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1 Introduction

Over the last 20 years dynamic stochastic general equilibrium (DSGE) models have become

more detailed and complex and numerous features have been added to the original real business

cycle core. Still, even the best practice DSGE model is likely to be misspecified; either because

features, such as heterogeneities in expectations, are missing or because researchers leave out

aspects deemed tangential to the issues of interest. While specifying an incomplete model to

explain the data is acceptable, for example, when qualitatively highlighting a mechanism which

could be present in the data, misspecification becomes an issue when one want to quantify the

importance of certain shocks or estimate the magnitude of crucial policy trade-offs.

In theory, misspecification can be reduced by making structural models more comprehensive

in their description of the economic relationships and of the interactions among agents. In

practice, this is difficult because it is not clear which missing feature is relevant and jointly

including several of them quickly makes the model computationally intractable and difficult to

interpret. Moreover, large scale models are hard to estimate with limited data and parameter

identification problems are likely to be important (see e.g. Canova and Sala, 2009). The standard

short cut is to use a structural model with ad-hoc reduced form features. However, in hybrid

models of this type it is often hard to distinguish the relative importance of structural vs. ad-hoc

features in matching the data, making policy conclusions and counterfactuals whimsical.

Structural vector autoregressive (VAR) models or limited information moment-based estima-

tion approaches can deal with model incompleteness or partially specified dynamic relationships,

when, e.g., characterizing the dynamics in response to shocks (see e.g. Kim, 2002; or Cogley

and Sbordone, 2010). Full information likelihood-based methods, however, have a hard time

dealing with misspecification other than that of the distribution of the error term, and are justi-

fied asymptotically only under the assumption that the estimated model correctly characterizes

the data generating process (DGP) up to a set of serially and cross sectionally uncorrelated

disturbances. Perhaps because of this problem, the recent econometric literature dealing with

misspecification (see e.g. Cheng and Liao, 2015; Thryphonides, 2016) does not employ the like-

lihood in the estimation process and robustness approaches modify posterior inference to reduce

the chance of incorrect decisions (see Hansen and Sargent, 2008; Giacomini and Kitigawa, 2017).

The tension between theoretical developments and empirical practice becomes clear when one

notices that the vast majority of the applied literature employs full information likelihood-based

(classical or Bayesian) procedures to estimate structural parameters and policy decisions are

often formulated on the basis of potentially misspecified models.
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This paper proposes a new approach to deal with the inherent misspecification of DSGE

models. Rather than enriching a model with structural or ad-hoc features, we jointly consider

a finite set of potentially misspecified models, geometrically combine their likelihood functions,

and estimate the parameters using the resulting composite likelihood. With such an objective

function, parameters common across models are estimated using the cross equation restrictions

present in all specifications. Thus, the composite likelihood guards against misspecification by

requiring estimates of the common parameters to be consistent with the structures of all models.

Although the composite likelihood approach is well established in the statistical literature

(see e.g. Varin, et al. 2011), economic applications are limited to Engle et al. (2008), Qu (2016),

Canova and Matthes (2017) and Chan et al. (2018). In all the literature we are aware of the

DGP is known; the composite likelihood combines marginals or conditionals of the DGP; and

the composite weights are fixed; however, in our setup the DGP is unknown, the models entering

the composite likelihood are misspecified, and the weights are random variables.

The Bayesian setup we work with is related to the quasi-Bayesian estimation literature (see

e.g. Kim, 2002, Marin et al. 2012, Bissiri et al., 2016, Scalone, 2018), to Bayesian shrinkage

(see e.g. Del Negro and Schorfheide, 2004; Batthacharya et al. 2012) and to smoothness priors

(see e.g. Barnichon and Brownlees, 2016). As in quasi-Bayesian approaches, we substitute the

likelihood function with an alternative loss function and, as in the shrinkage and smoothness prior

literature, we employ additional information to regularize parameter estimates. The posterior

weight of a model plays an important role in the inferential process, as in the Bayesian model

averaging (BMA) literature (see Claeskens and Hjort, 2008). We differ in three aspects: BMA

can be employed only when models to share the same observables; our approach works even when

models feature different observables. In BMA, each model is estimated separately and posterior

weights are used to combine their predictions. Here estimates of the common parameters are

jointly obtained and posterior weights can be used to combine models’ predictions, if that is of

interest. Finally, our setup quantifies the uncertainty in the weight estimates. To the best of

our knowledge, this can not be done in BMA.

Our approach shares similarities with the methods of Del Negro and Schorfheide (2004) and

Waggoner and Zha (2012), but three important differences need to be emphasized. We consider

combinations of structural models; they combine a structural and a VAR model. Waggoner and

Zha assume that the DGP is the mixture of the models; we leave open the possibility that the

composite model is still misspecified. Finally, while our models may feature different observables,

the models Del Negro and Schorfheide and Waggoner and Zha consider must share the same

observable variables.
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We describe a Monte Carlo Markov Chain (MCMC) approach to draw sequences from the

quasi-posterior distribution of the parameters and show how to adjust the percentiles to insure

the right asymptotic coverage. We show with examples why composite estimators may be

preferable to likelihood-based estimators and discuss how the posterior weights inform us about

the relative misspecification of the models entering the composite pool. Finally, we demonstrate

how to combine models and the composite posteriors for inference. While some researcher

may want to use posterior weights to select a model, we prefer to robustify inference using the

composite predictions of all available models.

We apply the methodology to the estimation of the marginal propensity to consume (MPC)

out of transitory income and to evaluate the role of technology shocks for output fluctuations.

The MPC is generally low when models are separately estimated because transitory income has

insufficient persistence, except when one allows for precautionary savings. When a composite

estimate of the persistence parameter is used the MPC generally increases and differences across

models are significantly reduced. We show that problematic features of the basic specification

such as quadratic preferences, separability, exogenous real rate, lack of production, consumer

heterogeneities are irrelevant to characterize the MPC, and that composite and BMA estimates

of the MPC are similar.

Consistent with the existing literature, we find that technology shocks account for about one-

third of output fluctuations 20-30 quarters ahead in a standard medium scale New Keynesian

model. We then pair such a model with a smaller scale New Keynesian model without capital,

jointly estimate the slope of the Phillips curve and the persistence of technology shocks, and

find that the share of output fluctuations explained by technology shocks substantially increases

at all horizons. This change occurs because the smaller scale model receives high a posteriori

weight and forces estimation to move to a region of the parameter space where nominal rigidities

are smaller, real rigidities are larger, and demand shocks are less autocorrelated, and these make

technology shocks more important for output fluctuations.

