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1 Introduction

Modern information technologies make it possible to store, analyze and trade unprecedented amounts
of detailed information about individuals. At the same time, the rapid growth of online markets
has signi�cantly increased the participation of individuals in decentralized pricing mechanisms that
rely on personal information provided by the participants. Consequently, the organizers of these
markets are able to gather vast amounts of data on individuals�characteristics such as their tastes
and willingness-to-pay for products and services. This data is valuable to a variety of entities
including commercial �rms as well as political institutions. If leaked to these entities, this informa-
tion may be used against the users�interests. In light of this, there has been a growing sentiment
that governments should enact laws that regulate the ability of private entities to collect and use
personal information. If the growing concerns for maintaining privacy were to lead to regulations
that impose privacy constraints on pricing mechanisms, how would that a¤ect the design of these
mechanisms, and what is the trade-o¤ between pro�ts and privacy?

This paper takes a step towards addressing these questions by proposing a Bayesian approach to
the measurement of loss of privacy and applying this approach to the design of optimal mechanisms
that are restricted in the amount/precision of private information that they can elicit from partici-
pants. The cornerstone of our approach is that the designer of a mechanism already possesses some
information about participants in his mechanism in the form of a prior belief over their �types�. He
updates these beliefs as a result of the participants�interaction with the mechanism, which releases
some information about them. For example, when a consumer who faces a menu of choices, say
quantity-price pairs, selects a particular item in the menu, the seller learns additional information
about this buyer. In particular, the seller knows the consumer is willing to pay the price he chose,
and that no other quantity-price pair is preferred. Consequently, the seller�s posterior belief about
the buyer�s type may be quite di¤erent than his prior belief. This suggests that the di¤erence
between the seller�s prior and posterior beliefs should serve as the basis for measuring the loss of
privacy associated with a particular mechanism.

Building on this observation we propose a Bayesian measure of privacy loss for mechanisms and
apply it to screening mechanisms in which there is no strategic interaction between the participants.
Speci�cally, we consider the classic Mussa-Rosen set-up in which a monopolist faces increasing costs
for producing a higher quality (or quantity) of a product, and wishes to o¤er the optimal menu of
quality-price pairs to consumers with private marginal rates of substitution between quality and
money. The standard solution implies that all the types that opt in e¤ectively reveal their private
types. Hence, the optimal solution entails complete loss of privacy: The designer has a degenerate
posterior belief on the type of each participant.

To study the design of mechanisms that preserve some level of privacy, we follow the information-
theoretic literature and propose to measure a mechanism�s inherent loss of privacy as the expected
relative entropy (or Kullback-Leibler Divergence) between the designer�s posterior and prior beliefs,
where the expectation is taken with respect to the prior distribution over consumer types. We then
augment the standard mechanism design problem by requiring that the privacy loss of the optimal
solution is at most �: The parameter �; which takes values between 0 (full privacy) and in�nity (no
privacy), captures the strength of the privacy requirement.

We view this ex-ante notion of privacy as a conservative departure from the standard privacy-
unconstrained approach in mechanism design in the following sense: It acknowledges that some
consumers�private information may be more valuable than others (e.g., uncovering �high valuation
types�may be more pro�table than uncovering �low valuation types�), and hence, allows the de-
signer to preserve privacy in a di¤erential manner across consumer types (so some types may release
more information than other types) as long as on average, a given level of privacy is maintained.
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The privacy constraint may also be interpreted as a budget for �securing�sensitive data, such that
more precise and detailed data is more costly to secure. The ex-ante constraint takes into account
that the designer may �nd it pro�table to allocate these costs in a di¤erential manner across con-
sumer types. This interpretation of the privacy constraint, and our ex-ante approach, also create an
interesting link between privacy constraints and rational inattention, and we discuss this relation in
the next section. Finally, the ex-ante approach also has the merit of making the analysis relatively
tractable. Hence, adopting a well-studied measure of di¤erence between distributions, and taking
an ex-ante approach serves as a useful benchmark with which we can compare other measures of
privacy.

By imposing an exogenous privacy constraint, we take a �paternalistic�approach to privacy in
the sense that we do not explicitly model consumers�preferences over privacy (i.e., how consumers
trade-o¤ privacy, consumption and money), but rather assume that mechanisms are required to
guarantee a certain level of privacy. This is motivated by research showing that most consumers
are not fully aware of the implications of allowing commercial entities to record information about
them. Indeed, many users make public postings on social media, log in to websites through their
social media accounts and do not delete cookies (e.g., see Acquisti and Grossklags (2005), Barth
and de Jong (2017) and Kokolakis (2017)). Alternatively, our approach can be interpreted as
assuming homogenous preferences over privacy that take a threshold form: A consumer transacts
with a platform that has � or less loss of privacy.

Our main results highlight key properties of the optimal privacy-preserving mechanisms. First,
the optimal �-constrained mechanism partitions the set of types into �nitely many intervals (whose
number depends on �), such that consumers truthfully announce to which interval their type
belongs, and the total loss of privacy is exactly �. Thus, even though there is a continuum of types,
and the privacy constraint allows for a continuum of noisy messages (e.g., when each type � reports
� + "; where " is a continuous random variable), maximal pro�ts are attained with only �nitely
many messages. The second property relates to the structure of the intervals: There can be at
most one interval with an arbitrarily small mass. In other words, there is at most one set of types
with positive measure about which the monopolist attains very precise information. This property
also implies that there exists a threshold � such that for any � � �; the optimal �-constrained
mechanism has exactly two intervals. If we impose more structure on the cost function, we can also
give some welfare implications of the privacy constraint. In particular, when costs are quadratic,
total welfare is maximized at � = 0 and minimized at � = 1 when the prior density function is
increasing, while the opposite is true if it is decreasing.

To illustrate a complete characterization of the optimal privacy-preserving mechanism, we an-
alyze the uniform-quadratic case where types are drawn from a uniform distribution and costs are
quadratic. In this case, the optimal �-constrained mechanism is unique up to reordering of the
intervals and has the following properties. The number of intervals is equal to the smallest integer
n� whose natural logarithm is at least �. There is exactly one �short� interval and n� � 1 �long�
intervals of equal length, such that privacy loss is precisely �. In addition, the optimal mechanism
exhibits an interesting trade-o¤ between privacy and pro�ts: As � increases, there are diminishing
returns to loss of privacy when the optimal number of intervals increase, but there are increasing
returns over ranges of � where the optimal number of intervals remains �xed (but their length
changes). These properties of the optimal mechanism remain true for distributions that are close
to the uniform.

Our ex-ante notion of privacy allows the designer to meet the privacy constraint even if he can
learn almost perfectly about some small set of types. A more stringent notion of privacy would
restrict the designer not to learn too much about any consumer type. To explore the implications
of such a notion of privacy, we require that the largest change in the designer�s beliefs (as measured
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by relative entropy) must be at most �. Under this ex-post privacy constraint, there exists an
optimal mechanism that partitions the type space into �nitely many intervals, each with a mass
of at least e��. In particular, in the uniform-quadratic case, for any � 2 [log(n); log(n + 1)); the
optimal �-constrained mechanism partitions the types into n equal intervals.

In the absence of a commonly agreed upon notion of privacy loss, our main contribution is to
propose a Bayesian de�nition that builds upon a familiar measure from information theory, which
has already been adopted by economists as a measure of the cost of information. This privacy
notion can be easily incorporated into the standard mechanism design framework, thereby allowing
us to better understand the trade-o¤s between welfare/pro�ts and privacy demands. As our results
suggest, the proposed privacy notion also provides a rationale for using �simple/coarse�mechanisms
with restricted message spaces (we expand on this in the next section).

There are many interesting questions left to explore in the study of privacy-preserving mech-
anisms. In particular, studying mechanisms with strategic interaction between participants raises
some novel challenges. First, one-shot mechanisms may not be optimal in these environments.
Second, one needs to take a stand on how privacy loss is aggregated across di¤erent individuals.
This is particularly important since optimal mechanisms may exhibit a di¤erential treatment of
ex-ante identical agents. We discuss these issues in Section 6.

2 Related literature

On the one hand, our notion of privacy di¤ers from the popular measure of �di¤erential privacy�
that is often used in the computer science literature. On the other hand, it coincides with how
the rational inattention literature models the cost of information. Hence, our proposed framework
creates an interesting link between these two distinct strands of literature. In this subsection we
brie�y summarize the main insights of these literatures and their relation to our research.1

The majority of theoretical work on privacy in computer science uses the notion of �di¤erential
privacy�, which was introduced by Dwork et al. (2006). Roughly speaking, this notion means
that changing the data of only a single individual, or alternatively, of only a single attribute of an
individual, has a negligible e¤ect on computations that are done on this data. In the context of
mechanism design, Pai and Roth (2013) show that this notion can be de�ned as follows. Suppose
there are n individuals, who each draws a private type from some set T . De�ne a mechanism M as
a mapping from pro�les of types t 2 Tn to distributions over some set of outcomes X. Then M is
�-di¤erentially private if for all pairs of type pro�les (t; t0) that di¤er only in ti, and for any payo¤
function u : X ! R;

EM(t)u(x) � exp(�) � EM(t0)u(x)

This de�nition implies that the action of a single player has a negligible e¤ect on the outcome, such
that any action is �almost�weakly dominant (in the sense that it cannot a¤ect a player�s payo¤ by
a factor of more than 2�, regardless of the other players�actions). In light of this, several studies
in computer science have used the above notion to design mechanisms where truthtelling is either
�almost�or exactly weakly dominant (see e.g., McSherry and Talwar (2007), Kearns et al. (2012)
and Nissim et al. (2012)).

Another line of research has proposed ways of incorporating agents with privacy concerns into
a mechanism design framework. The literature has mostly assumed that each agent incurs an

1There are many works in these literatures, but we will be able to mention only a few of them. For more detailed
surveys on privacy in computer science and economics, see Pai and Roth (2013), He¤etz and Ligett (2014) and
Acquisti et al. (2016).
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additive cost for loss of privacy, where this cost increases with the level of di¤erential privacy (i.e.,
with the � above). Some notable examples of these studies are Ghosh and Roth (2011), Ligett and
Roth (2012), Fleischer and Lyu (2012). Closely related, Gradwohl (2018) studies the problem of
full implementation when agents prefer to protect their privacy.

