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Mutually Consistent Revealed Preference Demand Predictions

Abi Adams*

March 11, 2019

Abstract

Revealed preference restrictions are increasingly used to predict demand behaviour at new budgets

of interest and as shape restrictions in nonparametric estimation exercises. However, the restrictions

imposed are not sufficient for rationality when predictions are made at multiple budgets. I highlight the

nonconvexities in the set of predictions that arise when making multiple predictions. I develop a mixed

integer programming characterisation of the problem that can be used to impose rationality on multiple

predictions. The approach is applied to the UK Family Expenditure Survey to recover rational demand

predictions with substantially reduced computational resources compared to known alternatives.

1 Introduction

The revealed preference approach to demand prediction uses the behavioural hypothesis of utility maximisa-

tion in conjunction with a finite set of observations on a consumer’s past behaviour to set identify demand

responses at new budgets of interest. The benefits of such an approach are well understood: bounds can be

placed on behavioural responses and welfare effects without the need for restrictive assumptions on consumer

preferences. As Blundell (2005) argues, it is possible “to accomplish all that is required from parametric mod-

els of consumer behaviour using only nonparametric regression and revealed preference theory”; crucially,

however, without placing strong restrictions on income and price responses.

*University of Oxford and Institute for Fiscal Studies. Email: abi.adams@economics.ox.ac.uk. I gratefully acknowledge
funding from the Economic and Social Research Council (ESRC) under grant ES/I024808. I would like to thank Richard
Blundell, Laurens Cherchye, Ian Crawford, Bram De Rock, Thomas Demuynck, Jeremias Prassl, and my four referees for
helpful comments. I would like to thank Yuichi Kitamura and Jörg Stoye for the replication code underlying Kitamura and
Stoye (2017).
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Since Varian (1982), revealed preference arguments have been successfully applied to predict consumer

behaviour in a number of different scenarios including bounding demand responses for gasoline (Blundell,

Kristensen, and Matzkin 2014), food (Blundell, Browning, and Crawford 2008), broadband (Varian 2012)

and leisure (Manski 2014; Kline and Tartari 2016) among others. Recent methodological advances have,

furthermore, the potential to extend the informativeness and scope of the approach. Nonparametric regres-

sion and rationality restrictions are increasingly combined to refine the set of revealed preference demand

predictions (Blundell, Browning, and Crawford 2003; Blundell, Browning, and Crawford 2008; Blundell, Kris-

tensen, and Matzkin 2014; Blundell, Browning, Cherchye, Crawford, De Rock, and Vermeulen 2015) or to

recover theory-consistent, well-disciplined point estimates (Horowitz and Lee 2017; Blundell, Horowitz, and

Parey 2017). The toolkit has also been developed to account for (nonadditive) heterogeneity in consumer

preferences, moving the literature beyond deterministic choice models to allow for bounds to be placed on

features of the distribution of demand (Blundell, Kristensen, and Matzkin 2014; Hoderlein and Stoye 2015;

Kitamura and Stoye 2017).

This paper is concerned with whether the revealed preference restrictions imposed in the literature are

sufficient for a set of predictions to be rational. It will be shown that, in general, when predictions are made

at a set of budgets, they are not. In this context, application of the present restrictions (as set out in Varian

(1982)) does not guarantee that the resulting set of predictions are jointly rational. The aim of this paper

is to develop a practical characterisation of the set of mutually consistent demand predictions that can be

implemented using reasonable computational resources by applied researchers.

This is of interest because applied problems often require demand behaviour to be forecast at multiple

budgets. For example, researchers may be interested in comparing behavioural responses across a number

of different policy reforms simultaneously. Furthermore, when revealed preference inequalities are used as

shape restrictions to constrain nonparametric regression models, demand predictions are made over a grid of

budget parameters.1 Indeed, the difficulty of imposing rationality on sets of nonparametric demand estimates

has held back the practical application of recent methodological advances that combine revealed preference

1While theory consistency constraints may be imposed for a number of reasons beyond ensuring rationality of predictions
(for example, decreasing the variance of nonparametric estimates and improving out-of-sample extrapolation properties — see
Matzkin (1994) for a review), rationality is an important property for demand predictions if they are to be used for welfare
analysis.
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restrictions with nonparametric regression. For example, if estimated income expansion paths violate ra-

tionality constraints, then they cannot be used to refine sets of revealed preference demand predictions as

suggested in Blundell, Browning, and Crawford (2008). Note that estimated demands can violate revealed

preference rationality restrictions simply due to sampling variation rather than any irrationality on the part

of individual consumers or model misspecification.

In this paper, the revealed preference methodology is extended to address the prediction of rational de-

mands over a set of new budgets. Revealed preference bounds do not extend without modification to scenarios

in which multiple demand predictions are to be made because predictions across different budgets must be

consistent with one another for them jointly to satisfy rationality restrictions— that is, rationality restric-

tions must hold between predictions (Blundell, Kristensen, and Matzkin 2014). This requirement of ‘mutual

consistency’ of predictions generates nonlinearities in the standard revealed preference-type inequalities and

results in a non-convex set of demand predictions, generating significant computation difficulties.2

It is shown that the revealed preference restrictions associated with our problem can be characterised as a

mixed integer linear programme (MILP), which can be implemented with reasonable computational resources.

Approaches for enhancing the efficiency of the programming problem are put forward and connections are

made to the recent methodological advances of Hoderlein and Stoye (2015) and Kitamura and Stoye (2017).

The practical use of the methodology is demonstrated via an illustrative application to consumer microdata

from the UK Family Expenditure Survey. We show that the approach put forward in this paper can generate

significant computational savings over known alternatives (e.g. modification of the rational types method-

ology developed in Kitamura and Stoye (2017)) and allows one to recover theory-consistent nonparametric

demand estimates with ease, permitting straightforward application of the techniques introduced by Blundell,

Browning, and Crawford (2008).

This paper proceeds as follows. Section 2 gives an overview of the revealed preference approach to demand

prediction, including recent methodological advances that make use of nonparametric income expansion path

estimates. Section 3 highlights the need for mutual consistency of demand predictions, links this problem

to difficulties in imposing rationality on nonparametric demand systems more broadly, and discusses the

2See Section 4 of Blundell, Kristensen, and Matzkin (2014) for a discussion of this point and their proposed two-step estimation
strategy to estimate rational income expansion paths.
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strategies currently available for generating jointly rational demands. Section 4 develops a practical mixed

integer programming characterisation of mutually consistent rationality constraints. Section 5 demonstrates

the practical relevance of the characterisation, showing that it can be applied in contexts often encountered

in applied demand analysis with reasonable computational resources. Finally, Section 6 concludes. Proofs of

all propositions are in the Appendix.

2 Revealed Preference Restrictions in Demand Analysis

Varian (1982) first demonstrated how revealed preference arguments can be used to predict counterfactual

demands. To illustrate, imagine that we are interested in a consumer’s demand behaviour at a finite number

of budgets {pi, xi}i=1,...,B , where pi ∈ R
K
++ and xi > 0 give prices and total expenditure at budget i

respectively. Consumer behaviour is observed at a subset of these budgets, D = {1, ..., T}, where T < B. We

wish to use the panel of observations {pt,qt}t=1,...,T to predict behaviour at the remaining subset of budgets,

P = {T + 1, ..., B}.

Throughout this paper, I assume that the choice behaviour of consumers is rational, where rationality is

equated with choice behaviour that satisfies the Generalised Axiom of Revealed Preference (GARP), defined

below.3 GARP is a consistency condition. Intuitively, if an individual ‘reveals a preference’ for some bundle

qt over another bundle qs by selecting qt when qs is available, then that individual cannot choose qs over

qt in an alternative choice scenario in which qt is available.

Direct revealed preference. If p
′

tqs ≤ xt, then qt is directly revealed preferred to qs, or qtR
0qs. Further,

the budget {pt, xt} is indirectly direct revealed preferred to the budget {ps, xs}, or {pt, xt}R0{ps, xs}.

Direct strict revealed preference. If p
′

tqs < xt, then qt is directly strictly revealed preferred to qs,

or qtP
0qs. Further, the budget {pt, xt} is indirectly directly strictly revealed preferred to {ps, xs}, or

{pt, xt}P0{ps, xs}.