The paper is organized as follows. The next section presents the problems one faces when

a misspecified model is used for economic analyses and describes approaches to make the es-

timation results more credible. Section 3 presents our method. Section 4 describes a MCMC

procedure to draw sequences for the parameters and for the weights from their quasi-posterior

distribution and explain how to construct impulse responses, counterfactuals, and predictions

using the pool of models. Section 5 applies the composite approach to two problems. Section 6

concludes. A number of appendices contain relevant technical material.
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2 Estimating misspecified structural models

Suppose a researcher is interested in measuring the MPC out of transitory income. Interest

may arise because the fiscal authority is planning to boost aggregate demand via a temporary

tax cut or because a researcher wants to design optimal policies to enhance aggregate savings

and investments. Typically, one starts with an off-the-shelf permanent-income, life-cycle model,

solves it, and derives implications for the MPC. For example, in a representative agent model

with quadratic preferences, constant interest rate, when β(1 + r) = 1, and the exogenous labor

income has permanent and transitory components, the decision rules are:

ct =
r

r + 1
at + (yPt +

r

1− ρ+ r
yTt ) (1)

at+1 = (1 + r)(at + (yTt + yPt )− ct) (2)

yTt = ρyTt−1 + e1t (3)

yPt = yPt−1 + e2t (4)

where yTt is real transitory income, yPt is real permanent income, ct is real non-durable con-

sumption, at are real asset holdings, all in per-capita terms, eit ∼ iidN(0, σ2
i ), i = 1, 2, r is the

constant real rate of interest, and ρ the persistence of the transitory income process.

(1)-(4) provide three important restrictions on the data. First, r and ρ are the only deep

parameters mattering for the MPC; preference parameters are not identifiable from the con-

sumption decision rule. Second, the relationship between consumption and income is static.

Third, the MPC out of transitory income, MPCyT = r
1−ρ+r , is intermediate between the MPC

out of asset holdings, MPCa = r
r+1 , and the MPC out of permanent income, MPCY P = 1.

Given these predictions, one could estimate MPCyT in a number of ways. If some unexpected

temporary tax cut occurred in the past and individual consumer data is available, one can use

this natural experiment to see how much of the transitory income the tax rebate has generated

is spent. For example, in the US, Johnson et al. (2006) find that after the 2001 tax rebate,

agents spent about 20-40 percent of the additional income in first quarter and about 60 percent

of the cumulative income over two quarters. Parker et al. (2013) report that after the 2008

tax rebate, agents spent about 20 percent of the additional income on non-durable consumption

goods and 30-40 percent on durable consumption goods.

Natural experiments are effective tools to understand how agents behave. However, they

are not often available and, even if they were, individual consumer data is hard to get. One

approach to estimate MPCTy that uses theory as a guideline for the investigation but does not
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condition on the restrictions it provides in estimation, is to identify a permanent and a transitory

shock in a VAR with (yt, at, ct) and then measure the effects on consumption of a transitory

income shock, scaling the measurement by the income responses. Estimates obtained this way

vary between 0.4 and 0.6, depending on the model specification and the sample.

To derive estimates of MPCTy , one could also partially condition on the restrictions of

the model. For example, one could use moment conditions to estimate r and ρ. Since in

industrialized countries the average real rate is about 1% per quarter and the persistence of

the growth rate of aggregate income is around 0.5-0.7, MPC estimates obtained this way are

in the range (0.05-0.10). Clearly, refinements are possible. One could group data according to

consumer i characteristics and report a (weighted) average of the resulting MPCyTi
. Estimates

constructed this way are also low and in the range (0.10-0.15), see e.g. Carroll et al. (2017).

A final approach would be to take the implications of the model seriously, write down the

likelihood function for (ct, at, yt) imposing the cross equation restrictions the decision rules imply

(in particular, the facts that r and ρ appear in different equations) to estimate MPCyT . The

evidence we present in section 5.1 suggests that likelihood-based estimates of MPCyT are in the

range of 0.10-0.15 for the first quarter and 0.2-0.25 for the first year.

In sum, MPCyT estimates obtained conditioning on the model’s implications tend to be lower

than estimates obtained otherwise. One reason for the difference is that the model employed in

formal estimation is likely to be misspecified: the real interest rate is not constant; labor income

is not exogenous; preferences may feature non-separable consumption-labor supply decisions.

Moreover, the model leaves out aspects that could matter for understanding consumption de-

cisions: income uncertainty does not play any role; home production and goods durability are

disregarded; some agents may have zero assets; and others may be rich but liquidity constrained.

Finally, measurement errors in the real value of assets are probably important.

While moment-based and VAR-based estimates are robust to some form of misspecification

(e.g. lack of dynamics in the decision rules) and to the omission of certain features from the

model, likelihood-based estimates are not. Thus, if misspecification is suspected, estimates

obtained relaxing the restrictions the model imposes may be preferable. However, if a researcher

insists on using likelihood methods, how does she guard herself against misspecification?

An obvious way is to estimate a more general model which includes potentially missing

features, allows for general equilibrium effects on income and real interest rates, uses flexible

functional forms for preferences and technologies, and allows for relevant heterogeneities. While

feasible, it is computationally demanding to estimate large scale models, and identification

issues are likely to lead to interpretation problems. Alternatively, one could enrich the model
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with ad-hoc features. For example, it is nowadays popular to use models with external habit in

consumption, even if the micro foundation of such a mechanism are still debatable (one exception

is Ravn et al., 2006). With habit, the decision rules of our workhorse model are:

ct =
h

1 + h
ct−1 + (1− h

1 + h
)wt (5)

wt =
r

1 + r
((1 + r)at−1 +

∞∑
t=τ

(1 + r)t−τEt(y
P
τ + yTτ ) (6)

yTt = ρyTt−1 + e1t (7)

yPt = yPt−1 + e2t (8)

where h is the habit persistence parameter. Thus, habit helps to account for serial correlation

in consumption and for the predictability of current consumption, given permanent wealth wt;

and makes the serial correlation properties of consumption disconnected from those of income.

Nevertheless, ad-hoc features make the model less structurally interpretable and some ad-hoc

additions may not lead to better models.

