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Buyer power and mutual dependency in a
model of negotiations

Roman Inderst∗
and

Joao Montez∗∗

We study bilateral bargaining between several buyers and sellers in a framework that allows
both sides, in case of a bilateral disagreement, flexibility to adjust trade with each of their other
trading partners and receive the gross benefit generated by each adjustment. A larger buyer pays
a higher per-unit price when buyers’ bargaining power in bilateral negotiations is sufficiently
low, and a lower price otherwise. An analogous result holds for sellers. These predictions, and
the implications of different technologies, are explained by the fact that size is a source of mutual
dependency and not an unequivocal source of power.

1. Introduction

� We develop a bargaining model where several buyers negotiate bilaterally with several
sellers of substitute goods, which have convex costs. Transfers and quantities are determined by
the ability of buyers to relocate purchases across sellers, and of sellers to relocate sales across
buyers, in case of a bilateral disagreement. Specifically, the two parties in disagreement can
optimally adjust their bilateral transactions with each of their other counterparties while changing
the transfer to exactly reflect the changes in costs or benefits of that counterparty. Next to a
foundation that builds on the axiomatic (asymmetric) Nash bargaining solution, we introduce a
strategic game that generates these adjustments endogenously as reasonable inside options.

This model is applied to a question that has become increasingly important for researchers
in industrial organization, as well as antitrust and business strategy practitioners, namely, whether
size is always an advantage in negotiations, and more generally, the impact of market concentration
on negotiated terms of trade. Consistent with most of the literature, in our model, a larger buyer
obtains a lower per-unit (or average) price if there is a single seller or if adjustments are unfeasible.
We explain, however, that this result does not necessarily extend to those often more realistic
situations with multiple sellers and adjustments in trade. Here, our approach reveals that size

∗ University of Frankfurt; inderst@finance.uni-frankfurt.de.
∗∗ University of Lausanne and CEPR; joao.montez@unil.ch.
We are grateful to the Editor, David Myatt, and three anonymous referees. We also thank the participants at numerous
conferences and seminars. The online appendix is available in https://sites.google.com/site/jvmontez/.

C© 2019, The RAND Corporation. 29



30 / THE RAND JOURNAL OF ECONOMICS

tends to increase both buyer and seller dependency by worsening the alternative options of both
sides when they seek to adjust what they trade in case of disagreement, which as explained next,
can become an advantage or a disadvantage.

Disagreement of a seller with a large buyer displaces a large fraction of the potential demand
and leaves a seller with few alternative buyers to replace its sales. Instead, a disagreement with a
small buyer displaces a small fraction of demand and leaves the seller with many alternatives to
turn to. In this sense, a seller is more dependent on a larger buyer. However, increasing marginal
costs also render it relatively more costly for other sellers to accommodate a larger increase
in production, and so it is equally more expensive for a large buyer to try to make up for a
(off-equilibrium) shortfall when relocating its demand to other sellers of substitute goods. In this
sense, a larger buyer is also more dependent on each individual seller. This second countervailing
effect of size seems to have been largely overlooked by the literature.

With multiple sellers, the two conflicting effects of buyer size coexist and size becomes
a source of mutual dependency, not an unequivocal source of power.1 This demonstrates, in a
stylized model that shuts down other explanations, a potential new mechanism for why size may
not necessarily yield a better bargaining outcome to a firm conducting multiple bilateral bargains.
In our model, the effect of size on buyer dependency dominates, and a larger buyer pays higher
per-unit prices, if and only if the bilateral bargaining power of sellers is sufficiently high. So size
and bilateral bargaining power are complements. Analogous results hold with respect to the size
of sellers.

Mutual dependency also explains why the impact of size depends crucially on the extent
to which technology allows for adjustments in case of bilateral disagreement. This suggests
that practitioners and empiricists should take into account the technological specificities of the
industry as a determinant of bargaining power, such as existing capacity constraints and the extent
to which sellers are able to accommodate large-scale switching (e.g., by utilizing existing capacity
more extensively at a reasonable cost).

By supporting the view that large purchase volumes are not per se conclusive of the existence
of buyer power, in the sense of better terms of trade, our model provides conceptual guidance for
policy and business strategy where buyer power has become increasingly topical.2

First, by changing the focus from size per se to ease of substitution and dependency, it
seems to formalize concerns that have previously been expressed informally, for example, in the
European Commission’s guidelines on horizontal mergers and in recent sector inquiries. For in-
stance, in the mentioned guidelines, buyer power is defined as “the bargaining strength that the
buyer has vis-à-vis the seller in commercial negotiations due to its size, its commercial signifi-
cance to the seller and its ability to switch to alternative suppliers.” This definition highlights that,
in addition to size, an assessment of buyer power needs to take into account two additional con-
siderations: the consequences to the supplier from losing a particular buyer, and the consequences
to the buyer from losing a particular supplier.

Second, the model’s predictions accord well with the view taken in several influential court
cases where, following inquiries with business experts, doubts were cast on the presumption
that larger buyers should be able to negotiate lower per-unit prices. For example, in Hutchi-
son/RCPM/ECT (2001) container terminal operators (sellers) argued that large carriers (buyers)
had significant leverage in negotiations. Yet the European Commission argued to the contrary,
stating that switching opportunities were limited for the largest carriers as “there is currently
a limited number of terminal operators able to accommodate the largest vessels being used”
by which “it becomes economically more difficult for the (larger) carrier to switch ports for
a significant portion of its cargo.” In another case, concerning toilet tissue and kitchen towels

1 Note that, when there is a single seller, all buyers are completely dependent on that seller regardless of their size,
thus, the second effect is absent, and a larger buyer then pays a lower per-unit price.

2 Recent evidence from the UK retailing sector and the US pharmaceutical industry suggests that size alone is no
guarantee to obtain discounts (see, for instance, Sorensen, 2003; Competition Commission UK, 2008; Ellison and Snyder,
2010; Grennan, 2013).
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(SCA/Metsa Tissue, 2001), the European Commission observed that “buyer power can only be
exercised effectively if the buyer has an adequate choice of alternative suppliers.”3 To this end,
we also establish a relationship between specific changes in the Herfindahl-Hirschman-Index
concentration measure (HHI) and changes in mutual dependency.

The Nash equilibria in bilateral Nash bargaining framework we use here was pioneered
by Horn and Wolinsky (1998). Different assumptions on the consequences and possible adjust-
ments in case of a bilateral disagreement underpin several prominent solutions that have been
extensively adopted in both theoretical and empirical work, with, for example, quantity-forcing,
two-part, and linear tariff contracts (e.g., Chipty and Snyder, 1999; Björnerstedt and Stennek,
2007; Crawford and Yurukoglu, 2012; Grennan, 2013; and Collard-Wexler, Gowrisankaran, and
Lee, forthcoming). Two-part and linear tariff contracts (like ours) allow for adjustments, but
these take place at a fixed per-unit price. Therefore, and of relevance to the issues of size raised
here, such contracts ignore information on, and effects of, costs of production above the equilib-
rium level (supramarginal costs) incurred by a seller in case of disagreement, which is precisely
what together with convex costs generates the novel size effects in our framework (see the first
subsection of Section 6 for a detailed discussion).

In a setting with convex costs, Nash equilibria in bilateral Nash bargaining raises a related
issue of credibility of the conjectured adjustments. For example, with two-part tariffs, a seller
would always want to refuse adjustment requests, as a buyer would then only pay for each
additional unit the marginal cost at the equilibrium quantity, which is less than the seller’s true
cost of production of those supramarginal units—similar issues can arise with linear tariffs.
In contrast, and by construction, our approach always leads to adjustment requests that will
be rationally accepted because the buyer pays the seller the true cost of the adjustment. This
issue would seem even more relevant in the presence of demand uncertainty, as then adjustment
requests are not only conjectured but a reality. We don’t explicitly model such uncertainty in our
model, but in that case, the adjustments we propose here would not only protect sellers but, under
specific conditions, also lead to an ex post bilateral efficient level of trade—unlike those other
above mentioned contracts.

As wholesale contracts are typically not observed, an empirical literature takes the view that
the form of contracts should be part of the identifying restrictions and different models compared
in terms of their overall fit with the data (e.g., Draganska, Klapper, and Villas-Boas, 2010; Bonnet
et al., 2013). Here, our approach suggests a parsimonious way to complement and extend this
line of work by allowing a flexibility in reacting to disagreements that should enable the recovery
of additional information on costs (specifically, supramarginal costs) with seemingly manageable
complexity.

A further alternative approach, referred to as “nonbinding contracts,” assumes that a bilateral
disagreement eventually leads to a permanent breakdown in bilateral negotiations and all parties
to restart from scratch all previously successful negotiations. It has been shown that with such
“global renegotiations,” the solution coincides with cooperative random-order values—and in
particular with the Shapley value when symmetry in bilateral bargaining power is imposed
(e.g., Stole and Zwiebel, 1996; de Fontenay and Gans, 2014). Random-order values capture
supramarginal costs and size may then be disadvantageous (see Gardner, 1977; Guesnerie, 1977;
Segal, 2003). As we will explain in the main text, that approach leads to opposite predictions to
our own, as size and bilateral bargaining power seem to be substitutes rather than complements.
In contrast, our predictions echo those obtained by Postlewaite and Rosenthal (1974) for the Core,
and which were the first to identify that owners of substitutable resources may lose from forming
a monopoly (and therefore both their and our work hold opposite predictions to those obtained
with random-order values, a fact that had also not been documented before in the cooperative
games literature).

3 The German antitrust authority in its sector inquiry into supply relationships in the grocery market has expressed
mirror concerns about manufacturers’ dependency.
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To focus on a new channel that has been largely neglected, in our model, we explicitly shut
down other potential sources of size effects. By assuming that buyers have the same bargaining
power in bilateral negotiations, we rule out alternative explanations based on, for example,
bargaining parameters that explicitly depend on size (e.g., Crawford and Yurukoglu, 2012) or
that are firm specific (Grennan, 2013). In that respect, we take the prevalent view in the property
rights theory of the firm, as it is understood that “it would be too easy to obtain a theory of the
costs and benefits of integration if it were supposed that the bargaining process changes under
integration” (Hart, 1995).

We also rule out externalities among buyers: trade is then efficient, and the aggregate gross
benefit and costs are invariant in the size of buyers. This would not be the case if, for example,
we allowed for negative consumption externalities that can be used to capture buyer competition
downstream. With such externalities, the creation of a larger buyer leads to a direct internalization
effect, which results in less quantities being traded, with an associated decrease in the gross costs
of sellers and an increase in the gross surplus of all buyers. This direct internalization effect should
further expand the upper and lower per-unit price bounds. However, as other buyers respond to
that direct internalization by expanding their own purchases, the gross surplus of the large buyer
may be significantly reduced and the effect on its price bounds reversed due to the Cournot
paradox. In addition to the effects studied here, whether a large buyer pays a lower or a higher
per-unit price would then also depend on the intensity of such additional effects. Iozzi and Valletti
(2014), for example, analyze some of these effects in a model where each buyer negotiates a
linear tariff contract with a single seller. As explored in their work, such games with externalities
present additional challenges of beliefs and existence of equilibria, issues that are unrelated to
the novel effects of size we wish to focus on here.4

Finally our results also differ from the unambiguous positive effect of buyer size that arises
when a large buyer’s advantage stems from a threat to access an option, that is, outside the market
(such as backward integration; see Katz, 1987), or when a seller must incur fixed costs and a large
buyer becomes pivotal (Raskovich, 2003). In the former case, buyer fixed costs from accessing
the alternative option generate increasing returns to scale from switching (our setting is more
applicable when negotiations are shaped by the, often more credible, option to relocate demand
across sellers which a buyer already has a relationship with), and in the latter case, the seller
fixed costs make a large buyer a complement to the other buyers (in our model, buyers remain
substitutes).

The rest of the article is organized as follows. In Section 2, we describe the economy.
In Section 3, we introduce and study a model of bargaining with adjustments. In Section 4,
we identify conditions under which a larger buyer pays a higher or a lower per-unit price. In
Section 5, we study the case of seller size. In Section 6, we discuss the effect of alternative
adjustment assumptions and relate our findings to a small cooperative literature. We conclude in
Section 7. The proofs, unless otherwise stated, are in the Appendix.