3See Apesteguia and Ballester (2015), Dean and Martin (2016), Echenique, Lee, and Shum (2011) and Varian (1990) for
approaches to measure violations of rationality.

4



Revealed preference. If qtR
0qu,quR

0qv, ...,qwR
0qs, then qt is revealed preferred to qs, qtRqs. The

analogous definition holds for the indirect revealed preference relation.

Strict revealed preference. If qtP
0qu,quP

0qv, ...,qwP
0qs, then qt is strictly revealed preferred to qs,

qtPqs. The analogous definition again holds for the indirect strict revealed preference relation.

Generalised Axiom of Revealed Preference (GARP). If qtRqs, then

p
′

sqt ≥ xs.

GARP can be applied to set identify rational demands without any functional form assumptions on

preferences beyond nonsatiation of the utility function. Intuitively, not all bundles that are affordable at a new

budget are consistent (i.e. jointly satisfy GARP) with observed demand behaviour at budgets t = {1, ..., T}.

The revealed preference approach relies on this consistency requirement to bound demand predictions. Each

element of the set of predictions identified by revealed preference arguments can be jointly rationalised with

past observations by a monotonic, concave, and non-degenerate utility function.4

This approach to demand prediction is well developed when interest lies in predicting behaviour at a single

new budget of interest, i.e. P = {T + 1}. The set of rational demands that are recovered by revealed prefer-

ence arguments is referred to as the ‘support set’, SVT (pT+1, xT+1), where the superscript V denotes ‘Varian’

and the subscript T is to reflect that predictions are made on the basis of observed demand behaviour at

budgets t = {1, ..., T}. Any element of SV satisfies GARP in union with observed past consumption choices;

any demand in the set’s complement violates GARP.

Varian Support Set. Given the set of observations {pt,qt}t=1,...,T and a new budget, {pT+1, xT+1}, the

4Monotonicity of the utility function is a maintained assumption throughout this paper and ensures that recovered demands
lie on budget hyperplanes.
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Varian support set is defined as:

SVT (pT+1, xT+1) =


qT+1 :

qT+1 ≥ 0

p
′

T+1qT+1 = xT+1

{pt,qt}t=1,...,T+1 satisfies GARP

(1)

The first and second constraints simply impose nonnegativity and budget exhaustion. The final condition

imposes GARP. To give a simple example, imagine that we observe an individual’s demand behaviour at the

budgets t = 1, 2:

p1 =

2

1

 , x1 = 1, q1 =

0.3

0.4



p2 =

1

2

 , x2 = 1, q2 =

0.4

0.3


We want to predict behaviour at the new price regime:

p3 =

1.5

1.2

 , x3 = 1

Figure 1 gives the prediction problem graphically. GARP restricts counterfactual demands to lie on the

line segment AB. Demanding strictly less than 0.2 units of q1 at the new budget is ruled out because for any

such demand, q3Rq1 but p
′

1q3 < x1. Analogously, demanding strictly more than 0.44 units of q1 is ruled out

because for any such demand, q3Rq2 but p
′

2q3 < x2.

The support set is convex, endowing it with a number of convenient properties for applied work.5 Further,

the constraints defining membership of the support set are linear in unknowns and thus rational counterfactual

demands can be easily recovered using linear programming methods (Varian 1982). This simplicity and

practical convenience makes the approach convenient for applied work. With consumer panel data, observed

individual demands can be used to bound counterfactual demands on an agent-by-agent basis (Adams 2014).

5See Proposition 2 of Blundell, Browning, and Crawford (2003) for a proof of this.
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Figure 1: Varian Support Set

Figure notes: Demands q1 and q2 are observed at prices p1 and p2 respectively. Consistency with GARP constrains demand
behaviour at the new budget p3 to the segment AB.
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However, these techniques are also applied to aggregate and repeated cross section data, using conditional

means or quantiles to bound predictions at new prices of interest (Varian 1982; Blundell, Browning, and

Crawford 2008; Blundell, Kristensen, and Matzkin 2014).

2.1 Recent Developments: E-Bounds

Despite the approach’s simplicity and its liberation from ad hoc functional form choices, the revealed pref-

erence approach to demand prediction faces problems. An oft levied criticism is that the bounds on demand

responses yielded by the approach are too wide to be useful for any practical purpose. When few observed

budgets are revealed worse to a new budget of interest, and when few hyperplanes intersect with the coun-

terfactual budget of interest, revealed preference conditions lack bite and the bounds on demand predictions

may be very wide.

In response to such criticisms, revealed preference techniques are increasingly used alongside estimated

Engel curves to tighten the bounds on counterfactual demand predictions. Blundell, Browning, and Crawford

(2008) were the first to show how one could use Engel curves to ‘control’ for budget variation in the data,

and achieve the best bounds on nonparametric counterfactual demand predictions for the representative con-

sumer.6 Rather than employ, for example, demands evaluated at mean income to bound expected demands

at new budgets of interest, one instead estimate Engel curves in each of the t = 1, ..., T cross-sections and

evaluates demands at a carefully chosen set of income levels, intersection incomes, for the purpose of bound-

ing predictions at a new budget of interest.

Intersection Incomes. The intersection income x̃t, for t ∈ {1, ..., T} is the maximal income for which

qT+1R
0qt(x̃t), with p′T+1qT+1 = xT+1.

Figure 2 depicts the key components of the approach. Rather than use the Marshallian demands at,

for example, mean income, q1(x̄1) and q2(x̄2), to bound demands at {p3, x3}, demands evaluated at the

‘intersection incomes’, q1(x̃1) and q2(x̃2), are employed, facilitating a refinement of the support set.

6See Blundell, Browning, Cherchye, Crawford, De Rock, and Vermeulen (2015) for the extension of the approach that also
imposes transitivity.
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Figure 2: E-Bounds Support Set

q (x | p1)

q (x | p2)

{p3, x3}

{p1, x1}

{p2, x2}

̅

̅

q1( x1 )̅

q2( x2 )̅

q1( x1 )

q2( x2 )

̃

Figure notes: By using demands evaluated at intersection incomes, q1(x̃1) and q2(x̃2), one facilitates a refinement in the bounds
on demand behaviour at {p3, x3}.

The e-bound support set, SeT (pT+1,qT+1), is then defined as:

E-Bound Support Set. Given the set of observed prices and intersection demands {pt,qt(x̃t)}t=1,...,T and

a new budget, {pT+1, xT+1}, the support set is defined as:

Se(pT+1, xT+1) =


qT+1 :

qT+1 ≥ 0

p
′

T+1qT+1 = xT+1

{p1, ...,pT ,pT+1,q1(x̃1), ...,qT (x̃T ),qT+1} satisfy GARP.

(2)

Blundell, Browning, and Crawford (2008) show that e-bounds can yield very tight predictions on coun-

terfactual demands, greatly enhancing the potential utility of revealed preference prediction exercises. The

methodology has also been extended to impose transitivity (Blundell, Browning, Cherchye, Crawford, De Rock,

and Vermeulen 2015) and to allow for richer forms of consumer heterogeneity. Blundell, Kristensen, and
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Matzkin (2014) allow for non-additive heterogeneity, adapting the technique to bound conditional quantiles

predictions.

3 The Need for Mutual Consistency

The greater informativeness of e-bounds, and the fact that they can be applied to a wider variety of data

sets, has rendered the revealed preference approach much more attractive. However, in applying the e-bound

methodology to real-world data sets, an issue has arisen: estimated intersection demands, qt(x̃t), do not

always satisfy GARP themselves. This is a key problem because unless these demands satisfy rationality

they cannot be used to bound rational counterfactual demands at new budgets of interest. As far as the

author is aware, this issue has arisen in all applications of the methodology to date. Note that estimated

intersection demands could be irrational simply due to sampling variation rather than any irrationality on

the part of individual consumers or model misspecification. Indeed, in the limit, given that the demand

function satisfies a boundary condition and is income-Lipschitzian, the revealed preference constraints do not

bind (Mas-Colell 1978). However, there is no reason why this should be the case in finite samples.