Adding non-structural features may not be appealing to certain researchers. For this reason,

a portion of the literature has instead preferred to alter the statistical properties of shocks,

making the stochastic processes more flexible (see e.g. Del Negro and Schorfheide, 2009; Smets

and Wouters, 2007) or allowing cross-shock correlation (Curdia and Reis, 2010).

A final approach has been to complete the probability space of the model by adding mea-

surement errors to the decision rules (Ireland, 2004), wedges to optimality conditions (Chari et

al, 2007), margins to preferences and technologies (Inoue et al, 2017), or non-structural shocks

to the decision rules (Den Haan and Drechsel, 2018). Rather than tinkering with the inputs

or the specification of the model, all these approaches take the structure as given and add

non-structural features for estimation purposes only. Typically, the relevance of the adds-on is

measured by the marginal likelihood. Kocherlakota (2007) has examples where using fit to select

a model among potentially misspecified candidates may lead researchers astray.

While all these approaches take a step in acknowledging model misspecification, they have

at least three drawbacks. First, they condition on one model but there are many potential

models a researcher could entertain - specifications could be indexed, e.g., by the economic

frictions they impose. Second, they neglect the fact that different models may be more or less

misspecified in different periods (see e.g. Del Negro et al., 2016). Third, the interpretation of the

model’s internal dynamics becomes difficult if the adds-on are serially correlated and statistically

important and no respecification of the structure is attempted.
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3 A composite likelihood approach to misspecification

The approach we suggest is simple. Rather than taking an off-the-shelf model and enriching it

with non-structural features or shocks, or completing its probability space with measurement

errors, wedges or margins, we start from the assumption that a number of possibly misspecified

structural models are available to investigate the question of interest. Models may differ in

the assumptions they make, in the frictions they feature, or in the transmission mechanisms

they emphasize, but they are theoretically relevant and have bearing to the phenomenon under

investigation. We also assume they are sufficiently heterogeneous so that the information they

provide does not entirely overlap. We construct the likelihood function of each model and

geometrically combine them. The resulting composite likelihood is either maximized or used as

an input for quasi-posterior analysis.

When the composite likelihood is used, common parameters are estimated using the cross-

equation restrictions present in all the models. Model specific parameters are instead estimated

using the cross-equation restrictions of that model, conditional on the estimate of the common

parameters. Cross model restrictions robustify estimation in the presence of misspecification

because they shrink single model estimates in a natural way. In addition, as long as the models

are sufficiently different, the composite likelihood de-emphasizes idiosyncratic elements which

are at odds with the data, making the composite model less misspecified than its components.

Let the DGP for yt be represented by a density F (yt, ψ), where ψ is a parameter vector. The

available models are indexed by i = 1, . . . ,K. Assume that each produces a density fi(yit|θ, ηi)
for the observables yit of length Ti. yit need not be the same for each i: there may be common

and model specific variables. The sample size Ti could also be different and the frequency of the

observations may vary with i. Each model features a vector of parameters φi = [θ, ηi]
′, where θ

are common across specifications and ηi are model specific. We assume that there is no φi such

that f(yit|φi) = F (yt, ψ), ∀i. Investigators are typically free to choose what goes in θ and ηi:

even though a parameter may appear in all K models, a researcher may decide to treat it as

model specific because, for example, models are too incompatible with each other. Trivially, if

θ = ∅, and our approach produces likelihood-based estimates of φi = ηi, model by model. Given

a vector of weights, 0 < ωi < 1,
∑

i ωi = 1, the composite likelihood is

CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) = ΠK
i=1 f(yit|θ, ηi)ωi ≡ ΠK

i=1L(θ, ηi|yit)ωi (9)

In a traditional composite likelihood approach, ωi are fixed quantities, chosen by the investigator.

Here we work with random weights and the quasi-posterior of ωi gives us a measure of the relative
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misspecification of model i, given (y1t, . . . , yKt).

Before we discuss the details of the procedure, we present an example to show what kind

of estimators the approach produces and to provide intuition for why estimation and inferential

gains may emerge when misspecification is present.

3.1 Why are composite estimators preferable?

Suppose we have two misspecified structural models (A, B), with parameters φA = (θ, ηA), φB =

(θ, ηB) and implications for (yAt, yBt), where yAt may be different from yBt and TA from TB.

Assume that f(yit|θ, ηi), i = A,B are produced by the decision rules:

yit = ρiyit−1 + σiet (10)

where et and ut are iid(0,I). For the sake of illustration, let ρB = δρA, σB = γσA, δ 6= 0, γ 6= 0 and

assume that yAt and yBt are scalars. Thus θ = (ρA, σ
2
A), ηB = (δ, γ2) are (nuisance) parameters

specific to model B, and ηA = ∅. The (normal) log-likelihood functions are:

logLi ∝ −Ti log σi −
1

2σ2
i

Ti∑
t=1

(yit − ρiyit−1)2 (11)

and for a given 0 < ω < 1, the log composite likelihood is

logCL = ω logLA + (1− ω) logLB (12)

Maximization of (12) with respect to θ leads to:

ρA,CL = (

TA∑
t=1

y2
At−1 + ζ2

TB∑
t=1

y2
Bt−1)−1(

TA∑
t=1

yAtyAt−1 + ζ1

TB∑
t=1

yBtyBt−1) (13)

σ2
A,CL =

1

ξ
(

TA∑
t=1

(yAt − ρAyAt−1)2 +
1− ω
ωγ2

TB∑
t=1

(yBt − δρAyBt−1)2) (14)

where ζ1 = 1−ω
ω

δ
γ2
, ζ2 = 1−ω

ω
δ2

γ2
= ζ1δ, ξ = (TA + TB

1−ω
ω log(γ))−1 is the effective sample size.

Maximization of (12) with respect to ηB yields
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δCL = (

TB∑
t=1

ρ2
A,CLy

2
Bt−1)−1(

TA∑
t=1

ρA,CLyBtyBt−1) (15)

γ2
CL =

1

TBσ2
A,CL

TB∑
t=1

(yBt − ρA,CLyBt−1)2 (16)

As (13)-(14) show, θCL combines information present in yAt and yBt. The formulas are similar

to those i) obtained in least square problems with uncertain linear restrictions (Canova, 2007,

Ch.10); ii) derived using a prior-likelihood approach, see e.g. Lee and Griffith (1979); and iii)

implicitly produced by a DSGE-VAR setup (see Del Negro and Schorfheide, 2004), where TB

observations are added to the original TA data points. As (15)-(16) indicate, model B parameters

(δ, γ2) are estimated using only model B information, conditional on (ρA,CL, σA,CL). In general,

they will differ from likelihood estimates obtained with yBt only, because θCL 6= θB,ML.

