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1. INTRODUCTION 

Innovation, in the form of new and improved crop varieties, has long played a critical role in the quest 

to ensure sufficient food supply for a rapidly growing world population. Conventional breeding 

activities have led to remarkable successes, such as hybrid maize (Griliches 1957) and the green 

revolution (Evenson and Gollin 2003). Genetically engineered (GE) crop varieties build on this 

tradition by exploiting the recombinant DNA tools of modern biotechnology. First introduced 

commercially in 1996, by most standards GE varieties have been very successful (Moschini, 2008). 

Despite being essentially limited to four main crops (maize, soybean, cotton, and canola), as of 2017 

GE varieties were grown on more than 469 million acres worldwide. The United States has been at 

the forefront of these developments: in 2017, GE varieties were planted on more than 183 million 

acres of U.S. farmland, nearly 91% of which was maize and soybeans (ISAAA 2017). 

Notwithstanding their productivity-enhancing potential, GE crops have been highly 

controversial. Concerns raised include the fear that GE products are harmful to human health and/or 

the environment, and ethical objections related to human manipulation of the DNA of living plants 

and animals. Many of these concerns have been allayed (Bennett et al. 2013). In particular, the 

environmental impacts of GE varieties appear to be generally positive (NRC 2010, Barrows, Sexton, 

and Zilberman 2014). However, a separate persistent source of public mistrust relates to the ownership 

interests of multinational corporations that commercialize GE products. Unlike innovations 

underpinning the green revolution, which were largely the result of publicly-sponsored research and 

development (R&D) activities (Wright 2012), GE crop varieties have been primarily developed by 

private firms, with U.S. seed companies (Monsanto in primis) at the forefront. The proprietary nature 

of GE technologies, and an ongoing consolidation of the seed and agrochemical industry, has 

heightened concerns about the pricing of these new products, their contribution to welfare, and the 

actual beneficiaries of the innovation (Clancy and Moschini 2017).  

In this paper we provide novel econometric evidence on the welfare effects of the introduction 

of GE crop varieties. We draw on a large, proprietary dataset of plot-level seed choices by a 

representative sample of U.S. farmers for the two most important GE crops, corn and soybeans. The 

data span the period from 1996 (the year GE corn and soybean varieties were first introduced) to 2011 

(by which time the average adoption rate of GE varieties exceeded 90%), and contain information on 

the specific seed products that farmers buy—brand, amount bought, area planted, price paid, and 

which (if any) GE traits are included in the seed. The richness of the data allows us to estimate an 

explicit structural model of farmers’ demand for seed varieties rooted in the theory of discrete choice 
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in a differentiated product setting (Anderson, De Palma and Thisse 1992). Although this model 

pertains to a production input (seeds) used by competitive firms, rather than consumer products, it is 

nonetheless in the tradition of the empirical industrial organization (IO) literature on demand 

estimation in industries with differentiated products (Berry 1994; Goldberg 1995; Berry, Levinsohn 

and Pakes 1995; Nevo 2001). This demand model provides the structural foundation for evaluating 

the welfare impacts of the introduction of new characteristics—GE traits—into seed products, along 

the lines of the seminal contributions of Trajtenberg (1989) and Petrin (2002).  

The discrete choice model of seed demand that we specify and estimate presumes individual 

profit maximizing choices, with farmers modeled as choosing between all corn and soybean varieties 

(in addition to the outside option). Specifically, we model the demand for corn and soybean seed 

products using a two-level nested logit specification (Verboven 1996; Bjornerstedt and Verboven 

2016). The upper level consists of the outside option (planting a crop other than corn or soybeans, or 

not planting at all) and the set of inside options, the latter encompassing all corn and soybean seed 

products. The inside options are partitioned into two subgroups, one for soybean seed products and 

the other for corn seed products. This two-level nested specification is particularly suited to the 

institutional realities of U.S. corn and soybean production, including the role played by the widespread 

practice of crop rotation.  

Estimates from this demand model allow us to infer the willingness-to-pay (WTP) of farmers 

for seed products over time, and, more specifically, for the GE traits progressively embedded into 

seed varieties. The total WTP provides a first-order approximation to the ex post total surplus created 

by the innovation. We find that the introduction of GE traits in corn and soybeans, over the period 

1996-2011, increased total surplus by $30.6 billion. Using observed price premia commanded by GE 

varieties we estimate that seed companies’ revenue increased by about $24.3 billion, suggesting that 

innovating firms captured the larger share of the surplus created by the innovation.  

Next, we implement an alternative, more structural, procedure that can accounts for two 

additional crucial effects: the contribution of GE varieties to increased seed product differentiation in 

the industry (which, ceteris paribus, is valuable to users and a potential source of additional revenues for 

sellers), and the competitive price effects caused by the innovation itself. Specifically, we use the 

structure of the estimated demand model to construct and simulate counterfactual scenarios of the 

U.S. corn and soybean seed markets without GE traits as an available technology. To this end, we first 

determine the seed prices that would have been charged had GE seeds not been introduced (the 

“counterfactual prices”). A structural equilibrium approach to this question is problematic because the 
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supply side is characterized by a complex web of GE trait cross-licensing agreements (the terms of 

which are confidential) between seed firms. Hence, we take a reduced-form approach that relies on a 

hedonic regression along the lines of Hausman and Leonard (2002).  

Counterfactual prices, along with the estimated seed demand model, permit the computation 

of farmers’ counterfactual expected profits. We do so for four alternative counterfactual choice sets. 

In one scenario we simply remove all seed products with GE traits from farmers’ choice sets. This 

“naïve” scenario, however, ignores the fact that, as GE seeds became widely adopted over time, the 

set of available non-GE seeds was increasingly reduced. The crowding out of existing products by 

new products is an issue that has received relatively little explicit attention (an exception is Eizenberg 

2014). In our context, the naïve scenario entails reduced farmers’ choice sets, particularly later in the 

sample. Insofar as this feature of the counterfactual is artificial, it produces an upward bias in the 

estimated welfare gain from GE traits. To address this problem we consider three other counterfactual 

product choice sets, by removing the GE trait characteristics from any GE product available in a 

market while presuming that this results in a viable seed product. In all cases, the hedonic price 

function permits us to impute counterfactual prices for all products in the counterfactual choice sets.  

In the most realistic scenario (“keep conventional”), we estimate that the availability of GE 

varieties increased farmers’ welfare by about $22.2 billion during the 1996-2011 period, with three 

quarters of these gains attributable to one trait: glyphosate tolerance in soybeans. Correspondingly, 

the same counterfactual scenario indicates that the development and diffusion of GE traits increased 

seed revenue, in the U.S. corn and soybean industry, by about $25.3 billion. Hence, even under this 

approach, the seed industry was able to appropriate about 53% of the ex post value created by GE 

technologies. This additional revenue can be interpreted as the ex post return to R&D activities that 

led to the development of GE varieties. 

   Our analysis adds to the literature on the estimation of the value of product innovation 

(Trajtenberg, 1989; Hausman, 1996; Petrin, 2002; Nevo 2013; Eizenberg, 2014; Allenby et al., 2014) 

by focusing squarely on the introduction of new characteristics (the GE traits). In particular, both the 

data and the econometric framework employed in this paper are new for the purpose of assessing the 

welfare impacts of GE crops. Unlike much prior agricultural technological change that was rooted in 

publicly sponsored research, the proprietary nature of GE traits requires suitable non-competitive 

market settings to model their welfare impacts (Lapan and Moschini 2004). Previous studies that 

attempted to estimate these welfare effects (Falck-Zepeda, Traxler, and Nelson, 2000; Moschini, 

Lapan, and Sobolevsky, 2000; Sobolevsky, Moschini and Lapan, 2005) lacked an econometric 
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backbone and instead relied on indirect evidence to parameterize partial equilibrium models used for 

counterfactual analysis. As such, they were ill suited to capture the impact of seed pricing of GE crops 

that is critical in this setting. Using a subset of the proprietary data employed in this paper, Shi, Chavas, 

and Stiegert (2010) (with extensions in Shi, Stiegert, and Chavas 2011, and Shi et al. 2012) estimate 

hedonic regressions for the period 2000-2007 and find positive premiums for most GE traits in both 

corn and soybeans. But, unlike the present paper, these studies do not model farmers’ seed demand 

explicitly and thus lack the necessary structure to infer welfare effects.   

The paper is organized as follows. Section 2 provides background on the introduction of GE 

traits in soybean and corn seeds, their adoption, and the evolution of market shares. Section 3 presents 

the data used in the econometric analysis. Section 4 develops the discrete-choice farmers’ seed demand 

model. Section 5 reports the estimation results for this model. Section 6 presents the welfare analysis: 

farmers’ WTP estimates, farmers’ estimated increase in expected profit due to GE innovations, and 

the increase in seed industry revenues due to GE traits. Section 7 concludes. 

2. BACKGROUND: GE TRAITS IN U.S. CORN AND SOYBEAN SEEDS 

GE crops (also known as transgenic crops) are the most visible agricultural manifestation of modern 

biotechnology and its use of recombinant DNA techniques. Their distinguishing feature is the 

insertion, in the plant’s genome, of one or more foreign genes that express desirable traits. In corn 

and soybeans, these traits have encompassed two sets of attributes: herbicide tolerance (HT) and insect 

resistance (IR). The vast majority of HT crops are tolerant to glyphosate, a broad spectrum herbicide 

marketed by Monsanto under the trademark Roundup®. IR crops embed one or more genes from 

the bacterium Bacillus thuringiensis (hence the widely used “Bt ” moniker), which emit proteins that are 

toxic to certain insects. For soybeans, the only trait with commercial relevance thus far has been 

glyphosate tolerance (GT), while for corn both GT and Bt traits have been commercialized. Initially, 

GE varieties had a single trait, but over time commercial varieties have come to embed multiple GE 

traits, or what are often referred to as “stacked” GE trait varieties. Figure 1 charts the diffusion 

pattern of GE varieties in U.S. soybeans and corn, where “Bt maize” refers to varieties with at least 

one IR trait (alone or with the GT trait), and “GT maize” refers to varieties with the GT trait (alone 

or in combination with other traits). Adoption has been rapid: GE corn and soybeans were first 

introduced in the United States in 1996 and within just 10 years accounted for the majority of planted 

acres in both crops. 
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GE traits are valuable to farmers because they offer novel (cost-reducing and/or yield 

enhancing) tools for weed and insect control. To guarantee adoption, however, GE traits need to be 

combined with proven germplasm—the genetics accumulated from traditional breeding and selection 

activities that result in high-yielding and desirable commercial seed varieties. Thus, GE traits and 

germplasm are truly complementary assets (Graff, Rausser and Small 2003), both of which have 

become extremely valuable to seed manufacturers due to the increasing importance of intellectual 

property rights (Moschini 2010). Well before the advent of genetic engineering, the corn seed industry 

had already thrived through its use of hybridization (which requires farmers to buy first-generation 

seeds for each planting) and trade secrets, which together effectively prevent imitation. By contrast, 

commercial soybeans are self-pollinating and thus reproduce “true to type,” allowing farmers to 

replant seed from the previous season’s harvest without any loss in expected yield. The introduction 

of patented GE traits, and the ability of seed companies to write (and enforce) restrictive retailing 

contracts forbidding farmers to save and replant seeds that contain such traits, thus significantly 

increased the profitability of selling soybean seeds. 

The company Monsanto played a pioneering role in this process,1 and its commitment to the 

development of GE crops has had major implications for the seed industry. The quest to 

commercialize GE traits led to a wave of acquisitions and mergers that promoted a rapid consolidation 

in the seed industry (Fernandez-Cornejo 2004, Musselli Moretti 2006). When Monsanto originally 

developed and patented its GE traits it did not have a presence in the seed industry, and thus lacked 

direct access to commercial seed varieties. As a result, Monsanto pursued two parallel strategies for 

the commercialization of its GE traits. First, it embarked on a series of acquisitions that, over time, 

transformed it into the largest seed company in the world. At the same time, Monsanto aggressively 

licensed GE traits to other seed companies, which also sped up the availability of GE traits to farmers.  