The key difficulty that researchers have in imposing rationality on intersection demands is that there

is no simple method for imposing mutual consistency or joint rationality of demand predictions. Imposing

rationality on a set of demand predictions, such as is required for imposing GARP on the set of intersection

demands used to construct e-bounds, is not addressed by Varian (1982). In the traditional consumer panel

setting in which the revealed preference approach is well established, a consumer’s past demand observations

are used to bound a single counterfactual demand or consistency is imposed on a prediction-by-prediction

basis.

The difficulty of imposing rationality on a set of estimated demands in the context of nonparametric

demand estimation has also been recognised in the literature. For example, Blundell, Horowitz, and Parey

(2012) and Blundell, Horowitz, and Parey (2017) estimate the demand function for gasoline subject to the

Slutsky condition on a grid of budget points but do not impose that the Slutsky condition holds across points

on the grid. While theory consistency constraints may be imposed for a number of reasons beyond ensuring

rationality of predictions (for example, decreasing the variance of nonparametric estimates and improving out-
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of-sample extrapolation properties — see Matzkin (1994) for a review), rationality is an important property

for demand predictions if they are to be used for welfare analysis.7 Further, even if taking a traditional

revealed preference approach, using an observed consumer panel to directly bound counterfactuals, applied

problems may require demand behaviour to be forecast at multiple budgets. For example, researchers may

be interested in comparing behavioural responses across a number of different policy reforms simultaneously.

3.1 The Sufficient Support Set

Imposing consistency on a prediction-by-prediction basis is not sufficient for rationality of a set of predictions

because it does not require that these predicted demands jointly satisfy GARP. To illustrate this in the

context of the traditional Varian approach, let us return to the simple example from the last section. In

Figure 3, membership of SV2 (p3, x3) constrains demand responses at {p3, x3} to the line segment AB as

before. We now, however, also predict demand at {p4, x4}:

p4 =

1.2

1.5

 , x4 = 1

Membership of SV2 (p4, x4) constrains demand responses at {p4, x4} to the segment CD.

Yet, while the predictions in SV2 (p3, x3) and SV2 (p4, x4) are consistent with observed demands, they are

not all consistent with one another. Formally, not all elements of the Cartesian product of these support

sets satisfy revealed preference. In Figure 3, demands at OB are not mutually consistent with demands at

OC. Imposing rationality on a budget-by-budget basis is necessary but not sufficient for consistency of all

predictions with GARP; additional restrictions are required to ensure that predictions are themselves jointly

rational.

In what follows, let the support set when demands are recovered at multiple budgets, and at which mutual

consistency of predictions is imposed, be referred to as the ‘sufficient support set’, SST .

Sufficient Support Set. Given the set of budgets B = {1, ..., B}, for which demand behaviour is observed

7If, for example, nonparametric demand predictions jointly fail rationality, methods applied to these predictions to estimate
consumer surplus and there welfare metrics will suffer from path dependency.
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Figure 3: Multiple Predictions

Figure note: Demands q1 and q2 are observed at budgets {p1, x1} and {p2, x2}. We want to bound predictions at {p3, x3}
and {p4, x4}. Demands in patch OB and patch OC fail GARP.
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for the subset D = {1, ..., T} and is to be predicted over the subset P = {T + 1, ..., B}, the sufficient support

set is defined as:

SST =


{qb}b∈P :

qb ≥ 0 for all b ∈P [S1]

p
′

bqb = xb for all b ∈P [S2]

{pt,qt}t∈B satisfy GARP [S3]

3.2 Intersection Demands & Rational Nonparametric Demand Systems

In the context of e-bounds (i.e. revealed preference predictions using Engel curves), the issue of multiple

prediction arises in the estimation of the T intersection demands in addition to the problem of predicting

demands at multiple new price vectors of interest. Imposing rationality on a single Engel curve given a cross

section without price variation is trivially satisfied without further functional form restrictions.8 However,

estimating Engel curves at a number of different price vectors to recover a set of intersection demands leads

to a similar problem as when bounding counterfactual demands at multiple budgets of interest. Figure 4

gives one such example of this. Given (estimated) Engel curves, q(x|p1) and q(x|p2) as depicted, predicted

intersection demands at the new budget of interest {p3, x3} fail GARP. If taking any one Engel curve or

intersection demand individually, this issue of joint rationality would not arise.

Estimating nonparametric demand systems subject to a rationality constraint is a closely related problem.

While several methods exist for imposing Slutsky symmetry upon nonparametric demand systems (Haag,

Hoderlein, and Pendakur 2009; Blundell, Horowitz, and Parey 2012; Blundell, Horowitz, and Parey 2017),

this is only necessary but not sufficient for rationality. For rationality, the Slutsky matrix must also be

negative semidefinite.

3.3 Nonconvexity

Different strategies have been used to cope with the irrationality of estimated intersection demands when

constructing e-bounds. One simple strategy involves searching for contiguous periods of revealed-preference-

consistent intersection demands and discarding those responsible for violations (Blundell, Browning, and

8Any pattern of behaviour could be considered rational as budget hyperplanes will not cross and revealed preference restric-
tions will not bind.
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Figure 4: Irrational Intersection Bounds

q (x | p1)

q (x | p2)

{p3, x3}

{p1, x1}

{p2, x2}

q1( x1 )

q2( x2 )

̃

̃

̃

Figure notes: Intersection demands, q1(x̃1) and q2(x̃2), violate GARP. Therefore, no demand behaviour at p3, x3 will satisfy
revealed preference constraints in union with these intersection demands.

Crawford 2008). The drawback of such an approach is that bounds may remain wide if many intersection

demands are dropped. A popular alternative has been to perturb unconstrained intersection demands,

q̂t(pt, x̃t) such that they jointly satisfy GARP (Blundell, Browning, and Crawford 2008). Constrained

intersection demands are then defined as the solution to a constrained non-linear least squares problem

{q̂Ct }t=1,...,T = arg min
{qt}t=1,...,T

T∑
t=1

(qt − q̂t(x̃t))
2 (3)

subject to {q̂Ct }t=1,...,T jointly satisfying GARP, i.e. mutual consistency of predictions.9

This is a computationally challenging optimisation problem given the nonconvexity of the solution set,

which can create significant estimation difficulties:

“... in fact, the great watershed in optimisation isn’t between linearity and nonlinearity, but

between convexity and nonconvexity”

9This was done by imposing the constraint that the Afriat efficiency index of the set of intersection demands is zero using
non-linear optimisation techniques (Blundell, Browning, and Crawford 2008). See Blundell, Kristensen, and Matzkin (2014) for
an alternative two-step estimation strategy to estimate revealed preference consistent income expansion paths.
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R. Tyrrell Rockafellar, 199310

To illustrate this issue, let us return again to our illustrative Varian-type example. As there are only two

goods, every feasible budget share specification at the new budgets, {p3, x3} and {p4, x4}, can be represented

in a two-dimensional diagram as in Figure 5. Demand predictions that are consistent with revealed preference,

and thus are elements of the sufficient support set, are given in light grey. Budget shares that are elements

of the Cartesian product of the Varian support sets but jointly violate revealed preference are given in dark

grey. This makes it clear that the sufficient support set is nonconvex. This precludes the construction of the

support set by linear programming methods, increasing the complexity of the characterisation of the support

set and complicating optimisation over its elements.11

Figure 5: Varian Support Set

The light grey region of panel corresponds to budget shares in the sufficient support set of the prediction problem given in Figure
3.

If the Varian support sets of any new budgets intersect at an interior point, not all combinations of de-

mands drawn from each Varian support set will mutually satisfy rationality and the sufficient support set is

nonconvex:

10R. Tyrrell Rockafellar (1993) “Lagrange Multipliers and Optimality”, SIAM Review 35 (2), 183-238.
11Any linear program is a convex optimisation problem (see, for example, Boyd and Vandenberghe (2004)).
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Proposition 1 SST is not convex if there exist budgets a, b ∈P at which ∃q̃ ∈ RK++ such that q̃ ∈ SVT (pa, xa)

and q̃ ∈ SVT (pb, xb).

Thus, the issue of non-convexity does not arise when one is only changing a single price while keeping the

budget constant; in this case, budget hyperplanes will not intersect at an interior point.

