differentiable at θ = 2 as the left derivative is − 1
2 , while the right derivative is 0.
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Moreover, this reformulation enables us to exploit a similar method as in the previous subsection
to conduct a sensitivity analysis. Also, the new VI formulation explicitly takes into account the
λis, the shadow prices of the budget constraints, which are useful for the comparative statics
exercises. Finally, the Jacobian matrix of the mapping F̃, that is M̃, is a bordered matrix of M,
defined as:

M̃ :=
[

M B
BT 0n×n

]
which only depends on x, but not on λ.48

Given (x∗, λ∗), let α be the index set with positive efforts, and β be the index set with binding
budget constraints.

α := {` ∈ {1, 2, · · · , n̄} : x∗` > 0, F̃`(x∗, λ∗) = 0};
α̌ := {` ∈ {1, 2, · · · , n̄} : x∗` = 0, F̃`(x∗, λ∗) > 0};

β := {i ∈ {1, 2, · · · , n} : ki − ∑
a∈Ti

x∗ai = 0, λ∗i > 0};

β̌ := {i ∈ {1, 2, · · · , n} : ki − ∑
a∈Ti

x∗ai > 0, λ∗i = 0}.

We modify the condition for non-degeneracy accordingly, so that the following set:

{` ∈ {1, 2, · · · , n̄} : x∗` = 0, F̃`(x∗, λ∗) = 0} ∪ {i ∈ {1, 2, · · · , n} : ki − ∑
a∈Ti

x∗ai = 0, λ∗i = 0}

is empty.

Theorem 5. Suppose that Assumptions 1, 2 and 4 hold and that x∗(θ∗) is a non-degenerate equilibrium
with multiplier vector λ∗ at θ = θ∗. Then, there exists an open neighborhood O of θ∗ such that, for any
θ ∈ O, the conflict game CF(θ) has a unique equilibrium x(θ) with associated multiplier λ(θ). Both
x(θ) and λ(θ) are continuously differentiable in θ ∈ O with[

∂xα(θ)
∂θ

∂λβ(θ)
∂θ

]
= −

[
Mαα(x) Bαβ

BT
αβ 0

]−1 [ ∂F̃α(x,λ;θ)
∂θ

∂F̃β(x,λ;θ)
∂θ

]
|x=x(θ),λ=λ(θ). (33)

∂xα̌(θ)

∂θ
= 0, as xα̌ = 0.

∂λβ̌(θ)

∂θ
= 0, as λβ̌ = 0.

Theorem 5 provides the comparative statics result in the general setting with arbitrary con-
flict structure and general cost and contest technologies.49 Given a non-degenerate type S2 equi-
librium x∗(θ∗) at θ = θ∗, then for any θ near θ∗, the conflict game CF(θ) has a unique equilib-
rium that changes smoothly with the parameter θ. Since some players’ budget constraints may be

48M̃ is obviously not positive definite due to zeros in the lower right block.
49See Nti (1997) and Jensen (2016) for comparative statics results for a single battle contest model.
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binding, the shadow price of budget is also changing smoothly as players are optimally adjusting
efforts across different battles, given the movement of the components of the game.50

In Theorems 4 (pure-cost case) and 5 (general case), we provide the theoretical results of
the comparative static exercises when equilibria are not degenerate. These results are useful for
further analysis of equilibrium payoffs and for the effectiveness of several policy interventions.

4.3 Equilibrium payoff and aggregate effort

So far we have studied the impact of an increase in a given parameter on individual effort. We
would now like to analyze the impact on equilibrium payoff and aggregate efforts. Define

Π∗i (θ) := Πi(x∗(θ); θ) (34)

as the equilibrium payoff for player i, and

X(θ) = 〈1n̄, x∗(θ)〉 (35)

as the aggregate efforts across all battles.51 Define by X the aggregate effort, i.e., the sum of
efforts of all players.

Proposition 7. Under the same assumptions as in Theorem 5, both equilibrium payoffs and aggregate
efforts are continuously differentiable in θ ∈ O with

∂Π∗i
∂θ

=
∂Πi

∂xα

∂xα

∂θ
+

∂Πi

∂θ
(36)

∂X
∂θ

= 〈1n̄,
∂x
∂θ
〉 = 〈1|α|,

∂xα

∂θ
〉 (37)

evaluated at x = x∗(θ), where ∂xα
∂θ is given by (33) in Theorem 5.

We can also study the comparative statics for aggregate effort for each specific battle t and/or
each player i. For that, we decompose the impacts of θ into direct effect and strategic (indirect)
effect:

∂Π∗i
∂θ

=
∂Πi

∂xα

∂xα

∂θ
+

∂Πi

∂xα̌

=0︷︸︸︷
∂xα̌

∂θ︸ ︷︷ ︸
strategic effect

+
∂Πi

∂θ︸︷︷︸
direct effect

.

Indeed, when a parameter θ increases, it directly affects Π∗i , the equilibrium payoff of i, but also
indirectly affects Π∗i through the change in efforts of active players (xα) and inactive players (xα̌).
The latter xα̌ vanishes as ∂xα̌

∂θ = 0 by Theorem 4. In some situations, the direct effect may also be
zero. Everything depends on which parameter θ we consider. For example, consider a change in

50Observe that, when β = ∅ (all the budget constraints are strictly slack), we are back to the case discussed in
Theorem 4.

51The proof of Proposition 7 is straightforward as the results follow by direct differentiation and chain rule.

30



the budget cap for player i, i.e., θ = ki. Clearly, the parameter ki does not directly enter the payoff
function of any player but the strategic effect still exists and may be significant. If we, instead,
consider a change in the valuation of battle t, i.e., θ = vt, clearly both effects co-exist. Indeed,
the direct effect is zero for players not competing in battle t, but positive for the other players.
Although the multipliers λ(θ) do not enter the payoff directly, they affect the strategic effect as
shown in (33).

We would now like to answer the following question: Suppose that the planner has one
additional dollar to add to a battle valuation. Which battle should she choose? The answer
depends on the objective function of the planner. We consider two cases. First, the planner
chooses the subsidy that maximizes aggregate efforts, i.e.,

OPTX = arg max
t∈T

∂X
∂vt . (38)

Second, the planner chooses the subsidy that maximizes aggregate payoffs, i.e.,52

OPTΠ = arg max
t∈T ∑

i∈N

∂Π∗i
∂vt . (39)

In a general conflict game, we can compute the solutions OPTX and OPTΠ to both pro-
grams, as those terms ∂X

∂vt ,
∂Π∗i
∂vt are explicitly given by Proposition 7. To gain some intuition, let us

illustrate this issue with the following example.