Thus, when the decision rules feature an autoregressive structure, the composite likelihood

shrinks the information in yAt by the information in yBt and the amount of shrinkage depends on

(γ, δ, ω). The higher ω and γ are, the less important yBt information is. Similarly, the smaller is

δ, the lower will be the shrinkage toward model B information. Thus, when estimating common

parameters, the composite likelihood gives larger importance to data generated by a model

with higher persistence and lower standard deviation because higher serial correlation implies

important low frequency information; and lower standard deviation lower noise.

When an array of models is available, composite likelihood estimates of θ will be constrained

by the structure present in all models. For example, equation (13) now becomes

ρA = (

TA∑
t=1

y2
At−1 +

K−1∑
i=1

ζi2

Ti∑
t=1

y2
it−1)−1(

TA∑
t=1

yAtyAt−1 +
K−1∑
i=1

ζi1

Ti∑
t=1

yityit−1) (17)

where ζi1 = ωi
ωA

δi
γ2i
, ζi2 = ζi1δi. Thus, the composite likelihood robustifies estimation, because θ

estimates are required to be consistent with the cross-equation restrictions of all models.

Two further aspects are worth some discussion. Since yAt and yBt could be different series, the

procedure can be used to estimate parameters appearing in models featuring different observables

(see section 5.2, for an example). yAt and yBt may also be the same series but with different

levels of aggregation (say, aggregate vs. individual consumption). Furthermore, since TA and TB

may be different, the procedure can be used to combine data of various length or the information

available at different frequencies (e.g., a quarterly and an annual model). TA and TB may also
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represent two samples for the same vector of observables (e.g., before and after a financial crisis).

Baumeister and Hamilton (2015) propose to downweight older information when conducting

posterior inference. Their procedure mimics a composite estimator where data for the earlier

part of the sample, say yAt, is weighted less than data in the later part of the sample, say yBt.

Because of the shrinkage nature of composite estimators, we expect them to do well in mean

square error (MSE) relative to maximum likelihood estimators. We highlight this feature for

the composite estimator of ρA. Algebraic manipulations give ρA,CL = χρA,ML + 1−χ
δ ρB,ML

where ρi,ML =
∑Ti
t=1 yityit−1∑Ti
t=1 y

2
it−1

; i = A,B χ =
∑TA
t=1 y

2
At−1∑TA

t=1 y
2
At−1+

ωBδ
2

ωAγ
2

∑TB
t=1 y

2
Bt−1

= 1

1+
ωBδ

2var(ρA,ML)

ωAvar(ρB,ML)

and

var(ρA,ML) = σ2
A(
∑

t y
2
At−1)−1; var(ρB,ML) = γ2σ2

A(
∑

t y
2
Bt−1)−1. Using (10)-(??) we have:

ρA,CL = ρA + χBA +
1− χ
δ

BB (18)

where Bi =
∑Ti
t=1 eityit−1∑Ti
t=1 y

2
it−1

is the bias in the ML estimator using yit. To insure, e.g., MSECL <

MSEA,ML we need (1 − χ2)EB2
A −

(1−χ)2

δ2
EB2

B −
χ(1−χ)

δ EBABB > 0. Suppose the biases in

ρA,ML, ρB,ML are independent. Then, the composite estimator is preferable if

δ2 >
EB2

B

EB2
A

− 2
ωA
ωB

var(ρB,ML)

var(ρA,ML)
(19)

(19) links the persistence of yBt to the relative weights, the relative biases, and the relative

variances of the maximum likelihood estimators of two models. The higher is the bias of the

maximum likelihood estimator obtained with yBt, the higher should δ be for the CL estimator to

be MSE superior. Similarly, the higher is the variability of the ML estimator constructed with

yAt, for a given ratio of ω weights, the lower needs to be δ for the CL estimator to dominate.

When ωB = ωA and the ML estimators have similar biases, δ2 > 1− 2
var(ρB,ML)
var(ρA,ML) is sufficient for

the CL estimator to be MSE superior, a condition easy to check in practice.

Another interesting case is when the biases of models A an B are negatively correlated, as in

the experimental design of section 3.3. Here MSE improvements can be obtained under milder

restrictions. For example, when ytB is a noisy measure of ytA, i.e. δ = 1, a CL estimator

improves the MSE as long as the bias in the ML estimator computed with ytB is not too large:

EB2
B <

1− χ
1 + χ

EB2
A −

χ

1 + χ
EBABB (20)

In general, whenever the models we combine have biases which are negatively correlated we

expect MSE improvements, even when the persistence properties of yAt and yBt are similar.
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A common device to measure the degree of misspecification of a model is the Kullback-

Leibler (KL) divergence. If yt has been generated by a density F (yt, ψ) and the researcher uses

the density fi(yt, φi), i = 1, . . . ,K for the analysis, the KL divergence is

KLi(y, ψ, φi) =

N∑
j=1

F (yj , ψ) ∗ log(
fi(yj , φi)

F (yj , ψ)
) (21)

which it is interpreted as the bits of information lost in characterizing y using fi rather than F .

The KL divergence can be used to rank misspecified models. In fact, if fA and fB are available

and KLA(y, φ1, ψ) > KLB(y, φ2, ψ), then fB is less misspecified than fA. Because the composite

model averages different misspecified structural models, we expect it to reduce the misspecifica-

tion of the original models. To check if this is the case in our Bayesian setup, one could compute

K̃Li =
∫
KLi(y, φi, ψ)p(φi|y)dφi whereKLi(y, φi, ψ) is theKL divergence of model i and p(φi|y)

is the posterior of φi computed in model i and compare it with K̃Lg =
∫
KLg(y, χ, ψ)p(χ|y)dχ,

where g(y, χ, ψ) =
∑

i fi(y, φi)
ωi is the density of the composite model, and p(χ|y) the composite

posterior of χ = (φ1, . . . , φK , ω1, . . . , ωK). Section 3.3 provides evidence on the performance of

composite estimators and composite models for some interesting DGPs.

When ωi is a random variable, its posterior mode inform us about the relative misspecification

of the models entering the composite likelihood. Let yAt = yBt, let p(ω) ∝ ωαA−1(1 − ω)αB−1,

where αA, αB are known, and let the prior for (ρA, σ
2
A, δ, γ

2) be diffuse. The composite posterior

kernel of ω, conditional on (ρA, σ
2
A, δ, γ

2) is CP (ω|ρA, σ2
A, δ, γ

2) = (LωAL
1−ω
B )ωαA−1(1− ω)αB−1.