Yet another literature in computer science deals with distortion and anonymization of databases
and communication channels due to privacy concerns. Within this literature, several papers used
information-theoretic measures to quantify privacy, like the notion of relative entropy that we use
in our work. Noteworthy examples are Agrawal and Aggarwal (2001) who study privacy-preserving
data-mining algorithms; Rebollo-Monedero et al. (2010) and Sankar et al. (2013) who study the
privacy-distortion trade-o¤; Wang et al. (2016) who link between three di¤erent notions of privacy
in the privacy-distortion context; and Díaz et al. (2003) who study the degree of anonymity provided
by schemes for anonymous connections. The key distinction of the current paper is that we are
interested in the strategic interaction between privacy, mechanism and agent behavior, while in this
literature strategic behavior does not play any role.

The privacy constraint in our model entails that, in equilibrium, agents cannot communicate
all their private information to the designer. Several papers have investigated a related question of
optimal mechanism design with limited communication, by imposing di¤erent restrictions on the
cardinality of the action space available to the agents. Notable examples are Kos (2012), Blumrosen
et al. (2007), Blumrosen and Feldman (2013), Bergemann et al. (2012), Melumad et al. (1992)
and Green and La¤ont (1987). In a di¤erent setting, Mookherjee and Tsumagari (2014) study a
dynamic mechanism design problem with costly communication and compare between centralized
and decentralized production decisions. Van Zandt (2007), Fadel and Segal (2009) and Babaio¤
et al. (2013) study the interaction between communication capacity and incentive feasibility by
quantifying and bounding the �cost of sel�shness��the amount of excess information (bits) that
needs to be exchanged to implement a given social choice function, relative to the case in which
agents honestly report their types.2

Finally, our work is closely related to the growing literature on rational inattention with infor-
mation costs (see, e.g., Sims (2003), Matµejka (2016), Matµejka and McKay (2015) and Máckowiak
and Wiederholt (2015)). In this literature, an uninformed decision maker (DM) chooses the struc-
ture of a signal he wants to observe, subject to the constraint that the signal can only contain a
limited amount of information.3 In fact, the choice of the DM is tantamount to choosing a dis-
tribution of posterior beliefs, subject to the information capacity constraint (and the martingale
condition of beliefs). Note that when a privacy-constrained designer chooses a mechanism (with
a corresponding equilibrium), he also implicitly chooses a distribution of posterior beliefs, subject
to the same information constraint.4 However, while the rationally inattentive DM is bound only
by the information constraint, the mechanism designer is bound also by an incentive constraint �
the participating agent(s) must be willing to share the information in equilibrium. Studying the

2Green and La¤ont (1986) study a model in which a principal can restrict the capacity of a communication channel
between an agent and his obedient subordinate. Like in our model, the capacity of the channel is quanti�ed using an
information-theoretic measure (mutual information). Unlike our work, there is no con�ict of interests between the
agent and the subordinate. Therefore, when the (informed) agent designs the optimal communication protocol there
are no incentive constraints involved.

3The amount of information is measured as the expected reduction in entropy between the prior and posterior
beliefs (that the signal induces) regarding the state of the world.

4Formally, the designer chooses a set of messages for the agent(s) and a function that maps between the (pro�le
of) messages and consequences. However, in equilibrium messages can be identi�ed with the posterior beliefs they
induce regarding the agent type.
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interaction between the information constraint and the incentive constraint is the main objective
of our work.

3 The framework

We consider the classic Mussa-Rosen (1978) set-up of monopolistic screening. A seller wishes to
sell some quantity/quality q 2 R+ to a buyer, in exchange for payment p 2 R. The seller�s pro�t is
given by:

� (p; q) = p� c(q)

where c (�) is a twice-continuously di¤erentiable cost function that satis�es c(0) = c0(0) = 0 and
c00(q) > 0 for all q > 0. The buyer�s willingness to pay per unit is � 2 � =

�
�; �
�
, and is unknown

to the seller. If the buyer consumes q and pays p, his utility is

u (p; q; �) = q � � � p

The seller�s prior probability distribution on � is F , which has support � and density f > 0.
We assume that the buyer�s virtual valuation, v (�) � � � 1�F (�)

f(�) ; is increasing in � and satis�es

v (�) > 0.5 To facilitate some technical arguments, we make the slightly stronger assumption that
v is continuously di¤erentiable and v0 > 0.

To sell the good the monopolist devises a static mechanism M = hM;p; qi, where M is an
arbitrary set of messages, and p :M ! R+ and q :M ! R+ are functions that map each message
in M to an outcome: Given a message m 2 M; the seller provides the quantity q (m) and charges
the price p (m). The seller�s objective is to maximize his expected pro�t �:

�(M) = Em [p (m)� c (q (m))]

where Em is evaluated according to the probability that, given M, each message m 2M is sent by
a utility maximizing buyer in equilibrium. A strategy for the buyer is a function � : �! �M .

In the absence of privacy constraints, an optimal (revenue maximizing) mechanism in this set-
up is a direct revelation mechanism in which: (i) The agent truthfully reports his type �, (ii) The
produced quantity q (�) is determined such that c0 (q (�)) = v (�), and (iii) The requested price is
p (�) = q (�) � �

R �
� q (x) dx.

3.1 Bayesian privacy

At the outset, the seller already has some information about the buyer: He knows the buyer�s type
is distributed according to F . When a buyer decides to participate in the mechanism and sends a
message m 2 M , the seller updates his information according to the posterior belief distribution
F (�jm). This change of beliefs entails loss-of-privacy for the buyer.

We measure the loss of privacy entailed by a message m 2 M by the relative entropy between
the posterior belief triggered by m and the prior belief: If the posterior distribution F (�jm) has

5Positive virtual valuation allows us to focus on the case in which the seller wants to include all buyer types,
and the only question is what quantity/quality and price should be o¤ered to each buyer type. The strict inequality
v(�) > 0 is used in the proof that an optimal mechanism exists. But we note that a slightly modi�ed argument
applies if v(�) = 0 and additionally c00(0) > 0.
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density f (�jm), the relative entropy (or Kullback-Leibler Divergence) from F (�jm) to F is de�ned
by:6

DKL (F (�jm) jjF ) =
Z �

�
f (�jm) � log f (�jm)

f (�)
d� (1)

If F (�jm) contains atoms we de�ne DKL (F (�jm) jjF ) = +1.7 Throughout the paper, �log"
represents the natural logarithm.

We de�ne the ex-ante loss of privacy entailed by a mechanism to be the expected divergence
between the possible posteriors and the prior:

De�nition 1 The ex-ante loss of privacy entailed by mechanism M = hM;p; qi is given by:

I (M) = Em [DKL (F (�jm) jj F )]

where Em is evaluated according to the probability that each messagem 2M is sent in an equilibrium
of M.8 ;9

4 Optimal privacy-constrained mechanisms

4.1 Interval mechanisms

Suppose the seller has to design a mechanism that does not exceed some privacy capacity � > 0. His
problem can then be described as follows: Find a mechanism M = hM;p; qi and a strategy � for the
buyer that maximize the expected pro�t � = Em [p (m)� c (q (m))] subject to three constraints:

1. Incentive-compatibility - given M, the strategy � is optimal for the buyer:

u (p (m) ; q (m) ; �) � u
�
p
�
m0� ; q �m0� ; �� (IC)

for all � 2 �, all m 2 supp (� (�)) and all m0 2M ,

2. Individual-rationality - given M, a buyer who follows � is not worse o¤ than if he did not
participate in M:

u (p (m) ; q (m) ; �) � 0 (IR)

for all � 2 � and all m 2 supp (� (�)),

6The relative entropy exhibits a number of key properties: DKL (GjjF ) � 0 for all G and F with equality if and
only if G = F , and DKL (GjjF ) is convex in both G and F . It is however not a metric due to the failure of symmetry
and of the triangle inequality.

7The integral on the RHS of (1) can be evaluated whenever F (�jm) is absolutely continuous with respect to F .
Since we have assumed that F admits a density w.r.t. Lebesgue measure, absolute continuity is guaranteed when
F (�jm) also admits a density. And when G := F (�jm) contains atoms, our de�nition that DKL (GjjF ) = +1
preserves continuity of the relative entropy function in G.

8 In calculating I (M) we adopt the convention that 0 � 1 = 0, and therefore I (M) can still be �nite if there is a
measure-zero set of messages (sent in equilibrium) that induce posterior distributions F (�jm) whose divergence from
the prior F is in�nite. But if the set of such messages has positive measure, then I (M) = +1 according to our
de�nition.

9To be fully rigorous, we note that the loss of privacy as de�ned here may in general depend on equilibrium
selection (so I (M) should better be written as I (M; �)). However, multiple equilibria/buyer indi¤erence only arise
when there are messages that lead to the same quantity-price pair. As we discuss below, such messages are �wasteful"
and without loss excluded from the optimal mechanism. Hence we will omit the issue of multiplicity.
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3. Privacy constraint -
I (M) � � (P)

We refer to any mechanism that satis�es the above constraints as a �-feasible mechanism. Any
mechanism that is pro�t-maximizing among all �-feasible mechanisms is called a �-optimal mecha-
nism. Our objective is to derive key properties of this constrained-optimal mechanism. In particu-
lar, we are interested in addressing the following questions: What information does each buyer type
disclose to the mechanism? Do some buyer types disclose more information than others? What is
the maximal amount of information that is revealed by any buyer type? Is the privacy constraint
even binding?

Note that in standard mechanism design the monopolist maximizes his expected pro�t subject
only to the incentive-compatibility and individual-rationality constraints. The optimal mechanism
in this case perfectly screens every buyer type, and each of the posterior beliefs is a degenerate
distribution with a single atom on the buyer�s exact type. The loss of privacy entailed by such
a mechanism is in�nite according to our de�nition, and is therefore infeasible for any �nite �.
This means that in a �-optimal mechanism the monopolist obtains only a noisy signal about the
buyer�s type. Our �rst result establishes that this noise has a particular structure, which can be
interpreted as a coarse revelation principle: There is no loss of generality in focusing on mechanisms
that partition the type space into intervals and each type reports the interval he belongs to.

Lemma 1 For any �-feasible mechanism, there exists another �-feasible mechanism M = hM;p; qi
with the same pro�t level, such that M consists of intervals that partition [�; �], and each type � 2 �
reports the message m 2M for which � 2 m.