Example 10 (Optimal subsidies in a pure-cost case in a bipartite network). Consider the network
in Figure 4 with 3 players (N = {1, 2, 3}) and 4 battles (T = {a, b, c, d}). The cost function is assumed
to be quadratic and given by: ci =

1
2 (Xi)

2, for i = 1, 2, 3, where Xi is the aggregate effort of player i. For
example, for player 1, X1 = xa

1 + xc
1 + xd

1, as she participates in three battles a, c, and d. X2 and X3 are
defined in a similar way. The values of the battles are equal to: θ∗ = (va, vb, vc, vd) = (v, v, v, V) and we
consider changes in θ∗, the values of the battles.

First, we show that there is a unique (symmetric) equilibrium given by:53

xa
1 = xc

1 = xa
2 = xb

2 = xb
3 = xc

3 =
3v

2
√

2(9v + 4V)
, xd

i =
2
√

2V
3
√

9v + 4V
, f or i = 1, 2, 3.

We obtain the following comparative statics results, summarized in Table 1:

We see that a change in va = v affects in a same way players 1 and 2. Intuitively, as va increases,
xa

1 increases, but xb
1 and xd

1 are reduced by substitution of efforts. However, player 3 reduces her efforts in
both battles xb

3 = xc
3, but interestingly xd

3 increases. However, as vd = V increases, all players behave in
the same way: only efforts in battle d increase, while efforts in battles a, b, c decrease.

From Table 1, it is straightforward to see that the solutions to OPTX and OPTΠ are given by:

OPTX = {d}, OPTΠ = {a, b, c}.
52We can also consider weighted payoffs ∑ wiΠ∗i , for any positive weighting vector w = (w1, · · · , wN).
53Unless the conflict game is highly symmetric in both values and cost structures, we do not have a closed-form

solution for the equilibrium. The comparative statics results are obtained using Theorem 5. Details are available upon
request.
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∂/∂ X ∑ Π∗i Π∗1 Π∗2 Π∗3

va = v 3
2
√

2(9v+4V)

9
12

(135v+88V)
144(3v+2V)

(135v+88V)
144(3v+2V)

(27v+20V)
72(3v+2V)

vd = V 4
2
√

2(9v+4V)

8
12

2
9

2
9

2
9

Table 1: Comparative statics results in Example 10

Indeed, since ∂X/∂va < ∂X/∂vd, the planner should target the battle with the larger size (battle d) in
order to maximize aggregate effort. However, since ∂(∑ Π∗i )/∂va > ∂(∑ Π∗i )/∂vd, the planner should
target the battle with the smaller size (either a, b or c) in order to maximize aggregate payoffs.

As shown in the above Example, the optimal policy generally depends on the objective func-
tion and also on the underlying conflict game. The richness of our model enables us to explore
these interesting questions in different combinations of conflict topology and specifications of
values and cost structures.54

5 Discussions

5.1 Stability of equilibrium

Let us investigate the issue of stability for the Nash equilibrium in the conflict game. Under
the strong monotonicity of the cost function (Assumption 3), the equilibrium x∗ is unique by
Theorem 3. What can we say about the stability of the equilibrium? We follow Dixit (1986) and
consider the adjustment or tatonnement process defined by

dxi(t)
dt

= σi(BRi(x−i)− xi), i ∈ N (40)

where σ1, · · · , σn > 0 are the adjustment speeds, and BRi(·) is the best-reply function of player
i.55 Clearly x = x∗ is a stationary point of the system. We call the unique equilibrium x∗ locally
asymptotically stable if there exists a neighborhood of x∗ such that if the system above starts at any
point inside this neighborhood, the solution to the system converges to x∗. The following Propo-
sition shows the stability result for this general conflict game with multi-dimensional actions and
non-linear best-reply functions.

Proposition 8. Assume that Assumptions 1 and 3 hold. Then, the unique equilibrium x∗ is locally
asymptotically stable under the adjustment process (40).

In fact, this Proposition is a direct consequence of the positive definiteness of the matrix M
at x∗, which plays a key role in this paper.

54More examples are available upon request.
55Here we consider only local stability. It can be shown that in an open neighbourhood of x∗, for each i, the

best-reply BRi(·) exists and is a singleton, not a correspondence.
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5.2 Related VIs and implications

To apply Variational Inequality to characterize an equilibrium, we utilize the (strict) monotonicity
of F, which does not explicitly depend on the feasibility set ∆i. Therefore, we can adopt similar
techniques to analyze the equilibrium under a general feasibility set Xi ⊂ Rti

+. In Section C.2 of
Appendix C, we provide some results of uniqueness of equilibrium of our conflict game under a
more general feasibility set.

6 Conclusion

In this paper, we present a theory of conflicts among a group of players competing in multiple
heterogeneous battlefields with an arbitrary conflict topology. We utilize tools from Variational
Inequality (VI), and provide equivalent characterizations of the equilibrium. We show that the
set of equilibria is always non-empty and convex. Furthermore, we demonstrate the power of
VI in this particular class of games, and exploit VI techniques to conduct intensive comparative
statics for equilibrium efforts and payoffs.

We have mainly been focusing on the theoretical issues in conflict games, such as existence,
uniqueness of equilibrium and comparative statics exercises. The results obtained are very gen-
eral and we believe can be useful in many applications. In particular, our comparative statics
results lead to many interesting applications that can be empirically investigated. For instance,
we can easily answer the following question: how a shock on the valuation of a battle affects the
intensity of the conflict in that battle but also how it propagates to other battles in the network?

From a theoretical viewpoint, other aspects on conflicts could be studied in our game. For
example, what are the optimal battle values for a given contest architecture? What is the opti-
mal network design of conflict architecture? Another natural extension would be to introduce
incomplete information in the conflict game either on the battle value or on the cost, and address
the impact of information disclosure on efforts and welfare.56 Furthermore, since the strategic
alliance is commonly observed in geographic conflicts, it would be interesting to explore the
formation and stability of coalition outcomes.57 Finally, studying the dynamics of conflicts in a
network setting could also be another research avenue.58 We leave these exciting topics for future
research.

56See Ewerhart and Quartieri (2015); Zhang and Zhou (2016); Ui (2016); Serena (2016).
57See Tan and Wang (2010); Jackson and Nei (2015); Huremovic (2019); Dziubiński et al. (2016).
58See Dziubinski, Goyal, and Minarsch (2019).
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Appendix

A Notations and preliminary results

In this section, we provide some notations and present a few lemmas, which will be used for the
proofs of our main results.