Note that the requirement of mutual consistency serves to restrict combinations of demand predictions

at new budgets of interest. Indeed, there will exist paths of rational demands over each new budget of

interest such that each element of every Varian support set features in SST (just not every combination of

every element will feature).

Proposition 2 For each qa ∈ SVT (pa, xa), there will exist a set of demand predictions {qb}b∈P/a such that{
qa, {qb}b∈P/a

}
∈ SST .

Proposition 2 implies that it is not possible for every combination of demand from the Varian support

sets to be jointly irrational. Only a proper subset of the Cartesian product of Varian support sets fails the

requirement of mutual consistency.12

The aim of the rest of this paper is to develop a practical characterisation of the sufficient support set

for empirical work that can be applied to bound demand predictions across a set of budgets of interest, to

estimate rational intersection demands, and to impose a sufficient condition for rationality of predictions on

nonparametric regression estimates. Whilst unable to remove the fundamental nonconvexity of the problem,

I will provide an elegant formulation of the problem for which there is a large and powerful machinery for

solving.

12Where ∅ is considered a proper subset. Considering a sequential characterisation of the support set helps to demonstrate
this point. (I would like to thank a referee for noticing this point.) Imagine selecting a demand at the first budget of interest,
T + 1, from the associated Varian support set, SV

T . Then, select a prediction from the T + 2 budget from the Varian support

set conditional on the prediction at T + 1, SV
T+1.

SS =

{qb}b∈P :

qT+1 ∈ SV
T (pT+1, xT+1)

qT+2 ∈ SV
T+1(pT+2, xT+2)

...
qB ∈ SV

B−1(pB , xB)
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4 A Mixed Integer Characterisation

The sufficient support set cannot in general be characterised by a linear programme given the interdependence

of rational demands across new budgets. However, a mixer integer linear programming (MILP) representation

of the necessary and sufficient constraints that define SST can be formulated.13 The field of mixed integer

programming has undergone “remarkable” improvements in recent years (Lima and Grossmann 2011). While

the MILP formulation does not remove the fundamental nonconvexity of our problem, a powerful set of

algorithms are available in standard software for solving problems of this type.

Proposition 3: MILP Representation of SST Given the set of budgets B, for which demand behaviour

is observed for the subset D ⊂ B and is to be predicted over the subset P = B/D , the MILP representation

of the sufficient support set is defined as:

SS =



{qb}b∈P :

qb ≥ 0 for all b ∈P [1]

p′bqb = xb for all b ∈P [2]

p
′

bqa > (1−Rba)xb for all a 6= b ∈ B [3]

Rab +Rbc ≤ 1 +Rac for all a 6= b 6= c ∈ B [4]

p
′

bqa ≥ Rabxb for all a 6= b ∈ B [5]

Rab = {0, 1} for all a 6= b ∈ B [6]

(4)

Constraints [1] through [5] are linear in unknowns and provide an operational methodology with which

practically to characterise the sufficient support set. Constraint [6] links the integer variable Rab to the

revealed preference relation. qaRqb is computationally represented by Rab = 1.

Constraints [1] and [2] impose that predictions respect the standard nonnegativity and adding up require-

ments. Constraint [3] defines the direct revealed preference relation, imposing the requirement that qbRqa,

i.e. Rba = 1, if p′bqa ≤ xb, thereby defining the direct revealed preference relation. To see this note that if

13Cherchye, De Rock, Sabbe, and Vermeulen (2008) characterise a necessary condition for collective rationality using a MILP
representation.
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Rba = 0, Constraint [3] evaluates as p
′

bqa > xb, which is a contradiction when p′bqa ≤ xb. Constraint [4]

imposes transitivity on the revealed preferred relation: for any budget a that is preferred to budget b, that

is revealed preferred to budget c, Rbc = 1, it must be the case that a is preferred to c, Rac = 1.

Constraint [5] imposes GARP: for any bundle qa that is preferred to a bundle qb (and thus Rab = 1), it

must be the case that qa is more expensive than xb.

To illustrate how demands in the region BOC in Figure 5 fail these conditions, imagine that at {p3, x3}

we draw some q3 ∈ OB and at {p4, x4} we draw some q4 ∈ CO. We have that p′3q4 < x3 and p′4q3 < x4.

Thus, for Constraint [3] to be satisfied R34 = 1 and R43 = 1. However, this leads to a contradiction at

Constraint [5], which requires R34 = 0 and R43 = 0. For demands in the sufficient support set, a specification

for the binary variables can be found such that the MILP constraints are satisfied.

Cost Efficiency Indices In some empirical applications of revealed preference methods, small deviations

from GARP are permitted. The most common way of allowing for small deviations of demand from GARP

is to define the Afriat Critical Cost Efficiency Index, 0 < e ≤ 1 (see Andreoni, Gillen, and Harbaugh (2011)

for a review). The lower is e, the greater the permitted inefficiency of consumer choice and the larger the

tolerable violations of GARP. The MILP constraints are easily modified to allow for some inefficiency in

demand predictions such that GARP does not hold precisely. If one wanted to allow for a level of inefficiency

e, one would replace Constraint [5], the GARP constraint, with:

p
′

bqa ≥ eRabxb (5)

where 0 < e ≤ 1 gives the pre-specified inefficiency level.

4.1 Efficiency Enhancements

Transitivity The MILP representation above is intuitive given that it links directly to the definition of

GARP and the transitivity of the direct revealed preference relation. However, it involves O(B3) constraints,

which quickly results in large formulations that can be hard to solve. Following Nobibon, Cherchye, Crama,

Demuynck, De Rock, and Spieksma (2016), harnessing insights from graph theory facilitates a more compact
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representation involving only O(B2) constraints. Specifically, Proposition 3 of Nobibon, Cherchye, Crama,

Demuynck, De Rock, and Spieksma (2016) can be applied to replace Constraint [4] with Constraints [4a] and

[4b].14

ua − ub < Rab for all a 6= b ∈ B [4a]

Rab − 1 ≤ ua − ub for all a 6= b ∈ B [4b]

Under this formulation, the Rab variables come to represent the ordering of utility levels, i.e. Rab = 1 iff

ua ≥ ub, rather than the revealed preference relation.

While this new formulation involves 2B additional continuous variables, there are only O(B2) constraints.

For even moderately large data sets, this significantly reduces the size of the problem bringing significant

computation time savings. In the context of testing the collective model of household consumption, Nobibon,

Cherchye, Crama, Demuynck, De Rock, and Spieksma (2016) find that switching to the more efficient transi-

tivity representation facilitates a tripling in the size of computationally feasible models and a large reduction

in computation time: testing for rationalisability on a data set of 60 observations took approximately 12

minutes with the collective model equivalent of Constraint [4] but only a matter of seconds with the equiv-

alents of [4a] and [4b]. Further, note that the computational burden of imposing transitivity is completely

eliminated in 2-good problems. As first proven by Rose (1958), transitivity has no empirical content when

K=2. In this special case then, Constraint [4] may be dropped from the programming problem.15

Irrelevant Budget Comparisons As often recognised in applications of revealed preference methods,

some budget comparisons are irrelevant for testing or imposing consistency with a particular model (Kitamura

and Stoye 2017; Barseghyan, Coughlin, Molinari, and Teitelbaum 2018). In our context, mutual consistency

of predictions does not need to be imposed across sets of non-intersecting new budgets.16 Let the undirected

intersection relation between budgets a, b be given as Iab = 1 if there is an intersection path between the

14Note that if one was interested in imposing the Strong Axiom of Revealed Preference, which rules out indifferences, only
Constraint 4a is required. I would like to thank Thomas Demuynck for helpful conversations on this point.

15See Blundell, Browning, Cherchye, Crawford, De Rock, and Vermeulen (2015) for a further discussion of the complications
caused by transitivity for testing and imposing SARP at a single budget.