For future reference, we call such mechanisms as described in the lemma �interval mechanisms."
The intuition for this result is as follows. Mechanisms that rely on mixed strategies are �waste-

ful" in the sense that the seller could relax the privacy constraint by inducing pure strategies
without a¤ecting the outcome. This means that we can without loss assume the supports of the
seller�s posterior beliefs constitute a partition of [�; �]. The single-crossing property of the buyer�s
preferences further implies that the sets of types that �pool" together are convex. Hence, the
aforementioned partition consists of intervals, leading to the lemma.

Next, we use the interval characterization to derive the quantity and price that a �-optimal
mechanism assigns to each message. Given a feasible mechanism M = hM;p; qi, in which all the
messages m 2 M are intervals and each type � 2 � reports the interval to which it belongs, the
expected pro�t for the seller from employing M is given by:10

�(M) =
X
m2M

�
q (m)

Z m

m
v (�) f (�) d� � c (q (m)) � [F (m)� F (m)]

�
(2)

where m and m are the lower and upper bounds, respectively, for any interval m 2M . Therefore,
the quantity that maximizes the expected pro�t while maintaining IC and IR is uniquely determined

10To see this, recall that in every mechanism that satis�es (local) IC and binds IR at the lowest type, the seller�s

pro�t is given by �(M) =
R �
�

h
~q (�) � �

R �
�
~q (x) dx� c (~q (�))

i
f (�) d�, where ~q (�) is the quantity provided to type �.

The �rst term in the integrand is the social surplus generated by selling quantity ~q (�) to type �, the second term
is the minimal information rent that is left with type � in every IC mechanism, and the third term is the cost of
producing ~q (�). The seller is the residual claimant of welfare. Equation (2) is obtained from this formula using
integration by parts.
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by:11

c0 (q (m)) = EF [v (x) j x 2 [m;m]] for any m 2M (3)

The standard envelope condition (derived from local IC) for buyer surplus also pins down the
requested price:

p (m) = q (m) �m�
X

m02M s.t m0�m

�
m0 �m0� � q �m0� for any m 2M (4)

where the summation is over all the intervals m0 that are �lower" than m. It follows that the
assignment of types to quantity-price pairs in any �-optimal mechanism is completely determined
by the interval partition. Therefore, in the rest of the analysis we focus on characterizing the set
of intervals M in the �-optimal mechanism.

To do this, we �rst rewrite the seller�s optimization problem in terms of the interval partition. In
particular, we will compute the privacy measure of any mechanism that uses intervals as messages.
Note that when the seller sees a message m in equilibrium, his posterior density updates to f(� j
m) = f(�)

F (m)�F (m) for � 2 [m;m], and f(� j m) = 0 otherwise. The relative entropy between this

posterior belief and the prior is computed as
Rm
m f(� j m) log f(�jm)f(�) d� = � log [F (m)� F (m)]. Since

the message m is sent in equilibrium with probability F (m) � F (m), we deduce that for interval
mechanisms M, the ex-ante loss of privacy is given by:

I(M) =
X
m2M

� [F (m)� F (m)] � log [F (m)� F (m)] : (5)

Consider the discrete distribution gM over the elements of M induced by the prior. That is,
gM (m) = F (m)�F (m) is the ex-ante probability that the buyer�s type � belongs to the interval m.
Then the above equation (5) can be compactly written as I(M) = H(gM ), which is the Shannon
entropy of the discrete distribution gM .

This discussion yields the following result:

Lemma 2 The pro�t maximization problem is equivalent to �nding a set of intervals M that par-
tition [�; �] and satisfy H(gM ) � �, such that (2) is maximized subject to these constraints and with
quantities given by (3).

4.2 Existence and further properties

So far we have set aside an important technical issue of whether a �-optimal mechanism exists.
To see why existence is not straightforward in our setting, recall Lemma 2 from above. Although
that lemma provides a simple constrained optimization program in terms of the intervals, the space
over which the seller optimizes is not compact. Indeed, compactness is guaranteed with any �nite
upper bound on the number of intervals used in the mechanism, but a priori the seller could even
partition buyer types into countably many intervals.

We will however show that an optimal mechanism exists and consists of �nitely many intervals.

11Since c is strictly convex and c0(0) = 0, the �rst order condition (3) uniquely determines the value of the optimal
q (m). The fact that v (�) is increasing ensures that q (�) is �increasing in m." Thus higher types receive higher quantity
in equilibrium and local IC implies global IC.
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Proposition 1 There exists a �-optimal mechanism M = hM;p; qi, such thatM consists of �nitely
many intervals that partition [�; �], and each type � 2 � reports the interval to which it belongs.12

The proof goes as follows: Consider a sequence of �-feasible interval mechanismsMj = hMj ; pj ; qji
such that �(Mj) converges to the supremum pro�t �� across �-feasible mechanisms. We will re-

place each mechanism Mj by another �-feasible interval mechanism ~Mj =
D
~Mj ; ~pj ; ~qj

E
, such that

the new message set ~Mj consists of at most N intervals, where N is a constant that depends only
on F and �. This upper bound N restores compactness and allows us to �nd a subsequence of the
partitions f ~Mjg that converges to some limit partition ~M1. By Lemma 2 and continuity, ~M1 is
also a feasible mechanism, and it achieves the limit pro�t along the convergent subsequence. There-
fore, if we could carry out the replacement in such a way that �( ~Mj) � �(Mj), then �( ~M1) � ��
and ~M1 would be �-optimal.

It remains to �nd the appropriate replacements ~Mj . We �rst observe that starting from any
mechanism Mj , merging two adjacent intervals in Mj into a single interval (and adjusting the
quantities/prices accordingly) always strictly decreases the pro�t. However, by doing so the seller
is able to save on the privacy measure, which enables him to divide any other interval in Mj into
two subintervals, increasing the pro�t. The key argument, then, is to compare the pro�t gain in the
latter step to the pro�t loss in the former. We show that whenever two adjacent intervals are both of
mass smaller than some constant �, they can be combined to create enough slackness in the privacy
constraint; and if the slackness is used to break another (big) interval into two, the seller achieves
a net pro�t gain. Intuitively, this pro�t comparison holds because the entropy function severely
punishes against precise knowledge about any small set of types. So when the seller combines two
�small" intervals into a single one, the saved privacy measure is signi�cant relative to the reduction
in pro�t.

By repeatedly combining adjacent �small" intervals, we are able to transform Mj into a mech-
anism ~Mj with weakly higher pro�t, and with no adjacent intervals both having mass < �. The
upshot is that ~Mj has at most N := 2

� + 1 intervals, completing the proof.
13

Below we collect a few other results that emerge from this proof:

Proposition 2 Under the Bayesian privacy measure, the privacy constraint is exhausted in any
�-optimal mechanism M. That is, I (M) = �.

As discussed above, the intuition is that the seller always bene�ts from re�ning the information
he elicits about the buyer�s type (i.e., dividing an interval into two subintervals). By choosing one
of the subintervals to be �small," the average privacy constraint is still satis�ed. Note however

12 It is instructive to compare this result to an analogous result in the rational inattention literature. Mat¼ejka (2016)
shows that a rationally inattentive seller would charge only �nitely many prices even though there is a continuum
of states. The argument used to prove that result relies on properties of Hermite polynomials. In contrast, the
proof in our environment is rather elementary and only makes use of the tradeo¤ between privacy and pro�t when
merging/dividing intervals.

13To be fully rigorous, in the proof we �rst �nd a replacement with �nitely many intervals. This can be done
because for any limit point Mj (more precisely, the bounds of intervals in Mj) may have, the seller incurs little pro�t
loss if he combines all the small intervals near this limit point. Such loss is covered by the net pro�t gain in merging
two small intervals and dividing a long one. Once we have a �nite Mj to begin with, we still need to guarantee that
the process of �combining small intervals" will come to an end. We do this by combining two pairs of adjacent small
intervals at once and breaking a big interval into two. There is still net pro�t gain, and in addition the total number
of intervals strictly decreases. The �nal ~Mj involves at most one pair of adjacent small intervals, so its size is again
bounded uniformly across j.
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that this argument and conclusion does not extend to an alternative ex-post notion of privacy loss,
which we discuss in Section 5.

Now that we know I (M) = � in the optimal mechanism, we can use Equation (5), along with
a well-known result from the literature, to put a lower bound on the number of messages in any
�-optimal mechanism:

(Cover and Thomas, Theorem 2.6.4) If a discrete random variable X takes n values, then its
Shannon entropy satis�es H(X) � log n, with equality if and only if X has a uniform distribution.

Corollary 1 In any �-optimal mechanism M = hM;p; qi, the message set M consists of at least
e� elements.

On the other hand, we show that when the privacy constraint is stringent, 2 messages are
su¢ cient to implement the optimal mechanism.14

Proposition 3 There exists � > 0 such that in any �-optimal interval mechanism M = hM;p; qi
with 0 < � � �, the message set M consists of exactly two intervals.

This result is proved via a lemma stating that there can be at most one interval with arbitrarily
small mass (according to F ). Compared to the above proof sketch for Proposition 1, the next
lemma additionally rules out the existence of two �small" intervals that are not adjacent.

Lemma 3 For every k > 0, there exists � > 0 such that in any �-optimal interval mechanism M =
hM;p; qi with � � k, at most one interval in M has mass < �.

Knowing that an optimal mechanism exists also allows us to derive the �rst order conditions for
an interval partition to be optimal. To be concrete, let the intervals in M be m1 = [�0; �1];m2 =
[�1; �2]; : : : ;mn = [�n�1; �n], with � = �0 < �1 < � � � < �n = �. For brevity we denote qi � q (mi),
so that qi is the quantity o¤ered to buyers with type in [�i�1; �i]. The following is a necessary
condition for the �cuto¤s" �1; : : : ; �n�1 to be optimal:

Lemma 4 Given n > 1, if an interval mechanism M = hM;p; qi maximizes pro�t among �-feasible
mechanisms with n intervals, then there exists a constant � � 0 such that for all i 2 f1; :::; n� 1g:

[(qi+1 � qi) � v (�i)� (c(qi+1)� c(qi))] = � �
�
log

F (�i)� F (�i�1)
F (�i+1)� F (�i)

�
where, by Equation (3), qi is determined by c0 (qi) = EF [v (x) j x 2 [�i�1; �i]].

Note that this lemma provides necessary conditions for optimality given the number of intervals
n, but it does not characterize the optimal n for general distribution F and cost function c (�).
Without imposing additional structure on these primitives, it is di¢ cult to provide a complete
characterization of �-optimal mechanisms (which need not be unique) that describes the number
of intervals and their properties. In light of this di¢ culty, we illustrate next the structure of a
�-optimal mechanism in the uniform-quadratic case.