2. Buyers, sellers, and trades

� There is a finite set of goods G, with |G| denoting the number of goods. The cost of producing
x units of goods i ∈ G is c(x), where c is a continuously differentiable, strictly increasing, and
convex function, with c(0) = 0. Each seller I is the only producer of a subset of goods. S is the
partition of G, with |S| elements, such that each element I ∈ S contains exactly the |I | goods
produced by seller I . Thus, |I | is also the size of seller I .

There are |N | symmetric consumers in a set N . The utility of a consumer j ∈ N is u(a j ) + t ,
where t is money and a j is a generic vector in R|G|

+ , denoting the quantity of each of the goods
consumed by j . The utility function u is symmetric and strictly concave, with strictly positive first-
order derivatives and strictly negative cross-partial derivatives. This implies that u is submodular,

4 On issues of existence of equilibria in bargaining with externalities, see also, for example, Collard-Wexler,
Gowrisankaran, and Lee (forthcoming) and Lee and Fong (2013).
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capturing substitutability and strictly decreasing benefits in the consumption of goods. Each buyer
J is a union of consumers. B denotes the partition of N such that each of its |B| elements contains
exactly the |J | consumers represented by each buyer J ∈ B.

Throughout the article, we generically refer to I as a seller and to J as a buyer. Trade
between buyers and sellers is summarized by a trade matrix A with dimension |G| × |N |, where
each element aij is the quantity of good i ∈ G delivered to consumer j ∈ N . As the column vector
a j represents the consumption profile of consumer j , the gross benefit of buyer J ∈ B at A is
represented by

vJ (A) =
∑
j∈J

u(a j ).

The gross cost of seller I ∈ S at A is

CI (A) =
∑
i∈I

c

(∑
j∈N

aij

)
.

The total surplus for a given A is

�(A) =
∑
J∈B

vJ (A) −
∑
I∈S

CI (A),

which is concave. The marginal cost c′(0) is assumed to be sufficiently low and c′(x) sufficiently
large for large x such that the unique trade A∗ that maximizes the economy surplus �(A) is
strictly positive and finite. Given symmetry, convexity of costs, and concavity of utility, for each
good i ∈ G and each consumer j ∈ N , we have a∗

ij = a∗ with c′(|N |a∗) = ui (a∗
j ), where a∗

j is a
column vector with each element equal to a∗ and ui is the partial derivative with respect to good
i . Hence, |N |a∗ is the total efficient production of each good.

Imposing symmetry—in consumers’ utilities, goods’ costs, and later bilateral bargaining
power—will allow us to isolate the effects of size, as then any differences in the negotiated per-
unit prices can be attributed to differences in buyer or seller size. We explicitly avoid interactions
between the quantities purchased by two buyers on their gross benefits, ruling out situations akin
to downstream competition. We do this to focus our analysis on the less understood connection
between size and mutual dependency, instead of better understood competition effects.5

An agreement between a pair with seller I ∈ S and buyer J ∈ B specifies a total transfer
tIJ made by the buyer to the seller in exchange for the quantities aij for each i ∈ I and j ∈ J ,
summarized in a |I | × |J | bilateral trade matrix AIJ . Thus, an agreement is summarized by the
pair (AIJ , tIJ ), with (0,0) denoting the “default” of no agreement. A set of agreements between
all buyers and sellers is summarized by the pair (A, T ), where A is a |G| × |N | trade matrix and
T is a |S| × |B| matrix of transfers with a typical element tIJ . For a given (A, T ), seller I ’s net
payoff is given by

θI (A, T ) =
∑
J∈B

tIJ − CI (A),

and buyer J ’s net payoff is

θJ (A, T ) = vJ (A) −
∑
I∈S

tIJ .

In the following section, we take a bargaining approach to determine how buyers and sellers come
to these agreements.

5 Even with a single seller and multiple competing buyers, the downstream market outcome can be similar to
Cournot (see, e.g., Hart and Tirole, 1990). A buyer merger could then be unprofitable due to Cournot internalization
effects (see the Introduction and Iozzi and Valletti, 2014).

C© The RAND Corporation 2019.



34 / THE RAND JOURNAL OF ECONOMICS

3. Bargaining

� We provide two complementary formulations, applying the axiomatic asymmetric Nash
bargaining solution to all bilateral negotiations before taking a strategic approach.

� Bilateral Nash bargaining with adjustments. Suppose the equilibrium outcome of bi-
lateral negotiations between each buyer and seller pair results in trade and transfers (A, T ). The
payoffs of a seller I and a buyer J are then θI (A, T ) and θJ (A, T ) . Let dIJ (A, T ) and dJI (A, T )
denote the payoffs of I and J only if this pair fails to reach the equilibrium bilateral agreement
in (A, T ) , their respective disagreement points. When this proves unambiguous, we drop the
notational dependence of these payoff on (A, T ).

To be consistent with the asymmetric Nash solution with exponent ρIJ ∈ (0, 1), that is, to
maximize the asymmetric Nash product

(θI − dIJ )ρIJ (θJ − dJI )
(1−ρIJ ),

trade AIJ must maximize the bilateral gain from agreement between I and J given by

gIJ = θI + θJ − dIJ − dJI ,

and the respective seller and buyer payoffs must satisfy

θI = dIJ + ρIJ gIJ and θJ = dJI + (1 − ρIJ )gIJ , (1)

where the simple sharing rule for the gain gIJ follows from utilities being linear in payments.
As seller I receives a share ρIJ of the gain from agreement, this exponent captures the bilateral
bargaining power of I vis à vis J .

We follow the literature pioneered by Horn and Wolinsky (1998), and subsequently widely
adopted in both theoretical and empirical work (see Introduction), by studying equilibria of
multiple connected bilateral Nash bargaining problems. As explained next, we deviate from
previous work in our specification of the disagreement points, which also accounts for the novel
results on size.

We have in mind situations where only the buyer J and seller I , failing to reach their
equilibrium agreement, would be aware of it and will therefore react to it by proposing their other
respective trading partners adjustments in their bilateral transactions. We further stipulate these
adjustments would make those trading partners just indifferent between the adjustment or trading
according to the equilibrium agreement. This is the case if the proposed transfer changes reflect
the incremental net valuation or cost of the counterpart. This idea shares in spirit the concept
of “truthful strategies,” introduced by Bernheim and Whinston (1986) in an auction context, in
which a player is compensated for action s instead of s ′ by the net benefit accruing to another
player due to that change. For this reason, we call the adjustments studied in this article “truthful.”
This leads to the following definition:

Definition 1. “Disagreement points truthful to (A, T )” are the net payoffs of seller I and buyer J
when, not trading with each other but every other buyer and seller pair with J ′ �= J and I ′ �= I ,
still trades according to (A, T ), each adjusts trade optimally with, respectively, every J ′ �= J and
I ′ �= I , while adjusting the respective transfers tIJ ′ and tI ′ J to exactly reflect the change in the
gross benefit of J ′ and cost of I ′ .

Next, we explicitly derive these disagreement points. For a given buyer J and seller I pair,
we consider the trade matrix AIJ adjusted from A such that

AIJ = argmax �(A) s.t.

{
aIJ

ij = 0 if i ∈ I and j ∈ J
aIJ

ij = aij if i /∈ I and j /∈ J.

C© The RAND Corporation 2019.
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That is, to obtain from A the trade matrix AIJ , the following three steps are undertaken. First,
there is no trade between I and J : aIJ

ij = 0 if i ∈ I and j ∈ J . Second, we leave trade between
any other buyers and sellers unchanged as in A: aIJ

ij = aij if both i /∈ I and j /∈ J . Third, we
adjust bilateral trade between seller I and each buyer J ′ �= J and between buyer J and each seller
I ′ �= I in a way that maximizes the bilateral surplus of each pair. These adjustments are such that
total surplus is also maximized subject to the constraints imposed by the first and second steps,
which given our cost and benefit assumptions yields AIJ as a unique solution.

To reflect “truthfulness,” both I and J must capture the gross surplus generated by the
respective adjustments, so transfers must be adjusted to reflect the incremental gross costs and
benefits due to the change from A to AIJ : the transfer received by I ′ from J must be increased
by CI ′(AIJ ) − CI ′(A) and the transfer paid by J ′ to I must be increased by vJ ′(AIJ ) − vJ ′(A). It
follows:

Lemma 1. “Disagreement points are truthful to (A, T )” if and only if, for every I ∈ S and J ∈ B,
for seller I ,

dIJ (A, T ) =
∑

J ′∈B\J

(tIJ ′ + (vJ ′(AIJ ) − vJ ′ (A))) − CI (AIJ ),

and for buyer J ,

dJI (A, T ) = vJ (AIJ ) −
∑

I ′∈S\I

(tIJ + CI ′(AIJ ) − CI ′(A)).

Next, we define the equilibrium concept. Let P denote the |S| × |B| matrix of bilateral Nash
bargaining exponents, with a typical element ρIJ ∈ (0, 1). We have:

Definition 2. A “truthful bargaining outcome with bargaining power P” is a trade and transfer
matrix pair (A, T ) such that, for every pair with seller I and buyer J , the payoffs θI (A, T )
and θJ (A, T ) are consistent with bilateral Nash bargaining (as in (1)), and disagreement points
dIJ (A, T ) and dJI (A, T ) are truthful to (A, T ).

We find that:

Proposition 1. There is a unique truthful bargaining outcome with bargaining power P , which is
given by the pair (A∗, T ), with for every I ∈ S and J ∈ B,

tIJ = (1 − ρIJ )ϕIJ + ρIJκIJ , (2)

where

ϕIJ ≡
∑

J ′∈B\J

(vJ ′(A∗IJ ) − vJ ′ (A∗)) − (CI (A∗IJ ) − CI (A∗)),

and

κIJ ≡ (vJ (A∗) − vJ (A∗IJ )) −
∑

I ′∈S\I

(CI ′(A∗) − CI ′(A∗IJ )).

That the outcome must be efficient, that is, that A∗ is traded, follows from each aij maximizing
the joint surplus of the respective buyer and seller pair while holding all other trades constant.
Then, in equilibrium, the marginal cost of every good i ∈ G must equal the partial derivative ui (a j )
for each consumer j ∈ N , which coincides with the first-order conditions for the maximization
of the surplus function �(A). For a given P , evaluating the payoffs and disagreement points at A∗

and solving (1) simultaneously for every payoff pair, we obtain a unique solution to the transfer
matrix T .

C© The RAND Corporation 2019.
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It can be checked that κIJ > ϕIJ , and therefore κIJ and ϕIJ capture, respectively, upper and
lower bounds for the transfer paid by J to I . The measure of bilateral bargaining power ρIJ ∈ (0, 1)
pins down where the payment lies in that interval. How the transfers compare across buyers and
sellers as a function of size will be analyzed later.

Finally, note that the difference between ϕIJ and κIJ is due to the fact that each buyer and
seller enjoys some market power, as we explain next. In an online web Appendix, we show that
when we replicate our economy more and more times (i.e., by adding replicas of each buyer and
seller), both ϕIJ and κIJ converge to the transfer prevailing in a perfectly competitive economy,
which is |I ||J |μa∗ with μ = c′(|N |a∗) = ui (a∗

j ). Such competitive benchmark is intuitive as then,
in the limit, at disagreement, each side could fully replace the respective trades by turning to
(infinitely) many other buyers and sellers, and for each additional unit of each good, a disagreeing
buyer would pay the marginal cost c′(|N |a∗) to each of the remaining sellers, and a disagreeing
seller would extract the marginal utility from each alternative consumer.

� Strategic bargaining: “Nash followed by Rubinstein.” Our disagreement points are
now obtained endogenously in a strategic game. As the time between periods shrinks to zero,
equilibrium contracts converge to those of Proposition 1 with an endogenous P , reflecting the
relative impatience of buyers and sellers. In the interest of space, we here only describe the game
informally and relegate its formal description to the Appendix.

The game takes place in periods τ = 0, ..,∞, with bilateral contract offers consisting of a
trade and transfer pair (AIJ , tIJ ). It combines elements of two classic noncooperative approaches
to bilateral bargaining. The first approach is Nash’s (1953) demand game, the prototype model of
bilateral bargaining: two players simultaneously submit an offer on how to share a pie, and each
one receives its demand if the offers are exactly the same, and nothing otherwise. The second
approach is Rubinstein’s (1982) alternating offers approach.

At τ = 0, similar to a Nash (1953) demand game between each pair, every buyer J ∈ B
makes a bilateral contract offer to every seller I ∈ S, and vice versa. Thus, a total of 2|S||B|
contract offers are made simultaneously. A bilateral contract between buyer J and seller I is
reached at τ = 0 if and only if their bilateral offers are the same.