A.1 Notations

Let In denote the n-dimensional identity matrix, and 1n be the the column vector of 1s. The
inner product of two column vectors x, y is denoted by 〈x, y〉 or xTy. For an m × n matrix B,
the transpose is denoted as BT. Given index sets α, β, let Bαβ denote the submatrix of B with
elements bij, in which i ∈ α, j ∈ β. Also xα will denote the subvector of x with elements xi, i ∈ α

and |α| will denote the number of elements in the index set α, such that xα ∈ R|α|+ .

For a multi-variable function f (x, y) : Rn × Rm → R, let ∇ f = (∇x f T,∇y f T)T denote
the gradient, where ∇x f = ( fx1 , · · · , fxn)

T, and ∇y f = ( fy1 , · · · , fym)
T. Similarly, the Hessian

matrix ∇2
f can be represented by

[
∇2

xx f ∇2
xy f

∇2
yx f ∇2

yy f

]
where ∇2

xx f ,∇2
yy f denote the sub-Hessian ma-

trices, and ∇2
xy f = (∇2

yx f )T denotes the matrix of cross partials in xi, yj, i ∈ {1, 2, · · · , n}, j ∈
{1, 2, · · · , m}.

Given an n × n matrix A, not necessarily symmetric, A is called positive definite (semi-
definite), if xTAx > (≥)0 for any nonzero vector x ∈ Rn. In the next section, we give the
properties of these matrices.

A.2 Positive (semi)definite matrix

Definition A1. Given an n× n real matrix A, not necessarily symmetric, A is called positive definite if
xTAx > 0, ∀0 6= x ∈ Rn. Similarly, A is called positive semi-definite if xTAx ≥ 0, ∀0 6= x ∈ Rn.

Clearly from this definition A is positive definite if and only if the symmetric part 1
2 (A+AT)

is positive definite. Since 1
2 (A + AT) is symmetric, its eigenvalues are real number. It is obvious

that A is positive semi-definite if and only if A + εIn is positive definite for any ε > 0.

Lemma A1. Suppose A is positive definite. The following results hold:

(1) det[A] > 0.

(2) The transpose AT and the inverse matrix A−1 are both positive definite.
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(3) For any nonempty index set α ⊂ {1, 2, · · · , n}, the submatrix Aαα is positive definite, hence
det[Aαα] > 0.

(4) A is a P-matrix.1

(5) All the eigenvalues of A have positive real parts.2

(6) For any n× k matrix B with rank k, BTAB is positive definite.

Remark: If A is a symmetric and positive definite matrix, then all the results listed are well-
known (see Meyer (2000)). The proofs are more involved if A is not necessarily symmetric. Our
main application of this concept is to matrix M in (17), which is indeed asymmetric. The results
stated in Lemma A1 are well-known, and the proofs are omitted.

A.3 Properties of CSF and payoffs

Lemmas A2, A3, A4 and A5 provide some preliminary results on the properties of contest success
functions and payoffs in the conflict game. We only give the proof of Lemma A5 as those of
Lemmas A2, A3 and A4 are immediate.

Lemma A2. Suppose f (·) is strictly increasing and weakly concave with f (0) = 0.

[I] For δ > 0, define the following functions

pδ
i (x1, · · · , xn) :=

f (xi)

∑n
k=1 f (xk) + δ

, i = 1, 2, · · · , n.

1. pδ
i (x1, · · · , xn; δ) is continuously differentiable on Rn

+ with

∂pδ
i

∂xi
= [1− pδ

i ]
f ′(xi)

∑n
k=1 f (xk) + δ

> 0, (A.1)

∂2 pδ
i

∂xi∂xi
= [1− pδ

i ]
f ′′(xi)

∑n
k=1 f (xk) + δ

− 2[1− pδ
i ]

[
f ′(xi)

∑n
k=1 f (xk) + δ

]2

< 0. (A.2)

2. pδ
i is strictly increasing and strictly concave in xi.

3. pδ
i is convex in x−i = (x1, · · · , xi−1, xi+1, · · · , xn).

4. ∑n
k=1 pδ

k(x) is concave in (x1, · · · , xn).

[II] Consider the following functions, defined on Rn
+,

pi(x1, · · · , xn) :=

{ f (xi)
∑n

k=1 f (xk)
, if max(x1, · · · , xn) > 0

1
n if x1 = · · · = xn = 0

, i = 1, 2, · · · , n.

1See Gale and Nikaido (1965) for definition and properties of P-matrix.

2Note that the eigenvalue of A can be complex numbers, for example A =

(
1 1
−1 1

)
is positive definite, and the

eigenvalues are 1±
√
−1.
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On the set Rn
+\{(0, 0, · · · , 0)},

1. pi(x1, · · · , xn) is continuously differentiable with

∂pi

∂xi
= [1− pi]

f ′(xi)

∑n
k=1 f (xk)

, (A.3)

∂2 pi

∂xi∂xi
= [1− pi]

f ′′(xi)

∑n
k=1 f (xk)

− 2[1− pi]

[
f ′(xi)

∑n
k=1 f (xk)

]2

. (A.4)

2. When one of the xk, k 6= i is strictly positive, pi is strictly increasing and strictly concave in xi with
∂pi
∂xi

> 0 and ∂2 pi
∂xi∂xi

< 0. When xk = 0, ∀k 6= i, pi = 1 for every xi > 0, hence pi is only weakly

increasing and weakly concave in xi > 0 with ∂pi
∂xi

= 0 and ∂2 pi
∂xi∂xi

= 0.

3. When xi = 0, pi is trivially convex in (x1, · · · , xi−1, xi+1, · · · , xn) ∈ Rn−1
+ \{(0, 0, · · · , 0)} as

pi ≡ 0 in this case. When xi > 0, pi is convex in (x1, · · · , xi−1, xi+1, · · · , xn) ∈ Rn−1
+ .

4. ∑n
k=1 pk(x) = 1 for any (x1, · · · , xn).

Lemma A3. Under Assumptions 1 and 2, the following statements hold:

(1) S2 ⊆ S1 ⊆ S . Moreover, the closure of S1 equals the closure of S2, which is the same as S .

(2) For any y ∈ S , for any x′ ∈ S1, x′′ ∈ S2, and for any t ∈ (0, 1), we have ty + (1− t)x′ ∈ S1 and
ty + (1− t)x′′ ∈ S2. In particular, tx′ + (1− t)x′′ ∈ S2. Moreover, both S1 and S2 are convex.