16This is the same insight as in Kitamura and Stoye (2017), proof of Theorem 3.2. We discuss the connections between our
approaches in more depth later in the section.
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budgets, and Iab = 0 otherwise. This can be constructed as follows. First, compute the intersection relation

I0, where:

I0ab = I0ba = 1 if ∃q > 0 such that p′aq = p′bq, (6)

and I0ab = I0ba = 0 otherwise, for a 6= b and a, b = {1, ..., B}.17 Warshall’s Algorithm (Warshall, 1962) can

then be applied to compute the transitive closure of this relation to give Iab.

Subsets of non-intersecting budgets Pm are defined such that within a subset there is a path between

intersecting budgets (∀a, b ∈ Pm, Iab = 1) but between subsets there is no path of intersecting budgets

(∀a ∈ Pm, b ∈ Pn with m 6= n, Iab = 0). Mutual consistency of predictions can then be independently

imposed on each subset of new budgets Pm for joint rationality of the full set of predictions. That is,

mutual consistency restrictions will never be binding for demands predicted at budgets in different subsets

of non-intersecting budgets.18

Proposition 4 Define subsets Pm, such that P = ∪Mm=1Pm and ∀a, b ∈ Pm, Iab = 1 and ∀c ∈ Pm,

d ∈Pn with m 6= n, Icd = 0. Then, the sufficient support set is defined as:

SST =



{qb}b∈P :

qb ∈ SVT (pb, xb) for all b ∈P [1]

for m = 1, ...,M

p
′

bqa > (1−Rba)xb ∀a 6= b ∈Pm [2]

p
′

bqa ≥ Rabxb ∀a 6= b ∈Pm [3]

ua − ub < Rab ∀a 6= b ∈Pm ∪D [4a]

Rab − 1 ≤ ua − ub ∀a 6= b ∈Pm ∪D [4b]

(7)

where Rab = {0, 1}.

17This is easily constructed with standard linear programming methods.
18Proposition 4 is particularly useful if one is interested in predicting demands along a price path where only the relative price

of good k is varied. In this case, no budget in this set intersects with another at strictly positive quantities and so the prediction
problem is easily solved using a series of independent linear programmes.
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4.2 Connection to Alternative Approaches

An alternative characterisation of the sufficient support set comes from viewing the multiple prediction

problem as a discrete choice problem. Hoderlein and Stoye (2015) and Kitamura and Stoye (2017) (‘KS’) use

the insight that with a finite set of budgets nonparametric economic theory does nothing more than constrain

demand behaviour to belong to a discrete set of rational ‘choice types’ to construct tests for the Weak Axiom

of Revealed Stochastic Preference and the Axiom of Revealed Stochastic Preference respectively. This section

serves to build a connection to this work.

To connect this work to our setting, consider again the multiple prediction example given previously, and

repeated at Figure 6 for the reader’s convenience. In this example , KS’s approach would define three rational

choice types:

1. At {p3, x3} demand in patch AO and at {p4, x4} demand in patch CO;

2. At {p3, x3} demand in patch AO and at {p4, x4} demand in patch OD

3. At {p3, x3} demand in patch OB and at {p4, x4} demand in patch OD.

However, demand at OB and OD is not a rational choice type. Note that rationality does not restrict where

demand lies within the set of predictions consistent with a given choice type.

It is clear that the sufficient support set can be recast in terms of rational choice types: each element of

the sufficient support set must be consistent with a rational choice type. This connection is explored formally

in the Appendix. Why then is the MILP representation of the mutual consistency constraints novel and

useful? Why not simply constrain predictions to be consistent with at least one rational choice type?

For certain purposes, application of the methodology developed by KS will be preferable: if there are only

a small number of rational choice types (because budget hyperplanes rarely cross) or one wants to enumerate

the set of all mutually consistent demand predictions, directly imposing consistency with a rational choice type

using mixed integer programming methods may yield a smaller optimisation problem and/or more directly

interpretable output. Further, if one’s object is instead to test consistency with the Axiom of Revealed

Stochastic Preference or to bound expected demands with a heterogeneous population of consumers then one

should of course apply the methodology developed in Kitamura and Stoye (2017) and Hoderlein and Stoye
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Figure 6: Multiple Predictions

Figure note: Demands q1 and q2 are observed at budgets {p1, x1} and {p2, x2}. We want to bound predictions at {p3, x3}
and {p4, x4}. Demands in patch OB and patch OC fail GARP.
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(2015).

However, for problems in which the main aim is to constrain demand predictions using moderately sized

data sets, the formulation put forward in this paper will often yield a much less computationally burdensome

procedure. To illustrate, if one was interested in constraining demand predictions at the seven budgets used

in one of KS’s empirical applications, the number of variables associated with a mixed integer programme

to impose consistency with a given rational choice type would reach as high as 336,467 with 5 goods.19 Our

preferred MILP formulation would, however, involve only 84 variables.20 Third, in addition to time savings

for the optimisation itself, it is not necessary to encode the rational choice types prior to the optimisation

step under the formulation in this paper. The computational benefits of the approach put forward in this

paper over the method developed in Kitamura and Stoye (2017) for moderately sized prediction problems

will be clear in the empirical application when computation times are compared directly.

5 Empirical Application

To illustrate the application of the rationality constraints developed in this paper, I impose mutual consistency

of demand predictions in a nonparametric regression setting. The aim is to show applied researchers how

the rationality constraints developed in this paper can be applied in practise and further to demonstrate

the utility of the approach over alternative methods. Specifically I will apply the constraints to impose

membership of the sufficient support set on intersection demand estimates, which are a necessary input to

the e-bound methodology. Thus, I predict a set of jointly rational demand predictions at the intersection

incomes using cross section data on consumer demand behaviour at different prices and income levels.

To proceed, I first outline my empirical specification and a mutual-consistency constrained kernel estimator

of demand. I then describe the data and the standard freely available software that is used. Finally, I outline

the results and provide evidence on how the estimator performs as I increase the number of budgets at which

demand is predicted at.

19The set of budgets between 1989 and 1995 define 336,467 rational choice types.
20There are 70 constraints associated with KS’s approach and 210 associated with the one put forward in this paper.
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5.1 Rationality Constrained Kernel Estimator

Intersection demands are gained by estimating Engel curves at a carefully chosen set of incomes, x̃t for

t = 1, ..., T . We want to restrict this set of demand predictions to satisfy GARP, that is for the set of demand

predictions to be an element of the sufficient support set. The data are observations {wi, xi} for N randomly

sampled individuals at each of the t = 1, .., T price regimes pt, where xi and wi ∈ RK+ give the income and

budget shares of individual i respectively. I take a simple specification for the Engel curve within a price

regime t:

wki = gkt (xi) + εki (8)

where, for each individual i, the error term satisfies E(εki |x) = 0 and var(εki |x) = σ2(x) for k = 1, ...,K − 1.

The budget share of the Kth good is obtained by adding up: gKt (x) = 1−
∑K−1
k=1 gkt (x).

Fully nonparametric estimates of gkt (·) for t = 1, ..., T and k = 1, ...,K − 1, which are not constrained

to satisfy rationality, can be obtained using the Nadaraya-Watson kernel estimator (Nadaraya 1964; Watson

1964):21

ĝkt (x) =
1

N

N∑
i=1

Kh(x− xi)wki∑N
j=1Kh(x− xj)

(9)

where K, the kernel function, is a bounded, differentiable probability density function that is symmetric

about zero and h is the bandwidth parameter. Demand predictions at the intersection income levels, x̃t, the

intersection demands, are then:

q̂kt =
x̃tĝ

k
t (x̃t)

pkt
(10)

However, these estimated intersection demands are not necessarily mutually consistent and may fail

GARP. To impose the rationality constraints defined by Proposition 4 on estimated demand predictions, I

21See Härdle (1990) for a discussion of the properties of the unconstrained estimator. Provided that the same bandwidth and
kernel are used to estimate each gk(x), adding up will be automatically satisfied and there is no efficiency gain from combining
equations; see Blundell, Browning, and Crawford (2003).
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follow Hall and Huang (2001) and Blundell, Horowitz, and Parey (2012). Specifically, I replace ĝ(·) with the

weighted estimator:

ĝk,Ct (x) =
1

N

N∑
i=1

δit
Kh(x− xi)wki∑N
j=1Kh(x− xj)

(11)

where δit are weakly positive weights that are chosen to ensure that estimated demands are mutually consis-

tent and satisfy GARP. Let δ = [δ1t, ..., δNt]. Formally, these weights are obtained by solving the optimisation

problem:

min
δ1,...,δN

T∑
t=1

N∑
i=1

(δit − 1)
2

(12)

subject to:

1

N

N∑
i=1

δit = 1 for t = 1, ..., T (13)

q̂C,kt =
ĝk,Ct (x̃t)x̃t

pkt
for t = 1, ..., T (14)

p′tq̂
C
t = x̃t for t = 1, ..., T (15)

p
′

tq̂
C
s > (1−Rts)xt for all s 6= t (16)

Rst +Rtu ≤ 1 +Rsu for all s 6= t 6= u (17)

p
′

tq̂
C
s ≥ Rstxt for all s 6= t (18)

with δi ≥ 0 and Rst = {0, 1}. Equations 16 to 18 impose the requirement that estimated intersection demands

are an element of the sufficient support set. See Hall and Huang (2001) for a discussion of alternative distance

metrics.