In each period, τ ≥ 1 only pairs that have failed to reach an agreement before τ engage in a
bilateral alternating offers bargaining à la Rubinstein (1982), with offers made by sellers in odd
periods and by buyers in even periods. Each player is potentially involved in several such bilateral
negotiations, and thus, a player on the offer side may need to decide simultaneously on a set of
offers to make, whereas a player on the receiving side may need to decide which to accept and
reject from a set of offers. These alternating offers subgames share a similar structure to those in
Collard-Wexler, Gowrisankaran, and Lee (forthcoming).6

Disagreement points are derived endogenously, as described next. After period τ offers have
been accepted or rejected, but before the end of the period τ , a player that has not yet reached an
agreement with all its counterparties can ask those counterparties they have already reached an
agreement with (at or before τ ) to adjust their previously agreed trade and transfer pair—and if
that counterparty rejects it, then the pair trades according to their original contract.

Each player observes only the offers and adjustments it makes and receives, and it holds
passive beliefs on all actions it does not observe—a common assumption in the vertical contracting
literature.7 At the end of each period, τ ≥ 1 trade takes place according to the accepted contracts
or period specific adjustments (if any). Player i with discount rate ri maximizes its expected
discounted sum of period payoffs. The time between period 1 and τ is z(τ − 1). There is immediate
agreement if all contracts are reached at τ = 0.

6 However, the information structure of the games is different, and their game is a network game, as payoffs are a
primitive that depends only on the agreements’ structure and not on the level of trade (whereas both payoffs and trade
must be determined endogenously in our model).

7 See, for example, Hart and Tirole (1990); O’Brien and Shaffer (1992); McAfee and Schwartz (1994).
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Proposition 2. For z sufficiently small, the strategic “Nash followed by Rubinstein” bargaining
game has a unique outcome of pure-strategy passive beliefs PBE with immediate agreement. This
outcome is efficient with at τ = 0 every I ∈ S and J ∈ B making the exact same contract offer
to each other

(A∗
IJ , t

′
IJ ) with t

′
IJ = (1 − e−zrJ )κIJ + e−zrJ (1 − e−zrI )ϕIJ

1 − e−z(rJ +rI )
.

As z → 0, the equilibrium transfers converge to

tIJ = rJ

rJ + rI

κIJ + rI

rJ + rI

ϕIJ ,

thus coinciding with those of Proposition 1 with P , such that ρIJ = rJ

rJ +rI
.

Our most relevant departure from previous work is adding a simultaneous Nash demand
stage at the outset of the game. This significantly reduces the set of subgames that may be reached
following any unilateral deviation from equilibrium, and in any of those subgames, at most one
player can be engaged in multiple bilateral negotiations. For this reason, our game dispenses
agents, which could be of independent interest to both theory and empirical researchers—as
foundations of Nash equilibria in bilateral Nash bargaining where buyers and sellers do not
negotiate directly but instead through agents, have met justified criticism (see Collard-Wexler,
Gowrisankaran, and Lee, forthcoming). Such initial Nash demand game naturally captures the
notion that a buyer and a seller should only need to start exchanging offers in negotiations if at
the outset of the game, their mutual expectations prove to be incompatible.

4. Buyer power and mutual dependency

� Following the property rights approach to the theory of the firm, we model size with a change
in the control structure (Hart and Moore, 1990). With differences in the bilateral bargaining ability
parameter ρIJ , it would of course be simple to construct trivial theories of size: for example, there
would be a natural incentive for a buyer J with a low bargaining ability to be represented by
a buyer J ′ with a higher bargaining ability, or for two buyers with similar bargaining ability to
merge if size by itself increases bilateral bargaining power. Like in the property rights literature,
we want to shut down such channels. We therefore assume that ρIJ = ρ ∈ (0, 1) for every pair,
regardless of name or size—so P is equal to ρ multiplied by the |S| × |B| unit matrix. This
symmetry allow us to isolate and focus on the endogenous effects of size, and identify how these
can be explained by the economic fundamentals of costs and preferences. In this case, the effect
of a merger also does not depend on the identity of the acquirer.

Suppose that two buyers J1 and J2, form a larger buyer J3 = J1 ∪ J2. This will not affect
the traded quantities, which are still A∗. The transfers paid by any other buyer J ∈ B\{J1, J2}
are therefore unchanged. For the larger buyer J3, the respective per-unit price is lower than the
per-unit price paid jointly by J1 and J2 (were they to remain independent) if and only if

(1 − ρ)ϕIJ3 + ρκIJ3 < (1 − ρ)(ϕIJ1 + ϕIJ2 ) + ρ(κIJ1 + κIJ2 ). (3)

To determine when (3) holds, it is instructive to first consider separately the cases where
ρ → 0 and ρ → 1. In either case, transfers are such that the payoffs on one side of the market are
determined only by the value created by their respective adjustments. Thus, we ask how a larger
purchasing volume affects the value of these alternatives for both sides.

� Seller and buyer dependency.

Seller dependency. That each seller is more dependent on the larger buyer is captured by the
following result:
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Lemma 2. Suppose buyers J1 and J2 form a buyer J3 = J1 ∪ J2. Then,

ϕIJ3 < ϕIJ1 + ϕIJ2 (4)

holds, implying that as buyers hold all the bilateral bargaining power (ρ → 0 and sellers are
pushed to their respective “truthful” disagreement points), the per-unit price paid by J3 is always
strictly lower than the per-unit price paid jointly by J1 and J2.

Lemma 2 derives from two effects. One is the “incremental cost” effect previously isolated
in the literature: with convex costs, per-unit incremental costs of supplying a smaller buyer are
higher than those of supplying a larger buyer (see the survey in Snyder, 2012). This effect would
also be present if adjustments of trades are not possible, as we will discuss below. The other
effect is that off-equilibrium, a seller has the opportunity to increase sales to all remaining buyers,
but a disagreement with the larger buyer leaves the seller with fewer alternatives to sell to. As
consumers have decreasing marginal utility for the seller’s products, the alternative to adjust sales
therefore becomes less valuable following disagreement with a larger buyer.

Both effects rely on cost convexity below the equilibrium quantities and both disappear with
constant marginal costs: the former because marginal and inframarginal costs are then the same,
the latter because no profitable adjustments exist to be made by a seller in disagreement, as trades
with all other buyers are already such that the respective marginal utilities equal a seller’s constant
marginal cost.

Buyer dependency. That the larger buyer also becomes more dependent on each seller is captured
by the next result:

Lemma 3. Suppose buyers J1 and J2 form a buyer J3 = J1 ∪ J2. If there is more than one seller
(|I | �= |G| for every I ∈ S), then

κIJ3 > κIJ1 + κIJ2 (5)

holds, implying that as sellers hold all the bilateral bargaining power (ρ → 1 and buyers are
pushed to their respective “truthful” disagreement points) the per-unit price paid by J3 is always
higher than the per-unit price paid jointly by J1 and J2. If there is a single seller (|I | = |G|for
some I ∈ S), then κIJ3 = κIJ1 + κIJ2 , so as ρ1 → 1, there is no effect.

Recall that, as marginal costs are increasing, the average incremental costs of temporarily
increasing trade with other sellers is higher for larger quantities—as demanded by J3. In this
sense, a larger buyer becomes more dependent on each seller. This negative effect of size, which
tends to increase the per-unit price, relies crucially on the possibility to adjust trades: it is absent
when there is only one seller (as frequently assumed in the previous theoretical literature, see the
survey in Snyder, 2012), if technology rules out such adjustments (see discussion below), or if
marginal costs are constant (as average incremental costs are then invariant in size).

� Large buyer advantage or disadvantage? In sum, in our model, the formation of a larger
buyer increases mutual dependency: sellers become more dependent on that buyer but that buyer
also becomes more dependent on each individual seller. Recall that the per-unit price paid by the
large buyer J3 is strictly lower than the per-unit price paid jointly by J1 and J2 before the merger
if and only if (3) holds. Rearranging terms, this condition becomes

κIJ3 − (
κIJ1 + κIJ2

)(
ϕIJ1 + ϕIJ2

)− ϕIJ3

<
1 − ρ

ρ
. (6)

Lemmas 2 and 3 allow us to sign the left-hand side: it is strictly positive and invariant in ρ when
there are multiple sellers, and exactly zero when there is a single seller. As the right-hand side
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is monotonically decreasing in ρ, converging to ∞ as ρ → 0 and to 0 as ρ → 1, we obtain the
following result:

Proposition 3. Suppose buyers J1 and J2 form a buyer J3 = J1 ∪ J2. J3 pays strictly lower per-unit
prices than those paid jointly by J1 and J2 if and only if

(i) there is a single seller, that is, |I | = |G| for some I ∈ S;
(i) there are multiple sellers, that is, |I | �= |G| for every I ∈ S, and ρ is sufficiently low.

This result confirms and extends the current understanding of buyer power in the literature.
It confirms as the typical finding in this literature is that when there is a single seller, a larger
buyer pays a lower per-unit price (see the survey in Snyder, 2012). It extends as it shows that result
no longer necessarily holds when there are multiple sellers of substitute products and that have
convex costs. Then, a larger buyer can still obtain lower per-unit prices, but only when buyers
have a sufficient advantage in bilateral bargaining. In that case, buyers are able to push sellers
close to their disagreement points, which as we saw, becomes relatively less favorable to sellers
as the larger buyer controls a larger share of the total demand. However, when sellers have the
advantage in bilateral bargaining, a larger buyer pays a higher per-unit price. In that case, it is
the sellers who are able to push buyers close to their disagreement points, which is relatively less
favorable for a larger buyer because convex costs make it relatively more costly to shift a larger
volume to alternative sellers.

In our model, buyers’ incentives to be large are thus higher when bargaining power arising
from other channels is already high. In other words, buyers’ bilateral bargaining power and size
have a mutually reinforcing role in bringing prices down. Size is not a substitute for the lack of
bilateral bargaining power, it complements it.

Asymmetries and concentration. As discussed in the Introduction, our analysis is partly motivated
by recent antitrust interest on buyer power under negotiated prices. Here, the HHI, which is the sum
of the squares of individual market shares, is probably the most important first-phase screening
criterion for mergers and asset sales. The HHI has its foundation in the analysis of seller market
power through withholding demand below its efficient level, which is clearly distinct from the
exercise of bargaining power. Antitrust authorities acknowledge this, yet they still extended the
application of the HHI to markets with bilaterally negotiated contracts. 8 We analyze next to what
extent our model supports this approach.

A full merger always increase the HHI. We therefore extend our analysis to asset transfers
(i.e., consumers) between two buyers, which may increase or decrease the buyer HHI, denoted by
H H IB . In light of our present interest in market concentration, for the remainder of the subsection
we also consider the (limit) case where products are perfect substitutes, so that u(a j ) = u(

∑
aij).

We compare market structures that differ in the respective sizes of two buyers. Starting from a
situation where |J1| + |J2| = M ≤ N , we consider the effect of a subset of consumers Jm ⊂ J2

of size |Jm| = m > 0 joining J1 to form buyers Ĵ1 = J1 ∪ Jm and Ĵ2 = J2\Jm (the previous case
where Jm = J2 is covered as a limit). Total production and consumption are not affected, and this
increases H H IB if |J1| + m > |J2|, and decreases it otherwise.9

Proposition 4. Take the limiting case where goods are perfect substitutes. A transfer of consumers
between two buyers strictly decreases

∑
J∈B ϕIJ and strictly increases

∑
J∈B κIJ for each I ∈ S if

and only if it strictly increases buyer concentration measure H H IB .

8 For instance, the US guidelines state: “To evaluate whether a merger is likely to enhance market power on the
buying side of the market, the Agencies employ essentially the framework described above for evaluating whether a
merger is likely to enhance market power on the selling side of the market.”

9 As H H IB = ∑
J∈B ( |J |

|N | )
2, the change is equal to the difference of ( |J1 |+m

|N | )2 + ( |J2 |−m
|N | )2 and ( |J1 |

|N | )2 + ( |J2 |
|N | )2, which

is positive if and only if |J1| + m > |J2|.
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Thus, a transfer of assets between two buyers increases aggregate buyer and seller depen-
dency if and only if it increases the buyer concentration index H H IB . In addition, the acquisition
of a buyer J1 by another buyer J2 leads to a larger increase in H H IB than the acquisition of J1 by
a buyer J3 if and only if |J2| > |J3|. It follows from the previous proposition that the acquisition
that leads to the highest increase in H H IB also results in the largest increase in aggregate buyer
and seller dependency. As corollary, when buyers have a sufficiently high bilateral bargaining
power (i.e., ρ is close to 0), the merger with the more pronounced increase in buyer concentration,
as measured by the H H IB , will also lead to the largest drop in sellers’ profits, but increase their
profits if ρ is close to 1.10 Thus, Proposition 4 only justifies the use of H H IB to assess negative
implications of a buyer merger or transfers of assets on sellers when ρ is low. These are, however,
the cases where buyer power is also likely to be a concern.