(3) Both S1 and S2 are relatively open subsets of S . More precisely, for any x′ ∈ S1 there exists ε1 > 0
such that whenever ||y− x′|| < ε1 and y ∈ S , we have y ∈ S1. Similarly, for any x′′ ∈ S2 there
exists ε2 > 0 such that whenever ||y− x′′|| < ε2 and y ∈ S , we have y ∈ S2.

(4) If x is of type S1, then Πi(x) is continuously differentiable at x. Moreover at any point x̃ ∈ S\S1,
at least one player’s payoff is not continuous at x̃.

(5) If x is of type S2, for any i and any yi ∈ ∆i, Πi(yi, x−i) is continuously differentiable at (yi, x−i).

Lemma A4. Suppose the effort profile x is of type S1. Then Πi(xi, x−i) is continuously differentiable at
x. Moreover, for any a ∈ Ti, the partial derivative of Πi with respect to xa

i equals

∂Πi(x)
∂xa

i
= va ∂pa

i (x
a)

∂xa
i
− ∂ci(xi)

∂xa
i

= va[1− pa
i (x

a)]
f a′(xa

i )

∑j∈N a f a(xa
j )
− ∂ci(xi)

∂xa
i

. (A.5)

Lemma A5. Under Assumptions 1 and 2, for each fixed x−i ∈ ∆−i, Πi(xi, x−i) is concave in xi on ∆i,
i.e.,

tΠi(x′i, x−i) + (1− t)Πi(x′′i , x−i) ≥ Πi(tx′i + (1− t)x′′i , x−i) (A.6)

for all t ∈ [0, 1] and x′i, x′′i ∈ ∆i.
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Although Πi(xi, x−i) is always concave in xi, it might not be continuous at every xi due to
jump in the winning probability.

Proof of Lemma A5: Recall that Πi(x) = ∑a∈Ti
va pa

i (x
a) − ci(xi). Since the cost term ci is

continuously differentiable and convex, it suffices to show that CSF pa
i (x

a) in (1) is concave in xi
for each a ∈ Ti. Since CSF pa

i (x
a) depends on x only through xa, it suffices to show that pa

i is
concave in xa

i . When there exists at least another player j ∈ N a\{i} with xa
j positive, then pa

i is
continuously differentiable and concave in xa

i by Part [II] of Lemma A2. However, when xa
j = 0

for all j ∈ N a\{i}, the winning probability pa
i is either 1/na if xa

i = 0, or 1 if xa
i is positive. This

step function, although not continuous at xa
i = 0, is also concave in xa

i . Combining these results
together, we prove that Πi(xi, x−i) is concave in xi on ∆i. �

B Proofs

B.1 Proofs of the existence results

Each player i = 1, · · · , n has a pure strategy set, ∆i, and a payoff function: Πi : ∆ 7→ R+, where
∆ = ×n

i=1∆i. Then there is a fixed normal form game

G(∆1, · · · , ∆n, Π1, · · · , Πn) = G(∆i, Πi)
n
i=1.

G(∆i, Πi)
n
i=1 is called a compact game if each ∆i is a nonempty compact set, and each Πi

is a bounded payoff function. If for each i and every x−i, Πi(·, x−i) is quasi-concave on ∆i,
G(∆i, Πi)

n
i=1 is quasi-concave.

Since the conflict game is discontinuous, the proof of existence theorem follows from Reny
(1999). To better understand Reny’s results, we first recall some key notions.

Definition B2. Player i can secure a payoff of α ∈ R at x ∈ ∆ if there exists x̄i ∈ ∆i, such that
Πi(x̄i, x′−i) ≥ α for all x′−i in some open neighborhood of x−i.

Definition B3. A game G = (∆i, Πi)
n
i=1 is payoff secure if for every x ∈ ∆ and every ε > 0, each player

i can secure a payoff of Πi(x)− ε at x.

Definition B4. A game G = (∆i, Πi)
n
i=1 is reciprocally upper semi-continuous if, whenever (xi, Πi)

n
i=1 is

in the closure of the graph of its vector payoff function and Πi(x) ≤ Πi for every player i, then Πi(x) = Πi
for every player i.

Definition B5. For any two vectors u = (u1, · · · , uT) and v = (v1, · · · , vT), the L-infinite norm is
defined by

||u− v||∞ = max
i∈{1,··· ,T}

|ui − vi|.

Theorem B1. (Reny, 1999) If G = (∆i, Πi)
n
i=1 is compact, quasi-concave, reciprocally upper semi-

continuous and payoff secure, then it possesses a pure strategy Nash equilibrium.
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We now show our existence result as follows.

Proof of Theorem 1: The existence theorem follows from verifying that the conflict game satisfies
the conditions of Theorem B1 for existence of equilibria in discontinuous games.

(i) Under Assumptions 1 and 2, the conflict game is compact.

First we consider the case that every ki is finite. Recall that the strategy space of player i is
∆i = {xi = {xa

i } ∈ Rti
+ : ∑a∈Ti

xa
i ≤ ki}, which is clearly compact and convex, and non-empty.

When ki = +∞ for some i, then by Assumption 2, the cost function ci must be strongly
monotone for this player. Note that Πi(xi, x−i) = ∑a∈Ti

va pa
i − ci(xi). Since the winning proba-

bility is bounded above by 1, then there exists a large enough Mi > 0 such that in equilibrium
a player would never choose xa

i > Mi in any battle a ∈ Ti. As a result we can , without loss of
generality, restrict player i’s strategy space to ∆̂i := ∆i ∩ [0, Mi]

ti , which is clearly compact and
convex.

(ii) Under Assumptions 1 and 2, by Lemma A5, the conflict game is concave , hence quasi-
concave. In other words, for each fixed x−i ∈ ∆−i, Πi(xi, x−i) is concave in xi on ∆i, i.e.,

tΠi(x′i, x−i) + (1− t)Πi(x′′i , x−i) ≥ Πi(tx′i + (1− t)x′′i , x−i) (B.1)

for all t ∈ [0, 1] and x′i, x′′i ∈ ∆i.

(iii) The conflict game is reciprocally upper semi-continuous.

Note that the sum of payoffs equals

∑
i∈N

Πi(xi, x−i) = ∑
a∈T

va − ∑
i∈N

ci(xi)

as the winning probabilities for every battle a add up to 1. Since each ci(xi) is assumed to be
continuous on ∆i, the sum of the payoffs is also continuous. As a consequence, by Reny (1999),
the conflict game is reciprocally upper semi-continuous.

(iv) The conflict game CF is payoff secure at any x for all the players.