I do not carry out inference based on the constrained estimator but direct the interested reader to

Horowitz and Lee (2017).22 Under the assumption that the constraints are not binding in the population

(i.e. violations of GARP arise from sampling variation), the constrained and unconstrained estimators have

22See also Freyberger and Reeves (2017).
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the same asymptotic distribution. However, in finite samples, the constrained and unconstrained estimators

will be different, with different sampling distributions. When the rationality constraints are binding, the

unconstrained estimator will be unlikely to sit at the interior of the constrained function space and the

the asymptotic distribution of the constrained estimator will likely be non-standard (Blundell, Kristensen,

and Matzkin 2014; Andrews 1999). Horowitz and Lee (2017) develop an approach for obtaining a uniform

confidence band for gkt (x) with a subset of binding, non-linear constraints that can be applied in the present

context.

5.2 Data

I estimate mutually consistent demands using data from the U.K. Family Expenditure Survey. This is

the exact same data used by Blundell, Browning, and Crawford (2008) and KS, allowing a straightforward

comparison of the ease of implementing the respective methodologies. I make all the same assumptions as

these papers when selecting and constructing the data. I use data between 1975 and 1999 for households

with a car and at least one child. I consider choice over three composite commodities: food, service, and

nondurable consumption goods. I assume that all consumers in a year face the same prices, and I use the

same price data as these prior papers.23

Following KS, for my primary set of results, I estimate rational demands for blocks of seven consecutive

periods by implementing the optimisation problem at Equation 12 to 18. Unlike KS, however, I follow the

literature on e-bounds and estimate demands at intersection incomes rather than at median income in each

period.24 I do this because, while some of the budget hyperplanes cross when median income is used, there are

many more crossings when intersection incomes are used. This increases the probability that unconstrained

demand predictions will fail GARP and that the rationality constraints under consideration in this paper

will be binding.

I implement the optimisation problem for estimating mutually consistent intersection demands in Matlab

23I would like to thank Yuichi Kitamura and Jorg Stoye for the high quality of their replication files, which made it very easy
to construct the same data set as was used in Kitamura and Stoye (2017).

24Specifically, for the first budget in a block, x̃1 = median(x). Then, for t > 1, x̃t = p′tq̂t−1 where q̂t−1 is the unconstrained
demand prediction. When estimating intersection incomes as x̃t = p′tq̂1 for t > 1, it became infeasible to enumerate the set
of rational choice types using the KS methodology but there was no change in the computation time of imposing the MILP
constraints.
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on a standard desktop using the freely available IBM ILOG CPLEX optimisation solver.25 For implementing

the mutual consistency constraints as defined in this paper, I do not make use of any parallel programming

techniques as run times were always short (see below). To compare the performance of my formulation of

the sufficient support set with an alternative based on KS, I use KS’s replication code to enumerate the set

of rational choice types making use of limited parrallelisation (4 cores).

A Gaussian kernel function and Silverman plug-in bandwidth are employed for the kernel weighting

function. Many observations are associated with an income level ‘far away’ from the intersection incomes at

which we predict demand, i.e. Kh(x−xi)/
∑N
j=1Kh(x−xj) ≈ 0. As these observations do not contribute to

either the unconstrained or constrained kernel estimators, I do not include observations with a negligible kernel

weighting in the optimisation procedure, i.e. if an observation i has Kh(x−xi)/
∑N
j=1Kh(x−xj) < 1e−5 for

all intersection demands. This is to avoid the number of variables in the optimisation procedure growing too

large (the number of weight variables, δi, rises linearly in the sample size as each observation is associated

with its own weight).

5.3 Results

Table 1 summarises my empirical findings. It first displays whether unconstrained intersection demand

predictions satisfy GARP. In only one of the eighteen blocks of periods do the unconstrained intersection

demands pass GARP; in all other periods, demand predictions are not an element of the sufficient support

set and need to be modified if they are to be used to generate e-bounds. This demonstrates the practical

relevance of imposing joint rationality for state-of-the-art revealed preference techniques. N shows the number

of observations with a non-negligible kernel weighting in the unconstrained estimates which are re-weighted

to ensure that demand predictions are an element of the sufficient support set.

I then report the number of constraints and variables associated with the MILP constraints defining the

sufficient support sets. As I am predicting demands at 7 budgets of interest, there are 301 MILP constraints

in each optimisation problem: 7 constraints ensure that the seven budget constraints bind; 42 constraints

impose the direct revealed preference relation; 210 constraints impose transitivity of the revealed preference

25See the helpful guide produced by Laurens Cherchye, Bram De Rock, Thomas Demuynck and Frederic Vermeulen on the
use of CPLEX for revealed preference analysis at: http://www.revealedpreferences.org/testingsimple.html
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relation; 42 constraints impose GARP on predictions. The number of variables in the optimisation procedure

varies because of variation in the number of observations local to the intersection incomes in each problem.

Taking the prediction problem for 1975-1981, there are 1789 δi variables and 42 integer variables for imposing

mutual consistency. There are 42 integer variables in all of the prediction problems.

An important metric is the time it takes to generate the necessary constraint matrices defining membership

of the sufficient support set and to complete the optimisation procedure. In all cases except two, it took less

than a second to build the mixed integer programming constraints and run the optimisation procedure to

estimate the constrained demand predictions.

To demonstrate the utility of the MILP formulation, I also report the number of rational choice types

associated with each prediction problem and the time taken to generate the constraint matrices defined in

Kitamura and Stoye (2017). There are a large number of rational choice types associated with each prediction

problem. The numbers are much larger than those reported in Kitamura and Stoye (2017) because here I

am predicting demands at intersection incomes: this means that budget hyperplanes cross more often than

in their original examples, resulting in many more rational choice types. Using four cores, the fastest run

time for generating the matrices defining the rational choice types was 10 minutes; the longest run time was

25 minutes. This is substantially slower than generating the equivalent MILP formulation.
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Table 1: Empirical Results with 7 Periods

Years GARP N MILP Constraints KS Rational Type
# Constraints # Variables Time (s) # Rational Types Time (s)

75-81 0 1789 301 1831 0.9593 6,009,732 884.8
76-82 0 1717 301 1759 0.6590 8,169,999 1350.4
77-83 0 1644 301 1686 0.4808 5,314,901 619.0
78-84 0 1607 301 1649 0.5547 7,143,001 1004.9
79-85 0 1768 301 1810 0.6385 5,889,781 790.4
80-86 0 2155 301 2197 0.7977 5,923,070 830.5
81-87 1 2265 301 2307 0.8219 9,254,457 1507.6
82-88 0 2251 301 2293 0.9356 9,871,715 1350.8
83-89 0 2142 301 2184 0.8081 9,468,438 1219.1
84-90 0 2068 301 2110 1.2905 8,802,128 1361.5
85-91 0 2005 301 2047 1.1432 8,738,020 955.2
86-92 0 1860 301 1902 0.9416 8,561,194 913.9
87-93 0 1829 301 1871 0.6283 7,977,085 911.0
88-94 0 1785 301 1827 0.6092 8,269,301 744.2
89-95 0 1829 301 1871 0.5540 8,381,403 665.1
90-96 0 1848 301 1890 0.5938 8,955,417 1076.8
91-97 0 1830 301 1872 0.5826 7,330,365 1023.3
92-98 0 1854 301 1896 0.6337 7,721,041 1154.9
93-99 0 1791 301 1833 0.9417 9,952,538 1522.7
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Figure 7: Budget Hyperplanes & Demand Predictions, 1975-1981