� Factors favoring a large buyer advantage or disadvantage. We next explore how pro-
duction and consumption technology determines which of our two isolated effects is stronger.
We first consider the case where no adjustments are feasible. We then identify two specific cost
functions that are convex (but not strictly convex) that, respectively, shut down the buyer and the
seller dependency channel. Finally, in the context of a parametric example, we explore the role
of goods’ substitutability and demand elasticity.

Production side factors.

No adjustments. It is instructive to first consider the case where adjustments are unfeasible.
Then, AIJ is such that aIJ

ij = 0 if i ∈ I and j ∈ J , and aIJ
ij = a∗ otherwise. The modified transfer

lower and upper bounds are

ϕ̃IJ = |I | [c ((|N | a∗) − c ((|N | − |J |)a∗)] (7)

and

κ̃IJ = |J | [u(a∗
j ) − u(aIJ

j )
]

with j ∈ J. (8)

With respect to buyer size we no longer have two conflicting effects, as only the well-known
“incremental cost” effect remains with the respective transfers from expression (8), which ensures
that condition (4) still holds, but condition (5) no longer holds for the transfers in expression (7).
This implies that a larger buyer always pays a lower per-unit price, and a buyer merger is always
profitable.

More generally, we could have assumed that adjustments are not certain but instead are made
with independent probabilities ωJ by buyer J and ωI by seller I (and with the complementary
probability trade remains unchanged).11 This would nest our and the no adjustments cases as limits
as, respectively, ωJ = ωI = 1 or ωJ = ωI = 0 for all I ∈ S and J ∈ B. Having ωJ ∈ (0, 1) and
ωI ∈ (0, 1) not only seems to add realism but it is also sufficient to generate our novel predictions
on the effect of size, that is, for Propositions 1 and 3 to hold, as in those cases, the equilibrium
transfers are given by

tIJ = ρIJκ
′
IJ + (1 − ρIJ )ϕ ′

IJ

with

ϕ ′
IJ = wI ϕIJ + (1 − wI )̃ϕIJ and κ

′
IJ = wJ κIJ + (1 − wJ )κ̃IJ ,

thus a weighted combination of the bounds with and without adjustments.

10 When bilateral bargaining power ρ is more evenly distributed, we need to consider the impact of a change in
market structure not only on seller dependency but also on buyer dependency, as we did for mergers in Proposition 3.
Then, a focus on the H H IB alone is not informative.

11 These can also alternatively capture the fraction of the bilateral adjustment surplus accruing to those players.
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Binding equilibrium capacity constraints. We next suppose that capacity is limited as follows:
c(x) is well behaved until some K , but c(x) = ∞ when x > K . This capacity constraint is
binding at equilibrium if in addition a∗ = K/|N | . This deprives buyers of their option to adjust
trades in case of disagreement, so the transfer’s upper bound is given in this case by κ̃IJ . The
adjustment option persists, however, for sellers and the transfer lower bound is like in the original
case ϕIJ .12 Therefore, a buyer merger reduces the lower bound (reflecting that size increases
seller dependency) but it has no effect on the upper bound (reflecting that the buyer dependency
channel is shut down if buyers are unable to make adjustments). It follows that, for all ρ ∈ (0, 1),
with a binding equilibrium capacity but otherwise convex inframarginal costs, buyer size is
unambiguously advantageous.

Proportional inframarginal costs. In a mature industry, firms may have adjusted to be able to
produce up to the expected equilibrium level x = |N |a∗ at a constant marginal cost and marginal
costs then only increase above that level, for example, as then more expensive overtime is needed.
Suppose that c(x) = cx holds up to x = |N |a∗, but c′′(x) > 0 for x > |N |a∗. As marginal costs
are constant below equilibrium production levels, sellers now do not find profitable adjustments
and thus the lower bound is ϕ̃IJ . Through the channel of “seller dependency,” a buyer’s size cannot
then be advantageous. On the other hand, as costs are still strictly convex for adjustments above
the equilibrium production level, the buyer dependency channel is still present and the lower
bound is like in the original case κIJ . In this case, a buyer merger is then always unprofitable.

For the following summarizing statement, we simplify the exposition by restricting consid-
eration to the case with more than one seller.

Proposition 5. Suppose that |J | �= |N | and |I | �= |G| for every J ∈ B and I ∈ S. The per-unit
price paid by a large buyer J3 = J1 ∪ J2 is smaller than the per-unit price paid jointly by the
smaller buyers J1 and J2 if (i) adjustments off-equilibrium are unfeasible, or (ii) sellers have
binding equilibrium capacity constraints, but (iii) that per-unit price is always larger if costs are
proportional to output below equilibrium quantities and above are strictly convex.

Consumption side factors. We now turn our attention to the consumer side. Here, we wish to
derive implications on the role of substitutability and hence elasticity of demand. As it turns out,
for tractability we need to rely on a particular functional specification, which we set out first. Note
that for the purpose of illustration, we will return to this example also in subsequent sections.

Specification of an example. Let there thus be two sellers, I1 and I2, producing, respectively,
goods 1 and 2 at a cost c(q) = q2/2. There is a unit measure of consumers with a quadratic
utility,

U (q1, q2) = q1 + q2 − b′
(

q2
1 + q2

2 + 2γ q1q2

2

)
+ m,

with a sufficiently high income m and b′ > 0. The inverse demand for good i is then

1 − b′(qi + γ q−i ).

The parameter γ ∈ (0, 1) measures the degree of product differentiation, and goods become
independent as γ → 0 and perfect substitutes as γ → 1. Let b′ = b(1 + γ )−1 so that A∗, with
q∗

i = q∗ = 1
b+1

, and U (q∗, q∗) = b+2
(b+1)2 are invariant in γ . This later ensures that, as we change

γ , changes in per-unit prices are not related to changes in the equilibrium cost or consumers’
equilibrium utility level. Demand becomes perfectly elastic as b → 0 and perfectly inelastic as
b → ∞ . Each buyer is a collection of consumers, buyer J1 represents a share α1 of the consumers

12 We need to slightly modify the proof to take into account the corner solutions.
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and buyer J2 a share α2 = 1 − α1. A buyer’s payoff is

θJ j (A, T ) = α jU

(
q1

α j

,
q2

α j

)
− tI1 J j − tI2 J j

where qi is the total quantity purchased by the buyer of good i . When trade is efficient,

θJ j (A∗, T ) = α jU (q∗, q∗) − tI1 J j − tI2 J j and θIi (A∗, T ) = tIi J1 + tIi J2 − c(q∗).

Suppose that seller Ii and buyer Jj fail to reach an agreement. The adjusted trade matrix
AIi J j from A∗ has: trade between J− j and I−i unchanged at (1 − α j )q∗

1 , trade between Jj and Ii

set to zero, trade between Jj and I−i adjusted in a bilateral optimal way to

q̂ j = argmax
q j

(
α jU

(
0,

q j

α j

)
− c

(
(1 − α j )q

∗ + q j

)) = α j (b + α j )(1 + γ )

(b + 1)(α j + b + γα j )
,

and trade between Ii and J− j adjusted in a bilateral optimal way to

q̂i = argmax
qi

(
α− jU

(
q∗,

qi

α− j

)
− c(qi )

)
= α− j (b + γ + 1)

(b + 1)(b + α− j + γα− j )
.

The truthful bargaining outcome (A∗, T ) is then

tIi J j = (1 − ρIJ )ϕIi J j + ρIJκIi J j ,

where

ϕIi J j = α− j

(
U

(
q∗,

q̂i

α− j

)
− U (q∗, q∗)

)
− (c(̂qi ) − c(q∗))

= α j

2α− j (1 + γ ) + b(1 + α− j )

2 (b + 1)2
(
b + α− j (1 + γ )

)
and

κIi J j = α j

(
U (q∗, q∗) − U

(
0,

q̂ j

α j

))
− (

c(q∗) − c((1 − α j )q
∗ + q̂ j )

)
= α j

2α j (1 + γ ) + b(2 + b(1 − γ ) + α j )

2 (b + 1)2
(
b + α j (1 + γ )

) .

In the example, note that to have a monopolist buyer, we need to set α j = 1. Recall also that
a buyer merger does not change the total number of units purchased. Using the explicitly derived
expressions for transfers tIi J j , we arrive at the next observation:

Observation. In the example, a merger of the two buyers raises the per-unit price if and only if

ρ > ρ = ξ

ξ + b2γ 2
with ξ = (b + γ + 1)2

.

Consider first the role of substitutability. Let goods become independent, that is, γ → 0. As
expected, then ρ → 1 and a larger buyer always pays a lower per-unit price. However, ρ < 1 for
all γ ∈ (0, 1) and ρ is decreasing in γ : thus, when goods are substitutes, a larger buyer pays a
higher per-unit price if and only if buyers’ bilateral bargaining power is sufficiently low, whereas
within the specific example, this happens more often as goods’ substitutability increases.

Consider next the role of demand elasticity. Being a monopoly buyer is also disadvantageous
more often when total demand is less elastic, that is, when b increases: the critical ρ increases
from 1/2 to 1 as demands goes from perfectly inelastic with b → ∞ to perfectly elastic with
b → 0. There are two reasons for this. First, in case of disagreement, a buyer may not only buy
from the other seller but can also buy less overall. Buying less is, however, less of an option
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when demand is relatively inelastic. Thus, demand elasticity reduces buyer dependency from
sellers, which is more beneficial to a larger buyer with a larger “displaced” quantity in case of
a disagreement. Second, in case of a bilateral disagreement, a seller cannot sell more to other
buyers, if either the buyer is a monopoly or demand is perfectly inelastic (because the equilibrium
quantities are already all each buyer needs). Seller adjustments are valuable only when there are
multiple buyers, and reducing elasticity increases buyers’ bargaining power only when there are
multiple buyers, but not if the buyer is a monopolist.

5. The case of seller size

� We now turn our attention to the seemingly mirror case of seller size. In analogy to how we
proceeded in the case of buyer power, let there be two sellers I1 and I2, and consider the effect
of a merger such that I3 = I1 ∪ I2. The large seller I3 now receives a strictly higher per-unit price
from some buyer J if and only if

(1 − ρ)ϕI3 J + ρκI3 J > (1 − ρ)(ϕI1 J + ϕI2 J ) + ρ(κI1 J + κI2 J ).

Like above, we focus in turn on the effect of the merger on seller and buyer dependency. All
proofs for the results in this section are relegated to the online web Appendix.

Lemma 4. Suppose sellers I1 and I2 form a seller I3 = I1 ∪ I2. If there is more than one buyer, so
|J | �= |N | for all J ∈ B, then

ϕI3 J < ϕI1 J + ϕI2 J (9)

holds, implying that when buyers hold all the bilateral bargaining power (ρ → 0), the per-unit
price received by I3 is always strictly lower than the per-unit price received jointly by I1 and I2. If
there is a single buyer, so |J | = |N | for some J ∈ B, then ϕI3 J = ϕI1 J + ϕI2 J (so as ρ → 0, the
merger has no effect).

As buyers have decreasing returns, in case of disagreement with any buyer, the seller I3

will find it harder to sell its relatively larger number of goods to the same set of alternative
buyers without depressing prices too much. Thus, a larger seller becomes more dependent on any
particular buyer.

Take now the case where ρ → 1. Suppose first that goods are perfect substitutes so that we can
write u(a j ) = u(

∑
i∈G aij). Then, concavity of u(·) mirrors convexity of c(·), and it is intuitive that

the effect mirrors that of a buyer merger. We need, however, an additional regularity assumption
for this logic to hold when goods are not perfect substitutes. Putting it first informally, we need
that when a consumer loses access to some good, then this reduces its utility by more when it
already has access to fewer goods. Formally, consider a marginal loss when consumption of good
i must be reduced, given some consumption vector a j , that is, −ui (a j ). Take any other two goods
z and y and suppose that we tilt consumption toward good z such that dazj = −dayj = � > 0, if

d

dazj

ui (a j ) ≥ d

dayj

ui (a j ), (10)

then this tilt aggravates the loss associated with a reduction in the consumption of good i . We
have:

Lemma 5. Suppose sellers I1 and I2 form a seller I3 = I1 ∪ I2 and that condition (10) holds. Then,

κI3 J > κI1 J + κI2 J (11)

holds, implying that when sellers hold all the bilateral bargaining power (ρ → 1), the per-unit
price received by I3 is strictly higher than that received by I1 and I2.