Monsanto’s critical acquisitions included Asgrow (in 1997), Dekalb (in 1998) and Holden 

Foundation Seeds (in 1997). The early emphasis on broad “life science” companies also led to 

Monsanto becoming the agricultural subsidiary of Pharmacia Corporation in 2000, only to be spun 

off as an independent company in 2002. Similar considerations led DuPont to acquire Pioneer, the 

dominant seed company at the time in 1999. Syngenta was formed in 2000 as an agrochemical and 

seed business from the consolidation and restructuring of major life science companies (Novartis and 

AstraZeneca). Dow AgroSciences, a subsidiary of Dow Chemical formed in 1997, acquired Mycogen 

                                                 
1 Charles (2002) provides a fascinating account of the road to the commercial development and 
marketing of the first GE varieties. 
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in 1998. By the year 2000, when AgReliant (a joint venture of KWS and Limagrain) was also formed, 

the fundamental structure of the corn and soybean seed industry had been established, although a 

number of other, smaller acquisitions would be made in subsequent years (especially by Monsanto). 

Market shares, reported as 4-year averages for the 2000-2015 period, are displayed in Table 1. 

Data for 2000-2011 are from GfK Kynetec, the source of the proprietary data used in the econometric 

analysis. For the most recent years the market shares reported in Table 1 are from the Farm Journal, 

a trade magazine.2 These market share data show an industry with two dominant firms (Monsanto and 

DuPont) who control approximately 60% of the soybean seed market and 70% of the corn seed 

market.  Three other firms (Syngenta, Dow AgroSciences, and AgReliant) have considerably smaller 

but significant presence, with the industry completed by a panoply of local and regional companies. 

Table 1 also shows the almost complete disappearance of the once-common practice of seed saving 

in soybeans (which accounted for more than 25% of soybean planting prior to the advent of GE 

varieties). 

3. DATA 

The data used in this study consists of a large set of farm-level observations of seed choices by U.S. 

corn and soybean farmers for the period 1996-2011. In particular, we use the soybean and corn 

TraitTrak® datasets, two proprietary datasets developed by GfK Kynetec, a unit of a major market 

research organization that specializes in the collection of agriculture-related survey data. GfK Kynetec 

constructs the TraitTrak® data from annual surveys of randomly sampled farmers in the United States. 

The samples are developed to be representative at the crop reporting district (CRD) level.3 From 1996-

2011, the data are based on responses from an average of 4,716 farmers per year for maize and 3,573 

farmers per year for soybeans. In the survey, farmers are asked about the types (brand and 

hybrid/variety identity), amounts, and cost of seed they purchase.4 Furthermore, with each purchase 

                                                 
2  The market share data reported by Farm Journal are based on polling industry analysts and 
executives, and have been published since 2009. In the three years (2009-2011) that the Farm Journal 
and GfK Kynetec data overlap, the firm level shares are very similar. 
 
3 CRDs are multi-county sub-state regions identified by the National Agricultural Statistics Service of 
the U.S. Department of Agriculture (USDA). 
 
4 The Supplementary Information online (Appendix B) provides a detailed description on the steps 
taken to elaborate the data. 
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instance we observe the list of GE traits (if any) embedded in the variety. Importantly, the period we 

observe covers the early stages of GE trait adoption up to its almost complete diffusion by 2011. 

Traits  

Each of the various GE traits were introduced at different times in our sample. In soybeans, the GT 

trait was introduced by Monsanto in 1996 as Roundup Ready® soybeans, and in corn the GT trait 

was first commercialized in 1998. The main attraction of the GT trait is that, by allowing post-

emergence applications of glyphosate without causing injury to the crop, it greatly facilitates and 

reduces the cost of weed control.5 The first Bt trait in maize was introduced in 1996 and conferred 

resistance to the European corn borer (CB). Later Bt traits, which provided resistance to various 

species of corn rootworms (RW), were introduced in 2003. The attractiveness of Bt varieties is that 

they increase expected yields and reduce yield volatility (Fernandez-Cornejo et al., 2014; Xu et al. 

2013), while also reducing the need for insecticides to control pests. Unlike GT traits, which are highly 

complementary to a specific chemical, Bt traits substitute for chemical inputs (Perry et al., 2016). 

Figure 1 shows that the adoption of GE varieties, however fast by most standards, was gradual. 

This diffusion pattern is explained by both demand and supply-side factors. On the demand side, 

learning and farmer heterogeneity played a role. On the supply side, the nature of the technology to 

develop and bring GE crops to market is critical. Because this plays an important role in our 

identification strategy, we provide more details at that juncture.  

                                                 
 
5 The GT trait is not the only herbicide tolerant trait in corn and soybeans. There is also a GE trait 
that provides tolerance to the herbicide glufosinate. This trait was developed by Bayer and marketed 
under the tradename LibertyLink (LL). It has been available in some corn varieties since 1996 and in 
some soybean varieties since 2009. In our econometric analysis, we ignore this trait for two reasons. 
First, it has been rarely adopted, especially in soybeans, where it only became available in very limited 
quantities late in our sample. In corn, this trait can be found in more commercialized varieties, but 
this is mostly because it primarily served as a marker gene for the Bt traits (a marker gene is used to 
determine whether the insertion process was successful). Thus, most growers did not intend to use 
the LibertyLink trait when they purchased varieties that (incidentally) contained it. Indeed, based on 
pesticide data used in Perry et al. (2016), we found that only a small fraction of corn producers who 
purchased seed containing the LL trait actually used any glufosinate herbicide. There are also 
traditionally-bred varieties that are tolerant to the imidazoline herbicide (for corn) and to sulfonylurea 
herbicides (for soybeans). As with the LL trait, such varieties have had low adoption rates. Because 
our focus is on the difference in value between GE and non-GE crops, in our primary econometric 
analysis we ignore these other herbicide tolerance traits.  
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Table 2 reports detailed GE trait adoption rates (as a fraction of total planted acres for the 

corresponding crop). Each column provides the annual adoption rate for a specific GE trait 

combination (thus, in corn, the sum across columns is the total annual GE adoption rate). Among all 

GE-crop combinations, the most rapidly adopted were GT soybeans, which even surpassed the rate 

at which corn hybrids were adopted (Griliches 1957). By 2003, over 90% of land was planted to GT 

soybeans, and by 2011 it was 96%. The adoption of GT maize was slower but still achieved a 90% 

rate by 2011. The adoption of IR traits has been steady as well, with the CB traits (alone or in 

combination) attaining a 72% adoption rate and RW traits (alone or in combination) achieving a 55% 

adoption rate by 2011. This table also illustrates the gradual penetration of stacked- trait varieties. By 

2011, the triple stack GT-CB-RW was adopted on 54% of maize acres. Note also that the RW trait, 

owing to its relatively late introduction, has had little diffusion as a standalone trait, instead becoming 

available to farmers primarily in combination with other traits.  

Table 3 reports nominal per-acre average seed costs for each GE trait combination. These 

prices reveal three important stylized facts about the seed markets. First, all prices have trended up 

over time. Both GE and non-GE prices more than doubled from 1996 to 2011. Second, GE varieties 

command a substantial premium over non-GE varieties. In soybeans, the premium was around 

$9/acre, and in corn the premium ranged from about $9/acre for standalone trait varieties to nearly 

$30/acre for varieties with all three GE traits. Third, over time GE prices increased by more than 

non-GE prices. In soybeans, the average premium in 2011 was about $9, $5 greater than the average 

premium in 1996, but actually smaller than the average premiums in 1999 and 2002. In corn, the price 

difference between GE and traditional varieties widened significantly over time. The average premium 

for corn with the GT trait, e.g., was just $4-$5 per acre prior to 2005, but then increased significantly 

to about $16/acre by 2011. Similar increases occurred for the other corn GE combinations. 

Brands 

The marketing of seeds relies heavily on brand labels. Well-known and long-standing brands such as 

Dekalb and Pioneer identify germplasm that was developed over a long period of time, and carry an 

established reputation among growers. Some descriptive data for each of the major brands in our 

sample are reported in Table 4. 

Most brands have a presence in both corn and soybeans, albeit at a different intensity. For 

example, Monsanto has primarily marketed corn under the Dekalb brand and soybeans under the 

Asgrow brand. By contrast, DuPont uses the Pioneer brand heavily in both corn and soybeans. There 
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is also variation in the number of brands held by the different parent companies. Monsanto and 

Syngenta utilize multiple brands, whereas DuPont almost exclusively uses Pioneer. Brand-specific 

average prices demonstrate significant variation, reflecting a number of effects, including the average 

value of the underlying germplasm, and the extent of inclusion of GE traits. The latter explains the 

particularly low average price of publicly available soybean seeds, which do not include any GE traits.  

Product Lines  

An essential step in our empirical discrete choice framework is the definition of a “product.” Our goal 

is to capture, in a tractable way, the essential seed characteristics that matter to buyers: that is, the 

nature of the germplasm, which is captured by the seed brand, and the presence of GE traits. Hence, 

for the purpose of this study, we define a seed “product” as a unique combination of four types of 

characteristics: i) the crop (corn or soybeans); ii) the parent company (e.g., Monsanto); iii) the brand 

(e.g., Asgrow); and, iv) the presence (or absence) of GE traits, specifically glyphosate tolerance (GT), 

corn borer (CB) resistance, and rootworm (RW) resistance.6 

 One of the important features to note about our product definition is that the number and 

type of varieties that are aggregated within each product change over space and time. For example, 

from 2003 to 2011, the number of Pioneer corn varieties purchased with the GT trait rose from 9 to 

75.  It is thus perhaps more appropriate to think of a “product” as a “product line,” one which is 

subject to change over time. One implication of this is that, within our econometric framework, the 

value of a GE product line should be permitted to change over time. As more and more hybrids are 

offered with a particular GE trait combination, a wider range of grower needs can be matched, raising 

the average value of that trait combination. Thus, in estimating our econometric model we permit the 

return to GE varieties to differ over three sub-periods. By doing so, we also accommodate other 

largely exogenous changes in the industry, such as glyphosate going off patent in 2000, and the 

commodity price boom of 2007-08.     

                                                 
 
6 In principle, we could define a product at the individual hybrid/variety level. The number of available 
varieties in any given year, however, is too large to be of practical use. For example, 5,065 distinct corn 
varieties and 2,141 distinct soybean varieties were purchased in 2007. By contrast, for that year, our 
definition results in 394 distinct products—small enough to be econometrically tractable, and large 
enough to still capture the fundamental elements of product differentiation in the seed industry. 
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Market Definition 

The definition of a market determines the set of available products to residing farmers. We define a 

market as a CRD-year combination. As previously noted, CRDs are multi-county, sub-state regions. 