Without loss of generality, we focus on player i. For each fixed x, define T +
i = {a ∈ Ti : xa

j =

0, ∀j ∈ Na}. Let T −i = Ti\T +
i be the complement. Note that for any battle a ∈ T +

i , xa = 0, hence
the winning probability pa

i (x
a) has a jump at xa = 0; If b ∈ T −i , pb

i (·) is continuous at xb.

For any ε > 0, since the cost function ci(·) is continuous, we can find δ1 > 0 such that

|ci(xi)− ci(x′i)| ≤ ε, (B.2)

whenever ||xi − x′i||∞ ≤ δ1.

For any battle b ∈ T −i , since pb
i (·) is continuous at xb, so we can find δb > 0 such that:

|pb
i (x

b)− pb
i (x
′b)| ≤ ε (B.3)

whenever ||xb − x′b||∞ ≤ δb. Moreover, denote δ2 = minb∈T −i
δb.

There are two cases to consider:
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(iv-a) Player i’s budget constraint is slack.

We define x̄i as follows:

x̄a
i =

{
δ̄ if a ∈ T +

i ;

xa
i if a ∈ T −i .

where δ̄ = min(δ1, minb∈T −i
δb) > 0.3 Now we claim that by choosing x̄i, player i can secure a

payoff Πi(x)− βε at x, i.e.,
Πi(x̄i, x′−i) ≥ Πi(x)− βε, (B.4)

whenever
||x′−i − x−i||∞ ≤ δ̄, (B.5)

where β = 1 + ∑a∈T −i
va.

To see that, we note that

Πi(x̄i, x′−i)−Πi(x) = ∑
a∈Ti

va(pa
i (x̄a

i , x
′a
−i)− pa

i (x
a))− c(x̄i) + c(xi). (B.6)

For any a ∈ T +
i , pa

i (x̄a
i , x

′a
−i) ≥

1
na , as player i’s effort is δ̄ while the other player’s effort in this

battle is at most δ̄ by (B.5). In addition, pa
i (x

a) = 1
na by Eq.(1). Therefore, (pa

i (x̄a
i , x

′a
−i)− pa

i (x
a)) ≥

0.

For any a ∈ T −i , by (B.3), we have (pa
i (x̄a

i , x
′a
−i)− pa

i (x
a)) ≥ −ε.

On the other hand, since ||xi − x̄i||∞ ≤ δ̄ ≤ δ1, we have −c(x̄i) + c(xi) ≥ −ε by (B.2).

Combining these results, we have:

Πi(x̄i, x′−i)−Πi(x) ≥ −(1 + ∑
a∈T −i

va)ε = −βε, (B.7)

Since β is a constant, payoff security is proved.

(iv-b) Now we consider the case where the budget constraint of i is binding, i.e.,

∑
a∈Ti

xa
i = ki > 0. (B.8)

The proof is similar, except that we need to reconstruct x̄i to satisfy budget constraint.

Let f is a battle in the set T −i such that x f
i > 0, such f must exist by (B.8). We define ¯̄xi as

follows:

¯̄xa
i =


¯̄δ if a ∈ T +

i ;

xa
i if a ∈ T −i , a 6= f ;

x f
i − ¯̄δ|T +

i | if a = f .

3We could shrink δ̄ appropriately so that i’s budget constraint is still satisfied.
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We can redistribute δ f form battle f to each battle T +
i at most, where δ f < x f

i . Thus, define ¯̄δ in
the similar way:

¯̄δ = min

(
δ1

|T +
i |

,
δ f

|T +
i |

,
x f

i
|T +

i |
min

b∈T −i \{ f }
δb

)
> 0. (B.9)

Essentially, from xi, we redistribute ¯̄δ from battle f to each battle in T +
i to obtain ¯̄xi. By construc-

tion of ¯̄δ, we have ¯̄xa
i ≥ 0 for any battle a ∈ Ti. Then, we claim that for such ¯̄xi,

Πi( ¯̄xi, x′−i) ≥ Πi(x)− βε, (B.10)

whenever ||x′−i − x−i||∞ ≤ ¯̄δ. Here β = 1 + ∑a∈T −i
va.

Similar to the proof without budget constraint, for any battle a ∈ T −i , we need to prove that

(pa
i ( ¯̄xa

i , x
′a
−i)− pa

i (x
a)) ≥ −ε. (B.11)

By (B.3), it is sufficient to prove the following

||( ¯̄xa
i , x

′a
−i)− (xa

i , xa
−i)︸ ︷︷ ︸

=xa

||∞ ≤ δa. (B.12)

Except for battle f , the above is obviously as ¯̄δ ≤ δa.

For a = f , note that | ¯̄x f
i − x f

i | = |T
+

i | ¯̄δ ≤ δ f by (B.9). While

||x
′ f
−i − x f

−i||∞ ≤ ¯̄δ ≤ δ f /|T +
i | ≤ δ f , (B.13)

so we get
||( ¯̄x f

i , x
′ f
−i)− (x f

i , x f
−i)||∞ ≤ δ f . (B.14)

Moreover, for battle a ∈ T +
i , similar to the case without budget constraint, we have

(pa
i ( ¯̄xa

i , x
′a
−i)− pa

i (x
a)) ≥ 0.

In addition, since ||xi − ¯̄xi||∞ ≤ |T +
i | ¯̄δ ≤ δ1, by (B.2), the following holds

− c( ¯̄xi) + c(xi) ≥ −ε (B.15)

Combined these results, payoff security is proved.

Since the conflict game is compact, quasi-concave, reciprocally upper semi-continuous and
payoff secure, by Theorem B1 of Reny (1999), a pure strategy Nash equilibrium of the conflict
game must exist. �

Sketch of the proof of of existence of equilibrium using the modified conflict game CFε4

4The details of this proof are available from the authors upon request.
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First, we approximate the original game by truncating the strategy space so that the game CFε

is defined by requiring that the effort of every player on each battle has a minimal lower bound
ε > 0 while the other elements of the payoff function such as the cost, the values of the battles
and the conflict topology remain the same. The major part of the proof is to show that: (i) the
truncated game CFε has an equilibrium for every ε; (ii) the limiting strategy x∗ must avoid points
of discontinuity in the original game, i.e., for every battle, there exists at least one participant
exerting strictly positive effort; and (iii) there is no profit deviation under the limiting strategy
x∗ in the original conflict game CF.