14There are of course other optimal mechanisms that involve more (redundant) messages. This is why the following
proposition is stated with the restriction to interval mechanisms.
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4.3 Uniform-quadratic case

Suppose that � � U [�; �] and c(q) = q2

2 . To �nd the �-optimal mechanism for any given � > 0 we
proceed in two steps. First, given any n � 1, we �nd the pro�t-maximizing �-feasible mechanism
with exactly n intervals. We call this mechanism the (n; �)-optimal mechanism. Then, we �nd the
number of intervals n such that the (n; �)-optimal mechanism yields the highest pro�t.

In the uniform-quadratic case, the optimal mechanism M = hM;p; qi with n intervals admits a
simple structure: If log n � � then all the intervals in M have the same length; If log n > � then
a necessary condition is that M consists of exactly one �short" interval and n � 1 equally �long"
ones. The lengths are uniquely determined by the binding privacy constraint I (M) = �, and the
position of the �short" interval within M does not matter. Formally:

Lemma 5 In the uniform-quadratic case, given any n � 1 and � > 0, the (n; �)-optimal mechanism
M = hM;p; qi is such that

1. If log n � � then M consists of n intervals of equal length (= 1
n

�
� � �

�
).

2. If log n > � then exactly one of the intervals in M has length ls and the remaining n � 1
intervals in M have length ll. These lengths ls < ll are uniquely determined by the following
two equations:

� � � = ls + (n� 1) ll (6)

� = � ls�
� � �

� log ls�
� � �

� � (n� 1) � ll�
� � �

� log ll�
� � �

� (7)

The mechanism is unique, up to reordering of the intervals.

The proof consists of three steps. First, we show that the order of the intervals in M does
not change the expected pro�t when prices and quantities are optimally adjusted. Clearly it also
does not a¤ect the entailed loss of privacy. Next, we show that if the privacy constraint is binding,
the �rst order conditions can be satis�ed only if the intervals in M have at most two lengths
(equivalently, two possible mass). Finally, we use the second order conditions to show that in any
optimal solution, n � 1 intervals have the same length and the last interval has weakly shorter
length.

We now proceed to characterize the optimal number of intervals in the �-optimal mecha-
nism. Let n�� denote the smallest integer for which log n

�
� � � (that is, n�� 2 N is such that

� 2 (log (n�� � 1) ; log (n��)]). We then have

Proposition 4 In the uniform-quadratic case, given any �, the �-optimal mechanism is the (n��; �)-
optimal mechanism as described in Lemma 5.

Proof: By Corollary 1, the number of intervals in a �-optimal mechanism is at least e� > n���1.
By way of contradiction, assume this number is greater than n��. Then by Lemma 5, at least n

�
� of

the intervals inM have the same �big" mass. It follows that each of the intervals in the mechanism
M has mass smaller than 1

n��
< e��, so that � log [F (m)� F (m)] > � for eachm 2M . By Equation

(5), we then have I(M) > �
P
m [F (m)� F (m)] = �, leading to a contradiction. �

Note that by Corollary 1, the number of messages in a �-optimal mechanism in the uniform-
quadratic case is equal to the lower bound on the number of intervals among all mechanisms that
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satisfy H (gM ) = �. In other words, there are no partitions with less than n�� intervals that exhaust
the privacy constraint, and even though there are partitions with more than n�� intervals that meet
the privacy constraint, they are not optimal. The above proof actually shows that for n > n��, the
(n; �)-optimal mechanism does not exist if we require the mechanism to have exactly n intervals.
The optimum is only achieved when n� n�� of these intervals are degenerate.

The structure of the �-optimal mechanism has an interesting implication for the trade-o¤ be-
tween privacy and pro�t. For � = 1 and � = 2 in the uniform-quadratic case, Figure 1 depicts the
expected pro�t of the monopolist in the �-optimal mechanism as a function of �.

Figure 1. The privacy-pro�t frontier in the uniform-quadratic case

The kinks in Figure 1 represent values of � where the number of intervals in the �-optimal
mechanism increases. Between kink points the number of intervals remains �xed but the intervals
change. Notice that while there are diminishing returns to loss of privacy when the number of
intervals increase, there are increasing returns to loss of privacy when � increases but the number
of intervals remains �xed (that is, the curve between kink points is convex). This means that when
we introduce a new (small) interval, the initial change in expected pro�t is small relative to the loss
of privacy. But as we continue to lower privacy, expected pro�t rises at an increasing rate until a
new interval is added.

While the results in this section are derived for the uniform prior distribution, their qualitative
properties (such as the shape of the privacy-pro�t frontier) are robust to small changes in this
distribution. This is because the set of �-optimal mechanisms, when viewed as a correspondence
from the distribution F to the space of interval partitions, is upper-hemicontinuous.15 To see
this, recall that Lemma 2 expresses the seller�s problem as a constrained optimization program.
The objective function is clearly continuous, and the constraint H(gM ) � � is both upper- and
lower-hemicontinuous.16 So the set of optimizers is upper-hemicontinuous by the Theorem of the
Maximum.

15One metric on the space of �nite partitions is the following: If M consists of cuto¤s f�0; : : : ; �ng and M 0 consists
of cuto¤s f�00; : : : ; �0mg, then de�ne d(M;M 0) to be the smallest � � 0 such that for each �i there exists �0j within �
distance from it, and vice verse for each �0j .

16To show it is lower-hemicontinuous, let M be a partition with cuto¤s f�0; : : : ; �ng such that
Pn

i=1�[F (�i) �
F (�i�1)] � log[F (�i) � F (�i�1)] � �. Take any sequence of distributions F j that converge (weakly) to F . We de�ne
M j to be the partition with cuto¤s �ji given by F

j(�ji ) = F (�i), for all 1 � i � n. Then the privacy measure of M j
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4.4 Welfare analysis

Varying the privacy capacity of a mechanism a¤ects the seller�s pro�t, the buyer surplus and the
total welfare (sum of pro�t and buyer surplus). In this section we provide a thorough analysis of how
� changes these quantities. Throughout this section we assume quadratic costs, that is c (q) = q2

2 .

We also assume F has monotone hazard rate, that is f(�)
1�F (�) increases in �. This property implies

that the virtual valuation v(�) is increasing.
It is immediate to notice that the expected pro�t � is at least weakly increasing in �. This

is because higher � only relaxes the privacy constraint (P) in the seller�s problem. Moreover, by
Proposition 2 we know that the privacy constraint is binding in �-optimal mechanisms. So we have
the following stronger result:

Corollary 2 Pro�t from a �-optimal mechanism is strictly increasing in �.

Therefore, pro�t is minimized when the monopolist is required to provide full privacy (� = 0), and
it is maximized when he is allowed to fully separate the buyer types (� =1).

For the buyer, the opposite is true:

Proposition 5 Buyer surplus from a �-optimal mechanism is maximized at � = 0, where every
type receives the same quantity, and it is minimized at � =1, where types are fully separated.

The intuition for this result is that whenever the seller obtains �ner information about the buyer
in the form of dividing an interval into two subintervals, the buyer is worse-o¤ in terms of ex-ante
expected utility.

Finally, a regulator might be interested in �nding the level of � that maximizes total welfare.
When the density function f (�) is monotone, the following proposition provides a characterization:

Proposition 6 Suppose the density f (�) increases in �. Then total welfare is maximized at � = 0
and minimized at � = 1. Conversely, if f (�) decreases in �, then total welfare is minimized at
� = 0 and maximized at � =1.

It is interesting to note that in the uniform-quadratic case, total welfare of any �-optimal mechanism
is independent of the privacy capacity �.

5 Ex-post privacy-constrained mechanisms

So far we have analyzed an ex-ante notion of privacy loss. Under this criterion, the monopolist can
satisfy the privacy constraint even when he learns almost perfectly about some small sets of buyer
types (although by Lemma 3, there is at most one such set at the optimum). In this section we
explore a more stringent notion of privacy, requiring that the designer not to learn too much about
any buyer type. Formally, we strengthen the average privacy constraint I(M) � � to its ex-post
version:

under the prior F j is the same as the privacy measure of M under the prior F , so that M j is �-feasible under F j .
Weak convergence in the distribution implies �ji ! �i as j !1. Hence we have lower-hemicontinuity.
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De�nition 2 The ex-post loss of privacy entailed by mechanism M = hM;p; qi is given by

Iep (M) = sup
m
[DKL (F (�jm) jj F )]

where the supremum is taken over messages m 2 M that are sent with positive probability in
equilibrium.

That is, we impose an upper bound on the largest change in the seller�s beliefs, as measured by
relative entropy. Given � > 0, we say a mechanism is ex-post �-optimal if it is pro�t-maximizing
among all mechanisms M that satisfy IC, IR and the ex-post privacy constraint Iep (M) � �.

It turns out that ex-post �-optimal mechanisms also take the interval partition form:

Proposition 7 There exists an ex-post �-optimal mechanism M = hM;p; qi, such that M consists
of �nitely many intervals that partition [�; �], and each type � 2 � reports the interval to which it
belongs.

Note that the ex-post privacy constraint directly implies that each interval in M has mass at
least e��. So in contrast to Corollary 1, here the total number of intervals in M is bounded above
by e�. This upper bound also makes it easier to establish the existence of an optimal mechanism,
since compactness is now guaranteed.

As another contrast with the ex-ante privacy notion, we observe that the ex-post privacy con-
straint is in general not exhausted in the optimal mechanism. This is a simple corollary of the
following characterization in the uniform-quadratic case:

Proposition 8 In the uniform-quadratic case, given any � 2 [log(n); log(n + 1)), the ex-post �-
optimal mechanism divides the type space into n equal intervals.

When � = log(n), the ex-ante and ex-post constrained-optimal mechanisms coincide and ex-
haust both privacy constraints. But when log(n) < � < log(n+1), the ex-ante �-optimal mechanism
consists of n+1 intervals (not all equal), whereas the ex-post �-optimal mechanism contains n equal
intervals. In this case the ex-post privacy constraint is slack.