We define a market at this level for three reasons. First, a CRD is the level at which the GFK Kynetec 

survey data are designed to be representative. Second, corn and soybean varieties are bred to possess 

characteristics that suit particular agro-climatic conditions, and such conditions are relatively 

homogeneous within a given CRD. Finally, this is the spatial definition of markets that seed firms 

themselves use to analyze competitive issues (Monsanto, 2009). Overall, this definitions results in 

3,874 markets (CRD-year combinations) encompassing 294 distinct CRDs.7  

A delicate issue, in this context, concerns the definition of the potential market size. Ideally, 

in a given market, this is given by the amount of land that could realistically be planted to corn or 

soybeans. To identify this area, we use cropland measures from the Census of Agriculture (USDA-

NASS 2014). This is the main source of data concerning land use in the United States, and it is available 

at 5-year intervals (Bigelow and Borchers 2017). The cropland measure we use includes “cropland 

used for crops” (itself encompassing three components: cropland harvested, crop failure, and 

cultivated summer fallow) and “idle cropland.” Perhaps unsurprisingly, we observe very little variation 

in cropland acres over time. Hence, within each CRD, we assume that the size of potential total seed 

demand is constant over our sample period, and specifically define it as the maximum of reported 

cropland across the four censuses that pertain to years encompassed by our sample period (1997, 

2002, 2007, and 2012).8 

Table 5 reports the average number of products in each market. For both corn and soybeans, 

the number of products increased steadily up until about 2007 and then declined thereafter. This 

pattern reflects the fact that, as the adoption of GE traits increased (recall Figure 1), more and more 

varieties became available to farmers both with and without GE traits. Later in the sample, as farmers’ 

demand for transgenic varieties exceeded that for traditionally bred varieties, some of the latter were 

                                                 
 
7 There are 303 CRDs in the contiguous 48 states, but some are never present in the data because of 
negligible corn and soybean production. Also, some CRDs that are present are not sampled every year 
by GfK Kynetec. This occurs when the expected number of acres grown were too low to warrant the 
collection of data. On average, our data encompasses 242 CRDs per year.  
 
8 The Supplementary Information online (Appendix B) provides further discussion on the definition 
of the potential market size. 
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discontinued. This pattern is more marked in corn because there are three GE traits (GT, CB, and 

RW), compared to one in soy (GT). The fact that the number of products changed so significantly 

over time is a distinctive attribute of the industry. As we discuss in more detail below, this has certain 

challenging implications for estimating the welfare associated with the introduction of GE crops. 

4.  FARMERS’ SEED DEMAND 

Each unit of observation in the data is a farmer’s choice of a seed product, denoted by j, to be planted 

on plot i  of size iL . We model this decision as a discrete choice with a profit maximization objective. 

The profit from planting plot i with seed product j  can be expressed as ij i i j iRY W Z P S     , 

where R  is the output price, iY  is total output produced, iS  is the quantity of seed, iZ  is the vector 

of all inputs apart from seed and land (e.g., fertilizers, labor, energy, …), W  is the corresponding 

vector of input prices, and jP  is the price of seed product j. Note that we are omitting the rental price 

of land in this representation, so profit represents the return to the quasi-fixed input land.  

The production function is written as  , ,i j i i iY F L S Z . Note that this function, in principle, 

is specific to the identity of seed product j  (this captures the fact that, compared with traditional seed 

products, GE varieties may use different amounts and types of pesticides and/or a different quantity 

of labor). We assume that this production function satisfies two basic properties: constant returns to 

scale (i.e., doubling all inputs doubles total output); and, a fixed proportion of land and seed. That is, 

we can write the production function as  

      , , min ,j i i i j i i i i jF L S Z f Z L L S         (1) 

where the parameter j  denotes seed density (amount of seed per unit of land). By construction 

 j i if Z L  is strictly concave in the vector of input intensities i iZ L . For a given plot of size iL , and 

given that at an optimal solution we have i j iS L , optimal input intensities i iZ L imply that the per-

acre maximized profit can be represented as ( , )ij i j j jL R W P    , where the per-acre profit 

function ( , )j R W  is dual to the per-acre production function  j i if Z L .  

Because of the linear homogeneity property of ( , )j R W , the per-acre profit function is 

homogeneous of degree one in the vector of all prices ( , , )jR W P . In the econometric application that 
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follows, we pool seed choices across multiple years, during which prices changed dramatically. To 

account for this, we exploit the homogeneity property and deflate all prices by an appropriate input 

price index IW  and write per-acre profit in real terms, ( )ij ij i IL W   , to obtain  

 ( , )ij j jr w p            (2) 

where ij  is the profit per acre on plot i  when using seed product j , ( , )r w  is the vector of deflated 

prices of output and all other inputs, and j j j Ip P W  is the deflated price of seed product j  

(expressed in per-acre terms).9   

The econometric model 

Building on equation (2), we model farmers as selecting the seed product that provides the highest 

expected profit per acre on plot i in market m, that is, they choose product j such that 

 max ijm
j

  ,    0,1,..., mj J         (3) 

where mJ  denotes the number of seed products available in market m , and 0j   denotes the outside 

option.  

We specify per-acre profits in (2) as being composed of an observable and unobservable part. 

The observable part is assumed to be linear in parameters, and to depend on product characteristics, 

as well as a number of fixed and random effects. Specifically, the per-acre profit of choosing seed 

product j  on plot i   in market m  is written as:  

 [ ] [ ], [ ] [ ], [ ] [ ], [ ]ijm j t m jm c j t m c j l m c j b j jm ijmpx                 (4) 

or, following standard notation, ijm jm ijm    , where jm  denotes the mean profit that is common 

across all plots within market m . Here, the vector jx  comprises indicator variables that code for the 

presence of one or more GE traits in seed product j  (these variables take value zero for conventional 

seed products), and jmp  is the associated price. Note that we allow the impact of GE traits, via the 

                                                 
 
9 Specifically, for IW  we use the crop sector index for prices paid, published by the USDA. This 
index is normalized to equal 1 in 2011, so that all profit and price data are interpreted in 2011 
dollars. 
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coefficient [ ]t m , to possibly change over time (in the empirical results reported below, we specifically 

identify three distinct sub-periods with different values associated to GE traits). For the outside 

option, we follow standard convention and set 0 0i m i m  . Similar to most empirical discrete choice 

models, the price jmp  enters linearly in equation (4). However, in contrast to consumer demand 

models, where linearity is typically a functional form simplification, in our context it follows directly 

from the structural assumption of fixed proportions between land and seed, a property of the 

production technology that applies to this setting. 

The terms [ ], [ ]c j t m , [ ], [ ]c j l m  and [ ], [ ]c j b j  are, respectively, crop-time, crop-region, and crop-

brand fixed effects. The subscript notation follows Gelman and Hill (2007): [ ]c j  indicates the crop 

output associated with seed product j (either soybeans or corn), [ ]b j  indicates the brand of seed 

product j (for example, Dekalb), [ ]t m  denotes the year corresponding to market m, and [ ]l m  denotes 

the CRD corresponding to market m (l stands for location). This large set of fixed effects controls for 

unobservable heterogeneity in yields, output, and input prices across time, regions, brands, and crops. 

The term jm  captures the unobserved product-market specific components that motivate our 

identification discussion below.  Finally, ijm  is the unobserved plot-specific component.  

To make the choice model in (3)-(4) operational, we need distributional assumptions on the 

plot-specific unobservable ijm . We model the demand for corn and soybean seed products using a 

two-level nested logit specification (Verboven 1996; Bjornerstedt and Verboven 2016). We specify the 

upper level as consisting of the outside option and the set of inside options, where the latter consists 

of all corn and soybean seed products. We then further partition the inside options into two 

subgroups, one for soybean seed products and the other for corn seed products.   

Partitioning the choice problem in this way is consistent with basic facts about U.S. corn and 

soybean production. Less than 5% of corn and soybean production occurs on farms with a single crop 

(MacDonald, Korb and Hoppe 2013). Farms that produce both corn and soybeans are ubiquitous, 

especially in the Midwest. Because planting and harvest timings differ somewhat between these two 

crops, economies of scope can be obtained in the use of farm labor and machinery. Crop 

diversification on the farm can also be motivated by rotation considerations (Hennessy 2006). Indeed, 

the practice of alternating between corn and soybeans on a given plot is widespread in U.S. agriculture, 

as it has been shown to increase profit by increasing yields, reducing fertilizer needs and improving 
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weed control (Bullock 1992). Hence, a given plot planted to corn (soybeans) in year 1t   is much 

more likely to be planted to soybean (corn) in year t . Thus, our presumption is that, for example, if 

the expected return to a corn seed product on a given plot is unattractive, a grower will typically be 

much more likely to consider another corn seed product as an alternative, rather than switch to a 

soybean seed product instead. Furthermore, in the Midwest (where most of these two crops are 

produced) corn and soybeans are by far the dominant crops. That is, switching to the outside option, 

from planting either corn or soybeans, is uncommon and even less likely than switching between corn 

and soybeans.10 As shown by Grigolon and Verboven (2014), when such market segments are an 

important differentiating dimension, the nested logit model can perform as well as computationally 

more complex random coefficient models.   

The assumed nesting structure is illustrated in Figure 2.  Let the choice set in market m be 

partitioned into two mutually exclusive groups denoted by  0,1g , where 0g   represents the 

outside option and 1g   represents inside goods. The latter group is further partitioned into two 

subgroups denoted by  1,2h , where 1h   represents corn seed products and 2h   represents 

soybean seed products. Following Verboven (1996), we specify the plot-specific unobserved 

component as follows: 

    2 11 1ijm igm ihgm ijm          ,      (5) 

where we invoke the standard assumption that igm , ihgm , and ijm  possess the unique distribution 

such that the terms of interest have an extreme value distribution (Berry 1994, Verboven 1996). 

The nesting parameters 1  and 2  measure the correlation between the unobservable 

components of different products within the same subgroup 1( )  and within the same group 2( ) . 

To be consistent with random-utility maximization, it is necessary that 2 10 1    . If 1  is large, 

farmer preferences are strongly correlated across seed products in the same subgroup (soybeans or 

corn), and if 2  is also large then this increases the correlation across seeds of both crops. When 

2 1   preferences are equally correlated among all seed products (the subgroup distinction between 

                                                 
 
10 Hendricks, Smith and Sumner’s (2014) econometric analysis of supply response in Iowa, Illinois 
and Indiana show that the extensive margin response (transitions between corn or soybeans to other 
crops) is extremely small. 
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soybeans and corn is immaterial). The special case 1 2 0    would reduce the model to the simple 

logit.  

In any given market, let the set of seed products in subgroup h  of group g  be denoted hgmJ . 

Then, the choice probability for seed product hgmj J  (the market share) is given by: 

 
 
 

 
 

1 2

1 2

exp (1 ) exp (1 ) exp( )
,

exp( )exp (1 ) exp I (1 )

jm hgm gm
jm

mhgm gm

I I
s

II

  

 

 


 
     (6) 

where hgmI , gmI  and mI  are “inclusive values” defined as follows (Björnerstedt and  Verboven 2016): 

  1 1(1 )ln exp (1 )
hgm

hgm km
k J

I   


         (7) 

  
 

2 2
1,2

(1 )ln exp (1 )gm hgm
h

I I 


         (8) 

  ln 1 exp( )m gmI I   .        (9) 

Again, in our setting, 1g   denotes the group of all inside goods, and this group comprises 

two subgroups ( 1,2h  ). Based on this specification, recalling the definition of jm , we obtain the 

estimating equation for our two-level nested logit:  

0 [ ] 1 1 2 1 1 [ ], [ ] [ ], [ ] [ ], [ ]ln( ) ln( ) ln( )jm m j t m jm jm h m h m m c j t m c j l m c j b j jms s x p s S S S                 (10) 

where 
1

1
h m

h m jmj J
S s   is the aggregate share of all products in subgroup {1,2}h , and 

1 11 21m m mS S S   is the total share of all inside goods. Hence, 1jm h ms S  is the (conditional) share of 

seed product  j  within subgroup h (i.e., corn or soybean), and 1 1h m mS S  is the (conditional) share of 

subgroup h in group 1g   (the group of all inside goods). Finally, 0 11m ms S   is the share of the 

outside option. 

As we discuss further below, these shares are endogenous and therefore require instruments. In 

addition, the coefficient that we estimate on the price variable, 1  , is the reciprocal of the scale 

parameter   associated with the IID extreme value error term. This parameter can be interpreted as 
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a measure of preference heterogeneity in the population (Anderson, De Palma, and Thisse 1992).  

Also, the parameters   in equation (10) are related to   in equation (4) by    .   