(a) 1975 (b) 1976

(c) 1977 (d) 1978

(e) 1979 (f) 1980

(g) 1981

Figure notes: each figure gives the budget hyperplane in that period (coloured area) with the unconstrained demand prediction
(bright point) and the rationality constrained demand prediction (darker point). The lines correspond to the points of intersection
with other budget hyperplanes. The colour of each intersection line indexes its year, e.g. the dark blue intersection lines
correspond to the intersection with the 1975 budget hyperplane depicted in blue in panel (a).
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To provide insight into the nature of the demand predictions generated by the procedure, I focus on the

solution output underlying the first prediction problem reported in Table 1 (1975-1981).26 Figure 7 shows the

unconstrained prediction ĝ(·) (bright point) and constrained demand prediction ĝC(·) (darker dot) at each

budget hyperplane (shaded) between 1975 and 1981. The points of intersection between budget hyperplanes

are also given to illustrate the location of demand patches as in Kitamura and Stoye (2017).

The deviation between the constrained and unconstrained predictions is relatively small except for in the

final two periods.27 To illustrate why demand in, for example, the final period must be modified for joint

consistency of predictions, Figure 8 just shows a comparison of the unconstrained and constrained predictions

in 1975 and 1981. In 1975, the unconstrained demand prediction is strictly affordable at the 1981 budget (the

unconstrained prediction is on a patch ‘under’ the 1981 hyperplane). Similarly, the unconstrained demand

prediction in 1981 is strictly affordable at the 1975 budget. Thus, these two demands violate revealed

preference. Once the weight variables underlying the kernel prediction are appropriately modified by the

MILP optimisation procedure, demand in 1975 is no longer strictly preferred to that at 1981 such that

the constrained predictions satisfy GARP. Figure 9 gives the distribution of the constrained weight variables

underlying the set of rational demand predictions for 1975-1981, δ̂; in the unconstrained prediction, all weight

variables equal one.

In order to establish how the properties of the procedure imposing the MILP constraints scale, I next

report results for optimisation procedures with an increasing number of demand predictions. I again predict

demands at intersection incomes,28 sequentially adding each new period. I thus impose membership of

the sufficient support set on between 2 and 25 demand predictions. Table 2 shows that both the number

of variables and the number of constraints associated with the optimisation problem are increasing in the

number of predictions. Once mutual consistency is imposed on 25 demand predictions simultaneously, the

optimisation problem involves 15,025 constraints and 600 integer variables.29 However, the overall run

time remains less than a minute demonstrating that the characterisation remains feasible to implement for

practically sized problems.

26Please see Figure 11 in the Appendix for the distribution of rationality constrained weights in the otherprediction problems.
27Indeed, in 1976, 1977 and 1978 the differences are too small to be detectable on the graph.
28When the number of observations local to an intersection income falls below 100, I ‘re-set’ the prediction income to the

median income in that period.
297228 - 6628 = 600.
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Figure 8: Budget Hyperplanes & Demand Predictions, 1975 and 1981

(a) 1975

(b) 1981

(c) Both

Figure notes: each figure gives the budget hyperplane in that period (coloured area) with the unconstrained demand prediction
(bright point) and the rationality constrained demand prediction (darker point). The lines correspond to the points of intersection
with other budget hyperplanes. The colour of each intersection line indexes its year, e.g. the dark blue intersection lines
correspond to the intersection with the 1975 budget hyperplane depicted in blue in panel (a). The area labelled ‘Over 1981’
gives the patch on the 1975 budget hyperplane that cannot be afforded given the 1981 budget. Similarly the area labelled ‘Under
1981’ gives the patch on the 1975 budget hyperplane that is affordable given the 1981 budget. The areas ‘Over 1975’ and ‘Under
1975’ are defined similarly.
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Figure 9: Histogram of Constrained Weights δit, 1975-1981

Figure notes: Histogram of rationality constrained weight variables underlying estimated intersection demands for the period
1975-1981.

Table 2: Empirical Results with Increasing Periods

Years T N MILP Constraints
# Constraints # Variables Time (s)

75-76 2 839 6 841 0.0780
75-77 3 1216 21 1222 0.1418
75-78 4 1493 52 1505 0.2511
75-79 5 1684 105 1704 0.5031
75-80 6 1751 186 1781 0.7014
75-81 7 2185 301 2227 0.8911
75-82 8 2599 456 2655 1.0121
75-83 9 2963 657 3035 1.2222
75-84 10 3272 910 3362 1.5885
75-85 11 3542 1221 3652 2.9633
75-86 12 3790 1596 3922 2.5283
75-87 13 4016 2041 4172 7.4437
75-88 14 4185 2562 4367 10.4117
75-89 15 4318 3165 4528 13.2873
75-90 16 4404 3856 4644 16.5469
75-91 17 4683 4641 4955 15.3463
75-92 18 4985 5526 5291 13.6930
75-93 19 5241 6517 5583 15.5501
75-94 20 5507 7620 5887 24.9242
75-95 21 5778 8841 6198 40.9526
75-96 22 6033 10186 6495 35.8285
75-97 23 6234 11661 6740 31.6039
75-98 24 6438 13272 6990 35.9405
75-99 25 6628 15025 7228 59.1089
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6 Conclusion

The revealed preference restrictions that are commonly imposed on demand predictions are not sufficient for

rationality when predicting behaviour at a set of new budgets. When predicting over a set of intersecting

budgets, not all combinations of demands from the Varian support sets will satisfy GARP. To ensure ra-

tionality of the combined set of predictions, mutual consistency must be imposed across predictions. The

requirement of mutual consistency generates non-linearities in the typical revealed preference inequalities and

can result in a non-convex set of demand predictions. This prevents standard linear programming methods

from being employed to recover the support set.

This paper has provided a Mixed Integer Linear Programming representation of the mutual consistency

constraints that can be applied with reasonable computational resources. Routes to enhance the efficiency of

the procedure have been explored, giving possibilities for reducing the computational burden of the method.

An empirical illustration using data from the UK Family Expenditure Survey served to demonstrate the

implementation of the method to impose mutual consistency on nonparametric estimates of income expan-

sion paths. This served to demonstrate the utility of the method for returning a rational set of ‘intersection

demands’ from estimated income expansion paths, of the type required by Blundell, Browning and Crawford

(2008) and Blundell, Kristensen and Matzkin (2014). The constraints were imposed with minimal compu-

tational resources on a standard desktop computer. Computation times of alternative procedures based on

the enumeration of possible rational demands were an order of magnitude larger. Given the improvement of

computation times achieved using the MILP representation, it would be interesting to explore the application

of these constraints in the context of stochastic revealed preference to improve the applicability of Kitamura

and Stoye (2017).

A full treatment of the asymptotic theory of the sufficient support set is beyond the scope of this paper.

Depending on the application in mind, the results developed in Chernozhukov, Hong, and Tamer (2007)

can be applied to develop an asymptotic theory of the mutually consistent bounds on demand responses.30

In practise, confidence bands will likely be constructed through subsampling as discussed in Chernozhukov,

Hong, and Tamer (2007).

30See Blundell, Kristensen, and Matzkin (2014) for the application of the Chernozhukov, Hong, and Tamer (2007) machinery
to develop confidence bounds on the Varian support set for quantile demands.
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7 Appendix

Proof of Proposition 1 Without loss of generality, let P = {a, b}. First, define budget normalised prices,

p̃i = pi/xi. Then define

H−(p̃) = {q : p̃′q ≤ 1} (19)

H+(p̃) = {q : p̃′q ≥ 1} (20)

Since SVT (p̃a) and SVT (p̃b) intersect in the interior, ∃qa ∈ H−(pb)∩ SVT (p̃a) and ∃qb ∈ H−(pa)∩ SVT (p̃b),
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with qa 6= q̃ and qb 6= q̃. Define:

q̄a ∈
{
q : q ∈ SVT (p̃a) ∩H+(pb), ||q− q̃|| < ε

}
(21)

q̄b ∈
{
q : q ∈ SVT (p̃b) ∩H+(pa), ||q− q̃|| < ε

}
. (22)

Then, taking the data set D = {pa,pb, {pt}t∈D ; qa, q̄b, {qt}t∈D}, observe that:

� D satisfies GARP.