Truncation of efforts removes the discontinuity in the winning probabilities. Then, under As-
sumptions 1 and 2, we can show that CFε satisfies the usual conditions (such as continuity and
concavity of payoffs, convexity and compactness of strategy spaces) for equilibrium existence in
a continuous game, which implies (i).

Proving (ii) is the most difficult step, as the payoff might not be continuous at the limiting strategy
x∗, and thus we cannot directly go to the limit. Instead, we prove that a subsequence of λi(ε),
the Lagrange multiplier associated with player i’s budget constraint (or the shadow price of the
budget), has a uniform finite upper bound as ε goes to zero. The finiteness of this bound implies
that, in the limiting strategy x∗, for every battle, there is at least one player exerting positive
effort as the winning probability has a discrete jump at the origin, but the shadow price of effort
is uniformly bounded from above.

Finally, we prove (iii) by using (ii) and the properties of the payoff function Πi(xi, x−i). �

B.2 Proofs of the uniqueness results

Proof of Lemma 1: Suppose there exists a battle a such that in equilibrium all the participants
in battle a are inactive, i.e., xa = 0. Take any player i participating in battle a. We claim that
i has a profitable deviation. There are two cases to consider: (1) Suppose ki = +∞. If player i
increases her effort in battle a by η > 0, her probability of winning jumps from 1/na to 1, but the
increment in cost is continuous in η. For a sufficiently small η, this deviation is profitable. (2)
Suppose ki < +∞. If her budget constraint is slack, then we can apply the same logic as in case
(1). On the other hand, if the budget constraint is binding for player i, then there exists at least
one battle b in which i is exerting strictly positive effort. For η > 0 but sufficiently small, shifting
η effort from battle b to a is a profitable deviation for player i since her cost function is continuous
and the winning probability in battle b is continuous in η, but the winning probability in battle a
has a discrete jump. �

Proof of Lemma 2: From Lemma 1, we know that for every battle a, at least one player i is
exerting positive effort. But i cannot be the only active contestant in battle a, otherwise she can
profit by lowering her effort in battle a slightly to still ensure a win in a, while strictly lowering
her total cost by the strong monotonicity assumption on the cost function. �
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Proof of Proposition 1: From (i) to (ii). Suppose x∗ is a Nash equilibrium of the conflict game
CF. Then x∗ ∈ S1 by Lemma 1. Moreover, since each Πi is continuous and differentiable at x∗

by Lemma A3, F(x∗) is well-defined. Take any player i; for any yi ∈ ∆i and any t ∈ [0, 1), the
following must hold:

Πi(x∗i , x∗−i) ≥ Πi((1− t)x∗i + tyi, x∗−i)

where ((1− t)x∗i + tyi, x∗−i) lies in the set S1 by item 2 of Lemma A3. Therefore,

lim
t→0+

Πi((1− t)x∗i + tyi, x∗−i)−Πi(x∗i , x∗−i)

t
≤ 0, equivalently 〈−∇xi Πi(x∗i , x∗−i), yi − x∗i 〉 ≥ 0

Adding up these inequalities for all i yields the following

〈F(x∗), y− x∗〉 ≥ 0 for any y = (y1, · · · , yn) ∈ ∆1 × · · · × ∆n. (B.16)

From (ii) to (i) . Suppose x∗ ∈ S1, and 〈F(x∗), x− x∗〉 ≥ 0, ∀x ∈ S1. Since the closure of S1

is S by item 1 of Lemma A3, it must hold that 〈F(x∗), x − x∗〉 ≥ 0 for all x ∈ S . Substituting
x = (yi, x∗−i) yields

〈−∇xi Πi(x∗i , x∗−i), yi − x∗i 〉 ≥ 0

for any yi ∈ ∆i. Next, consider the following single-variable function, σ(t) = Πi((1− t)x∗i +
tyi, x∗−i), t ∈ [0, 1]. Then σ(t) is concave in t in [0, 1] by Lemma A5. Moreover since x∗ is of type
S1, the strategy ((1− t)x∗i + tyi, x∗−i) = (1− t)(x∗i , x∗−i) + t(yi, x∗−i) is also of type S1 when t is
very close to 0. So σ(t) is continuously differentiable in t in a small neighborhood of 0 (note that
σ(t) may not be continuous on the whole interval [0, 1], especially at t = 1). In particular, we
have σ′(0) = 〈∇xi Πi(x∗i , x∗−i), yi − x∗i 〉 ≤ 0. The concavity of σ implies that σ(t)−σ(0)

t−0 ≤ σ(t′)−σ(0)
t′−0

for any 0 < t′ < t ≤ 1. Taking t′ to zero yields σ(t)−σ(0)
t−0 ≤ σ′(0) ≤ 0. So σ(t) ≤ σ(0) for any

t ∈ [0, 1]. In particular, we have σ(1) ≤ σ(0), or equivalently Πi(x∗i , x∗−i) ≥ Πi(yi, x∗−i). Since this
inequality holds for any yi ∈ ∆i and any player i, x∗ is a Nash equilibrium. �

Proof of Proposition 2: We use Proposition 3 in the proof. Suppose x′ 6= x′′ in S1. Consider the
following single-variable function

ω(t) := 〈F(tx′ + (1− t)x′′), (x′ − x′′)〉, t ∈ [0, 1].

Note that tx′ + (1− t)x′′ is in S1 for any t ∈ [0, 1] by Lemma A3. Therefore, F(tx′ + (1− t)x′′) is
continuously differentiable in t ∈ [0, 1]. So ω(t) is differentiable in t ∈ [0, 1]. Moreover,

ω(1)−ω(0) = 〈F(x′)− F(x′′), x′ − x′′〉, and

ω′(t) = (x′ − x′′)T ·M(tx′ + (1− t)x′′) · (x′ − x′′).

By the Mean Value Theorem, there exists a t̂ ∈ (0, 1) such that

ω(1)−ω(0) = ω′(t̂) = (x′ − x′′)T ·M(t̂x′ + (1− t̂)x′′) · (x′ − x′′).

Since the matrix M(t̂x′ + (1− t̂)x′′) is positive semi-definite by Proposition 3, ω′(t̂) ≥ 0. There-
fore, ω(1)− ω(0) ≥ 0. Moreover, if in addition one of x′, x′′ is in S2, then t̂x′ + (1− t̂)x′′ is in
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S2 as well by item (2) of Lemma A3. (It is important here that t̂ is in the open interval (0, 1),
not on the boundary points) Then M(t̂x′ + (1− t̂)x′′) is positive definite by Proposition 3, and so
ω′(t̂) > 0. The rest just follows. �

Proof of Proposition 3: We first show the case when x is in S2. The proof is based on the
observations in Goodman (1980): M + MT is positive definite, if the following three conditions
are satisfied: (1) Πi(·, x−i) is strictly concave in xi with a Hessian matrix ∇2

xi
Πi that is negative

definite at every point x.5 (2) Each Πi(· · · , xi, · · · ) is convex in x−i = (x1, · · · , xi−1, xi+1, · · · , xn),
and (3) the sum of payoffs ∑i∈N Πi is concave in x = (x1, · · · , xn).