Taking logs and maximizing we have

logLA − logLB +
(αA − 1)

ω
− (αB − 1)

1− ω
= 0 (22)

This is a quadratic equation in ω and the relevant solution is 0 < ω1 < 1. Total differentiating

(22) one finds that ω1 is increasing in logLA − logLB. Completing the square terms of the

likelihoods, and conditioning on the mode estimators of (ρA, σ
2
A, δ, γ

2), one obtains

logLA − logLB ∝ −
1

2σ2
A

TA∑
t=1

(yAt|t−1 − ρAyAt−1)2 +
1

2γ2σ2
A

TB∑
t=1

(yBt|t−1 − ρAδyBt−1)2| (23)

where yit|t−1 is the predictor of yit based on the correct model. Thus, logLA − logLB reflects

relative misspecification and the mode of ω is higher when model A is less misspecified 1.

1When yAt and yBt are vectors the equations should be adjusted accordingly. When yAt is a m × 1 vector
and yBt is, e.g., a scalar or when yAt is different from yBt, logLA − logLB reflects, apart from differences in the
variances, the average misspecification in all the equations of model A relative to the misspecification of the single

12



A popular method to rank models (and combine their predictions) is Bayesian model aver-

aging (BMA). Asymptotically BMA puts all the weight on the model which is closest to the

DGP in a KL sense. Because the posterior mode of ω measures the relative misspecification

of the available models, and because, as minTi → ∞, i = 1, . . .K, it will converge to one for

the model which is closest to the DGP in a KL sense, one expects the two measures to provide

similar ranking information. However, a BMA weight can only be computed when yAt = yBt

and TA = TB; the posterior of ω can be computed even without these restrictions. Also, our

analysis provides a measure of uncertainty for ω. No such measure is generally available for

BMA weights. Finally, only BMA gives ex-post combination of individual model estimates.

Some experimental evidence on the performance of the two ranking devices is in section 3.3.

3.2 Discussion

It is useful to highlight how our setup relates to the mixture procedure of Waggoner and Zha

(2012), to robustness approaches (Hansen and Sargent, 2008, Giacomini and Kitagawa, 2017)

and to GMM. In Waggoner and Zha, the estimated model linearly (rather than geometrically)

combines the likelihoods of a structural model and a VAR (rather than two structural models),

but the weights have a Markov switching structure. Their objective function is:

logL =

min{TA,TB}∑
t=1

log(wtL(ρA, σA|yAt) + (1− wt)L(ρA,ΣA, δ, γ|yBt)) (24)

Simple manipulations reveal that (24) and the log of (9) differ by Jensen’s inequality terms 2.

While a-priori both composite and finite mixture devices are appealing to guard against

misspecification, a composite likelihood has three advantages. From a computational point of

view, when the decision rules have an autoregressive structure, estimators for θ have a closed

form expression in the composite likelihood case, but not in the finite mixture case. In addition,

equation of model B. Thus, if model A has some very poorly specified equations, it may have low a-posteriori ω,
even though certain equations are correctly specified (and θ appears in those equations).

2If T1 = T2 = 2 the composite log-likelihood is

logL = ωt(logLA1 + logLA2) + (1− ωt)(logLB1 + logLB2)

while the log-likelihood in the mixture model is

logL = log(ωtLA1 + (1− ωt)LB1) + log(ωtLA2 + (1− ωt)LB2)

Suppose ωT = ω = 1 − ω. Then, (9) and (24) differ because log
∑T
t=1 xt ≡ log x1 + log(1 +

∑T
t=2

xt
x1

), one has

log
∑2
t=1 xt = log x1 + log(1 + x2

x1
) and this differs from

∑2
t=1 log xt = log x1 + log x2, since log(1 + x2

x1
) ≈ x2

x1
if x2
x1

is small. When ω is time varying additional differences will be recorded.

13



in a finite mixture it must be the case that yAt = yBt and TA = TB, since the models represent

alternatives that could have generated the same data. These restrictions are unnecessary in the

composite likelihood formulation. Finally, in Waggoner and Zha the composite model is the

DGP; here the composite model could still be misspecified.

Hansen and Sargent (2008) robustify decisions and counterfactuals using a density for the

parameters which is a tilted version of the posterior distribution. Let p(φi) ≡ p(φi|yt) be

the posterior of φi, computed using the information in yt. Hansen and Sargent’s density is

π(φi) = exp{λL(φi)}p(φi)∫
exp{λL(φi)}p(φi)dφi

, where L(φi) is a loss function and λ is the ray of a ball around p(φi)

in which we seek robustness. Two differences between Hansen and Sargent’s and our approach

are immediately evident. In the latter, robustness is sought for all parameters within a model;

we seek robust estimators of a subset of the parameters across models. Moreover, Hansen and

Sargent’s approach protects a researcher from the worst possible outcome but it is not suited to

deal with instabilities or time variations in the DGP, if the ball is small. In our approach the

weights are endogenously adaptable to the features of the sample.

Giacomini and Kitagawa (2017) propose a method to conduct posterior inference on the

impulse responses of partially identified SVAR that is robust to prior choices for the rotation

matrices. They summarize the class of posteriors generated by alternative priors by reporting a

posterior mean bounds interval, interpreted as an estimator of the identified set, and a robustified

credible region, measuring the uncertainty about the identified set. Once again two difference

with our approach are evident. First, they seek robustness with respect to prior rotations; we

are looking for estimators which are robust across structural models. Second, they care about

impulse responses in SVARs; we care about (common) parameters in structural models.

It is also useful to relate composite and GMM estimators. A composite likelihood estimator

solves moment conditions of the form
∑

i ωi
∂L(φi|y)
∂φi

= 0. Thus, composite likelihood estima-

tors are over-identified GMM estimators, where the unconditional orthogonality conditions are

a weighted average of the scores of each structural model. The larger is the set of models

considered, the more over-identified are the resulting estimators 3.