From Kitamura and Stoye (2017), if there is a choice cycle of any finite length, then there is a cycle

of length 2 or 3 — where a cycle of length 2 is a WARP violation. There are no cycles of length two

— it is assumed that {pt,qt}t∈D satisfies WARP, that {pa, {pt}t∈D ; qa, {qt}t∈D} satisfies WARP by

virtue of qa ∈ SVT (p̃a), and that {pb, {pt}t∈D ; q̄b, {qt}t∈D} satisfies WARP by virtue of qb ∈ SVT (p̃b).

{pa,pb; qa, q̄b} do not induce a WARP violation given that by construction:

p′bqa < 1 (23)

p′aq̄b > 1 (24)

and ¬ (qaRq̄b).

There are no cycles of length three — Take qt ∈ H−(p̃a) ∩ H+(p̃b). We have: q̄bR
0qaR

0qt. Thus,

q̄bRqt. This would induce an indirect revealed preference violation if qtRq̄b. However, for arbitrarily

small ε, q̄b ≈ q̃ and q̃Rqt.

� The indices a and b can be switched such that these arguments apply toD′ = {pa,pb, {pt}t∈D ; q̄a,qb, {qt}t∈D}

Let an element of SST , i.e. a single prediction, be given as the stacked column vector: Q = [qa,qb]. Let

Qa = [qa, q̄b] and Qb = [q̄a,qb]. From above, Qa, Qb ∈ SS .Yet,

λQa + (1− λ)Qb /∈ SS (25)
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for some λ ∈ (0, 1). To see this note,

λQa + (1− λ)Qb =

 λqa + (1− λ)q̄a

λq̄b + (1− λ)qb

 , (26)

and that the choices {λqa + (1− λ)q̄a, λq̄b + (1− λ)qb} violate WARP. It is the case that

p′aqb < 1 (27)

p′aq̄b ≈ 1 (28)

Thus, for ε sufficiently small, there exists a λ such that

p′a (λq̄b + (1− λ)qb) < 1. (29)

Yet, by the same reasoning:

p′b (λq̄a + (1− λ)qa) < 1, (30)

leading to a revealed preference violation.

Proof of Proposition 2 Take some qa ∈ SVT (pa, xa). By definition, {qa, {qt}t∈D} satisfies GARP. There

exists a utility function of the following structure that rationalises these choices (Varian, 1982):

u(q) = mini∈D∪a {ui + λip
′
i(q− qi)} (31)

with λi > 0. Let choices at ∀b ∈ D/a be given as:

qb = argmaxq{mini∈D∪a {ui + λip
′
i(q− qi)}} (32)
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subject to p′bq = xb. By definition, this set of demand predictions satisfies GARP and each individual

demand prediction is an element of its respective Varian support set.

Proof of Proposition 3. Constraints [1] and [2] flow directly from [S1] and [S2]. Constraints [3], [4], [5]

impose GARP, and thus [S3] on the set of demands at B.

Constraint [3] imposes the requirement that qbRqa, i.e. Rba = 1, if p′bqa ≤ xb, thereby defining the direct

revealed preference relation. To see this note that if Rba = 0, Constraint [3] evaluates as p
′

bqa > xb, which

is a contradiction. If p′bqa > xb, Rba = 1 or Rba = 0 are permissible.

Constraint [4] imposes transitivity of the revealed preference relation. If qaR
0qb and qbR

0qc, then we

require qaRqc. If Rab = 1 and Rbc = 1, Constraint [4] is violated unless Rac = 1. The integer variables Rij

are thus equivalent to the revealed preference relation.

Constraint [5] imposes GARP. If Rab = 1, then p′bqa ≥ 1, or the constraint is violated. If Rab = 0,

p′bqa ≶ 1.

Proof of Proposition 4 The proof of Proposition 4 follows from the proof of Theorem 3.2 in Kitamura

and Stoye (2017). First, define budget normalised prices, p̃i = pi/xi.

For ∀a ∈ Pm and ∀b ∈ Pn with m 6= n, either p̃′aq < 1 for all q > 0 such that p̃bq ≤ 1 or p̃′bq < 1 for

all q > 0 such that p̃aq ≤ 1. Let the former hold without loss of generality.

By construction, qi ∈ SVT (p̃i) for all i ∈ D . Choices at p̃a, a ∈Pm, and at p̃b, b ∈Pn, cannot generate a

length two cycle because p̃′aqb ≤ 1 for all qb ∈ SVT (p̃b) and p̃′bqa ≥ 1 for all qa ∈ SVT (p̃a), with equality only

possible if at a corner. No length three cycles can be generated. By construction, qaR
0qb for all qa ∈ SVT (p̃a)

and qb ∈ SVT (p̃b). For any qt such that qbR
0qt, the qaR

0qt as p̃′aq < 1 for all q > 0 such that p̃bq ≤ 1. For

any qt such that qtR
0qa, qtR

0qb.

7.1 Formal Treatment of the Connection to KS

KS characterise their approach in terms of ‘patches’ and ‘choice types’. Patches form the coarsest partition

of budget sets such that no budget set intersects the interior of an another at the interior of a patch. Rational

choice types are defined as a combination of ‘patches’ across budgets of interest. The sufficient support set
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Figure 10: Multiple Predictions

can be defined as a finite list of rational ‘choice types’ as well as by the MILP characterisation put forward

in this paper.

To use the language of Kitamura and Stoye (2017), in our illustrative prediction problem, there are four

‘patches’ of interest on the budgets {p3, x3} and {p4, x4}. For example, on {p3, x3}, the first patch consistent

with past demands is given by AO and the second by OB.

Following Kitamura and Stoye (2017), let A encode the rational combination of patches corresponding to

the choice problem in Figure 10. Each column of A encodes the demand behaviour of a given rational choice

type. Each column of A thus also corresponds to a feasible combination of binary variables in our integer

programming formulation. Applying this to our illustrative example, the first column of A corresponds to a

consumer demanding q3 ∈ AO and q4 ∈ OD. This corresponds to R34 = 1 and R43 = 1 in Proposition 3.

Each row of A corresponds to a particular patch:
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A =

XA

AO

OB

BY

WC

CO

OD

DZ



0 0 0

1 1 0

0 0 1

0 0 0

0 0 0

0 1 0

1 0 1

0 0 0



(33)

Why then is the MIP representation of the mutual consistency constraints novel and useful? Couldn’t one

simply restrict demand combinations to those consistent with a single column of A? The most straightforward

way that I could think of translating KS’s framework into constraints amenable to this problem is as follows:

qa ≥M(A ◦ Q̄)π for a = T + 1, ..., B (34)

qa ≤M(A ◦Q)π for a = T + 1, ..., B (35)

1 = 1
′π (36)

πi = {0, 1} (37)

where Q̄ and Q are K× columns(A) matrices for which Q̄ki and Q
ki

give the lower and upper bounds on the

quantity of good k associated with each patch and choice type. M is an |P| × rows(A) matrix with Mij = 1

if patch j is on budget T + i. π is a columns(A)× 1 vector of binary indicators that indicate which rational

choice type (column of A) is imposed. ◦ represents the Hadamard product. As discussed in Section 4.2 and

5, when there are a large number of rational types because many budget hyperplanes cross, constructing the

A matrix is a very computationally burdensome procedure.

7.2 Additional Histograms of Weight Variables
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Figure 11: Histrograms of Constrained Kernel Weights

1976-1982 1977-1983 1978-1984

1979-1985 1980-1986 1981-1987

1982-1988 1983-1989 1984-1990

1985-1991 1986-1992 1987-1993

1988-1994 1989-1995 1990-1996

1991-1997 1992-1998 1993-1999

Figure notes: Histogram of rationality constrained weight variables underlying estimated intersection demands for each prediction
problem.
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