C© The RAND Corporation 2019.



44 / THE RAND JOURNAL OF ECONOMICS

Finally, taking together the results from Lemmas 4 and 5, and with analogous construction
to that on the formation of a larger buyer in Proposition 3, we have:

Proposition 6. Suppose sellers I1 and I2 form a seller I3 = I1 ∪ I2 and that (10) holds. The larger
seller receives a strictly higher per-unit price if and only if

(i) there is only a single buyer, that is, |J | = |N | for some J ∈ B,
(ii) there are multiple buyers, that is, |J | �= |N | for every J ∈ B , and ρ is sufficiently high.

A result analogous to Proposition 4 also holds for an increase in the seller concentration
measure (see the online web Appendix). Concerning factors favoring a large seller advantage or
disadvantage, suppose that |J | �= |N | and |I | �= |G| for every J ∈ B and I ∈ S and (10) holds.
The per-unit price received by a large seller I3 = I1 ∪ I2 is always larger than the per-unit price
jointly received by the smaller sellers I1 and I2 if (i) off-equilibrium adjustments are unfeasible, or
(ii) if costs below equilibrium quantities are proportional to output but above are strictly convex,
but (iii) this per-unit price is higher with binding equilibrium capacity constraints if and only if
ρ ≥ ρ̃ and ρ̃ ∈ (0, 1).

6. Alternative adjustments and solutions

� In this section, we relate our predictions to those of three widely used Nash equilibrium in
bilateral Nash bargaining models (quantity-forcing, two-part, and linear tariffs) and two of the
most used cooperative solution concepts (Core and random-order values).

� Quantity-forcing, two-part, and linear contracts. Like in our model, with quantity-
forcing contracts, players bargain bilaterally over a quantity AIJ and a transfer tIJ . However,
unlike in our model, no adjustments are possible in case of a bilateral disagreement and thus
it corresponds to the case seen above. Importantly, only information on inframarginal utilities
and costs was used there to derive the equilibrium contracts and therefore, as seen above, the
per-unit price is decreasing in buyer size, and buyer mergers are always profitable. These features
are shared by two-part and linear tariff models. Next, we use the parametric example introduced
above to illustrate and to explain why the predictions of these two models are also different from
ours.

With two-part tariffs, players bargain bilaterally over a fixed transfer and a marginal price.
Closer to our model, in case of a bilateral disagreement, adjustments are now possible but (unlike
in our model) at a constant marginal price. The efficient quantities are traded in equilibrium and
marginal prices are size-invariant, as for every i and j , they satisfy

Ui (qi , q−i )|qi =q−i =q∗ = wIi J j = c′(q∗) = 1

1 + b
= w∗.

Consider next the fixed transfer tIi J j . In case of disagreement, trade between Jj and Ii is zero, seller
Ii still sells the equilibrium quantity (1 − α j )q∗ to the other buyer J− j , but buyer Jj increases its
purchases from the other seller I−i at a constant price w∗ to

q̂−i = argmax
q

⎛⎜⎝α j

⎛⎜⎝ q

α j

− b

(
q
α j

)2

2(1 + γ )

⎞⎟⎠− w∗q

⎞⎟⎠ = α j (1 + γ )

1 + b
.

The gains from trade between buyer Jj and seller Ii are then

gIi J j = α j

(
U (q∗, q∗) − U

(
0,

q̂−i

α j

))
+ w∗ (̂q−i − α j q

∗) − c(q∗)+ c((1 − α j )q
∗).
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A two-part tariff contract gives a seller a share ρ of the gains and satisfies

θIi = ρgIi J j + dIi J j ⇔

tIi J j + tIi J− j + w∗q∗ − c(q∗) = ρgIi J j + (tIi J− j + w∗((1 − α j ))q
∗ − c((1 − α j )q

∗)).

Importantly, note that θIi , gIi J j , and dIi J j again contain no information on costs above the equilib-
rium trade level. Solving, we have

t∗
Ii J j

+ w∗α j q
∗ = (1 − ρ)ϕIi J j + ρκIi J j ,

where

ϕIi J j = c(q∗) − c((1 − α j )q
∗) = α j

(2 − α j )

2 (1 + b)2

and

κIi J j = α j

(
U (q∗, q∗) − U

(
0,

q̂−i

α j

))
+ w∗(̂q−i − α j q

∗) = α j

2 + b(1 − γ )

2 (1 + b)2 .

The per-unit price is then

t∗
Ii J j

+ w∗α j q∗

α j q∗ = (1 − ρ)
2 − α j

2 (1 + b)
+ ρ

2 + b(1 − γ )

2 (1 + b)
,

which is strictly decreasing in α j . Thus, also in the case of two-part tariffs, the larger of two
buyers always pays a lower per-unit price, and a buyer merger is always profitable.

Consider next the case of linear tariffs. A linear tariff maximizes the Nash product

(θIi − dIi J j )
ρ(θJi − dJi I j )

(1−ρ).

As expected, a lower price is always beneficial to the buyer, and thus θJi − dJi I j is strictly decreasing
in wIi J j , and

θIi − dIi J j = wIi J j qIi J j − (c(qIi J j + qIi J− j ) − c(qIi J− j )),

is concave in wIi J j due to a standard price and quantity trade-off as the quantity traded between
the pair Ii and Jj , qIi J j , is strictly decreasing in wIi J j . This makes it simple to obtain the upper and
lower bounds of wIi J j : the lower bound solves (θIi − dIi J j ) = 0 and the upper bound maximizes
(θIi − dIi J j ). Importantly, note again that neither of these two problems includes information on
costs above the equilibrium level.

All buyers choose their quantities optimally at the equilibrium linear tariffs, thus q∗
Ii J j

is
obtained by maximizing θIi with respect to qIi J j . Replacing this solution in the expressions above,
the lower bounds are then obtained and coincide with the average incremental costs of the units
traded between each pair, that is,

wIi J j = c(qIi J j + qIi J− j ) − c(qIi J− j )

qIi J j

,

and, as dJi I j does not depend on wIi J j , the upper bounds are obtained by maximizing the equilibrium
payoff of each seller with respect to each tariff, that is, by solving

∂(θJi − dJi I j )

∂wIi J j

= ∂θJi

∂wIi J j

= 0.

C© The RAND Corporation 2019.



46 / THE RAND JOURNAL OF ECONOMICS

In the context of our example, with, respectively, two symmetric independent buyers and a
monopoly buyer, the lower bound is 3

4b+3
and 1

2b+1
, and the upper bound in both cases is b−bγ+1

2b−bγ+1
.

Thus, for all ρ ∈ (0, 1), a monopoly buyer pays a lower per-unit price.13

Unlike quantity-forcing contracts, two-part and linear tariffs allow for off-equilibrium ad-
justments. However, in both cases, the bilateral gains from agreement, and therefore transfers and
per-unit prices, still depended only on the shape of the cost curves below equilibrium production
levels. The reason is that, in those cases, a buyer who does not reach an agreement with a seller
is allowed to adjust purchases by paying a constant price per-unit to an alternative seller, and it is
then that seller (and never the buyer) that pays the real cost of producing those units. This explains
why in these cases, a larger buyer can never pay a larger per-unit price. It also has several other
consequences, as discussed next.

One issue concerns the credibility of the conjectured adjustments with two-part and linear
tariffs in the presence of convex costs. Indeed, there will be common knowledge that a seller
receiving an adjustment request would rationally want to refuse it. In the case of two-part tariffs,
for example, the seller is always made worst off by an adjustment request, as the buyer pays only
the marginal cost at q∗, which is w∗, for each of the q̂i − αi q∗ incremental units but, as costs are
strictly convex, each of those units costs more than w∗ to produce. There can also be common
knowledge that in case of a bilateral disagreement, the conjectured adjustments may simply be
unfeasible (e.g., due to the capacity constraints), so off-equilibrium beliefs can be inconsistent
with the technology.

A second issue is that a researcher using one of those three models needs to attribute
observations of higher per-unit prices paid by a larger buyer to heterogeneity in bilateral bargaining
power parameters. Differences that may have been explained by sellers’ higher costs of producing
above equilibrium levels (or the impossibility to do so, in the case of tight capacity constraints)
may then be wrongly attributed to differences in bilateral bargaining skills.

With respect to the former criticism, by construction, our approach always leads to adjustment
requests that should be rationally accepted. With respect to the latter one, the approach of this
article is rich enough to capture both considerations—which are all likely to play a part in
real-world negotiations.

� Random-order values and the Core. Another approach with Nash equilibria in bilateral
Nash bargaining, known as “nonbinding contracts,” assumes that (like in our model) each pair
bargains bilaterally over a quantity AIJ and a transfer tIJ but (unlike in our model) in case of a
bilateral disagreement between I and J , this pair becomes unable to agree with each other forever,
and all agreements (including between third parties) are void and renegotiated. The disagreement
point between I and J are therefore associated with the outcome of a similar (sub)game where
trade between I and J is assumed to be zero.14 Due to a consistency property (Hart and Mas-Colell,
1989), the bargaining outcome obtained recursively coincides with a random-order value with
bilateral bargaining parameters P . Random-order values (ROV) measure the expected marginal
contribution of a player to the set of players that precede it in an order of players, over the set of
all possible orders.15

With ROV, the information on costs above the equilibrium level becomes relevant in deter-
mining the payoffs. It is then possible that size could be a disadvantage. In the cooperative game
theory literature, the possibility that owners of substitutable resources may lose from forming
a monopoly has been identified early on by Postlewaite and Rosenthal (1974) for the Core, by

13 This holds for any αi ∈ (0, 1). An implication is that a monopoly buyer always purchases a larger quantity than
the two independent buyers purchase jointly.

14 The disagreement points in that (sub)game assume that all existing agreements are again void and new agreements
must then be renegotiated in a (subsub)game where trade between all thus far disagreeing parties is zero (and so on and
so forth). Thus, the solution is recursive.

15 In the Shapley value, this expectation is taken with respect to the uniform distribution over the set of all orders,
and is obtained with the “nonbinding contracts” approach when bilateral gains are shared equally, that is, all ρIJ are 1/2.
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Legros (1987) for the Nucleolus, and studied by Gardner (1977), Guesnerie (1977), and Segal
(2003) for random-order values. To compare (to the extent possible) those predictions to our own,
we consider the simple example of Postlewaite and Rosenthal (1974), as it can be interpreted as
an economy with two sellers of a homogeneous good, having each two units of capacity (with zero
marginal cost), and three consumers each with unitary demand and a willingness to pay of 1 (the
value for each coalition is then twice the values in their game). A merger to a buyer monopoly is
equivalent to having instead a representative buyer with three units of demand, and the other two
buyers becoming dummy players.

Deriving the ROV recursively for every bilateral sharing rule ρ ∈ (0, 1), we found that with
ROV, a buyer merger to monopoly is unprofitable if and only if sellers’ bilateral bargaining power
is sufficiently high. Thus, with ROV, or equivalently with a nonbinding contracts approach, size
can be seen as a substitute to bargaining power, which contrasts with our finding that size and
bargaining power are instead complements.16

This stands in clear disagreement not only with our predictions but also with the predictions
originally obtained for the Core, where size and bargaining power are instead seen as complements.
Indeed, Postlewaite and Rosenthal (1974) have shown in the context of their original example
that with three independent buyers, the Core consists of a single allocation where each one gets
one third of the surplus, and thus buyers appropriate jointly the full surplus. A merger to a
buyer monopoly is then (weakly) disadvantageous, because it expands the set of Core payoffs
by reducing the set of allowable blocking coalitions: the monopoly buyer still captures the full
surplus (like before the merge) if it has all the bargaining power, but it captures less otherwise.17

Beyond such simple settings, as the dearth of literature attests, it becomes complex to study
the effect of size in the Core.18 For this reason, little is still known on how general the phenomenon
described by Postlewaite and Rosenthal (1974) is, on which conditions are more likely to make
buyer mergers unprofitable (in particular, if they do not result in a monopoly), on the relative
prices paid by buyers of heterogeneous sizes, on whether size is more advantageous when buyers’
bargaining power is high or low, etc. Our work extended our understanding on this phenomenon
within a general industrial organization context, while capturing with relative transparency what
seem to be economic forces similar to those present in the Core.