3.3 Some experimental evidence

To understand what kind of gains one should expect from composite estimators and the sit-

uations when these are more likely to materialize, we perform an experiment where the DGP

is a univariate ARMA(1,1): log yt = ρ log yt−1 + θ log et−1 + log et, log et ∼ (0, σ2), and the

3One could use this fact to provide an alternative definition of misspecification: a model is misspecified if the
set of measures {Q ∈ L1|

∫ ∂L(φi|y)
∂φi

dQ| 6= 0} does not contain F (y, ψ) when Q is evaluated at ψ.
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models used in estimation are an AR(1): log yt = ρ1 log yt−1 + log ut and an MA(1): log yt =

log εt + β1 log εt−1. We present results for four different combinations of ρ, θ: two generating

proper ARMA processes (DGP1:β = 0.6, θ = 0.5 and DPG2: β = 0.6, θ = 0.8, which produces

larger first order autocorrelation in log yt); one close to an AR(1) (DGP3: β = 0.9, θ = 0.2);

and one close to an MA(1) (DGP4:, β = 0.3, θ=0.8). For DGP1 we present results varying

σ = 0.2, 0.5, 0.8, 1.0, 1.5 and for DGP3 and DGP4 results varying T = 50, 100, 250. Since DGP3

and DGP4 are close to one of the estimated models, one should expect the sample size to be

more important for the conclusions one draws about composite estimators in these cases.

We focus attention on the relationship between the true and the estimated σ, which is

common across models. Because both models disregard part of the serial correlation of the

DGP, σu, σε will be upward biased. Would geometrically combining the two likelihoods give a

better estimate of σ? Would a composite model be less misspecified than both the AR(1) and

the MA(1)? Do the conclusions depend on the DGP or the sample size? How does the posterior

mode of ω relates to a BMA weight?

We set ω2 = 1 − ω1 and treat ω = ω1 either as fixed or as random. When it is fixed, we

construct composite estimates equally weighting the two models (ω = 0.50) or using weights

that reflect the relative mean square error (MSE) in a training sample with 100 observations. In

the baseline specifications T=50. Since there are only two parameters in the AR(1) and MA(1),

and three in the composite models, this is actually a medium sized sample.

We estimate the three composite specifications, the AR(1), and the MA(1) models with

Bayesian methods. The prior for the AR (MA) parameter is truncated normal with mean zero

and variance 0.2 and the prior for σ is flat in the positive orthant. The prior for ω is Beta(1,1).

We draw sequences with 50000 elements and keep 1 out of every 5 of the last 25000 draws for

inference. The scale parameter of the Metropolis random walk is optimized using an adaptive

scheme and the Hessian at the mode is used for the proposal density.

To measure the performance of composite specifications table 1 presents the mean square

error of σ, computed using posterior (composite posterior) draws (MSEj) and the KL divergence

(KLj), computed averaging over posterior (composite posterior) draws of the parameters, j-

1,. . . ,5. Table 2 has the posterior mode of ω (our estimated weight on the AR(1)), the posterior

standard deviation of ω, and the BMA weight on the AR(1). Given that the two models share

the same observable, the comparison between BMA and posterior mode of ω is valid.

Composite specifications produce better estimates of σ and at least one of the composite

model has lower MSE than both the AR(1) and the MA(1). The magnitude of the gains

depends on the DGP and the persistence of the data, but not on the true σ or the sample size
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Table 1: Monte Carlo results
log yt = ρ log yt−1 + β log et−1 + log et, log et ∼ N(0, σ2)

DGP Sample Statistic CL, random CL, equal CL, MSE AR(1) MA(1)
Size weigths weights weights

σ2 = 0.2, ρ = 0.6, β = 0.5 T=50 MSE 0.173 0.202 0.166 0.176 0.253
KL 15.04 4.07 9.67 10.58 6.96

σ2 = 0.5, ρ = 0.6, β = 0.5 T=50 MSE 0.061 0.075 0.058 0.066 0.106
KL 13.91 7.89 13.22 13.77 8.06

σ2 = 0.8, ρ = 0.6, β = 0.5 T=50 MSE 0.021 0.027 0.019 0.026 0.050
KL 12.55 5.87 11.45 12.16 5.96

σ2 = 1.0, ρ = 0.6, β = 0.5 T=50 MSE 0.008 0.011 0.007 0.012 0.029
KL 11.83 5.32 10.62 11.68 7.76

σ2 = 1.2, ρ = 0.6, β = 0.5 T=50 MSE 0.006 0.007 0.005 0.007 0.017
KL 9.34 4.48 8.02 9.07 7.92

σ2 = 0.5, ρ = 0.6, β = 0.8 T=50 MSE 0.149 0.168 0.204 0.204 0.292
KL 10.88 5.02 10.41 10.78 5.03

σ2 = 1.0, ρ = 0.6, β = 0.8 T=50 MSE 0.009 0.011 0.036 0.035 0.060
KL 8.90 5.35 9.54 10.40 9.07

σ2 = 0.5, ρ = 0.9, β = 0.2 T=50 MSE 0.028 0.169 0.020 0.021 0.429
KL 11.25 16.93 13.21 12.40 11.82

σ2 = 1.0, ρ = 0.9, β = 0.2 T=50 MSE 0.008 0.077 0.005 0.008 0.368
KL 9.90 19.26 11.32 10.93 12.93

σ2 = 1.0, ρ = 0.9, β = 0.2 T=100 MSE 0.006 0.152 0.005 0.007 0.173
KL 17.07 29.60 22.83 20.91 36.75

σ2 = 1.0, ρ = 0.9, β = 0.2 T= 250 MSE 0.002 0.136 0.002 0.002 0.414
KL 5.93 16.66 9.48 9.07 12.33

σ2 = 0.5, ρ = 0.3, β = 0.8 T=50 MSE 0.131 0.166 0.166 0.189 0.179
KL 4.70 6.61 10.65 10.91 3.74

σ2 = 1.0, ρ = 0.3, β = 0.8 T=50 MSE 0.006 0.009 0.017 0.027 0.009
KL 4.88 5.32 6.11 9.62 5.74

σ2 = 1.0, ρ = 0.3, β = 0.8 T=100 MSE 0.007 0.011 0.023 0.033 0.011
KL 4.45 4.74 7.02 7.73 5.06

σ2 = 1.0, ρ = 0.3, β = 0.8 T= 250 MSE 0.003 0.012 0.024 0.032 0.004
KL 6.20 8.11 9.25 10.89 6.66

The MSE weights for the AR(1) and the MA(1) are computed in a pre-sample with T=100. MSE is the mean

square error of the estimated σ; KL measures the divergence with respect to the DGP on average using

the posterior (composite posterior) distribution of the parameters.
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T . Furthermore, there is a composite model which reduces the misspecification of both the

AR(1) and the MA(1) models - the equally weighted specification for DGP1 and DGP2 and

the random ω specification for DGP3 and DGP4 - and for many of the cases examined more

than one composite model has smaller KL divergence. The superiority of composite models

is unaffected by T. The random ω specification performs well in the KL metric for several

parameter configurations and seems preferable for highly persistent data or when the DGP is

”close” to one of the two basic models.