Identification 

The key identification issue is the endogeneity of seed prices, which seed manufacturers set taking into 

account the fact that they are competing in an oligopoly, and factoring in differentiation across 

products. The solution to this problem, which was first proposed by Bresnahan (1987), and later 

adopted, among others, by Berry (1994) and Berry, Levinsohn and Pakes (1995), consists of assuming 

that the location of firms’ varieties in the product space is exogenous, and this source of exogenous 

variation across time and geographical markets can be exploited to identify the parameters of the 

econometric model.  

 This assumption seems particularly reasonable in the seed industry because individual firms 

have shown a clear willingness to introduce traits into their seed lines as soon as they become available. 

Furthermore, in this context, it is crucial to appreciate that the technology to bring GE seeds to market 

entails a lengthy and complex process (Mumm and Walters 2001). Molecular biology and tissue culture 

techniques are used to introduce the gene(s) of interest into plant cells. Such transformed cells are 

then regenerated into whole plants, each of which is a distinct transformation “event” (which thus 

embeds the particular genotype, often not of commercial interest itself, used at the transformation 

stage). Extensive molecular and agronomic testing selects the best among the many events that are 

generated. The next step is the integration of the selected event into elite germplasm. For each 

commercial variety eventually developed, this requires repeated iteration of backcross breeding 

(crossing to a recurrent parent) to achieve the desired germplasm purity.11 A key role is also played by 

the GE regulatory structure adopted by the United States, where the unit of evaluation is a unique 

event (McHughen and Smyth 2008). The process of clearing the regulatory hurdles is onerous and, 

although it can be run concurrently with trait integration, is itself rather lengthy (Bradford et al. 2005). 

The entire process of producing GE varieties is very long: even abstracting from gene 

discovery and the transformation phase, the average time for trait integration into elite germplasm, 

field testing, regulatory compliance, and seed bulk-up needed to launch a commercial product is about 

7 years (Prado et al. 2014, p. 772). Moreover, this process is complex, and the need for extensive 

                                                 
 
11 An alternative to backcrossing is forward breeding, which has some disadvantages in maize but 
may be preferable for crops (such as soybeans) for which cross-pollination is difficult. 
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testing introduces randomness at various junctures. Even at the last stage of field testing, the seed 

firm’s “… supply management may be dealing with a number of events or candidate products that 

ultimately will not proceed to commercialization.” (Mumm and Walters, 2001, p. 1384). Seed 

companies also invest in traditional breeding activities to improve germplasm, but again they have an 

incentive to commercialize their best products at any given point in time. Moreover, the turnover of 

commercialized varieties is fairly high, with varieties exiting a market sometimes after only two or 

three years (Magnier, Kalaitzandonakes and Miller, 2010). Overall, this suggests that the introduction 

of new products is predetermined, embeds stochastic elements, and is largely exogenous to pricing 

decisions.  

 Following Berry, Levinsohn and Pakes (1995, p. 861) we use functions of the traits in 

competing varieties as our instruments. Since GE traits are the main characteristics that vary over seed 

varieties, this amounts to counting up the unique number of competing GE seed products. 

Specifically, we compute the total number of competing products (irrespective of GE traits) by: 

market; market and brand; market and parent company; market and crop; market, brand, and crop; 

and market, parent company, and crop. This results in 6 instrumental variables. We then compute the 

same variables for each the three GE traits plus non-GE products: GT, CB, RW, and non-GE. This 

results in an additional 24 instrumental variables (in total, there are 30 instrumental variables).     

5. RESULTS 

Table 6 presents the estimation results for four different specifications of the seed demand model, 

which differ by the number of fixed effects that control for unobserved heterogeneity and by the type 

of logit model (simple logit vs nested logit). Specifically, columns 1 and 2 contain results for the two-

level nested specification discussed in Section 4, and columns 3 and 4 contain results for the simple 

logit specification, which is equivalent to the special case 1 2 0   . Our primary goal with this 

table is to establish how these modeling differences, and the use of instrumental variables, affect the 

estimated coefficients and the implied elasticities.  

In all four specifications in Table 6, the coefficients are estimated fairly tightly, and the pricing 

and nested logit terms have the expected signs and ordering. The specification in column 1 is estimated 

with the richest set of fixed effects, which include year, CRD, and brand fixed effects, each of which 

are also interacted with the crop dummy variable (permitting response to differ between corn and 

soybeans). The year fixed effects control for temporal industry-wide changes, such as changes in 

output (corn and soybeans) prices, or changes in the prices of non-seed production inputs (e.g., fuel). 
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The CRD fixed effects control for unobserved, time-invariant regional specific effects, such as the 

length of the growing season, soil quality, and weed pressure. The brand fixed effects control for 

unobserved (perceived and real) differences in the returns to each of the various brands. For example, 

in a given region, Pioneer seeds may be generally regarded by growers as high-yielding, and because 

of this their prices may be higher. As it concerns fixed effects, the difference between column 1 and 

columns 2-4 is that the fixed effects in the latter are not interacted with a crop dummy variable.  

Column 1 of Table 6 contains the most general specification of this table. The  price coefficient 

is statistically significant and negative, as expected, and the nesting parameters are tightly estimated, 

with an ordering that is consistent with profit maximization ( 2 1ˆ ˆ0 1    ). Their magnitude 

indicates strong correlation within nests, suggesting that once producers decide on which crop to plant 

on a given plot they are unlikely to switch, both to another crop (corn or soybeans), and even less so 

to something besides corn or soybeans. This finding supports the rationalization of the two-level 

nested logit specification provided earlier. The remaining estimates presented in column 1 are for the 

coefficients associated with the GE trait dummy variables. In all cases the estimates are positive 

indicating that farmers are willing to pay a positive amount for each trait. These coefficients provide 

the basis for estimating farmers’ willingness to pay (WTP) for the innovation of GE traits, which we 

consider extensively in section 6.  

Column 2 in Table 6 includes fewer controls by postulating year, CRD, and brand fixed effects 

that are not crop-specific. Relative to column 1, the results remain mostly unchanged, however, the 

subgroup nesting parameter, 2 , increases in size and the price coefficient is significantly smaller. This 

likely reflects the fact that including crop-specific effects controls for crop-specific unobservable 

differences in products that are correlated with prices.  In moving from column 2 to column 3 we 

move from the two-level nested logit model to the basic logit model. This reduces flexibility in the 

substitution pattern between seed products (and also means that the coefficients of the price variable 

are not directly comparable). Finally, column 4 presents results for the simple logit model without 

instrumental variables for prices. The price coefficient without instruments is substantially smaller (in 

absolute value) than in column 3. The fact that the price coefficient increases so significantly when 

going from column 4 to column 3 indicates that prices are indeed endogenous, a finding that is typical 

of differentiated product markets (Berry, Levinsohn and Pakes 1995; Trajtenberg, 1989).  



19 
 

Elasticities 

To better convey the implications of the different coefficients, Table 6 also reports mean own and 

cross-price elasticities. Elasticity formulae for our two-level nested logit model are derived based on 

Bjornerstedt and Verboven (2016). The coefficients of the model in column 1 imply a mean own-

price elasticity equal to -7.04, which is quite elastic. The estimated own-price elasticities get 

progressively smaller (in absolute value) in columns 2-4, as we include fewer controls and less flexibility 

in the substitution patterns. For the basic logit model in column 4, the implied mean own-price 

elasticity is just -0.25, an inelastic response which is inconsistent with models of profit-maximizing 

seed firms that sell differentiated products. For the most general model of column 1, the mean cross-

price elasticities are 0.48 within a crop (e.g., from a soybean seed product to another soybean seed 

product) and 0.05 across crops (e.g., from a soybean seed product to a corn seed product). The 

difference between these mean elasticities underscores the relevance of the assumed nesting structure: 

growers more readily substitute towards products of the same crop in response to price increases in 

any given seed product. The estimated cross-price elasticity for the outside good is very small at just 

0.02, or about one-fortieth the magnitude of the mean cross-price elasticity for products of the same 

crop.  This indicates that the aggregate demand for corn and soybean seed products is rather inelastic.  

Subadditivity and Time-Varying GE Trait Effects 

Table 7 provides results for two additional, more general parameterizations of the nested logit model. 

The model in column (1) allows for complementarities (or rivalries) among GE traits as inputs. More 

specifically, there is an additional indicator variable, Multiple Traits, that takes a value of one whenever 

there is more than one GE trait in a seed product.12 The negative and significant coefficient in Table 

7 for Multiple Traits indicates sub-additivity in the value of products with multiple GE traits. That is, on 

average farmers are willing to pay a bit less for each of multiple GE traits compared to what they 

would pay for those traits in isolation. This result is related to, but distinct from that of Shi et al. 

(2010), who find sub-additivity in the pricing of stacked GE trait varieties. Our result, being rooted in 

a structural demand model, relates specifically to the value farmers place on GE traits.  

                                                 
 
12 We also estimated regressions with stacked variables for all of the possible GE trait combinations: 
GT-CB, GT-RW, CB-GT, and GT-CB-RW. We use a generic stacked variable for its parsimony and 
because certain stacks are very seldom observed. Nonetheless, the results are largely unchanged in 
these alternative formulations. 
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Column (2) of Table 7 contains the estimates that we use for the welfare analysis. This 

representation permits the return to the various GE traits to differ across three sub-periods. As noted 

earlier, this allows for the possibility that the average return to GE traits vary in accordance with the 

range of germplasm that incorporates them, and it is also consistent with important events that likely 

affected the return to GE products: the expiration of Monsanto’s glyphosate patent in 2000; and, the 

sharp increase in crop output prices in 2007 as part of the most recent major commodity price boom 

(Baffes and Haniotis 2010, Wright 2011). The results in column 2 strongly indicate that the returns to 

GE varieties were indeed different and increasing over these three sub-periods. Specifically, the 

coefficient on the Soy GT Trait increased from 0.3075 in 1996-2000 to 0.4681 in 2007-2011, and the 

coefficient on the Corn GT Trait increased from 0.0251 in 1996-2000 to 0.3100 in 2007-2011. The 

Multiple Traits coefficient also changes over time, becoming more negative in the final sub-period.    

6. WELFARE 

The development and commercialization of GE crops has represented a major technological 

innovation for agriculture. The estimated seed demand model presented in the foregoing provides the 

ideal framework for a novel empirical assessment of the welfare effects of this innovation.  To reach 

robust conclusions, we adopt a two-pronged approach. First, we use the estimated demand model to 

compute farmers’ WTP for GE traits. This willingness to pay a premium for GE traits is equivalent 

to an upward shift in the demand facing seed companies. Hence, the ability to bundle GE traits with 

traditional germplasm holds the potential for seed companies to increase prices and boost revenues. 

Together with observed planted acres and price premia for GE products, estimated WTPs permits a 

first look at the total surplus created by GE varieties, as well as its distribution between farmers and 

seed firms. Alternatively, we use the structure of the estimated demand model to estimate the total net 

value of GE traits to farmers (increase in expected profit) by simulating a counterfactual in which GE 

traits are not available. This simulation requires knowledge of what conventional seed prices would 

have been in the absence of GE products. To compute such prices, we follow Hausman and Leonard 

(2002) by using a reduced-form hedonic price equation. By making assumptions on the nature of the 

unobservables, we estimate counterfactual prices (and counterfactual choice sets) had GE varieties 

not been introduced. The results of both of these approaches to welfare calculations are presented 

below.  
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Farmers’ Willingness-to-Pay for GE Traits 

The WTP for a given GE trait combination is the maximum amount ($/acre) that a farmer would be 

willing to part with in order to have that particular combination added to a seed product line. To 

calculate farmers’ WTP for GE traits, we use the demand estimates from the most general model 

(column 2 of Table 7).  In a typical discrete choice random utility framework (e.g., the logit model), 

the (marginal) WTP for a particular characteristic is given by the ratio of the estimated coefficient on 

that characteristic to the estimated coefficient on the price variable (Train 2009).  Although our latent 

return function is cardinal and denominated in dollars per acre (rather than utility), the general 

procedure remains the same: the WTP for a particular GE trait is the ratio of the coefficient associated 

with that trait and the estimated price coefficient. As noted earlier, the estimated price coefficient is 

the reciprocal of the scale parameter of the extreme value distribution. Thus, in dividing by the price 

coefficient, we are simply removing the scale factor from the trait coefficients.  For example, the WTP 

for the GT trait in soybeans is: SoyGT  .  For a combination of GE traits, the relevant WTP is 

recovered by dividing the sum of the associated trait coefficients by the price coefficient. For example, 

the WTP for the stacked combination GT-CB-RW in corn is ( )CornGT CB RW Multiple       .  