Next, we verify these three conditions.

1. Note that Πi(xi, x−i) = ∑a∈Ti
va pa

i (x
a)− ci(xi). Cost ci of player i is convex in xi, and the first

summation term is separable in xi. Moreover, pa
i (x

a) is strictly concave in xa
i with ∂2 pa

i
∂(xa

i )
2 < 0

by item 2 of Lemma A2, and there are at least two active contestants in battle a (recall that
x is in S2). Note that Hessian matrix ∇2

xi
Πi = Di −∇2

xi
ci(xi), where Di is a diagonal matrix

with strictly negative diagonal entries ∂2 pa
i

∂(xa
i )

2 , a ∈ Ti, and ∇2
xi

ci(xi) is positive semi-definite

by convexity of ci. Therefore, Hessian matrix ∇2
xi

Πi is negative definite, which verifies
condition (1).

2. For condition (2), note that by fixing xa
i , each pa

i (x
a) depends only on x through xa (the

components of efforts exerted in battle a). Moreover pa
i (x

a) is convex in {xa
j , j ∈ N a\{i}} by

item 3 of Lemma A2, and hence is convex in (x1, · · · , xi−1, xi+1, · · · , xn) = x−i. Therefore,
∑ va pa

i (x) − ci(xi) is convex in x−i as the cost of player i does not depend on x−i and a
positive linear combination of convex functions is convex.

3. For condition (3), we note that the sum of payoffs equals

∑
i∈N

Πi(xi, x−i) = ∑
a∈T

va −∑
i

ci(xi)

as the winning probabilities for every battle a add up to 1. Since each ci(xi) is convex
in xi, ∑i ci(xi) is convex in x = (x1, · · · , xn). As a consequence, ∑ Πi is concave in x =

(x1, · · · , xn).

Note that every point x ∈ S1 is the limit of a sequence of points in S2.6 Since the limit
of convergent positive definite matrices is positive semi-definite, we prove the first part of the
Proposition 3 for the case where x ∈ S1. �

Proof of Theorem 2: Just as the monotonicity of a single-variable function is determined by the
sign of its derivative, the monotonicity of F is reflected by the properties of its Jacobian matrix.

5The second claim is not directly implied by the first part, as a strictly concave function may have a negative
semi-definite Hessian matrix at some point.

6For example, consider x[n] = n
1+n x + 1

n+1 x′′, n = 1, 2, · · · , ∞, where x′′ is an arbitrary point in S2. Then each x[n]
is in S2 by item 2 of Lemma A3. Moreover, x[n]→ x as n→ ∞.

A10



From (16), we know that
〈F(x∗)− F(x∗∗), x∗ − x∗∗〉 ≤ 0 (B.17)

for any two Nash equilibria x∗, x∗∗. If NE contains an equilibrium x∗ of type S2, then x∗ must be
the unique equilibrium. Otherwise there exists another equilibrium x∗∗ 6= x∗, and

〈F(x∗)− F(x∗∗), x∗ − x∗∗〉 > 0

by Proposition 2, which contradicts (B.17). On the other hand, since NE ⊆ S1 by Lemma 1, if
there is no equilibrium in S2, then all the equilibria must belong to the set S1\S2. (Note that
Theorem 2 does not rule out the case that an equilibrium is unique, and the unique equilibrium
is in S1\S2.) �

Proof of Theorem 3: Under Assumptions 1 and 3, any equilibrium must be of type S2 by Lemma
2, so the case (2) in Theorem 2 never occurs. The result just follows. �

Proof of Proposition 4: Suppose x′ and x′′ are two equilibria. Fix t ∈ [0, 1], and let x(t) =

tx′ + (1− t)x′′. We want to show that x(t) is also an equilibrium. First note that x(t) ∈ S1 as
both x′ and x′′ are in S1, which is convex (see Lemma A3). Pick an arbitrary z ∈ S , and define
y = µx(t) + (1− µ)z, for µ ∈ (0, 1]. Then y ∈ S1 as well by item (2) of Lemma A3. We have

〈F(x′), y− x′〉 ≥ 0, (as x′ ∈ NE)
〈F(y), y− x′〉 ≥ 〈F(x′), y− x′〉 ≥ 0. (by monotonicity of F)

Similarly, we have 〈F(y), y− x′′〉 ≥ 0. Therefore, 〈F(y), y− x(t)〉 ≥ 0, i.e.,

〈F(µx(t) + (1− µ)z), (µx(t) + (1− µ)z− x(t))〉 ≥ 0,

which leads to
〈F(µx(t) + (1− µ)z), z− x(t)〉 ≥ 0

for any µ ∈ (0, 1). Taking µ→ 1 yields

〈F(x(t)), z− x(t)〉 ≥ 0.

Since z is arbitrary, x(t) is an equilibrium by Proposition 1. �

Proof of Corollary 1: The main intuition just follows from the discussion after Corollary 1 in the
main paper. For each a ∈ Ti, we denote ka

i as the unique solution to

va
d
{

f a(z)
f a(ka

i )+ f a(z)

}
dz

|z=0 = 1, or va f a′(0)
f a(ka

i )
= 1.

Multiple equilibria arise when ki > ∑a∈Ti
ka

i . �
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Proof of Corollary 2: First, we show that all the equilibria must be of type S2 under the given
assumptions. Suppose, x∗ is an equilibrium and there exists a battle, say a, such that player
i is the only active contestant in that battle. Since every player participates in every battle by
completeness of Γ, i must win any other battle b 6= a with probability 1 as well. Otherwise,
he can shift effort from battle a to b to strictly improve his payoff. Consequently, i is the only
active player in every battle. Hence all the other players obtain zero profit, which is clearly not
an equilibrium, as any player j 6= i could secure positive profit by allocating his budget equally
among all battles. We apply Theorem 2 directly to obtain uniqueness. �

B.3 Proofs of the comparative statics results

Proof of Theorem 4: First, we prove that the Jacobian matrix Diag{Mαα(x, θ), Iα̌} is non-singular
at x = x∗(θ∗), θ = θ∗. This is equivalent to non-singularity of Mαα(x; θ). Invoking Proposition
3, at x = x∗(θ∗), θ = θ∗, we establish that M(x; θ) is positive definite as x∗(θ∗) is of type S2

by Lemma 2. Therefore the submatrix Mαα is also positive definite, and hence has a positive
determinant by Lemma A1 , at x = x∗(θ∗), θ = θ∗. By the Implicit Function Theorem, the
solution to system (30) implicitly defines a smooth function x∗(θ) near x = x∗(θ∗), θ = θ∗.