Table 2: Posterior of ω and BMA weight

log yt = ρ log yt−1 + β log et−1 + log et, log et ∼ N(0, σ2)

DGP Sample sizeω estimate (s.d) BMA weight

σ2 = 0.2, ρ = 0.6, β = 0.5 T=50 0.967 (0.03) 1.00
σ2 = 0.5, ρ = 0.6, β = 0.5 T=50 0.967 (0.03) 1.00
σ2 = 0.8, ρ = 0.6, β = 0.5 T=50 0.967 (0.03) 1.00
σ2 = 1.0, ρ = 0.6, β = 0.5 T=50 0.967 (0.03) 1.00
σ2 = 1.2, ρ = 0.6, β = 0.5 T=50 0.967 (0.03) 1.00

σ2 = 0.5, ρ = 0.6, β = 0.8 T=50 0.967 (0.03) 1.00
σ2 = 1.0, ρ = 0.6, β = 0.8 T=50 0.970 (0.03) 1.00

σ2 = 0.5, ρ = 0.9, β = 0.2 T=50 0.995 (0.004) 1.00
σ2 = 1.0, ρ = 0.9, β = 0.2 T=50 0.993 (0.004) 1.00

σ2 = 1.0, ρ = 0.9, β = 0.2 T=100 0.993 (0.004) 1.00
σ2 = 1.0, ρ = 0.9, β = 0.2 T=250 0.995 (0.002) 1.00

σ2 = 0.5, ρ = 0.3, β = 0.8 T=50 0.116 (0.13) 0.994
σ2 = 1.0, ρ = 0.3, β = 0.8 T=50 0.050 (0.05) 0.946

σ2 = 1.0, ρ = 0.3, β = 0.8 T=100 0.041 (0.04) 0.105
σ2 = 1.0, ρ = 0.3, β = 0.8 T=250 0.021 (0.02) 0.000

The table reports the posterior mode and the standard deviation of ω and the BMA weight on the AR(1).

The mode of ω and a BMA weight have similar information in the majority of cases we

consider. However, when the DGP is close to an MA(1) and T short, the ω and the BMA

measures disagree regarding the likelihood of the AR(1). This divergence disappears when

T ≥ 100 and both models put smaller weight on the AR(1). Notice that the posterior of ω is

updated in the direction of the basic model with smaller KL divergence even when T = 50.

What would happen to the composite posterior of ω when one of the estimated models

is the DGP? Would it concentrate around 1 for the correct model as sample size increases?

Table 3 reports evidence for two DGPs: an AR(1) and an MA(1). Clearly, the posterior of ω

asymptotically concentrates at the corner solution corresponding to the correct model but at a

somewhat slower rate than a BMA weight.
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Table 3: Posterior estimates of ω
Mode Mean Median Std deviation BMA weight

yt = 0.8yt−1 + et, et ∼ N(0, σ2), T=50

Prior 0.5 0.5 0.288
T=50 0.994 0.978 0.985 0.023 0.991
T=100 0.997 0.983 0.986 0.018 1.000
T=250 0.998 0.990 0.993 0.010 1.000
T=500 0.999 0.993 0.995 0.006 1.000

yt = 0.7et−1 + et, et ∼ N(0, σ2), T=50

Prior 0.5 0.5 0.288
T=50 0.356 0.468 0.432 0.187 0.024
T=100 0.007 0.220 0.147 0.177 0.015
T=250 0.003 0.048 0.030 0.050 0.006
T=500 0.002 0.034 0.021 0.030 0.002

In sum, our simulations show that estimation outcomes can be improved and misspecification

reduced using composite methods. Furthermore, the posterior mode of ω gives a consistent

ranking device for misspecified models which has useful properties: its modal value agrees with

a BMA weight in many specifications and it is superior when T is small and MA components

dominate.

4 Estimation and inference

In a traditional setting, where the models entering the composite likelihood are marginal or

conditional versions of the true DGP (see e.g. Varin, 2011), composite likelihood estimators are

consistent and asymptotically normal. However, they are inefficient and one can select ωi to

minimize this inefficiency (see Appendix A).

Our setup differs from the traditional one in four respects. First, F (yt, ψ) is unavailable -

the process generating the data is unknown. Second, f(yit ∈ Ai, θ, ηi) are neither marginal nor

conditional densities, but misspecified approximations of the unknown DGP. Thus, for all (θ, ηi),

the KL divergence between F (yt, ψ) and f(yit ∈ Ai, θ, ηi) is positive, ∀i. Third, f(yit ∈ Ai, θ, ηi)
need not be independent (models may share equations) nor compatible, in the sense that the

likelihood estimator θi,ML asymptotically converges to the same value. Finally, we treat ωi as

a random variable, rather than a fixed number and wish to construct a quasi-posterior for the

common parameters θ, the nuisance parameters ηi, and the weights ωi, i = 1, 2, . . . ,K.

Because all available models are misspecified, maximum likelihood estimators obtained from

each f(yit ∈ Ai, θ, ηi) are inconsistent and, as a consequence, the composite likelihood esti-
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mator is also inconsistent. Following earlier work by White (1982) and Domowitz and White

(1982), one can show, as sample size grows and under regularity conditions, that θi,ML converges

to θ0, the pseudo-parameter vector minimizing the KL divergence from the DGP. Moreover,
√
T (θi,ML − θ0) ∼ N(0, G−1

i ), where Gi = HiJ
−1
i Hi is the Godambe information matrix for

model i, Ji is the variability matrix and Hi the sensitivity matrix (see Appendix A). Thus,

when misspecification is present the pivot of the asymptotic distribution is the minimizer of the

KL divergence, rather than the true parameter vector; and the Godambe information matrix is

evaluated at the minimizer of the KL divergence, rather than the true parameter vector.