Table 8 contains WTP estimates for each of the GE-trait combinations in each of the various 

sub-periods. Because all prices in the analysis are deflated by an input price index normalized to equal 

1 in 2011, all estimates are in real terms (2011 dollars). All of the estimates appear reasonable and are 

in line with what might be expected given knowledge of seed prices and the observed adoption 

patterns by farmers. The WTP for the GT trait in soybeans was $16.88 per acre in the first sub-period, 

rose to $23.96/acre in the 2001-2006 sub-period, and then rose slightly again to $25.69/acre in the 

2007-2011 sub-period. The WTP for the Corn GT trait also increased over time but followed a 

different pattern.  From 1996-2000, the WTP for GT corn was only $1.38/acre. It then grew to 

$3.57/acre from 2001-2006, and then increased substantially to $17.01 from 2007-2011. A similar 

pattern occurred for the other corn GE traits (CB and RW). For the standalone and stacked 

combinations, the increase in value was greatest from the second to the third sub-period. The increase 

in the value of the triple-stack GT-CB-RW was particularly large, from $9.16 in second sub-period to 

$35.30 in the last sub-period.  

The standard errors reported in Table 8 suggest that, overall, the WTPs for the GT trait in 

soybeans and for the CB trait in corn are precisely estimated. WTPs for the GT trait in corn are tightly 

estimated for the last two sub-periods, and the WTPs for RW corn are only precise in the final sub-
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period. This is consistent with the adoption patterns illustrated in Table 2: the earlier slower adoption 

of some corn GE traits translates in larger standard errors.  

A common finding among all trait combinations is that their value increased over time, which 

is consistent with the temporal increase in the observed shares for GE products. One contributing 

factor has been falling glyphosate prices. Subsequent to the expiration of Monsanto’s main glyphosate 

patent in 2000, the price of glyphosate fell from $12.42/lb in 2000 to $4.74/lb in 2011 (note: a standard 

application is 0.75 lb/acre). Because glyphosate is used more heavily with GT crops, a lower price for 

this herbicide reduces the farmers’ production cost of GT crops relative to non-GT crops, reinforcing 

their adoption incentive. A second factor is rising output prices in the latter years of our sample. The 

average price received by farmers for corn, as reported by the USDA, increased from $2.22/bu in the 

sub-period 2001-2006 to $4.35/bu in the final sub-period 2007-2011, while for soybeans the 

corresponding price change was from $6.03/bu to $10.30/bu. Naturally, an increase in the output 

price increases the value of yield-enhancing inputs. As noted, previous work has shown that IR traits 

in corn increase yields (Nolan and Santos 2012, Xu et al. 2013), and thus higher output prices increase 

the relative value of the CB and RW traits.  A third factor is learning, which may have played a role 

earlier on. Although the limited availability and breadth of GE seeds was another factor affecting 

adoption in the first few years, anecdotally it seems that most producers also had an initial trial run 

with GE crops before wholly committing to this technology. In other words, our WTP methodology 

is rooted in producers’ perceived value of GE traits, which likely increased as evidence of the 

efficiency-enhancing properties of GE traits accumulated.  

A final element to keep in mind in interpreting the results relates to our approach to product 

definition. Recall that we define a product as a crop-brand-trait combination, which means that we 

aggregate over varieties within each combination. Over time, the types and number of these varieties 

changed within each defined product. As noted earlier, for example, the number of Pioneer corn 

hybrids offered with the GT trait (across all markets) was 9 in 2003 and 75 in 2011. Thus, the various 

GE trait coefficients also capture the range of varieties that were offered within a particular product 

line. The wider the range of seeds offered within a product line, the more diverse the set of needs the 

line could match. For example, it is likely that the 9 corn GT hybrids offered by Pioneer in 2003 were 

not as ideally matched to farmer’s needs as the 75 corn GT hybrids that the same company offered in 

2011, and thus the average 2003 value of the Pioneer GT line across all farmers was correspondingly 

smaller.  
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Total Incremental Surplus and Seed Revenues from GE Traits 

WTP estimates permit a first look at the welfare benefits that accrued to farmers and seed 

manufacturers from the introduction of GE traits. Specifically, multiplying the WTP estimates (as 

reported in Table 8) by the observed planted acres of each GE trait provides a first-order 

approximation to the total surplus created by the innovation. We can also use the average price premia 

from Table 3 (deflated by the crop input price index) along with observed planted acres of GE crops 

to compute an estimate of the seed industry revenues attributable to GE traits. The accuracy of these 

procedures rests on the assumptions that the number of acres cultivated to corn and soybeans would 

have been the same had GE traits not been introduced, and that observed conventional seed prices 

would have been the same absent the GE innovation. The results are reported in Table 9.  

Over the entire period 1996-2011, total surplus is estimated at $30.7 billion (in 2001 dollars)—

$19.4 billion for soybeans and $11.2 billion for corn. During the same period, we find that the 

availability of GE traits increased seed industry revenues by $24.3 billion—$13.2 billion in corn seeds 

and $11.1 billion in soybean seeds. Finally, the values in the last column of Table 9 report the net 

returns to farmers, imputed as the difference between total surplus and seed industry revenues, 

associated with the adoption of GE traits. Over the entire period 1996-2011, we find that farmers’ net 

returns were $6.3 billion higher because of the introduction of GE traits. Overall, these results suggest 

that seed manufacturers appropriated the larger portion of the surplus created by GE traits.  

Imputed net returns to farmers show a clear difference between soybeans and corn. Perhaps 

surprisingly, the calculations reported in Table 9 suggest that net returns to corn farmers have been 

negative (a total loss of nearly $2 billion, most of which occurred in the first two sub-periods of the 

analysis). To put this result in context, recall that the model’s parameterization assumes that (within a 

given sub-period) all farmers have the same WTP parameters vis-à-vis GE traits. Insofar as the value 

of GE traits was heterogeneous across farmers, our WTP estimates, which reflect an average value 

across all farmers, under-represent the value of GE traits to actual adopters. Also, as noted, the WTP 

estimates for GE corn traits are imprecise in the first two sub-periods, which make the corresponding 

total surplus estimates less reliable. Moreover, whereas the procedure underlying Table 9 is attractive 

because it uses observed data and does not make additional assumptions on the structure of the 

unobservables, a major weakness is that it maintains that prices and quantities would have been the 

same had GE seeds not been introduced. This is an undesirable assumption for several reasons. First, 

the introduction of GE seeds resulted in more seed products available to farmers, especially in corn. 

This increased differentiation meant that farmers could choose seed products that better matched 
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their growing conditions.13 Second, standard considerations suggest that conventional seed prices 

would have been higher in the absence of GE traits. Similarly, if GE traits were indeed valuable, then 

total corn and soybean acres would have been lower in the absence of GE traits. Finally, observed 

average price premia fail to account for spatial price heterogeneity.  

These limitations can be addressed by computing counterfactual prices that account for any 

competitive price effects that GE varieties may have exerted on non-GE products, by using the 

structure of the estimated demand model to compute counterfactual conventional seed products 

shares, and by developing counterfactual scenarios that can account for the impact of GE-induced 

product differentiation on farmers’ expected profits and seed industry revenues.  

Counterfactual Prices 

To address the question of what (conventional) seed prices would have been without the GE 

technology, a possible approach is to construct a full structural equilibrium model embedding the main 

drivers of price changes in the industry. With this method the literature generally maintains that firms 

behave as Bertrand oligopolists with differentiated products, and then simulates counterfactual 

solutions under alternative assumptions (Nevo 2001, Petrin 2002, Goeree 2008). The upside of this 

approach is that it makes the assumed economic context fully transparent. Such a structural model 

presents challenges in our context, however. This is because, although seed firms own their own 

germplasm, most of them have engaged in extensive licensing (and cross-licensing) arrangements for 

GE traits. Hence, the standard Bertrand-Nash price equilibrium conditions for differentiated products 

are not appropriate for this setting. Furthermore, the terms of the GE trait licensing arrangements 

between firms are not in the public domain (Moss 2010), which makes it problematic to develop a 

suitable structural representation of the supply side, an undertaking we leave for future research. 

To proceed, we use a reduced-form hedonic approach, as in Hausman and Leonard (2002). 

While this method permits us to avoid specifying an explicit structural equilibrium model, and thus 

eschew the thorny issue of what to do about GE trait licensing, the validity of this approach rests on 

                                                 
 
13 The proliferation of corn varieties documented in Table 5 reflects the fact that, upon the 
introduction of GE varieties, the same germplasm was often available to farmers both with and 
without GE traits. Farmers with plots exposed to higher pest pressure would have a higher 
propensity to adopt the GE variety, whereas farmers with lower pest pressure may find a better 
match with the corresponding conventional variety. This effect is arguably more important for IR 
traits in corn because “insect infestation varies much more widely across locations than does weed 
infestation” (Fernandez-Cornejo and Caswell, 2006, page 9). 
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some strong conditions. In general, the reduced-form procedure is valid if GE trait entry were 

exogenous across markets and time, which would exclude the possibility that entry responds to market 

demand or cost shocks. This condition is unlikely to hold strictly in any empirical context. Still, our 

setting and approach display features that make this assumption more tenable. As discussed 

extensively earlier, the technology of introducing GE traits into commercial germplasm takes several 

years, it involves stochastic elements, and the complexity of the process requires assets that likely differ 

across firms, such that “… the duration of the process may differ across organizations.” (Mumm, 

2013, p. 8258). Hence, even firms starting on the same footing (which actually they do not, because 

of the asymmetry between firms that need to in-license GE traits and vertically-integrated firms that 

out-license such traits) can reach the market at different times.14 Our conclusion, therefore, is that the 

entry of GE varieties in a particular market results from decisions taken years in advance, its timing is 

affected by random outcomes, and it is clearly predetermined relative to firms’ pricing decisions. 

Furthermore, we include spatial and time fixed effects to control for unobserved differences in 

demand. Although we cannot entirely rule out correlation of unobservables over time, it seems 

reasonable to expect that, in our context, this effect (if present) is significantly attenuated.  

To begin with, we estimate the following hedonic price equation: 

 [ ] [ ] [ ], [ ], [ ] [ ], [ ] [ ], [ ]jm jm t m c j c j m c j t m c j l m c j b j jmp x D              (11) 

where [ ],c j mD  are crop-specific post-GE indicator variables that equal to one for any observation in a 

market for which a GE variety is available (or was available in an earlier year for the CRD pertaining 

to that market), otherwise this variable is equal to zero. The coefficients on these ‘post-GE’ variables 

capture, in a reduced-form way, the overall price effects from the introduction of GE innovations. 

The price effects are identified from the fact that GE varieties were introduced at different times in 

different regions (i.e., CRDs). Conditional on CRD-specific and time fixed effects, the time of 

introduction can be assumed exogenous for reasons previously noted. The hedonic price equation in 

(11) also includes GE trait dummies jmx . The remaining terms in this equation, [ ], [ ]c j t m , [ ], [ ]c j l m  

and [ ], [ ]c j b j  are, respectively, crop-year, crop-CRD, and crop-brand fixed effects, and jm  is an 

idiosyncratic shock.  