7. Conclusion

� To study the determinants of buyer and seller power, we developed a model where buyers
and sellers bargain bilaterally and can make local adjustments. A key result is that size may be
an advantage or a disadvantage when trying to secure better terms of trade. This is explained by
the fact that a player’s size increases the dependency of its counterparties, but it also increases
its own dependency on them, as switching becomes a less attractive alternative for both sides.
Which effect dominates depends on the distribution of bilateral bargaining power. By considering
different technologies and contracts, we made more transparent the different channels through
which size advantages or disadvantages arise.

We focused on a comparative statics analysis of size, but a further topic would be the analysis
of equilibrium market structures. Hart and Kurz (1983) introduced several concepts of stability
for this type of analysis (see also Bloch, 2002). Assume in our setting that only players of the
same type, buyers or sellers, can form groups that will bargain jointly. It follows from our results

16 See the online web Appendix for a derivation and explanation of this result, and a more complete comparison of
our results with those early results in cooperative game theory.

17 Closer to the smooth cost functions of our work, with an extended example where the second unit cost is c ∈ (0, 1),
we find similar predictions: a buyer merger to monopoly strictly increases the upper bound and strictly decreases the
lower bound of what buyers appropriate in type symmetric Core allocations.

18 These cooperative solutions often prove impractical because they require “global information,” a value for each
possible coalition—in our setting, an “exponential” total of (2|B| − 1)(2|S| − 1) values. Our approach only requires two
disagreement values for each buyer and seller pair and the agreement payoffs, thus a “linear” total of 2|S||B| + (|S| + |B|)
values.
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that for extreme values of bilateral bargaining power, the players on the strong side would benefit
from forming a monopoly. However, then the players on the other side, anticipating that they will
face a monopoly, also benefit from forming a monopoly themselves (recall that size is always
beneficial when there is a single counterparty). In the absence of antitrust scrutiny, a bilateral
monopoly should thus emerge in equilibrium. The problem becomes significantly more complex
for more balanced distributions of bargaining power, and in particular it then also depends on the
way the concept of stability specifies how the members of a group will organize if a subgroup
deviates. We must leave such analysis to future work.

Finally, the insights from our analysis should also be of interest outside industrial orga-
nization. For example, in the context of international trade relations, it suggests that a large
manufacturing country (say, China) may not always be able to negotiate a better trade deal with
the European Union or the United States than a small country (say, Vietnam). For a large country,
it may be almost essential to trade with both blocks, but for a small country, it may often be
sufficient to trade with just one. Also, in those cases, size should increase the mutual dependency
of the contracting parties, rather than be a unequivocal source of power.

Appendix: The Appendix contains a formal description of the “Nash followed by
Rubinstein game” and proofs of Propositions 2 and 4 and Lemmas 2 and 3

The “Nash followed by Rubinstein” game. The game takes place in periods τ = 0, ..,∞. A bilateral contract offer in
period τ from seller I to buyer J , denoted by OIJ

τ , and from J to I , denoted by OJI
τ , consists of a trade and transfer pair

(AIJ , tIJ ).
We first specify the sequence of moves. Period τ = 0 has a single stage with simultaneous demands by buyers

and sellers. Specifically, each buyer J ∈ B makes |S| contract offers, an offer OJI
0 to each seller I ∈ S, and each seller

I ∈ S makes |B| contract offers, an offer OIJ
0 to each buyer J ∈ B. Thus, a total of 2|S||B| contract offers are made

simultaneously. Similar to a Nash (1953) demand game between each pair, a bilateral contract between a buyer J and
a seller I is reached immediately at τ = 0 if and only if their respective bilateral offers are equal. Thus, if OJI

0 = OIJ
0 ,

players I and J have reached an agreement at τ = 0, and otherwise if OJI
0 �= OIJ

0 .
Let S J

τ ⊆ S denote the set of sellers that have a contract with buyer J at or before τ and B I
τ ⊆ B the set of buyers

that reached a contract with seller I at or before τ . If an offer (AIJ , tIJ ) is accepted at τ , then from that period onward the
pair has a contract and thus I ∈ S J

τ ′ and J ∈ B I
τ ′ for all τ ′ ≥ τ . Thus, for example, if OJI

0 = OIJ
0 , then I ∈ S J

τ and J ∈ B I
τ

for all τ ≥ 0.
Each period τ ≥ 1 has four stages: in stage 1, contract offers are made; in stage 2, each player chooses from the set

of offers it receives which offers to accept and which offers to reject; in stage 3, temporary adjustments offers are made;
in stage 4, each player chooses from the set of adjustment requests it receives which ones to accept and which ones to
reject. We next specify the identity of the players making and receiving contract and adjustment offers, describing in turn
odd and even periods.

In each odd period τ , at stage 1, each seller I ∈ S makes a contract offer to each buyer J ∈ B\B I
τ−1 (thus, if that

set is empty, I makes no offers). In stage 2 of that odd period, each buyer J receives a set of contract offers, one from
each I ∈ S\S J

τ−1, and decides which offers from that set to reject and which ones to accept (thus, if that set is empty, J
does nothing). If J accepts OIJ

τ , then J ∈ B I
τ and I ∈ S J

τ . In stage 3, adjustment offers are made simultaneously: each
buyer J such that S J

τ �= S can make an adjustment request to each seller I ∈ S J
τ so that at τ only they trade according

to (A′
IJ , t ′

IJ ) rather than their previously agreed contract (AIJ , tIJ ), and each seller I such that B I
τ �= B can make a similar

adjustment request to each buyer J ∈ B I
τ . Let Ŝ J

τ ⊆ S J
τ and B̂ I

τ ⊆ B I
τ denote the set of players to which, respectively, J

and I make adjustment requests at τ . In stage 4, each buyer J receives an adjustment request from seller I if and only
if J ∈ B̂ I

τ but I /∈ Ŝ J
τ , and seller I receives an adjustment request from buyer J if and only if I ∈ Ŝ J

τ but J /∈ B̂τ , which
rules out conflicting adjustment requests. Each player chooses which of the received adjustments to accept and reject: if
accepted, the pair trades according to (A′

IJ , t ′
IJ ), if rejected, according to the original agreement (AIJ , tIJ ).

Likewise, each even period τ ≥ 2 has four stages. In stage 1, each buyer J ∈ B makes an offer to each seller
I ∈ S\S J

τ−1. In stage 2, seller I receives a set of contract offers, one from each J ∈ B\B I
τ−1, and decides which ones to

accept and which ones to reject. If I accepts, OJI
τ then I ∈ S J

τ . Stages 3 and 4 are equal to those of odd periods.
The information and belief structure is the following. Each player observes only the offers it makes or receives.

Each player also holds passive beliefs on what it does not observe, that is, offers and acceptance decisions it is not privy
to (see references in the main text). Thus, a player who observes an out-of-equilibrium action at τ does not update its
beliefs on the actions that have been taken by all other players and that it does not observe; rather, it still believes that all
unobserved actions remain those of the conjectured equilibrium.

Payoffs are determined as follows: at the end of each period τ = 1, ..,∞, trade takes place according to the
accepted contracts and period specific adjustments (if any). Per-period payoffs are those presented in Section 2. The real
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time between period 1 and τ is z(τ − 1) > 0. Buyer J and seller I have respectively finite discount rates rJ > 0 and
rI > 0. Each player maximizes its (expected) discounted sum of period payoffs.

Proof of Proposition 2. We first identify the set of subgames that need to be considered to prove that the proposed strategies
form a perfect Bayesian equilibrium with immediate agreement (step 1). With this, we show that there exists no profitable
unilateral deviation from the proposed equilibrium (steps 2 and 3). Next, we show that the proposed equilibrium is also
the unique efficient one (step 4). Finally, we show that in the class we study, there cannot be an inefficient equilibrium
(step 5).

Step 1. Given that the game starts with a Nash demand game and that in the conjectured equilibrium all offers should
result in immediate agreements at τ = 0, with trade and transfers in every period τ ≥ 1 summarized by (A∗, T ′),
the equilibrium payoffs are

I (A∗, T ′) = θI (A∗, T ′)

rI

and J (A∗, T ′) = θJ (A∗, T ′)

rJ

.

To check that the equilibrium strategies form a Perfect Bayesian equilibrium, we only need to consider the
following set of relevant subgames: (i) those subgames that follow a unilateral deviation by a single seller I
with a subset of buyers B ′ ⊆ B, but where all the other pairs with sellers I ′ �= I have reached their respective
equilibrium agreements among themselves, and (ii) those subgames that follow a unilateral deviation by some
buyer J with a subset of sellers S′ ⊆ S but all the other pairs with a buyer J ′ �= J have reached their respective
equilibrium agreements among themselves. As deviations of type (ii) involve similar steps to former ones, in the
interest of space, we will only report on the details for the deviations of type (i).

Step 2. Consider then subgames that follow a unilateral deviation by a single seller I . The first step is to derive the best
response of some buyer J who at τ = 0 receives an offer OIJ∗

0 �= (A∗
IJ , t

′
IJ ) from seller I . Other than seller I ’s

deviation, both J and every seller I ′ �= I will still have made their equilibrium offers OJI ′∗
0 = O I ′ J∗

0 = (A∗
I ′ J , t∗

I ′ J ),
and thus S J

0 = S\I . Given that J holds passive beliefs, J also believes that every other buyer and seller will
have reached their equilibrium agreements and thus that B I

τ = B\J if S J
τ = S\I (regardless of whether I has

deviated with J alone or with instead with some subset of S that contains J ). Thus, in stage 3 of every period
τ where S J

τ = S\I , J expects that only himself and I have not reached all their equilibrium agreements, and
therefore both make adjustment requests to every other seller and buyer that extract the full surplus generated
from those adjustments, and all such adjustments will be accepted in stage 4. Then, as long as an agreement has
not yet been reached with I , J believes that its period τ payoff will be

vJ (AIJ ) −
∑

I ′∈S\I

(t
′
I ′ J + CI ′ (AIJ ) − CI ′ (A∗)) = dJI (A∗, T ′),

and that of seller I will be∑
J ′∈B\J

(
t ′
IJ ′ + vJ ′ (AIJ ) − vJ ′ (A∗)

)− CI (AIJ ) = dIJ (A∗, T ′),

which coincide with disagreement points that are truthful to (A∗, T ′). Buyer J also believes that if in an offer
( ÃIJ , t̃IJ ) is accepted at τ , then period τ and subsequent periods payoffs will be, respectively, for J and I ,∑

J ′∈B\J

t ′
IJ ′ + t̃IJ − CI ( Ã) and vJ ( Ã) −

∑
I ′∈S\I

t ′
I ′ J + t̃IJ ,

where Ã is such that aij = ãij if i ∈ I and j ∈ J , and aij = a∗
ij otherwise. Therefore, J believes that an accepted

offer ( ÃIJ , t̃IJ ) results in a bilateral gain,

gIJ ( ÃIJ ) =
∑

J ′∈B\J

t ′
IJ ′ + t̃IJ − CI ( Ã) + vJ ( Ã) −

∑
I ′∈S\I

t ′
I ′ J + t̃IJ − dJI (A∗, T ′) − dIJ (A∗, T ′)

= vJ ( Ã) − CI ( Ã) − vJ (AIJ ) +
∑

I ′∈S\I

(CI ′ (AIJ ) − CI ′ (A∗)) −
∑

J ′∈B\J

(
vJ ′ (AIJ ) − vJ ′ (A∗)

)+ CI (AIJ ),

which is strictly positive for some Ã, and is maximized with respect to ÃIJ for A∗
IJ .

As buyer J has passive beliefs, following the unilateral deviation of seller I , the buyer J believes that it is in
a complete information alternating offers bargaining game for gains of agreement gIJ ( ÃIJ ) with the respective inside
options dJI (A∗, T ′) and dIJ (A∗, T ′). Rubinstein (1982) showed that in such bilateral situation, the following construction
also yields the unique subgame perfect equilibrium of that game. Thus, J behaves like in that equilibrium, and believes
that I will behave like in that equilibrium, which is described next: both players’ offers maximize the bilateral gains from

C© The RAND Corporation 2019.