Next, we prove that x∗(θ) is a solution to the linear complementarity problem:

F(x∗; θ) ≥ 0, x∗ ≥ 0, and 〈F(x∗; θ), x∗〉 = 0 (B.18)

for θ near θ∗. Clearly 〈F(x∗(θ); θ), x∗〉 = 〈Fα(x∗(θ); θ), x∗α〉+ 〈Fα̌(x∗(θ); θ), x∗α̌〉 = 0+ 0 = 0 by (30).
Next, x∗α(θ

∗) > 0 (from definition of α), so by continuity, x∗α(θ) > 0 for θ near θ∗. Furthermore,
x∗α̌(θ) = 0 by construction, so x∗(θ) ≥ 0 in an open neighborhood of θ∗. Similarly we can show
that F(x∗(θ); θ) ≥ 0 near θ∗. Combining these results, we prove that the solution to system
(30), x∗(θ) must be a solution to VI(F(·; θ), Rn̄

+). Moreover x∗(θ) clearly has the same type as
x∗(θ∗) ∈ S2. Consequently, x∗(θ) is also in S2, and must be the unique equilibrium of the game
CF(θ) by Proposition 1 and Corollary 3.

For the comparative results, first we have ∂x∗α̌(θ)
∂θ = 0 as xα̌(θ) = 0 by construction. Second,

∂x∗α(θ)
∂θ can be obtained by differentiating Fα(x; θ) = 0. �

Proof of Proposition 6: First, note that the solution to VI(F̃, Rn̄
+×Rn

+) is equivalent to a nonlinear
complementarity problem

F̃(x, λ) ≥ 0, (x, λ) ≥ 0, and 〈F̃(x, λ), (x, λ)〉 = 0

which reduces to

λi1ti −∇xi Πi ≥ 0, xi ≥ 0, 〈(λi1ti −∇xi Πi), xi〉 = 0, ∀i

k− BTx ≥ 0, λ ≥ 0, 〈k− BTx, λ〉 = 0.

This is just the KKT system for players’ payoff maximization conditions subject to constraints.
The result just follows from Proposition 1. �
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Proof of Theorem 5: Given Proposition 6, the proof is similar to the proof of Theorem 4 with
minor modifications. We consider the following system:

F̃α(x, λ; θ)

xα̌

F̃β(x, λ; θ)

λβ̌

 = 0.

(1) To apply the Implicit Function Theorem, we need

[
Mαα(x) Bαβ

BT
αβ 0

]
to be non-singular at x =

x∗(θ∗). This is indeed true as

Det

[
Mαα(x) Bαβ

BT
αβ 0

]
= −Det[Mαα(x)]Det[BT

αβMαα(x)−1Bαβ].

At x = x∗(θ∗), which is of type S2 by Assumption 4, M is positive definite by Proposition 3. So
Mαα(x) is positive definite, and hence non-singular (Lemma A1). Moreover since BT

αβ is always
of full column rank, BT

αβMαα(x)−1Bαβ is also positive definite, and hence non-singular (Lemma
A1).

(2) By the Implicit Function Theorem, the system above has a solution (x(θ), λ(θ)) near θ∗,
which is also a solution to the VI(F̃, Rn̄

+ × Rn
+), and hence an equilibrium of CF(θ), given the

non-degeneracy of x∗(θ∗).

(3) By construction, x∗(θ) has the same sign as x∗(θ∗), so it must be of type S2 as well. By
Theorem 2 , x∗(θ) must be the unique equilibrium of CF(θ).

(4) The derivatives of x∗(θ), λ(θ) follow similarly by implicit differentiation. �

C Additional examples and results

C.1 Additional examples

Example C1 (Multiple equilibria). Consider the network depicted in Figure A1 with seven agents in
which player 1 is in the center. Let k2 = · · · = k7 = 1 and k1 = K̄ > 24. Multiple equilibria occur for the
same reason as in Example 5. Indeed, player 1 has a total budget of K̄, but only needs to allocate at least 4
to each of the six battles. The dimension of NE is 6 whereas, in Example 5, it was equal to 2.

Consider now the network depicted in Figure A2 with four agents. Let k2 = k3 = 1 and k1 = k4 =

K̄ > 8. In equilibrium, as in Example 5, both players 2 and 3 allocate their entire budget to battle c while
players 1’s and 4’s best responses are not unique. So, NE , which is of dimension 4, is isomorphic to a
product of two simplexes, each with dimension 2.
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Figure A2: Four agents

C.2 Additional results

We here analyze the equilibrium under a general feasibility set Xi ⊂ Rti
+. The following result is

parallel to Theorem 2.

Proposition C1. Assume that Xi is nonempty and convex for each i. If x∗ and x∗∗ are two equilibria, and
both are of type S2, then x∗ = x∗∗.

An immediate application is for the truncated conflict game CFε with ε > 0. Let Xi =

∆i ∩ {xi|xa
i ≥ ε, ∀a ∈ Ti} and S(ε) = ∏Xi.

Proposition C2. For the conflict game CFε with ε > 0,

(i) xε is an equilibrium of CFε if and only if xε solves VI(F,S(ε)).

(ii) F is strictly monotone on S(ε), and NE ε is a singleton.

Thus, uniqueness is automatically obtained for CFε. Another closely related game is the
conflict game CFδ with δ > 0 (see Remark 1). Let Πδ

i (x), i ∈ N denote the modified payoff and
Fδ denote the operator constructed in (13) using Πδ

i , instead of Πi.

Proposition C3. For the conflict game CFδ with δ > 0

(i) xδ is an equilibrium of CFδ if and only if xδ solves VI(Fδ,S).

(ii) Fδ is strictly monotone on S , and NE δ is a singleton.
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Dziubiński, M., S. Goyal, and D. E. Minarsch (2016). Dynamic conflict on a network. In Proceedings
of the 2016 ACM Conference on Economics and Computation, pp. 655–656. ACM.

Dziubinski, M., S. Goyal, and D. E. Minarsch (2019). The strategy of conquest. Working paper,
Cambridge University.
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