                                                 
 
14 In the early years of GE commercialization, regional firms (all of whom needed to in-license GE 
traits) did enter the GE seed market at different times. 
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 Table 10 presents the estimation results for the hedonic price equation. The first row shows 

the effect of the introduction of the GE varieties on the prices of all soybean seed products. We find 

that the prices of soybean seeds decreased, on average, by $1.87 when GE products were present. 

The second row shows the corresponding impact on corn seed prices, which were lower by $0.38. 

These are relatively small competitive price effects, suggesting that any substantial welfare effects 

primarily stem from an increase in the portfolio of choices that the farmers can make, or because of 

the difference between the prices charged for GE traits and farmers’ willingness to pay for them. 

The hedonic results also show that GE traits are associated with significantly higher prices, 

implying that farmers pay considerable premia for GE innovations, as anticipated by the descriptive 

statistics reported in Table 3. For example, we find that the premium for the Soy GT trait was $15.46 

in the 1996-2000 period; it declined to $13.83 in 2001-2006, and to $11.42 in 2007-2011. The corn 

GT trait, instead, saw the premium increase from $11.43 in the first sub-period to $13.22 in the final 

sub-period. The corn CB and RW traits saw the premium decline over time, but the premium was 

always greater than $9 over the sample period. Finally, the Multiple Trait stack is associated with a 

subadditivity effect, with prices being lower when GE traits are stacked (this effect amounted to $4.52 

for the last sub-period, where the triple stack GT-CB-RW was widely adopted). This subadditive effect 

is consistent with previous findings by Shi, Chavas and Stigert (2010). 

In addition to being informative of the price premiums that seed companies were able to 

charge for transgenic varieties, the estimated hedonic equation permits us to infer the prices that would 

have materialized had GE traits not been introduced in corn and soybean seed varieties. We do this 

by turning off the categorical variable that is equal to 1 if there was an innovation, and by turning off 

the variables associated with the various GE traits. More specifically, using the estimation output from 

Table 10, the predicted prices in the presence of GE traits are given by:  

 [ ] [ ] [ ], [ ], [ ] [ ], [ ] [ ], [ ]
ˆ ˆ ˆ ˆ ˆˆ jm jm t m c j c j m c j t m c j l m c j b jp x D             (12) 

Had transgenic varieties not been introduced, counterfactual predicted prices without GE traits are 

given by:  

 [ ], [ ] [ ], [ ] [ ], [ ]
ˆ ˆ ˆ

jm c j t m c j l m c j b jp      .       (13) 
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GE Seeds and Farmers’ Welfare: Structural Approach 

In combination with the structural demand model, the counterfactual prices thus constructed 

provide the basis for assessing the impact of GE product innovations on total surplus and its 

distribution. Because the demand model is rooted in farmers’ expected profit maximization, it is 

natural to start with assessing farmer’s net returns. Computation of farmers’ welfare change 

attributable to the introduction of GE varieties relies on the change in the overall inclusive values, 

scaled by the price parameter (i.e., the coefficient  ). Specifically, in each market m , the change in 

per-acre surplus (expected profit) due to GE traits is given by:  

 
 ˆ
m m

m

I I




 


   (14) 

where ˆmI  is the predicted inclusive value with GE traits and mI
  is the predicted inclusive value in a 

world without GE traits (see equation (9) for the definition of  mI ) . To obtain the total dollar value 

of GE traits in market m, we multiply m  by the potential market size (in acres) of market m, and to 

compute the dollar value of GE traits in the entire sample, we simply add up the dollar values across 

all markets. As previously noted, the estimates thus obtained are expressed in 2011 dollars.   

The primary inputs for equation (14) are the estimated demand parameters ( , 1 , 2 ) and 

mean farmers’ profits jm . Using the predicted hedonic prices with GE traits, and the estimated terms 

from the seed demand equations, predicted mean profits with GE traits are given by:15 

 [ ] [ ], [ ] [ ], [ ] [ ], [ ]
ˆ ˆ ˆ ˆ ˆ ˆˆ ˆjm jm t m jm c j t m c j l m c j b j jmpx           .    (15) 

while predicted mean profits without GE traits are given by:  

 [ ], [ ] [ ], [ ] [ ], [ ]
ˆ ˆ ˆ ˆˆjm jm c j t m c j l m c j b j jmp           .     (16) 

A feature to note about this procedure is that it involves the modification of characteristics 

associated with GE varieties. As previously noted, by the end of the sample GE varieties had not only 

significantly added to the set of available products, but had also replaced most conventional 

                                                 
 
15 Note that the baseline also uses predicted prices (rather than observed prices), just as the 
counterfactuals. 
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offerings.16 In 1996, for example, non-GE varieties comprised 57 out of 66 products; by 2011, they 

comprised just 38 out of 161 products. If we were to remove GE products entirely from the choice 

set in 2011 that would leave just 38 products available to growers, a number which likely 

underestimates what would have been available in the counterfactual. Maintaining such an artificial 

reduction in non-GE products in the relevant counterfactual has the potential to introduce bias in the 

estimated welfare gains from GE traits. This is especially problematic in the context of logit models. 

As noted by Petrin (2002) and Ackerberg and Rysman (2005), among others, the postulated underlying 

structure implies that an additional option mechanically increases (expected) welfare because it 

provides another draw from the distribution of random shocks.17  

We address this issue by considering results for four different counterfactual scenarios. In the 

first scenario we simply remove all the GE products from the choice set of the counterfactual scenario, 

adjust the prices of the remaining conventional products (as per the hedonic price regression), and 

compute the welfare change of seed users accordingly.18 As implied by the foregoing discussion, this 

approach (labeled the “naïve” scenario) is expected to penalize the non-GE counterfactual and thus 

inflate the estimated welfare effects.  

Alternatively, instead of simply removing GE products from the choice set, we modify the 

characteristics of GE products by removing the GE trait, adjusting the price, and then maintain this 

“synthetic” product in the counterfactual choice set if it does not duplicate an equivalent non-GE 

product already present. The presumption is that seed manufacturers would have used the germplasm 

currently combined with GE traits to commercialize alternative conventional seed products instead. 

For example, suppose that in a given market there are three seed products: Dekalb-GE-corn, Asgrow-

conventional-soybeans, and Pioneer-conventional-corn. If we followed the Naïve approach, removal 

of GE traits would drop one product from the choice set (the remaining two would be Asgrow-

conventional-soybeans and Pioneer-conventional-corn). Instead, with the proposed alternative 

                                                 
16 The crowding out of old products due to the introduction of new ones is the main concern of 
Eizenberg’s (2014) study of the impact of innovation in central processing units for US personal 
computers. 
 
17 Nevo (2011) provides an extended discussion of this point and notes that the logit model per se is 
actually not the source of biased welfare estimates. Rather, the bias may arise from using the logit 
model to predict counterfactual shares. 
 
18 In equation (14), this amounts to an mI

  in which the exponential terms for GE products have 
simply been deleted. 
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counterfactual we retain three products: the two pre-existing conventional seed products plus the 

synthetic Dekalb-non-GE-corn. Implementation of this alternative procedure to construct the choice 

set of the counterfactual requires the resolution of a possible ambiguity. In some markets, after 

modifying the characteristics of GE products, we can end up with “duplicates” vis-à-vis the definition 

of products used in this study, the only difference being in the unobservable component .19 This 

presents the question of which duplicate product to keep in the counterfactual choice set. To proceed, 

we consider two versions of this alternative approach. In one case, we keep the duplicate with the 

largest ˆjm (i.e., the largest mean expected profit for farmers). We call this the “keep best” scenario. 

In the other case, we keep the duplicate that was originally a non-GE variety, a situation that we label 

the “keep conventional” scenario. 20 Finally, we also consider the “keep all” scenario, where it is 

assumed that all synthetic products obtained from the removal of GE traits in the counterfactual are 

viable and are therefore kept in the choice set. 

Table 11 reports the average number of products, for both corn and soybeans, that pertain to 

the foregoing four counterfactual scenarios for each of the three sub-periods of the analysis. 

Comparing the data in Table 11 with the number of products available prior to the advent of GE 

varieties, it is clear that the naïve and the “keep all” scenarios are not plausible. The naïve scenario is 

associated with a drastic reduction in the number of products, especially for the last sub-period. This 

is most apparent for soybeans, a reflection of the almost complete adoption of the GT trait in the 

latter years of the sample. Conversely, the “keep all” scenario displays an artificially large number of 

products, especially for corn.21 Clearly, neither of these two scenarios are likely to produce credible 

results. Hence, here we report the counterfactual results only for the other two scenarios, “keep 

conventional” and “keep best.”22 We note at this juncture that, by picking the seed product with the 

                                                 
19 For example, in a market where we have both conventional Asgrow soybeans and GT Asgrow 
soybeans, shutting down the GT traits yields two versions of Asgrow conventional soybean seeds. 
 
20 In cases where there are duplicate synthetic conventional products, but no pre-existing 
conventional product, we keep the synthetic conventional product with the highest mean return.  
 
21 From Table 5, in 1996, at the dawn of the GE era, the average number of conventional seed 
products per market (i.e., CRD) was 3.9 for soybeans and 6.2 for corn. By contrast, for the last sub-
period (2007-2011), the Naïve scenario entails 0.8 seed products per CRD for soybeans and 3.2 seed 
products for corn. By contrast, the average number of seed products in the “keep all” scenario in the 
same sub-period was 6.3 for soybeans and 19.9 for corn. 
 
22 We report the full set of results in the Supplementary Information online (Appendix D). 

ˆ
jm
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largest ˆjm , the “keep best” scenario provides a more conservative estimated impact of GE traits on 

farmers’ expected profit than the “keep conventional” scenario. However, for this very reason, the 

“keep best” scenario can under-penalize the non-GE counterfactual. Indeed, when the unobserved 

component for a synthetic non-GE product exceeds that of a (pre-existing) conventional non-GE 

product, then it is possible for the mean expected return of this synthetic non-GE product to exceed 

the expected return of any seed product that existed when GE products were still available. For this 

reason, we view the “keep conventional” counterfactual scenario as the most realistic counterfactual. 

   The first two columns in Table 12 reports the estimated farmer welfare gains for the two 

scenarios of interest, and across the three sub-periods. For each scenario, we consider three distinct 

thought experiments: i) a market without GE soybean products; ii) a market without GE corn 

products; and, iii) a market that excludes GE products in both corn and soybeans. The three exercises 

are helpful in providing insights into whether GE traits affected the two crops differentially.  

 The first set of results in Table 12 pertains to the entire period 1996-2011. We find that, under 

the “keep best” scenario, total farmers’ welfare gain from GE innovations is estimated at about $14.4 

billion. It is interesting to note that three quarters of these gains are attributable to one trait: glyphosate 

tolerance in soybeans. For the “keep conventional” scenario, the estimated farmers’ welfare gains are 

larger, $22.2 billion. The remainder data in the first two columns of Table 12 investigate how the 

estimated welfare gains changed over time. In addition to the results for the entire 1996-2011 period, 

in this table we also report results for the 1996-2000, 2001-2006, and 2007-2011 sub-periods. We see 

clearly that the estimated welfare gains increased over time, reflecting both increased adoption and 

rising WTP. 

GE Traits and Seed Industry Revenue 

Using the estimated counterfactual prices, we can also infer the additional revenue that accrued to the 

seed industry due to the ability to commercialize GE traits. To compute the benchmark seed revenues 

we compute the market shares, and associated value of all seed sold, by using the fitted prices of 

equation (12) along with the estimated seed demand model. For the counterfactual scenario of no GE 

traits, we compute predicted market shares by using the counterfactual prices of equation (13) along 

with the estimated demand model. We again report results for two scenarios, the “keep best” and 

“keep conventional.”  