6 Discussion

6.1 Revelation principle

The revelation principle typically refers to the idea that the mechanism design problem can often be
simpli�ed without losing any generality by restricting attention to mechanisms with two properties:
(1) each agent reports his type, and (2) the mechanism is one-shot. The �rst property clearly
fails in the presence of privacy concerns, but we partially restore it with our notion of �coarse
revelation� (reporting the interval that contains the agent�s type). The second property holds
when the designer is restricted to sequential mechanisms in which the transitions from one stage to
another are deterministic. However, sequential mechanisms with random transitions may do better
than any one-shot mechanism. To illustrate this, suppose that the agent�s type � is uniformly
distributed on [0; 1]. Consider �rst the following one-shot mechanism. If the agent reports � > 0:5,
the good is o¤ered at price 0:375; if he reports 0:25 < � � 0:5, then with probability 1

2 the good
is o¤ered at price 0:25 and otherwise no interaction occurs; �nally if he reports � < 0:25, no
interaction occurs;. It is easy to check that every agent type is willing to truthfully report the
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interval that contains his type. Through this mechanism, the designer learns whether � belongs to
[0; 0:25]; [0:25; 0:5] or [0:5; 1].

Now we construct a sequential mechanism that gives the agent the same incentives but preserves
more privacy. In the �rst stage, the agent is asked whether his type is above or below 0:5. If he
says �above," the good is o¤ered at price 0:375. If he says �below," then with probability 1

2 the
interaction ends. With remaining 1

2 probability the mechanism enters the second stage, in which
the agent is asked whether � is above or below 0:25. If yes, the good is o¤ered at price 0:25;
otherwise no trade occurs. Although the agent�s incentives (and pro�t) are the same as in the
previous one-shot mechanism, the ex-ante privacy constraint is relaxed since when � � 0:5, the
designer only learns the exact interval [0; 0:25] or [0:25; 0:5] with probability 1

2 . Note however that
it would be without loss to restrict to one-shot mechanisms under the ex-post privacy notion, which
considers the most informative realization.

6.2 Multiple agents

Extending our analysis to mechanisms with more than one agent presents a number of challenges.
First, the notion of privacy loss needs to be extended to accommodate the possibility that di¤erent
participants are exposed to di¤erent losses of privacy.17 One approach is to measure the average
loss of privacy across all agents. An alternative approach is to require that the maximal loss of
privacy for any agent is at most �. As in our single-agent model, the privacy notion also has to
address the fact that loss of privacy may di¤er across types of the same agent.

The second challenge concerns the failure of the revelation principle. Such failures are more
signi�cant with multiple agents, since a sequential mechanism may preserve more privacy by col-
lecting information from a small number of agents. For example, a descending price auction is
strategically equivalent to a sealed-bid �rst price auction, but collects information only about the
winning bidder.18

Aside from these challenges, our framework can be extended to allow for multiple agents. To
illustrate, we analyze here the simple case of a seller with a single unit of a good and no production
costs, and two buyers who independently draw private valuations for the good from a uniform
distribution over

�
�; �
�
, where � � 1

2� ensuring that the virtual valuation is non-negative. We
restrict attention to symmetric static mechanisms and the ex-ante privacy measure (each agent�s
privacy loss � �).

By essentially the same arguments as in our single-agent model, it can be shown that the optimal
privacy-constrained mechanism partitions the set of types into �nitely many intervals. In light of
this, consider the class of mechanisms where the types are partitioned into intervals, each buyer
reports the interval to which his type belongs, and the higher bidder is awarded the good (with
ties broken evenly). The optimal mechanism within this class turns out to be very similar to the
optimal mechanism we derived for a single buyer in the uniform-quadratic case:

Proposition 9 The optimal symmetric static mechanism in the two buyer problem with uniform
distribution and no production costs partitions the types in the same way as the �-optimal mech-
anism in the one buyer problem with quadratic costs. That is, for any � 2 (log(n � 1); log(n)],

17This is particularly important since the literature on optimal mechanisms with restricted message spaces has
highlighted the usefulness of asymmetric mechanisms.

18The revelation principle would be maintained under the most stringent privacy measure, which considers the
biggest loss of privacy across all agents and all of their type realizations.
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M consists of n � 1 intervals of length ll and one interval of length ls. These lengths ls � ll are
uniquely determined as in Lemma 5.

A pricing rule that assures incentive compatibility in this mechanism is the following: the winner
pays �i��i�1��2

�i+�i�1�2� , where [�i�1; �i] is the interval that he reported, and the loser pays 0. Extending
the analysis to any number of bidders is more involved and is left for future research.

7 Concluding remarks

This paper proposed a Bayesian approach to incorporating privacy constraints into mechanism
design. The underlying idea is that the designer already has some prior information about the
participants, and the loss of privacy induced by a mechanism should be measured as the di¤er-
ence between this prior information and the updated information that can be inferred from the
agents�interaction with the mechanism. This entails an additional constraint - on top of the stan-
dard incentive-compatibility and individual-rationality constraints - that needs to be satis�ed by
a mechanism: The di¤erence between the prior and posterior information must be below some
threshold.

We illustrate this approach by using relative entropy to compute the di¤erence between the prior
and posterior beliefs and applying this measure to a canonical monopolistic screening problem. We
show the implications of imposing the privacy constraint at the ex-ante stage (i.e., averaging over
the possible realizations of the consumer type, the loss of privacy must be below some bound)
and at the ex-post stage (i.e., for every realized type, the loss of privacy must be below some
bound). We also demonstate how our framework can be helpful in understanding the e¤ect of
privacy constraints on consumer and seller welfare.

Our approach opens the door to many interesting questions about mechanism design and pri-
vacy. In particular, since the revelation principle can fail, what is the optimal mechanism when
we allow for sequential mechanisms with randomization? What are optimal privacy-preserving
auctions? We hope that future research will provide answers to these and related questions.
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8 Appendix 1 - Proofs

8.1 Proof of Lemma 1

We will show that any mechanism M = hM;p; qi that satis�es I (M) = �, for some �nite � > 0, can
be transformed into an interval mechanism in a way that does not change the expected pro�t of
the monopolist, and weakly decreases the loss of privacy.

GivenM = hM;p; qi and a best-response strategy � (�) for the agent underM, we �rst drop duplicate
messages: We say that message m0 is a duplicate of message m if p (m) = p (m0) and q (m) = q (m0).
Clearly, if m0 is a duplicate of m, then removing m0 fromM and adjusting � such that all types who
sent m0 would now send m, does not change the seller�s expected pro�t. Moreover, the posterior
belief given the message m in the new mechanism is an average of the posterior beliefs given the
messages m and m0 in the original mechanism. Due to the convexity of the divergence function
DKL (F (�jm) jj F ) in its �rst argument, the entailed loss of privacy I (M) is decreased.19

Next, denote by � (m) the set of all types who report the message m 2M with positive probability
under �:

� (m) = f� 2 � j m 2 supp (� (�))g

By the single-crossing property of the agent�s preferences, the set � (m) is either an interval or a
singleton.20 However, since � is �nite, there can be only a zero-measure subset of messages m 2M
for which � (m) is a singleton.21 We can therefore drop these messages from M , and pick a new
best response for each type whose message was dropped. Since the behavior of only a zero-measure
set of types was a¤ected, the expected pro�t �(M) and the entailed loss of privacy I (M) are both
unchanged.

Henceforth we may assume that �(m) is an interval for each m. Since there are no duplicates, for
every pair of messages m and m0 the intersection � (m) \ � (m0) is either empty or a singleton (in
other words, almost all types do not randomize between messages as part of their best-response).

To complete the transformation of M into an interval mechanism we now use a standard revelation
argument: replace every message m 2 M with the corresponding interval � (m), and adjust the

19Given � and F , denote by Pr (m j �; F ) and Pr (m0 j �; F ) the probabilities that messages m and m0 are reported
under �, respectively. Then the convexity of DKL (F (�jm) jjF ) in its �rst argument implies that:

Pr (m j �; F ) �DKL (F (�jm) jjF ) + Pr
�
m0 j �; F

�
�DKL

�
F
�
�jm0� jjF �

�
�
Pr (m j �; F ) + Pr

�
m0 j �; F

��
�
�
DKL

�
Pr (m j �; F ) � F (�jm) + Pr (m0 j �; F ) � F (�jm0)

Pr (m j �; F ) + Pr (m0 j �; F ) jj F
��

where
Pr(m j �;F )�F (�jm)+Pr(m0 j �;F)�F(�jm0)

Pr(m j �;F )+Pr(m0 j �;F ) is the posterior belief that is induced when all the types who sent m0 in
equilibrium would now send m.

20Formally, if �0 2 � (m) and �00 2 � (m) for somem 2M , then � 2 � (m) for all � 2 [�0; �00]. To see this, observe that
�0 2 � (m) implies q(m)�0�p(m) � q(m0)�0�p(m0) for every message m0. Similarly q(m)�00�p(m) � q(m0)�00�p(m0).
Since any � 2 (�0; �00) is a convex combination of �0 and �00, the above two inequalities lead to q(m)� � p(m) �
q(m0)� � p(m0). Thus m is a best-response of type �. It is in fact a strict best-response because the last inequality
is strict whenever m0 6= m; otherwise q(m)�0 � p(m) = q(m0)�0 � p(m0) and q(m)�00 � p(m) = q(m0)�00 � p(m0) hold
simultaneously, showing that m0 is a redundant copy of m. Hence for any � strictly in between �0 and �00, �(�) puts
probability 1 on sending the message m.

21When � (m) is a singleton, the message m is sent by exactly one type, and therefore m reveals this type in
equilibrium.
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function p (resp. q) such that whenever the agent reports the interval � (m) in the �transformed"
mechanism he would get the price (resp. quantity) that he would have got if he reported the message
m in the �original" mechanism. The elements in the transformed message set are pairwise disjoint
intervals whose union is �, and therefore they constitute a partition of �. IC, IR, privacy loss and
pro�t are maintained under this transformation, which proves the lemma. �

8.2 Proof of Proposition 1

8.2.1 Core argument

We follow the proof sketch outlined in the main text, leaving some technical details to later sub-
sections. As described in the main text, the key is to �nd a replacement ~M for any mechanism M
such that pro�t is not decreased and the number of intervals in ~M is bounded.

Step 1. Find a �big" interval. Set l = e��. We �rst show that any �-feasible interval mechanism
contains a �big" interval with mass � l (according to F ). Indeed, from Equation 5 we have

I(M) =
X
m2M

� [F (m)� F (m)] � log [F (m)� F (m)] � �:

Note that
P
m2M [F (m)� F (m)] = 1. So there exists somem 2M such that� log [F (m)� F (m)] �

�. In other words, the interval m has mass at least e��.
Fixing this choice of l, we de�ne � to be a small positive constant as given by Lemma 7 below.