50 / THE RAND JOURNAL OF ECONOMICS

trade, that is, ÃIJ = A∗
IJ , and the transfers proposed by, respectively, I in even periods and J in odd periods, t I

IJ and t J
IJ ,

satisfy

1

rI

(
t J
IJ +

∑
J ′∈B\J

t ′
IJ ′ − CI (A∗)

)
= 1 − e−zrI

rI

dIJ (A∗, T ′) + e−zrI

rI

(
t I
IJ +

∑
J ′∈B\J

t ′
IJ ′ − CI (A∗)

)

and

1

rJ

(
vJ (A∗) − t I

IJ −
∑

I ′∈S\I

t ′
I ′ J

)
= 1 − e−zrJ

rJ

dJI (A∗, T ′) + e−zrJ

rJ

(
vJ (A∗) − t J

IJ −
∑

I ′∈S\I

t ′
I ′ J

)
,

which solving, gives that J expects I to offer in every odd period

t I
IJ = (1 − e−zrJ )κIJ + e−zrJ (1 − e−zrI )ϕIJ

1 − e−z(rI +rJ )
,

and that J himself will make to I in every even period an offer of

t J
IJ = e−zrI (1 − e−zrJ )κIJ + (1 − e−zrI )ϕIJ

1 − e−z(rJ +rI )
.

In every odd period τ , buyer J will also accept from seller I any contract offer that leaves it with a (weakly) higher
continuation payoff than rejecting it when it expects its offer (A∗

IJ , t J
IJ ) to be accepted by I in the next period τ + 1: thus,

in an odd period, J accepts any offer that gives it a higher continuation payoff than any of critical offers ( ÂIJ , t̂IJ ) that
satisfies

1

rJ

(
vJ

(
ÂIJ
)− t̂IJ −

∑
I ′∈S\I

tI ′ J

)
=

1 − e−zrJ

rJ

dJI (A∗, T ′) + e−zrJ

rJ

(
vJ (A∗) − t J

IJ −
∑

I ′∈S\I

tI ′ J

)
, (A1)

with ÂIJ having aij = a∗ if i /∈ I and j /∈ J . In particular, note that (A∗
IJ , t̂IJ ) = (A∗

IJ , t̃IJ ).
To show that the candidate PBE is an equilibrium, we finally need to show that the proposed equilibrium strategies

resist a simultaneous deviation by a single seller I with a single or with multiple buyers, and I anticipates that every
buyer J ∈ B will use the strategy outlined above in any of the possible subgames that follow such a deviation at τ = 0.
To do this, we further need to consider only those deviations that involve seller I making acceptable offers to a subset of
buyers at τ = 1, as explained next. Suppose otherwise, that I ’s optimal deviation is such that it results in a subgame that
has some last period τ ≥ 2 at which some offers are accepted: if that τ is even then, it would be some buyer J making
that offer (A∗

IJ , t J
IJ ), and then seller I could increase its profit by making at τ − 1 an offer with the same trade but higher

transfers as t I
IJ > t J

IJ ; if that last period τ is odd, then the seller could increase its profit by offering the same ( ÂIJ , t̂IJ ) at
τ − 2 and avoid losses from delay; finally, as the equilibrium offers (A∗

IJ , t
′
IJ ) are accepted if made by seller I at τ = 1

instead of τ = 0, and generate the same payoffs, we can, without loss of generality, focus on deviations where seller I
makes a set of acceptable offers to a subset of buyers only at τ = 1, and it reaches no other agreements at either τ = 0
nor τ ≥ 2.

The optimal deviation of seller I at τ = 1 selects a subset of buyers B ′ ⊆ B and an acceptable offer ( ÂIJ , t̂IJ ) to
each J ∈ B ′ to maximize I ’s deviation payoff, which is given by

1

rI

[∑
J∈B′

t̂IJ − CI

(
Â
)]

,

with Â such that aij = a∗ if i /∈ I and j /∈ J ∈ B ′, and aij = 0 if i ∈ I and j ∈ J /∈ B ′ (for notational simplicity, we have
omitted the dependency of t̂IJ on ÂIJ ). Take condition (A1) that defines implicitly a critical t̂IJ that depends on Â. Solving
with respect to t̂IJ , we have

lim
z→0

t̂IJ = rJ

rJ + rI

κIJ + rI

rJ + rI

ϕIJ + (
vJ

(
Â
)− vJ (A∗)

)
.

Thus, for z arbitrarily close to zero, for a given B ′ ⊆ B , there is a set of acceptable offers ( ÂIJ , t̂IJ ) to each J ∈ B ′ such
that the deviating payoffs described above become

1

rI

[∑
J∈B′

vJ

(
Â
)− CI

(
Â
)−

∑
J∈B′

(
rJ κIJ

rJ + rI

+ rI ϕIJ

rJ + rI

− vJ (A∗)

)]
. (A2)
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Given our assumptions on u and c, the solution to

max
Â

[∑
J∈B′

vJ

(
Â
)− CI

(
Â
)]

(A3)

is strictly submodular with respect to buyer inclusion: the marginal contribution of each buyer J to the solution obtained
for any buyer subset B ′ ⊆ B is strictly decreasing with respect to inclusion of another buyer J ′ in B ′. Because in each
additional term in (A2),

rJ κIJ

rJ + rI

+ rI ϕIJ

rJ + rI

− vJ (A∗),

there is no interaction between the term associated with J and J ′, if seller I prefers to deviate with B ′ ∪ J to deviating
with B ′\J , then by the submodularity seen above, it also prefers to deviate with B

′′ ∪ J to deviating with B
′′ \J for all

B ′′ ⊂ B ′. Thus, seller I will deviate with at most one buyer. If seller I only deviates with buyer J , then B ′ = B\J and
maximizing (A3) yields for z arbitrarily close to zero a payoff

dIJ (A∗, T ′)

rI

,

whereas if it does not deviate, it would get instead

I (A∗, T ′) = θI (A∗, T ′)

rI

.

Recall from the derivation of t J
IJ that, as a bilateral agreement between I and J generates a strictly positive surplus that

I (A∗, T ′) >
dIJ (A∗ ,T ′ )

rI
, so any deviation with buyer J results in a strictly lower payoff. Therefore, there does not exist

a weakly profitable deviation from offering the equilibrium contracts to B at τ = 1, and as this yields the same payoffs
to all players as the equilibrium with immediate agreement at τ = 0, there is no weakly profitable deviation from the
equilibrium payoff equivalent deviation that reaches all the equilibrium agreements at τ = 1 (with the exception of the just
mentioned payoff equivalent strategy to reach an agreement with buyers at τ = 1). As no other weakly profitable deviation
exists for z arbitrarily close to zero, by continuity, there is also no strictly profitable deviation for any z sufficiently close
to zero.

These steps show that there is no strictly profitable deviation for a seller and, as previously mentioned, similar steps
also show that there exists no profitable unilateral deviation for a buyer. This shows that the conjectured equilibrium is a
PBE of the game: it is efficient and results in immediate agreement.

Step 3. That transfers T ′ are the unique that support a PBE that has immediate agreement with efficient trade A∗ is
explained next. Any PBE must resist survive unilateral deviations by every seller I with every single buyer J
(in addition to other). We characterized above the best response by a buyer J to a unilateral deviation by a seller

I . It follows that any equilibrium (A∗, T ′′) with T
′′ �= T ′ which has t

′′
IJ > t I

IJ = t
′
IJ faces a unilateral deviation by

buyer J with seller I as, conditional on making all the other proposed equilibrium offers to all sellers in S\I
(a necessary condition for equilibrium), that buyer expects to get a higher payoff from deviating at τ = 0 and
reaching an agreement with I at τ = 1 with a lower transfer t I

IJ (the expected outcome of the unique PBE with
passive beliefs of the continuation subgame). Likewise, an equilibrium that results in (A∗, T ′′) with T

′′ �= T ′

which has t
′′
IJ < t I

IJ = t
′
IJ faces a unilateral deviation by seller I with seller J as, conditional on making all the

other proposed equilibrium offers to all buyers in B\J (a necessary equilibrium condition), that seller expects
to get a higher payoff from deviating at τ = 0 and reaching instead an agreement with J at τ = 1 with a higher
transfer t I

IJ (the expected outcome of the unique PBE with passive beliefs of the continuation subgame). Thus,
immediate agreement at (A∗, T ′′) does not survive unilateral deviations, and therefore cannot be an equilibrium.

Step 4. Finally, we show that there cannot exist a PBE with immediate agreement that results in trade (A′′, T
′′
) with

A′′ �= A∗. If A′′ �= A∗, then by the definition of A∗, there is some J and some I such that

ui (a
′′
j ) �= c′

(∑
j∈N

a′′
ij

)
for i ∈ I and j ∈ J,

and in the proposed equilibrium seller I and buyer J would make

I = 1

rI

(∑
J∈B

t ′′
IJ − CI (A′′)

)
and J = 1

rJ

(
vJ (A′′) −

∑
I∈S

t ′′
IJ

)
.

If either seller I or buyer J deviates from the proposed equilibrium at τ = 0, then at τ = 1, both believe that they
are in a complete information bilateral bargaining game, as seen in step 2. In that game, the bilateral gains from trade are
maximized for a constrained trade matrix Â such that

ui (̂a j ) = c′
(∑

j∈N

âij

)
for i ∈ I and j ∈ J,
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and thus, Â �= A
′′
. Such a deviation by either seller I or buyer J generates strictly positive gains from trade, which are

shared among the two players in the issuing subgame, and with an agreement reached at τ = 1. Therefore, the deviation
does not create losses from delay (as trade only starts at τ = 1). Therefore, such a deviation increases the payoff of I , of
J , or both: so at least one of the two players has a strictly profitable deviation from the proposed equilibrium. Thus, there
cannot be BPE that results in trade (A′′, T

′′
) with immediate agreement where A′′ �= A∗. Q.E.D.

Proof of Lemma 2. Given that in equilibrium the total quantity purchased by buyers J1 and J2 will be equal to the quantity
purchased by J3 alone, we only have to compare the respective transfer

ϕIJ =
∑

J ′∈B\J

(vJ ′ (AIJ ) − vJ ′ (A∗)) − (CI (AIJ ) − CI (A∗)).

We will first transform this expression. Note that

CI (A∗) = |I | c(|N | a∗) and
∑

J ′∈B\J

vJ ′ (A∗) = (|N | − |J |)u(a∗
j ),

where a∗
j is a column vector with each element equal to a∗. Recall that ui (a j ) denotes the partial derivative of u with

respect to the consumption of good i ∈ G when a j is the consumption vector for consumer j . It is also convenient to
write each aIJ

ij element of AIJ with i ∈ I and j /∈ J as

aIJ
ij = |N | a∗ − |J | �IJ

|N | − |J | ,

where we still need to determine the (symmetric) adjustments �IJ . From the first-order condition, we have

c′(|N | a∗ − |J |�IJ ) = ui (a
IJ
j ) for i ∈ I and j /∈ J, (A4)

so that with strict convexity we have immediately �IJ ∈ (0, a∗). (For future reference, note that it follows that �IJ = 0 if
marginal cost is constant.) With this notation, using also that

CI (AIJ ) = |I | c((|N | a∗ − |J |�IJ )

and that ∑
J ′∈B\J

vJ ′ (AIJ ) = (|N | − |J |)u(aIJ
j ),

we can rewrite all ϕIJ , and in particular, we obtain

ϕIJ3 = (|N | − |J1| − |J2|)
(
u
(
aIJ3

j

)− u
(
a∗

j

))− |I | (c(|N | a∗ − |J3|�IJ3 ) − c(|N | a∗)). (A5)

To establish the assertion, we derive boundaries for the left-hand and right-hand side of expression (4). For this, let
â

IJy

j be the column vector with each element equal to a∗ if i /∈ I and

â
IJy

ij = |N | a∗ − ∣∣Jy

∣∣�IJ3

|N | − ∣∣Jy

∣∣ if i ∈ I. (A6)

Thus, â
IJy

ij < aIJ3
ij for y = 1, 2 as differentiating expression (A6) with respect to |Jy |, the respective sign is determined by

a∗ − �IJ3 > 0, which holds strictly with strictly convex costs. We then have for y = 1, 2 that

ϕIJy > (|N | − ∣∣Jy

∣∣)(u (̂a
IJy

j ) − u(a∗
j )) − |I | (c (|N | a∗ − ∣∣Jy

∣∣�IJ3
)− c(|N | a∗)

)
, (A7)

as we did not use the optimal adjustment |Jy |�IJy but instead |Jy |�IJ3 . For condition (4) to hold, using (A5) and (A7), it
is sufficient that the following two conditions hold:(

c
(|N | a∗ − |J3| �IJ3

)− c(|N | a∗)
)− (

c
(|N | a∗ − |J1| �IJ3

)
(A8)

+c(|N | a∗)) − (
c
(|N | a∗ − |J2| �IJ3

)+ c(|N | a∗)
)

>0

and

(|N | − |J1| − |J2|)
(
u
(
aIJ3

j

)− u
(
a∗

j

))− (|N | − |J1|)
(
u
(̂
aIJ1

j

)− u
(
a∗

j

))
(A9)

−(|N | − |J2|)
(
u
(̂
aIJ2

j

)− u
(
a∗

j

))
≤ 0.