The last two columns in Table 12 report the estimated revenues for seed manufacturers 

attributable to the availability of GE traits. Focusing on the “keep conventional” scenario, we find 
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that over the entire 1996-2011 period, seed firms’ sales were greater by $25.3 billion, with more than  

two-thirds of these revenues attributable to the availability of GE corn varieties. Moreover, these 

revenues from GE traits increased over time, reflecting the increased adoption of GE seed varieties 

and, possibly, changing equilibrium pricing conditions (which, again, we are not modeling in a 

structural way). Over the last five years of our sample (2007-2011) we find that GE traits boosted seed 

industry revenue by a total of $14.6 billion, or approximately $2.9 billion per year, with corn 

contributing significantly more than soybeans to increases in seed industry revenues. This likely 

reflects the increase in farmers’ WTP for corn GE traits (possibly associated with the commodity price 

boom noted earlier), as well as the increased diffusion of Bt traits in corn varieties (recall Table 2). 

Discussion 

The two approaches we have used to calculate the value of GE traits are based on different 

assumptions, as noted earlier. Upon comparing the results in Table 12 with those in Table 9, however, 

some common themes are apparent. First, the monetary benefits from GE innovations are significant. 

For the last five years of the period analyzed (2007-2011), when adoption of GE traits was widespread, 

estimated total surplus was between $3.73 billion per year (Table 9) and $5.18 billion per year for the 

“keep conventional” scenario (Table 12). We also find that seed manufacturers have been able to 

appropriate the larger share of this surplus, although the structural estimates suggest that it was closer 

to an even split. Specifically, in the last five years of the sample (2007-2011), the results in Table 9 

imply that the seed industry captured 75% of the total surplus, whereas the results in Table 12 imply 

a fraction of 56% (for the “keep conventional” scenario). 

It is also of some interest that results differ across soybean and corn seeds. Although farmers 

received the majority of their surplus from soybean GE traits, more total surplus has been generated 

by GE traits in corn, and the seed industry has been able to extract the larger share of total surplus in 

corn. In the final sub-period (2007-2011), Table 9 implies that 100% of the GE trait surplus created 

in corn seeds was appropriated by seed manufacturers, whereas in Table 12 this fraction ranges 

between 74% (“keep best” scenario) and 67% (“keep conventional” scenario). 

The estimated seed industry revenue increases due to GE crops, and the estimated increases 

in farmers’ expected profits, both measure ex post welfare gains from GE crops. The interpretation is 

somewhat different, though. For farmers, the figures in Table 12 can be interpreted as net welfare 

gains: that is, the dollar value of how much better off farmers have been by their ability to purchase 

GE varieties—notwithstanding the fact that they had to pay a premium for GE seeds. For the seed 
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industry, on the other hand, increased revenues can be interpreted as ex post returns to past investments 

in R&D activities.23 Still, comparing the magnitude of gains accruing to farmers and the seed industry 

we see that the latter has been fairly effective at capturing the value created by GE trait innovations. 

For example, over the last five years of the sample (2007-2011), for the “keep conventional” scenarios, 

farmers’ net welfare increased by $11.3 billion whereas seed industry revenue increased by $14.6 

billion. Thus, during this period, the seed industry appears to have been able to capture approximately 

56% of the overall monetary value of GE traits.  

7. CONCLUSION  

In this paper, we provide an empirical assessment of the value of one of the major innovations 

affecting U.S. agriculture in the last several decades, the introduction of GE traits in U.S. corn and 

soybeans. Our approach is based on a two-level nested logit model of seed demand in which farmers 

choose the most profitable option among corn and soybean seed varieties (and an outside option). 

This specification is consistent with the important mechanism of corn-soybean rotations and it also 

partially addresses well-known limitations of using the basic logit model to estimate the welfare impact 

of new products. The model is estimated using a unique, large dataset on U.S. corn and soybean seed 

purchases during the 1996-2011 timeframe. Using the demand estimates, we find that farmers are 

willing to pay a significant premium for GE traits, and the extent of this willingness has increased 

significantly over time.  

We estimate the total surplus created by the introduction of GE traits, and its distribution 

between farmers and seed manufacturers, with two alternative methods. In the first approach, we 

recover the total surplus created via the estimated farmers’ WTP for the various GE traits, along with 

observed plantings of GE varieties. With this approach, based on observed price premia between GE 

and conventional varieties, we also compute the additional revenues for the seed industry due to GE 

traits embedded into marketed seed varieties (as well as the implied net residual surplus left for 

                                                 
 
23 The implicit assumption, here, is that the marginal production cost to seed firms for GE and non-
GE varieties is the same. To put our estimates in context it may be helpful to consider the extent of 
R&D in this industry. For the five-year period 2007-2011, data reported by Phillips (2014) suggest 
that the R&D expenditure of the six largest agro-chemical firms, for the seed and GE trait segment, 
amounted to approximately $13 billion. As for individual companies, publicly available data for 
Monsanto are most informative because this company’s R&D is almost exclusively devoted to seeds 
and traits. Monsanto’s annual disclosures to the U.S. Security and Exchange Commission indicate a 
total of $5.45 billion in R&D expenditures for the 2007-2011 period.  
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farmers). In the second approach, we use the structure of the estimated demand model, along with 

counterfactual prices obtained from a reduced-form hedonic equation, to infer market conditions that 

would have prevailed had GE traits not been introduced. Our counterfactual scenarios are adjusted 

to account for the fact GE crop varieties gradually crowded out conventional varieties. More 

specifically, rather than simply removing a GE product from farmers’ choice sets, we also simulate 

scenarios in which modified GE products are retained in farmers’ counterfactual choice sets. In so 

doing, we avoid the bias that would result from conflating the removal of the GE technology with an 

artificial reduction in product diversity.  

Our findings suggest that the welfare benefits from GE crops are significant. For the last five 

years of the period analyzed, when adoption of GE traits had reached maturity, estimated total surplus 

from the two methods discussed ranged from $3.73 billion to $5.18 billion per year. To put matters 

in context, over this five-year period, total planted acres to corn and soybeans averaged at 162.7 million 

per year. Hence, the estimated total surplus due to GE traits reported earlier ranged from $22.9 to 

$31.9 per acre of planted crop. We also find that seed manufacturers have been able to appropriate 

the larger share of this surplus. It is also of some interest that the results differ across soybean and 

corn seeds. Although farmers received the majority of their surplus from soybean GE traits, more 

total surplus has been generated by GE traits in corn, and the seed industry has been able to extract 

the larger share of total surplus in corn. These results are consistent with the observation that 

intellectual property rights have historically played a stronger role in the corn seed industry. As noted 

earlier, the commercialization of hybrid varieties, starting in the 1930s, provided the technology to 

develop improved germplasm as a proprietary asset. Conversely, for soybeans seeds, strong property 

rights only materialized in the 1990s with the diffusion of contractual clauses based on newly-asserted 

patent rights (Clancy and Moschini, 2017).  

Our work has some important implications for the ongoing debate surrounding GE crops. 

First, our estimates suggest that, at least up to 2011, farmers still obtained significant net benefits from 

adopting GE crop varieties, notwithstanding the higher seed prices they paid. It is also notable that 

seed firms were able to extract the larger share of the ex post welfare effects of GE traits. 

Appropriability of ex post returns from innovation is essential to ensure that firms have continuing 

incentives to invest in R&D. This is particularly important in the modern seed industry, where private 

R&D funds have vastly exceeded public R&D investments in recent years (Clancy, Fuglie and Heisey 

2016). Methodologically, our counterfactual approach to estimating welfare may be applied to settings 

in which new products tends to crowd out and replace existing products.  
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 Some caveats are also worth noting in closing.  Our analysis of the welfare effects of GE crops 

pertains to their direct economic consequences for farmers and the seed industry. Welfare implications 

arising from possible external effects, such as unintended environmental effects, are obviously not 

encompassed by our methodology. Also, our framework does not capture the possible impact of GE 

trait adoption on crop output prices, which precludes a fuller welfare impact assessment. Finally, a 

structural representation of the supply side might be preferable to the reduced-form approach used in 

this paper. This, however, would require a model that accommodates the complex web of GE trait 

cross-licensing agreements between seed firms, an undertaking that we leave for future studies. 
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Figure 1. Adoption of GE Corn and Soybeans in the United States, 1996-2016 

Note: “Bt maize” refers to varieties with at least one IR trait (alone or with the GT trait), and “GT 
maize” refers to varieties with the GT trait (alone or in combination with other traits). Source: 
USDA-NASS (2000-2016) and GfK Kynetec data (1996-1999). 
 

 

Figure 2. Structure of the two-level nested logit model 
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Table 1. Market shares in the U.S. corn and soybean seed industry (percent), 2000-2015 

 

Note: The table reports market shares for the seed industry that emerged from the wave of market 
consolidation that followed the introduction of GE traits. Source: Computed from GfK Kynetec data 
(2000-2011), and Farm Journal Magazine (2012-2015). 
 
 
  

 2000-03 2004-07 2008-11 2012-15 

CORN     

   Monsanto 11.2% 21.4% 34.0% 35.4% 
   DuPont 36.0% 31.3% 31.5% 35.4% 
   Syngenta 4.7% 10.3% 7.5% 5.7% 
   Dow AgroSciences 5.2% 3.6% 4.1% 5.7% 
   AgReliant 2.5% 4.8% 6.0% 6.8% 
   Local & Regional Companies 40.5% 28.6% 16.9% 11.1% 
SOYBEANS     

   Monsanto 21.9% 23.4% 28.2% 27.6% 
   DuPont 19.9% 24.9% 29.3% 33.3% 
   Syngenta 3.4% 10.4% 10.5% 10.0% 
   Dow AgroSciences 1.9% 1.6% 1.9% 4.8% 
   AgReliant 1.1% 1.9% 1.8% 3.1% 
   Local & Regional Companies 41.8% 36.0% 26.8% 18.6% 
   Public/Saved Seed 10.0% 1.8% 1.4% 2.7% 
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Table 2. Adoption Rates for U.S. Corn and Soybeans, selected years  
 
 
Year Soybeans ----  Corn Single Traits  ----- -----------    Corn stacked traits  ---------------- 

 GT GT CB RW GT-CB GT-RW CB-RW GT-CB-RW

1996 2.4%  0.7%    
1999 51.4% 2.5% 20.8%  0.0%   
2002 80.8% 7.2% 24.0%  2.2%   
2005 90.4% 15.8% 23.9% 1.2% 12.9% 1.2% 0.8% 1.0% 
2008 95.9% 19.2% 6.4% 0.1% 20.0% 0.8% 2.4% 36.6% 
2011 95.4% 19.2% 1.2% 0.0% 16.3% 0.5% 0.5% 53.3% 
 
Note: This Table reports detailed GE trait adoption rates (as percent of total planted acres for the 
corresponding crop). The Supplementary Information online (Appendix C) reports data for all years 
in the 1996-2011 period. Source: Computed from GfK Kynetec data.  