Starting from M, we will now look for the replacement ~M.

Step 2. From countable to �nite. We �rst �nd a replacement M̂ with at least as much pro�t
and only �nitely many intervals. Suppose p is an accumulation point of the cuto¤s in M. Then on
the left of p we can order the intervals in M from left to right as m1;m2; : : : , with mi converging
to p. In particular, the mass of mi converges to zero, and we can �nd some ms and ms+1 both
with mass < �. Applying Lemma 7 below, we can merge the intervals ms and ms+1 and divide
the �big" interval into two subintervals, in such a way that the privacy measure is unchanged and
pro�t is strictly increased. The achieved pro�t gain is su¢ cient to cover the loss from additionally
combining all the (countably many) intervals mt;mt+1; : : : , so long as we choose t to be su¢ ciently
large. As this last step also relaxes the privacy constraint, we obtain a replacement mechanism
in which p is no longer an accumulation point of intervals on its left. Doing the same exercise for
intervals on the right of p yields a mechanism in which p is not an accumulation point.

In fact, we can achieve this replacement with some extra properties. Note that whenever
an accumulation point p exists, the �big" interval must have mass strictly greater than l = e��;
otherwise the privacy constraint requires every interval inM to have mass exactly l, a contradiction.
Thus by choosing ms and ms+1 to have su¢ ciently small mass, we can ensure that when they are
merged and the �big" interval is divided into two subintervals, the bigger subinterval still has mass
> l. In other words, we can perform the replacement in such a way that the �same big interval"
is sequentially divided (each time creating a small subinterval on the left and a big one on the
right). The bene�t is that as we get rid of the accumulation points in M one by one (which may
be countably many), we obtain a sequence of replacement mechanisms that become �ner in the
original �big" interval in M and more coarse everywhere else. This sequence converges, and the
limit mechanism has at most one accumulation point in the �big" interval.22 By merging and
dividing once more, we arrive at M̂ with �nitely many intervals and weakly higher pro�t than M.

22 If we do not divide the same big interval repeatedly, then it is possible that new accumulation points arise in the
iterative process. That would complicate the argument.
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Step 3. From �nite to bounded. We now demonstrate how to replace the �nite mechanism M̂
with yet another mechanism ~M with higher pro�t and at most N := 2

� +4 intervals. Starting from
M̂, if there are two pairs of adjacent intervals (4 distinct ones) all with mass < �, then we combine
both pairs at the same time and used the privacy measure saved from one of the mergers to divide
the �big" interval into two subintervals. The privacy constraint is relaxed, and by Lemma 7 below,
total pro�t is increased if we choose the merger that induces greater pro�t loss.

Hence whenever M̂ contains two pairs of adjacent �small" intervals, it can be replaced with a
mechanism M̂(1) with higher pro�t and one less interval in total. The latter property ensures that
when iterating this process, we will eventually reach a mechanism ~M in which at most one pair of
adjacent intervals both have mass < �. Excluding this pair and the two intervals next to them,
at least half of the remaining intervals have mass � �. So the total number of intervals in ~M is
bounded by N . �

8.2.2 Estimate of pro�t gain/loss

Lemma 6 There exists a small positive constant � depending on F and c(�), such that for any
triple of cuto¤s a < b < c, the pro�t loss � incurred when merging the two intervals [a; b] and [b; c]
into a single interval [a; c] (and adjusting quantities/prices accordingly) satis�es

� � �

(F (b)� F (a))(F (c)� F (b))(F (c)� F (a)) �
1

�
:

Note from Equations (2) and (3) that � only depends on a; b; c and is independent of the
remaining cuto¤s.

Proof: We de�ne two auxiliary functions. First, we implicitly de�ne the function � (x) as follows:
c0 (� (x)) = x for all x > 0. By Equation (3) we have that q (m) = � (Ev (m)) for all m 2M .

Convexity of the cost function and c0(0) = 0 ensures that � is uniquely de�ned and increasing.
In fact, by the chain rule we have

�0(x) =
1

c00(�(x))
:

Since c00(q) is positive and continuous for q > 0, we deduce that c00(�(x)) is bounded above and
away from zero whenever �(x) is, which in turn holds when x is bounded above and away from
zero. Thus for all x 2 [v(�); v(�)], �0(x) is bounded above and away from zero.

Next, we de�ne the function h (x) as follows:

h (x) = � (x) � x� c (� (x))

The �rst derivative of h (x) is given by:

h0 (x) = �0 (x) � x+ � (x)� c0 (� (x)) � �0 (x) = �0 (x) � x+ � (x)� x � �0 (x) = � (x)

Thus the second derivative h00 is bounded above and away from zero for x 2 [v(�); v(�)].

We now estimate the pro�t reduction when merging two intervals into a single one. Let Ev (m)
denote EF [v (�) j � 2 [m;m]]. Then the pro�t of mechanism M = hM;p; qi as given by Equations
(2) and (3) can be rewritten as

�(M) =
X
m2M

h (Ev (m)) � [F (m)� F (m)]
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When two intervals [a; b] and [b; c] are combined, the pro�t loss is therefore

� = h(E[v(�) j a � � � b]) � [F (b)� F (a)] + h(E[v(�) j b � � � c]) � [F (c)� F (b)]
� h(E[v(�) j a � � � c]) � [F (c)� F (a)]:

(8)

For notational convenience, let v1 = E[v(�) j a � � � b], v2 = E[v(�) j b � � � c] and v = E[v(�) j
a � � � c]. Observe that v1 < v < v2 and

v1 � [F (b)� F (a)] + v2 � [F (c)� F (b)] =
Z b

a
v(�)f(�)d� +

Z c

b
v(�)f(�)d� = v � [F (c)� F (a)]: (9)

Thus from Equation (8) and the strict convexity of h, it is clear that � > 0.
To obtain a sharper estimate as required by the lemma, we apply second-order Taylor expansion

to write

h(v1) = h(v) + (v1 � v)h0(v) +
(v1 � v)2

2
h00(�)

h(v2) = h(v) + (v2 � v)h0(v) +
(v2 � v)2

2
h00(�)

for some � 2 (v1; v) and � 2 (v; v2). Plugging these into Equation (8) and using (9), we have

� = h(v1) � [F (b)� F (a)] + h(v2) � [F (c)� F (b)]� h(v) � [F (c)� F (a)]

=
(v1 � v)2

2
h00(�) � [F (b)� F (a)] + (v2 � v)

2

2
h00(�) � [F (c)� F (b)]:

Recall that h00 is bounded above and away from zero, and F (b)�F (a) is on the same order as b�a
(since the density f is bounded above and away from zero). Thus the lemma would follow once we
show that v � v1 is on the same order as c� b (and similarly v2 � v is on the same order as b� a).

Indeed, we can rewrite Equation (9) as (v2� v1) � [F (c)�F (b)] = (v� v1) � [F (c)�F (a)]. Thus
it remains to show v2 � v1 is on the same order as c� a. Note that

v2 � v(b) =
R c
b [v(�)� v(b)]f(�)d�

F (c)� F (b) =

R c
b

R �
b v

0(y)f(�) dyd�

F (c)� F (b) :

As v0(y)f(�) is bounded above and away from zero, the numerator above is on the same order asR c
b

R �
b 1 dyd� =

(c�b)2
2 . So v2� v(b) is on the same order as c� b. Similarly v(b)� v1 is on the same

order as b� a. This proves that v2 � v1 is on the same order as c� a, and hence the lemma.

8.2.3 Comparison of two pro�t changes

Lemma 7 Given l > 0, there exists � 2 (0; l) with the following property. If any interval mechanism
M has two adjacent small intervals both of mass < � as well as a big interval of mass � l, then
when merging the two small intervals and using the saved privacy measure to divide the big interval
into two subintervals, the pro�t gain in the latter step is at least twice as big as the pro�t loss in
the former step.

Proof: Suppose there are two adjacent intervals with mass x; y < �; assume without loss that
x � y. If we combine them into a single interval, the pro�t loss is on the order of xy(x + y) by
Lemma 6. Meanwhile, Equation (5) implies that the amount of privacy measure saved is

� = (x+ y) log(x+ y)� x log x� y log y = x log(1 + y

x
) + y log(1 +

x

y
): (10)
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By assumption, there exists another interval of mass L � l. We use the saved privacy measure
to break this interval into two: That is, we look for a subinterval of mass � 2 (0; L2 ) such that the
total privacy measure is restored. This requires

L logL� (L� �) log(L� �)� � log � = �:

From this we obtain23

� � jlog �j � �

2
: (11)

We claim that (10) and (11) together imply � � x
p
x+ y (whenever x � y < �). For this it

su¢ ces to show that

x
p
x+ y � log( 1

x
p
x+ y

) <
x log(1 + y

x)

2
<
�

2
:

Rearranging, the above inequality is equivalent to

1

x
p
x+ y

<
�
1 +

y

x

� 1
2
p
x+y

:

For small x; y, the exponent 1
2
p
x+y

is at least 4. So by binomial expansion, the RHS above has size
at least � 1

2
p
x+y

4

�
�
�y
x

�4
�
�

1

8
p
x+ y

�4
� y
x
=

y

4096x(x+ y)2
� 1

8192x(x+ y)
:

This is indeed greater than the LHS, which was 1
x
p
x+y

.

Hence we have shown that when using the saved capacity to divide the big interval into two
subintervals, the smaller subinterval has mass � � xpx+ y. By Lemma 6, the resulting pro�t gain
is on the order of �(L � �)L � L2�

2 . Since L � l which is given, this pro�t gain is at least on the
order of � � xpx+ y. This greatly exceeds the initial pro�t loss (which is about xy(x+ y)) due to
combining two small intervals, completing the proof.

8.3 Proof of Proposition 2

This result follows directly from Lemma 6 above: If the privacy constraint were slack, the seller
could divide any interval inM into two subintervals and strictly increase the pro�t. By choosing one
of the subintervals to be very small, he would still satisfy the privacy constraint. This contradicts
optimality. �

8.4 Proof of Proposition 3

We argue that Proposition 3 follows from Lemma 3, which we prove below. Indeed, that lemma
implies the existence of some � > 0 such that any �-optimal interval mechanism with � � 1

23By the Mean Value Theorem, L logL�(L��) log(L��) = �(1+log �) for some � 2 (L��; L). So �(1+log �
�
) = �.