We confirm (A8) and (A9) separately. Take first condition (A8), which transforms to

c(|N | a∗) − c(|N | a∗ − |J1| �IJ3 ) > c(|N | a∗ − |J2| �IJ3 ) − c((|N | a∗ − (|J1| + |J2|)�IJ3 ),
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so that this is indeed strictly satisfied when c is strictly convex. Next, take condition (A9). Observe that the left-hand side
is zero if it were that �IJ3 = a∗, but �IJ3 ∈ (0, a∗) and so for y = 1, 2, we also have that

|N | a∗ − ∣∣Jy

∣∣�IJ3

|N | − ∣∣Jy

∣∣ <
|N | a∗ − |J3| �IJ3

|N | − |J3| .

Differentiate the left-hand side of (A9) with respect to �IJ3 , which by symmetry for any i ∈ I can be simplified to

|I | [|J1| ui (̂a
IJ1
j ) + |J2| ui

(̂
aIJ2

j

)− (|J1| + |J2|)ui

(
aIJ3

j

)]
. (A10)

As â
IJy

ij < aIJ3
ij for y = 1, 2 and i /∈ I , and the second-order derivatives are strictly negative for each i, j ∈ G, we then have

that ui (a
IJ3
j ) < ui (̂a

IJy

j ), and so that the derivative (A10) is positive. Finally, as for (strictly) convex costs �IJ3 ∈ (0, a∗),
the left-hand side of (A9) is increasing in that interval and equal to zero when �IJ3 = a∗, and thus, (A9) holds (strictly)
when costs are (strictly) convex. Q.E.D.

Proof of Lemma 3. As the total quantity purchased by J1 and J2 is equal to the quantity purchased by J3 alone, we only
have to compare the respective transfers

κIJ = (vJ (A∗) − vJ (AIJ )) −
∑

I ′∈S\I

(CI ′ (A∗) − CI ′ (AIJ )),

as used in condition (5). As vJ (A∗) = |J |u(a∗
j ), these elements cancel in (5) and this expression can therefore be rewritten

as

vJ (AIJ3 ) −
∑

I ′∈S\I

CI ′ (AIJ3 ) +
∑

I ′∈S\I

CI ′ (A∗) (A11)

≤ vJ (AIJ1 ) −
∑

I ′∈S\I

CI ′ (AIJ1 ) + vJ (AIJ2 ) −
∑

I ′∈S\I

CI ′ (AIJ2 ) + 2
∑

I ′∈S\I

CI ′ (A∗).

We proceed as in the proof of Lemma 2 by first deriving properties of the optimal reallocation of purchases. Let �IJ

denote the (symmetric) increase in the consumption by consumer j ∈ J of each good i that is not produced by I , so that
for these elements aIJ

ij = a∗ + �IJ /|J |, and note that c′(|N |a∗ + �IJ ) = ui (aIJ
j ) for j ∈ J and i /∈ I . Note that �IJ > 0

as the cross-partial derivatives of u(·) are strictly negative. Using that

vJ (AIJ ) −
∑

I ′∈S\I

CI ′ (AIJ ) = |J | u(aIJ
j ) − (|G| − |I |)c(|N | a∗ + �IJ ) (A12)

and ∑
I ′∈S\I

CI ′ (A∗) = (|G| − |I |)c(|N | a∗),

we can further rewrite condition (A11) as follows:

|J3| u(aIJ3
j ) − (|G| − |I |)c(|N | a∗ + �IJ3 ) − (|G| − |I |)c(|N | a∗) (A13)

≤ |J2| u(aIJ2
j ) − (|G| − |I |)c(|N | a∗ + �IJ2 ) + |J1| u(aIJ1

j ) − (|G| − |I |)c(|N | a∗ + �IJ1 ).

If there is a single seller, that is, |I | = |G|, then �IJ is zero and therefore both sides of (A13) are equal. Suppose for the
remainder that |I | �= |G|. We proceed by deriving boundaries. Inequality (A13) will then be satisfied if a more stringent
inequality is satisfied, which is obtained by replacing in the inequality above the optimizers �IJ2 and �IJ1 , respectively,
by �IJ3 |J2 |

|J3 | and �IJ3 |J1 |
|J3 | . However, then the respective column vectors used as arguments in u(·) in (A13) are all the same,

namely, equal to aIJ3
j (i.e., each element equal to a∗ + �IJ3 /|J3| for each good that is not produced by I and 0 for each

good produced by I ). The respective utilities in (A13) then cancel out and after dividing by (|G| − |I |), we are left with
the condition

c
(|N | a∗ + �IJ3

)− c

(
|N | a∗ + �IJ3

|J1|
|J3|

)
− c

(
|N | a∗ + �IJ3

|J2|
|J3|

)
+ c (|N | a∗) ≥ 0.

This is finally equivalent to

c(x + y) − c(x + λy) − c(x + (1 − λ)y) + c(x) ≥ 0,

where x = |N |a∗, λ = |J1 |
|J3 | , and y = �IJ3 . We can then further rewrite this as∫ (1−λ)y

0

[
c′(x + λy + s) − c′(x + s)

]
ds ≥ 0,

which holds strictly by strict convexity of c(·). Q.E.D.
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Proof of Proposition 4. There are three possible cases when m assets are transferred by J2 to J1. Case 1: J1 > J2 and
thus J1 + m > J2. In this case, H H IB also increases and the final sizes of the largest and the smallest are, respectively,
larger and smaller than the initial sizes of the two buyers. Case 2: J1 < J2 and J1 + m > J2. In this case, H H IB also
increases and we have again that the final size of the largest and the smallest of the two buyers are, respectively, larger
and smaller than the initial sizes of the two buyers, that is, Ĵ1 is larger than the initial size of J2 by J1 + m − J2 assets and
Ĵ2 is smaller than the initial size of J1 by J1 + m − J2 assets. Thus, its effect is similar to those of a Case 1 transfer of
J1 + m − J2 assets from the smaller J1 to the larger J2. Case 3: J1 < J2 and J1 + m < J2. In this case, H H IB decreases
and the final size of the largest and the smallest of the two buyers are, respectively, smaller and larger than the initial
sizes of the two buyers. Thus, its effect has the inverse sign of a Case 1 transfer of m assets from a smaller buyer J1 + m
to a larger buyer J2. We conclude that studying Case 1 transfers allows us to sign the effects of any transfer of m assets
between two buyers, and the proposition follows if (as we show next) this has the effect of, respectively, decreasing ϕIJ

and increasing κIJ .
As goods are perfect substitutes, we can simplify expressions as follows. Considering a disagreement between I

and J , we generically denote by â the (adjusted) consumption of each good of seller I by each consumer of buyer J ′ �= J ,
so that

ϕIJ = max
â

[(|N | − |J |) u ((|G| − |I |) a∗ + |I | â) − |I | c ((|N | − |J |) â)] (A14)

− [(|N | − |J |) u (|G| a∗) − |I | c (|N | a∗)] ,

and thus â solves

u ′ ((|G| − |I |) a∗ + |I | â) − c′ ((|N | − |J |) â) = 0.

As described in the main text, we consider an increase in |J1| and a corresponding decrease in |J2|. Though |J | takes
on only integer values, note that expression (A14) is defined also generally for real-valued |J |. Denote the respective
real-valued expression by a function ϕ̃I (x = |J |) and let x1 denote the size of buyer J1, x2 the size of buyer J2, and
x2 = M − x1. From the application of the Envelope Theorem, we have

d (̃ϕI (x1) + ϕ̃I (x2))

dx1

= [u ((|G| − |I |) a∗ + |I | â2) − u ((|G| − |I |) a∗ + |I | â1)] (A15)

− |I | [̂a2c′ ((|N | − x2) â2) − â1c′ ((|N | − x1) â1)
]
,

where ây (for y = 1, 2) solves

u ′ ((|G| − |I |) a∗ + |I | ây

)− c′ ((|N | − xy

)
ây

) = 0, (A16)

so that from strict convexity of c(·) and strict concavity of u(·), we also have â1 > â2 as long as x1 > x2. Substituting
(A16) into (A15), this expression is strictly negative if

u ((|G| − |I |) a∗ + |I | â1) − u ((|G| − |I |) a∗ + |I | â2) (A17)

> |I | â1u ′ ((|G| − |I |) a∗ + |I | â1) − |I | â2u ′ ((|G| − |I |) a∗ + |I | â2) .

Using strict concavity of u(·) and â1 > â2, (A17) surely holds if, on the right-hand side, we replace u ′((|G| − |I |)a∗ + |I |̂a2)
by u ′((|G| − |I |)a∗ + |I |̂a1), which yields the following sufficient requirement:

u ((|G| − |I |) a∗ + |I | â1) − u ((|G| − |I |) a∗ + |I | â2)

|I | (̂a1 − â2)
> u ′ ((|G| − |I |) a∗ + |I | â1) .

This holds from strict concavity of u(·) as then for β > α, we have that

u(β) − u(α)

(β − α)
> u ′(β).

The assertion in the proposition concerning seller dependency then follows as, first, by leaving |J1| + |J2| = M constant,
all other ϕIJ for J ∈ B\{J1, J2} are not affected, and, second, we can express

(ϕI Ĵ1
+ ϕI Ĵ2

) − (ϕIJ1 + ϕIJ2 ) =
∫ |J1 |+m

|J1 |

d (̃ϕI (x1) + ϕ̃I (M − x1))

dx1

dx1 < 0.

We consider now the case of buyer dependency. Considering a disagreement between I and J , when goods are
perfect substitutes, we had

κIJ = |J | u(|G| a∗) − (|G| − |I |)c(|N | a∗)

− max
â

[|J | u((|G| − |I |) â) − (|G| − |I |)c((|N | − |J |) a∗ + |J | â)] .

Again, we consider an increase in |J1| and a corresponding decrease in |J2|. Though |J | takes on only integer values, note
that the expression above is defined also generally for real-valued |J |. Denote the respective real-valued expression by a
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function κ̃I (x = |J |). We have from application of the Envelope Theorem that

d(κ̃I (x1) + κ̃I (x2))

dx1

= −u((|G| − |I |) â1) + u((|G| − |I |) â2)

+(̂a1 − a∗)(|G| − |I |)c′((|N | − x1) a∗

+x1â1) − (̂a2 − a∗)(|G| − |I |)c′((|N | − x2) a∗ + x2â2),

where ây (for y = 1, 2) solves

u ′((|G| − |I |) ây) − c′(
(|N | − xy

)
a∗ + xy ây) = 0. (A18)

From strict convexity of c(·) and strict concavity of u(·), we have â1 < â2 as x1 > x2. Substitute (A18) into d(κ̃I (x1)+κ̃I (x2))
dx1

and the expression becomes

−u((|G| − |I |) â1) + u((|G| − |I |) â2) + (̂a1 − a∗)(|G| − |I |)u ′((|G| − |I |) â1)

−(̂a2 − a∗)(|G| − |I |)u ′((|G| − |I |) â2),

which is decreasing in a∗, as u ′((|G| − |I |)̂a1) > u ′((|G| − |I |)̂a2) when x1 > x2, and thus it is made smaller if we replace
a∗ by â1. It will therefore be positive if

u((|G| − |I |) â2) − u((|G| − |I |) â1)

(|G| − |I |)(̂a2 − â1)
> u ′((|G| − |I |) â2).

This holds again due to the strict concavity of u(·). The assertion concerning buyer dependency then follows as, first, by
leaving |J1| + |J2| = M constant, all other κIJ for J ∈ B\{J1, J2} are not affected, and, second, we can express

(κI Ĵ1
+ κI Ĵ2

) − (κIJ1 + κIJ2 ) =
∫ |J1 |+m

|J1 |

d(κ̃I (x1) + κ̃I (M − x1))

dx1

dx1 > 0.

Q.E.D.
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