 

 

 

 
 
 
Table 3. Seed Prices for U.S. Corn and Soybeans, selected years 
 
 

Year ---- Soybeans ---- Corn ---  Corn Single Traits  --- ----------------  Corn stacked traits  ----------------- 
 Non-GE GT Non-GE GT CB RW GT-CB GT-RW CB-RW GT-CB-RW
1996 17.20 21.27 24.60  30.45   
1999 17.45 28.27 27.44 32.15 36.02  33.28  
2002 17.41 26.84 28.63 32.40 36.96  37.36  45.02 
2005 21.82 32.88 31.61 36.08 38.74 42.63 41.60 44.70 47.19 49.21 
2008 26.21 36.37 41.92 53.73 49.85 60.69 58.39 61.99 62.27 69.26 
2011 40.62 49.70 53.86 68.69 67.42 66.21 75.09 86.25 70.72 91.32 

 
Note: this table reports data on average nominal seed prices paid by farmers ($/acre). The 
Supplementary Information online (Appendix C) reports data for all years in the 1996-2011 period. 
Source: Computed from GfK Kynetec data. 
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Table 4. Top Brands in Corn and Soybeans, 1996-2011 
 
  Corn Soybeans 

Brand Parent Company(a) Share(b) Price(c) Share(b) Price(c) 
Agrigold Agreliant 1.88% 48.35 -- -- 
LG Seeds Agreliant 1.00% 46.50 0.76% 32.74 
Beck’s Hybrids Beck’s Hybrids 1.07% 46.83 1.38% 36.95 
Croplan Croplan Genetics 1.66% 47.09 2.59% 33.74 
Mycogen Dow Agrosciences 3.55% 38.32 1.75% 28.13 
Pioneer DuPont 33.76% 43.21 23.86% 32.98 
Asgrow Monsanto 1.88% 34.57 16.74% 33.32 
Dekalb Monsanto 14.89% 57.18 4.75% 27.93 
Fielder’s Choice Monsanto 1.68% 31.63 0.17% 44.57 
Kruger Monsanto 0.49% 51.77 1.49% 28.64 
Public Public / Universities --  2.16% 15.32 
Stine Stine Seed 0.37% 42.49 2.92% 29.17 
Garst Syngenta 3.80% 37.68 2.12% 27.60 
Golden Harvest Syngenta 3.30% 39.01 1.85% 26.36 
NK Seeds Syngenta 4.62% 37.88 6.94% 34.90 

Notes. (a) Parent company as of 2011. (b) Average share over the period considered (crop-specific 
percent of acres grown).  (c) Average price ($/acre) over the entire period.  Source: Computed from 
GfK Kynetec data. 
 
 
 
 
Table 5. Average Number of Seed Products in a CRD, selected years 
 
Year Total Corn Soybean Corn with 

GE traits 
Soybeans with 
GE traits 

1996 10.8 6.5 4.3 0.3 0.4 
1999 16.8 9.3 7.5 3.0 4.0 
2002 18.0 11.1 6.9 5.3 4.9 
2005 23.3 16.6 6.8 11.6 5.4 
2008 27.9 21.7 6.2 18.1 5.6 
2011 22.9 16.7 6.2 14.6 5.4 

Note: A “seed product” is a unique combination of four types of characteristics—see Section 3 for 
more details. The number of seed products in 1996 provide a good approximation on the number of 
products per market prior to the introduction of GE traits. The Supplementary Information online 
(Appendix C) reports data for all years in the 1996-2011 period. Source: Computed from GfK Kynetec 
data.  
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Table 6. Estimated parameters of seed demand models 

 

 Nested Logit Basic Logit 

 (1) (2) (3) (4) 
Price -0.0212 -0.0155 -0.0504 -0.0049 
 (0.0020) (0.0012) (0.0028) (0.0005) 
     

1   0.8493 0.8123   

 (0.0083) (0.0084)   
     

2   0.3978 0.6207   

 (0.0558) (0.0184)   
     
Soy GT Trait 0.4070 0.3572 1.4309 0.8182 
 (0.0319) (0.0213) (0.0431) (0.0214) 
     
Corn GT Trait 0.1962 0.1296 0.3410 -0.1380 
 (0.0204) (0.0132) (0.0328) (0.0149) 
     
Corn RW Trait 0.2053 0.1515 0.5177 0.0229 
 (0.0219) (0.0150) (0.0357) (0.0189) 
     
Corn CB Trait 0.1642 0.1124 0.2770 -0.1179 
 (0.0172) (0.0112) (0.0279) (0.0140) 
     
Soy Dummy  -0.2395 -0.6811 -0.0294 
  (0.0200) (0.0447) (0.0206) 
Elasticities:     

Own  -6.990 -4.133 -2.637 -0.254 

Cross: Within Crop 0.481 0.244 0.045 0.004 
Cross: Across Crop 0.053 0.075 0.045 0.004 

Cross: Outside Good 0.019 0.014 0.045 0.004 

IVs? Yes Yes Yes No 

Fixed Effects Crop×Year, 
Crop×Brand, 
Crop×CRD 

Year, CRD, 
Brand 

Year,  
CRD,  
Brand 

Year,  
CRD,  
Brand 

Note: This table presents the estimation results for four different specifications of the seed demand 
model. Standard errors are reported in parentheses.  N=79,260.   
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Table 7. Nested Logit Model: Subadditivity and Time Variation of Trait Effects.  

 
 (1)   (2)  

Price -0.0182 (0.0023)  -0.0182 (0.0023)

1   0.8642 (0.0079)  0.8176 (0.0096)

2   0.4428 (0.0541)  0.3718 (0.0567)

Soy GT Trait 0.3549 (0.0341)    

Corn GT Trait 0.1925 (0.0278)    

Corn RW Trait 0.2062 (0.0306)    

Corn CB Trait 0.1693 (0.0250)    

Multiple Traits -0.0687 (0.0172)    

Soy GT Trait, 1996-2000    0.3075 (0.0383)

Soy GT Trait, 2001-2006    0.4366 (0.0373)

Soy GT Trait, 2007-2011    0.4681 (0.0368)

Corn GT Trait, 1996-2000    0.0251 (0.0387)

Corn GT Trait, 2001-2006    0.0651 (0.0264)

Corn GT Trait, 2007-2011    0.3100 (0.0328)

Corn CB Trait, 1996-2000    0.0952 (0.0340)

Corn CB Trait, 2001-2006    0.1036 (0.0262)

Corn CB Trait, 2007-2011    0.2276 (0.0260)

Corn RW Trait, 2001-2006    0.0169 (0.0402)

Corn RW Trait, 2007-2011    0.2417 (0.0293)

Multiple Traits, 1996-2000    -0.0314 (0.0944)

Multiple Traits, 2001-2006    -0.0187 (0.0220)

Multiple Traits, 2007-2011    -0.1360 (0.0202)

Note: This table presents the estimation results for two different specifications of the seed demand 
model. Both models include the same fixed effects as model (1) in Table 6, as well as IVs. Standard 
errors are reported in parentheses. N=79,260.  
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Table 8.  Willingness-to-Pay for GE Products (2011 $/acre) 

 

Trait(s) 1996-2000 2001-2006 2007-2011 

Soy GT 16.88 
(0.76) 

23.96 
(1.58) 

25.69 
(2.23) 

Corn GT 
1.38 

(2.01) 
3.57 

(1.06) 
17.01 
(0.75) 

Corn CB 5.22 
(1.33) 

5.69 
(0.84) 

12.49 
(0.81) 

Corn RW  
0.93 

(2.11) 
13.26 
(0.66) 

Corn GT-CB 4.88 
(5.1) 

8.23 
(1.13) 

22.04 
(0.82) 

Corn GT-RW  
3.47 

(2.34) 
22.81 
(0.77) 

Corn CB-RW  5.58 
(2.11) 

18.29 
(0.56) 

Corn GT-CB-RW  
9.16 

(2.97) 
35.30 
(0.99) 

Note: This table contains WTP estimates for each of the GE-trait combinations, in each of the three 
sub-periods. These estimates are based on the most general estimated model (Column 2 of Table 7). 
Standard errors are reported in parentheses.   
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Table 9. Total Surplus and its Imputed Distribution from GE Innovation ($ million) 

 

 Period Crop Total Surplus Firm Revenues Imputed Farmers’ 
Net Returns  

1996-2011 

Soybeans 19,424 11,132 8,292 

Corn 11,233 13,206 -1,973 

Total  30,657 24,338 6,319 

1996-2000 

Soybeans 1,906 1,940 -34 

Corn 265 792 -527 

Total  2,171 2,733 -562 

2001-2006 

Soybeans 8,731 5,086 3,645 

Corn 1,122 2,531 -1,409 

Total  9,853 7,617 2,236 

2007-2011 

Soybeans 8,787 4,105 4,682 

Corn 9,846 9,883 -37 

Total  18,633 13,989 4,644 

 
Note: Total surplus figures in column 3 of this table are obtained by multiplying the WTP estimates 
(as reported in Table 8) by the observed planted acres of each GE variety. The estimated seed 
industry revenues attributable to GE traits in column 4 are obtained by multiplying the average price 
premia (as reported in Table 3 for selected years, but deflated by the crop sector input price index 
used in estimation) with observed planted acres of GE crops. Imputed net returns to farmers due to 
GE traits, reported in the last column, are the difference between columns 3 and 4. 
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Table 10.  Hedonic Prices  

 
 Parameter Standard Error 

Soybean Post GE -1.8746 (0.5311) 

Corn Post GE -0.3758 (0.3045) 

Soybean GT Trait, 1996-2000 15.4602 (0.2401) 

Soybean GT Trait, 2001-2006 13.8320 (0.2407) 

Soybean GT Trait, 2007-2011 11.4231 (0.3637) 

Corn GT Trait, 1996-2000 11.4280 (0.4607) 

Corn GT Trait, 2001-2006 10.2175 (0.1904) 

Corn GT Trait, 2007-2011 13.2164 (0.1794) 

Corn Borer Trait, 1996-2000 12.9370 (0.2592) 

Corn Borer Trait, 2001-2006 10.3001 (0.1785) 

Corn Borer Trait, 2007-2011 9.5263 (0.2287) 

Root Worm Trait, 2001-2006 15.0945 (0.2961) 

Root Worm Trait, 2007-2011 11.5234 (0.1978) 

Multiple Traits Stack, 96-00 -7.5542 (1.6407) 

Multiple Traits Stack, 01-06 -5.9043 (0.2988) 

Multiple Traits Stack, 07-11 -4.5185 (0.2994) 

N 79,260  

R2 0.686  

Note: The first row shows the effect of the introduction of the GE varieties on the prices of all 
soybean seed products. The second row shows the corresponding impact on corn seed prices. The 
model was estimated with crop-year, crop-brand, and crop-CRD fixed effects, which are not 
reported here.   
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Table 11. Average number of seed products per CRD, counterfactual scenarios 
 

 

Keep All 
Keep Best and 

Keep Conventional 
Naïve 

 Corn Soybeans Corn Soybeans Corn Soybeans 

1996-2000 8.28 6.45 6.42 4.67 6.21 3.72 

2001-2006 14.14 6.76 6.86 5.42 5.59 1.66 

2007-2011 19.95 6.25 7.64 5.65 3.19 0.78 

 
Note: This table reports the average number of products, for both corn and soybeans, under four 
counterfactual scenarios. See the text for a description of each scenario.  
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Table 12.  Farmers’ Welfare Gains and Seed Industry Revenues from GE Traits (2011 $ million) 

 

  Farmers’ Welfare Seed Industry Revenues 

 Period  Keep 
Best 

Keep 
Conventional

Keep 
Best 

Keep 
Conventional

1996-2011 

Soy GE traits 10,019 12,137 7,406 7,211 

Corn GE traits 3,820 8,704 13,244 15,259 

All GE traits 14,385 22,199 22,550 25,262 

1996-2000 

Soy GE traits 1,062 1,796 1,319 1,355 

Corn GE traits 1 764 668 1,009 

All GE traits 1,063 2,625 2,019 2,493 

2001-2006 

Soy GE traits 4,318 5,321 4,043 3,938 

Corn GE traits 307 2,539 2,581 3,515 

All GE traits 4,674 8,251 6,940 8,177 

2007-2011 

Soy GE traits 4,640 5,020 2,044 1,917 

Corn GE traits 3,512 5,402 9,995 10,734 

All GE traits 8,648 11,323 13,591 14,592 

Note: See the text for a description of “Keep Best” and “Keep Conventional” scenarios. The 
Supplementary Information online (Appendix D) reports a fuller set of results, including the two 
counterfactual choice sets omitted here (“Naïve” and “Keep All”), as well as the estimated 
counterfactual m  terms ($ per acre of total cropland) used in the calculations. 