Since � � L
2
� �, this implies

� � � = x log(1 + y

x
) + y log(1 +

x

y
) � x � y

x
+ y � x

y
= x+ y � 1

e
:

Thus we further have 1 + log � � 1 � � log �. From �(1 + log �
�
) = � we then deduce � � jlog �j � �

2
.
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contains at most one interval with mass < �. For this �, de�ne � = �� log �. Then in any �-optimal
mechanism with � � � < 1, Equation (5) and feasibility impliesX

m2M
� [F (m)� F (m)] � log [F (m)� F (m)] � � � �� log �:

In particular, [F (m)� F (m)] � log [F (m)� F (m)] > � log � holds for every interval m 2 M . Note
that the function x log x is decreasing for x 2 [0; 1e ] and increasing for x 2 [

1
e ; 1]. Thus the preceding

inequality implies either F (m)� F (m) < �, or F (m)� F (m) > 1
2 (which is a rough estimate).

In other words, each interval in M has mass either less than � or greater than 1
2 . By de�nition

of �, there is at most on interval with mass < �. It is also clear that at most one interval can have
mass > 1

2 . Hence any �-optimal interval mechanism with � � � consists of at most two intervals.
Since the privacy constraint is exhausted, exactly two intervals are employed. �

8.5 Proof of Lemma 3

In the proof of Proposition 1, we showed that in any �-feasible mechanism there is a �big" interval
of mass at least e�� � e�k. So by Lemma 7, there cannot be two adjacent intervals both with mass
< � (for some small �).

It remains to deal with the situation where two small intervals are not adjacent. The proof
strategy is to move one of these intervals to be next to the other, and to show that the pro�t
change is at most on the order of xy, where x; y are the mass of these small intervals. Once this
is shown, we can repeat the argument in the proof of Lemma 7, merging the now adjacent small
intervals and dividing the big interval. As computed in that proof, the pro�t gain in the last step
is on the order of x

p
x+ y, which exceeds any pro�t loss incurred earlier. This would complete the

proof.

To be more speci�c, suppose the two small intervals are [�i�1; �i] and [�j ; �j+1], for some i < j.
Set x = F (�i) � F (�i�1) and y = F (�j+1) � F (�j). Consider moving the small interval on the
left toward the right while maintaining its mass: We can do this sequentially by replacing �i with
~�i = F

�1(F (�i+1)� x), then replacing �i+1 with ~�i+1 = F�1(F (�i+2)� x), so on and so forth until
~�j�1 = F�1(F (�j) � x) and the two small intervals become adjacent. This process preserves the
privacy measure, and it remains to estimate the pro�t change.

Note that in each step, the two intervals [~�t�1; �t] and [�t; �t+1] are changed into two new intervals
[~�t�1; ~�t] and [~�t; �t+1]. Recall from the proof of Lemma 6 that

�(M) =
X
m2M

h(Ev(m)) � (F (m)� F (m)):

Thus the pro�t increase in each step is given by

�t = h(~u) �
h
F (~�t)� F (~�t�1)

i
+ h( ~w) �

h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)]

(12)

where u;w; ~u; ~w represent the expected virtual valuation on the intervals [~�t�1; �t], [�t; �t+1], [~�t�1; ~�t],
[~�t; �t+1] respectively.

We �rst consider the di¤erence h( ~w) �
h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
. By con-

struction, F (�t+1)� F (~�t) = F (�t)� F (~�t�1) = x, so this di¤erence simpli�es to (h( ~w)� h(u)) � x.
Moreover, as we showed in the proof of Lemma 6,

u = E[v(�) j ~�t�1 � � � �t] = v(�t) +O(�t � ~�t�1) = v(�t) +O(F (�t)� F (~�t�1)) = v(�t) +O(x)
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where �O(�)" is the standard big O notation with implied constants depending on the distribution
and cost function. Thus h(u) = h(v(�t))+O(x) and similarly h( ~w) = h(v(�t+1))+O(x). It follows
that

h( ~w) �
h
F (�t+1)� F (~�t)

i
� h(u) �

h
F (�t)� F (~�t�1)

i
= [h(v(�t+1))� h(v(�t))] � x+O(x2):

Next we consider the other di¤erence h(~u) �
h
F (~�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)] in

Equation (12). It simpli�es to (h(~u)� h(w)) � [F (�t+1)� F (�t)]. Moreover,

~u =

R ~�t
~�t�1

v(�)f(�) d�

F (~�t)� F (~�t�1)
=

R ~�t
~�t�1

v(�)f(�) d�

F (�t+1)� F (�t)
= w +

R �t
~�t�1

v(�)f(�) d� �
R �t+1
~�t

v(�)f(�) d�

F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+

R �t
~�t�1

[(v(�)� v(�t)] � f(�) d� �
R �t+1
~�t

[v(�)� v(�t+1)] � f(�) d�
F (�t+1)� F (�t)

= w +
[v(�t)� v(�t+1)] � x
F (�t+1)� F (�t)

+O(x2);

where the last step holds because for each � 2 [~�t�1; �t], the di¤erence between [(v(�)� v(�t)] � f(�)
and [(v(� + �t+1 � �t)� v(�t+1)] � f(� + �t+1 � �t) is at most on the order of (�t � �) � (�t+1 � �t) =
O(x) � [F (�t+1)� F (�t)]. Thus h(~u) = h(w) + h0(w) � [v(�t)�v(�t+1)]�xF (�t+1)�F (�t) +O(x

2). It follows that

h(~u) �
h
F (~�t)� F (~�t�1)

i
� h(w) � [F (�t+1)� F (�t)] = h0(w) � [v(�t)� v(�t+1)] � x+O(x2)

Taken together, we have estimated the RHS of Equation (12), so that

�t =
�
h(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])

	
� x+O(x2):

Summing across t 2 fi; : : : ; j � 1g, we obtain that when moving the small interval on the left to be
adjacent to the one on the right, the total pro�t change is24

�LR = O(x
2) +

j�1X
t=i

�
h(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])

	
� x:

If we instead move the small interval on the right to be adjacent to the one on the left, then
total pro�t change is similarly computed as

�RL = O(y
2)�

j�1X
t=i

�
h(v(�t+1))� h(v(�t))� [v(�t+1)� v(�t)] � h0(E[v(�) j � 2 [�t; �t+1]])

	
� y:

Note the minus sign in front of the second term; this is because when moving from the right to the
left, the ordering of the subscripts need to be reversed.

Now observe that if we compute the weighted sum y ��LR + x ��RL, then the second term is
cancelled out. This yields

y ��LR + x ��RL = O(x2y + y2x):
Therefore �LR and �RL cannot both be very negative. To be concrete we may without loss assume
�LR � �O(xy). Then in moving the small interval on the left to the right, the initial pro�t loss
(if any) is small relative to the pro�t gain provided in Lemma 7. This again contradicts optimality,
and hence there cannot even be two small intervals that are non-adjacent. �

24There are j � i terms of order at most x2, and since j � i is bounded by the total number of intervals which in
turn is bounded by Lemma 7, their sum is still O(x2).
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8.6 Proof of Lemma 4

By Lemma 2, the seller�s problem is to �nd a vector of cuto¤s ! =
�
�0 = �; �1; � � � ; �n�1; �n = �

	
that maximizes the expected pro�t

�(!; q�i (!)) :=
nX
i=1

"
q�i (!)

Z �i

�i�1

v (x) f (x) dx� c (q�i (!)) � [F (�i)� F (�i�1)]
#

subject to the constraint

I (!) :=
nX
i=1

� [F (�i)� F (�i�1)] � log [F (�i)� F (�i�1)] � �;

where q�i (!) is determined by c
0 (qi) = EF [v (x) j x 2 [�i�1; �i]].

We form the Lagrangian

L (!) = � (!; q�i (!)) + �(�� I (!))

where � 2 R+ is the Lagrange multiplier. By the envelope theorem we have that d�
d�i

= @�
@�i
, and

therefore the �rst order conditions, that is @L(�)@�i
= 0 for all i 2 f1; : : : ; n� 1g, are given by (after

cancelling out f(�i)):

[(qi+1 � qi) � v (�i)� (c(qi+1)� c(qi))] = �
�
log

F (�i)� F (�i�1)
F (�i+1)� F (�i)

�
for all i 2 f1; : : : ; n� 1g. �

8.7 Proof of Lemma 5

Given � > 0 and n � 1, we will characterize the partition of � into n intervals that maximizes the
expected pro�t subject to the privacy constraint. We represent any partition as a vector of cuto¤s
! = (�0; :::; �n) , such that � = �0 � �1 � � � � � �n�1 � �n = �.

Our proof strategy is as follows. First, we will write the explicit expressions of the expected
pro�t �(!) and the loss of privacy I (!) that are induced by a vector of cuto¤s !. We verify
that the expected pro�t depends only on the lengths of these intervals, so it is invariant to their
ordering.25 The same is true for the entailed loss of privacy.

Next, we will write the �rst order conditions of the problem in terms of the interval mass
(equivalently, lengths), and show that there can be at most two di¤erent mass in the optimal
solution. Finally, we write the second order conditions and argue that exactly one interval has
weakly smaller mass.

Invariance to ordering. When the agent�s type is uniformly distributed over [�; �], the virtual
value of type � is given by v(�) = 2� � �, and the optimal quantity for any interval [�i�1; �i], as
determined by Equation (3), is �i = �i + �i�1 � �.

25For instance, the pro�t is the same for ! = (�0; :::; �k�1; �k; �k+1; :::; �n) and for !0 =
(�0; :::; �k�1; �k�1 + (�k+1 � �k) ; �k+1; :::; �n)
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The pro�t as given by equation (2) is:

�(!) =
nX
i=1

�
�i + �i�1 � �

�
�
Z �i

�i�1

�
2x� �

� 1

� � �
dx�

�
�i + �i�1 � �

�2
2

�i � �i�1
� � �

=
1

2
�
� � �

� nX
i=1

(�i � �i�1)
�
�i + �i�1 � �

�2
=

1

2
�
� � �

�  nX
i=1

(�i � �i�1) (�i + �i�1)2 � 2
nX
i=1

�
�2i � �2i�1

�
� � +

nX
i=1

(�i � �i�1) � �
2

!
.

The three terms in the parentheses above can be simpli�ed as follows:
Pn
i=1 (�i � �i�1) =

�
� � �

�
and

Pn
i=1

�
�2i � �2i�1

�
=
�
�
2 � �2

�
and

Pn
i=1 (�i � �i�1) (�i + �i�1)

2 = 4
3

�
�
3 � �3

�
�1
3

Pn
i=1 (�i � �i�1)

3.26

Plugging the three expressions back, we deduce

�(!) =

 
1

6

�
� � �

�2
+
1

2
�2 � 1

6
�
� � �

� nX
i=1

(�i � �i�1)3
!

(13)

This expression depends only on the lengths �i � �i�1.
The loss of privacy that is entailed by the partition ! is:

I (!) = �
nX
i=1

(�i � �i�1)
� � �

log
(�i � �i�1)
� � �

(14)

This is also invariant to the ordering of the intervals.

First order conditions. Let xi =
�i��i�1
��� denote the probability mass of the i-th interval. In

what follows we will work with the probability masses fxig instead of the cuto¤s f�ig.
For given � and n, Equations (13) and (14) suggest that the seller faces the following constrained

minimization problem:

min

nX
i=1

x3i

s:t: xi � 0;
nX
i=1

xi = 1;

nX
i=1

xi log xi � ��:

The Lagrangian is given by:

L (�; �; fxigni=1) =
nX
i=1

x3i + �(1�
nX
i=1

xi)� �(
nX
i=1

xi log xi + �):

Whenever fxig is a local constrained minimizer, the �rst order conditions imply

3x2i � � log xi = �+ � for all 1 � i � n: (15)

If � � 0, then the function 3x2�� log x is monotonically increasing. Thus every xi is the same.
This corresponds to the case where log n � �; it is clear that min

Pn
i=1 x

3
i is achieved when each

xi =
1
n , and the privacy constraint is slack.

26To simplify the third term we used the identity (x� y) (x+ y)2 = 4
3

�
x3 � y3

�
� 1

3
(x� y)3.

28



Otherwise assume � > 0. In this case the derivative of the function 3x2�� log x is 6x� �
x , which

is monotonically increasing and crosses 0 at x̂ =
q

�
6 . Thus, the function 3x

2 � � log x decreases
on [0; x̂] and increases on [x̂;1). Equation (15) yields that xi can take at most two values x and
x, with x < x̂ < x.

Second order conditions. We next show that at most one xi can be equal to x. Suppose
for the sake of contradiction that in the optimal solution � > 0 and x1 = x2 = x. Let g(x) =
(
Pn
i=1 xi;

Pn
i=1 xi log xi)

0 2 R2 denote the constraint values. Then its derivative/Jacobian Dg(x)
is the 2 � n matrix whose �rst row is all 1s and whose second row is (1 + log x1; : : : ; 1 + log xn).
Consider v = (1;�1; 0; : : : ; 0)0 2 Rn. Then clearly v belongs to the null space of Dg(x).

The second derivative of the Lagrangian L(�; �; x) with respect to (the vector) x is the diagonal
matrix H =diag(6x1 � �

x1
; : : : ; 6xn � �

xn
). It is easy to see that

v0Hv = 6x1 �
�

x1
+ 6x2 �

�

x2
= 2

�
6x� �

x

�
;

which is negative because x < x̂. But this fails the second derivative test for constrained local
minimums; see e.g. Simon and Blume (1994), p. 468.

Summary. By the above analysis, if log n � � then the optimal solution involves equally long
intervals and satis�es the privacy constraint with slackness. If log n > � then having equally
long intervals violates the privacy constraint. So it must hold that � > 0 and xi takes two values.
Moreover, exactly one xi takes the smaller value, which then pins down the di¤erent xi as described
in the lemma. �

8.8 Proof of Proposition 5

By the envelope theorem, the interim expected utility of a buyer with type �̂ is given by
R
���̂ q(�)d�.

Thus ex-ante buyer surplus can be computed asZ Z
���̂

q(�)d� dF (�̂) =

Z
q(�)(1� F (�))d�: (16)

In what follows, we consider the e¤ect of combining two adjacent intervals in a mechanism into
a single interval. Speci�cally, let �j�1; �j ; �j+1 be three adjacent cuto¤s in a constrained-optimal
mechanism (for any �). Write qj = E[v(x) j x 2 [�j�1; �j ]], qj+1 = E[v(x) j x 2 [�j ; �j+1]], and
q = E[v(x) j x 2 [�j�1; �j+1]]. Then the change in buyer surplus when �eliminating" the cuto¤ �j is

� :=q �
Z �j+1

�j�1

(1� F (�))d� � qj �
Z �j

�j�1

(1� F (�))d� � qj+1 �
Z �j+1

�j

(1� F (�))d�

=(q � qj) �
Z �j

�j�1

(1� F (�))d� � (qj+1 � q) �
Z �j+1

�j

(1� F (�))d�:

We will show � � 0, which implies the proposition.27 Indeed, observe that

q(F (�j+1)� F (�j�1)) =
Z �j+1

�j�1

v(�)d� = qj(F (�j)� F (�j�1)) + qj+1(F (�j+1)� F (�j)):

27Starting from any mechanism, repeatedly combining adjacent intervals eventually leads to the fully pooling
mechanism, which yields weakly higher buyer surplus. Thus � = 0 maximizes buyer surplus. Similarly � = 1
minimizes buyer surplus.
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So (q � qj)(F (�j)� F (�j�1)) = (qj+1 � q)(F (�j+1)� F (�j)). Thus, � � 0 is equivalent toR �j
�j�1

(1� F (�))d�
F (�j)� F (�j�1)

�
R �j+1
�j

(1� F (�))d�
F (�j+1)� F (�j)

:

This holds because the LHS is just

R �j
�j�1

(1�F (�))d�R �j
�j�1

f(�)d�
, which is at least 1�F (�j)f(�j)

by the assumption that

1�F (�)
f(�) is decreasing. Similarly the RHS of the above equation is at most 1�F (�j)

f(�j)
. Hence � � 0

and the proposition follows.28 �

8.9 Proof of Proposition 6

Total welfare from a buyer of type � is given by �q(�)� (q(�))2=2. Thus ex-ante total welfare isZ
q(�) �

�
� � q(�)

2

�
f(�)d�:

Note that on each interval [�i�1; �i]. q(�) is constant and equal to the expected virtual valuation
on this interval. Thus the above can be equivalently written asZ

q(�) �
�
� � v(�)

2

�
f(�)d�: (17)

Compared with the above Equation (16) for buyer surplus, the di¤erence here is that the function�
� � v(�)

2

�
f(�) takes the place of 1 � F (�). If the function � � v(�)

2 decreases in �, then the same

argument as before shows that combining two intervals increases total welfare, which must be
maximized at � = 0 and minimized at � =1.

It remains to show �� v(�)
2 is decreasing whenever f(�) is increasing. This is because 2��v(�) =

� + 1�F (�)
f(�) , whose derivative is �

(1�F (�))f 0(�)
(f(�))2

. Thus the �rst half of the proposition is proved. The

second half is proved by a symmetric argument: If f(�) is decreasing then � � v(�)
2 is increasing,

and combining two intervals decreases total welfare. �

8.10 Proof of Proposition 7

Directly following the proof of Lemma 1, we can transform any ex-post �-feasible mechanism into
an interval mechanism that achieves the same pro�t and still satis�es the ex-post privacy constraint.
The only step that requires some care is in eliminating �duplicate" messages. If m0 is a duplicate
of m, then after removing m0 from M and adjusting the equilibrium, the seller�s posterior belief
given the message m in the new mechanism is an average of his posterior beliefs given the messages
m and m0 in the original mechanism. Both of these posterior beliefs have relative entropy at most
� from the prior, and so does the average belief. Thus removing duplicates preserves the ex-post
privacy constraint.

Suppose m 2 M is an interval, then the relative entropy between the posterior upon seeing m
and the prior is simply � log [F (m)� F (m)]. So the privacy constraint requires that each interval
m has mass at least e�� according to F . It follows that any ex-post �-feasible mechanism contains
at most e� intervals. Hence an optimal interval mechanism exists by compactness. �

28This argument generalizes to any cost function with c000 � 0.
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8.11 Proof of Proposition 8

When � 2 [log(n); log(n + 1)), any feasible interval mechanism has at most e� < n + 1 intervals.
Now recall from the proof of Lemma 5 that in the uniform-quadratic case, having n equal intervals
achieves the greatest pro�t among all partitions with at most n intervals (even when the privacy
constraint is ignored).29 Thus the mechanism with n equal intervals, which is ex-post �-feasible,
must be the ex-post �-optimal mechanism. �

8.12 Proof of Proposition 9

Consider an arbitrary partition with cuto¤s f� = �0; : : : ; �n = �g. For each interval [�i�1; �i], the
probability of winning is computed as

qi =
�i�1 � � + (�i � �i�1)=2

� � �
=
(�i + �i�1)=2� �

� � �
;

which is the probability that the opponent type belongs to a lower interval or it belongs to the
same interval and the tie is broken favorably. By the envelope theorem, type �i�s interim expected
utility is thus

ui =

iX
j=1

(�j � �j�1) � qj =
iX
j=1

(�j � �j�1) �
(�j + �j�1)=2� �

� � �
=
(�i � �)2

2(� � �)

after some simpli�cation. It follows that the expected payment when reporting the interval [�i�1; �i]
is given by

pi = �i � qi � ui =
�i�i�1 � �2

2(� � �)
:

Therefore total pro�t from both buyers equals

�(M) =
1

(� � �)2
nX
i=1

(�i�i�1 � �2) � (�i � �i�1):

Since
P
i �
2 � (�i � �i�1) = �2 � (� � �) is a constant, the seller seeks to maximize the expressionP

i �i�i�1(�i � �i�1). Now observe that

3

nX
i=1

�i�i�1(�i � �i�1) =
nX
i=1

�
�3i � �3i�1 � (�i � �i�1)3

�
= �

3 � �3 �
nX
i=1

(�i � �i�1)3:

Hence the seller equivalently minimizes
Pn
i=1(�i��i�1)3. But recall from the proof of Lemma 5 that

this is also the objective in the single-buyer uniform-quadratic case. Since the privacy constraint
is also the same, so must be the solution. �

29From that proof, we know the seller seeks to minimize
Pn

i=1 x
3
i subject to

Pn
i=1 xi = 1. The minimum is clearly

achieved when each xi = 1
n
.
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