The composite pool defines a density for a different misspecified model (a weighted average

of the K models). When wi are fixed, θCL asymptotically approaches the pseudo-parameter

value, say θ0,CL, minimizing the KL divergence between the density of the composite pool and

the DGP. θ0,CL is not, in general, a weighted average of θ0,i because models are not necessarily

independent. Furthermore,
√
T (θCL − θ0,CL) ∼ N(0, G−1), where G = HJ−1H and H and J

evaluated at the composite likelihood estimator (see Appendix A for details).

4.1 Bayesian quasi-posteriors

We use a Bayesian approach to estimation and inference, in part because of the special role the

quasi-posterior of ω plays in our setup. We combine the composite likelihood (9) with a prior for

χ = ()θ, η1, ....ηK , ω1, . . . , ωK), compute the joint quasi-posterior, which we then integrate with

respect to the nuisance parameters to obtain the marginals of θ and ω. Lacking a closed form

expression, we employ a multiple block Metropolis-Hastings approach to numerically compute

sequences from these marginal.

Given (yit, Ti), we assume that sup{θ,ηi} f(yit ∈ Ai, θ, ηi) < bi ≤ B <∞, a condition generally

satisfied for structural macroeconometric models, that L(θ, ηi|yi,Ti) can be constructed for each

i and that the composite likelihood CL(χ|y1,Ti , . . . , yK,Tk) exists for 0 < ωi < 1,
∑

i ωi = 1. Let

the priors for model i parameters be of the form:

p(θ, ηi) = p(θ)p(ηi|θ, yi0) (25)

where yi0 is a training sample. In (25) we allow for a data-based prior specification for ηi, as in

Del Negro and Schorfheide (2008), which is advisable to put models on the same ground as far

as matching certain statistics of the data. Making the prior of ηi data-based also helps to avoid
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identification problems when ωi is close to zero. The composite posterior kernel is:

p̌(χ|y1,t1 , . . . , yk,Tk) = ΠiL(θ, ηi|yi,Ti)ωip(ηi)ωip(θ)p(ωi) (26)

which can be used to estimate χ as described, e.g. in Chernozukov and Hong (2003). Because the

composite likelihood is an adequate loss function, the insights of the quasi-Bayesian computation

literature (see Bisseri, et al. 2016) also apply. For computational and efficiency reasons, we

employ a K+1 block Metropolis-Hastings algorithm. Herbst and Schorfheide (2015) also suggest

drawing parameters in blocks. While they randomly split the parameter vector in blocks at each

iteration, the blocks here are predetermined by the K models of interest.

When K is large, the parameter space will also be large and computations may be demanding.

Hence, one may want to preliminarily obtain the posterior of ηi using (yi, Ti), condition on these

posterior distributions when estimating (θ, ω), and iterate. Since only the information contained

in model i is used to estimate ηi, the approach seems sensible and practical.

4.2 MCMC Algorithm

The algorithm consists of four steps:

1. Start with some χ0 = [η0
1 . . . η

0
K , θ

0, ω0
1 . . . ω

0
K ]. For iter = 1 : draws do steps 2.-4.

2. For i = 1 : K, draw η∗i from a symmetric proposal Pηi . Set ηiter = η∗i with probability

min

(
1,

L(
[
η∗i , θ

iter−1
]
|yi,Ti)

ωiter−1
i p(η∗i |θiter−1)ω

iter−1
i

L(
[
ηiter−1
i , θiter−1

]
|yi,Ti)

ωiter−1
i p(ηiter−1

i |θiter−1)ω
iter−1
i

)
(27)

3. Draw θ∗ from a symmetric proposal P θ. Set θiter = θ∗ with probability

min

(
1,

L(
[
ηiter1 , θ∗

]
|y1,T1)ω

iter−1
1 . . .L(

[
ηiterK θ∗

]
|yK,TK )ω

iter−1
K p(θ∗)

L([ηiter1 , θiter−1] |y1,T1)ω
iter−1
1 . . .L([ηiterK , θiter−1] |yK,TK )ω

iter−1
K p(θiter−1)

)
(28)

4. Draw ω∗i from a symmetric proposal Pω. Set ωiter = ω∗ = (ω∗1... ω
∗
k) with probability

min

(
1,

L(
[
ηiter1 , θiter

]
|y1,T1)ω

∗
1 . . .L(

[
ηiterK θiter

]
|yK,TK )ω

∗
Kp(ω∗)

L([ηiter1 , θiter] y1,T1)ω
iter−1
1 . . .L([ηiteri , θiter] |yK,TK )ω

iter−1
K p(ωiter−1)

)
(29)

Note that in (27) only the likelihood of model i matters and when the proposals are asymmetric,

the acceptance probability should be appropriately adjusted. A few interesting special cases are

nested in the algorithm. For example, when the K models feature no nuisance parameters, steps
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2.-3. can be combined in a single step. On the other hand, if ωi’s are fixed, step 4 disappears.

When ωi = 0, i 6= k, ωk = 1, the algorithm collapses into a standard Block Metropolis MCMC.

A random walk proposal for (θ, ηi) works well in practice; a multivariate logistic proposal or an

independent Dirichlet proposal are natural choices for ωi if K is small. For large K, the ”random

walk Dirichlet” proposal seems appropriate (see Appendix B).

4.3 Adjusting percentiles of the MCMC distribution

Our estimation problem is non-standard since models are misspecified and yit are not necessarily

mutually exclusive across i (see Mueller, 2013). Thus, for example, if all models feature a nominal

interest rate, that series may be used K times. Naive implementations of a MCMC approach

produce marginal posterior percentiles for θ which are too concentrated, because the procedure

treats yit as if they were independent across i. In Appendix B we show that, under regularity

conditions, the composite posterior has an asymptotically normal shape, but the covariance

matrix is the sensitivity matrix H, rather than the Godambe matrix G.

To obtain the correct asymptotic coverage one could use, as a referee suggested, a normal

posterior with sandwich covariance matrix. Here we follow Ribatet et al. (2012)and Qu (2016),

and directly add two steps to the MCMC algorithm. In the first we compute the ”sandwich” ma-

trix, H(χ)J(χ)−1H(χ), where H(χ) = −E(O2p(χ|Y )) and J(χ) = V ar[Op(χ|Y )] are obtained

maximizing the composite posterior p(χ|Y ). In the second, we adjust draws as

χ̃j = χ̂+ V −1(χj − χ̂) (30)

where χ̂ is the posterior mode, V = CTHC and C = M−1MA is a semi-definite square matrix;

MT
AMA = HJ−1H,MTM = H; MA and M are obtained via a singular value decomposition 4.

The adjustment works well when χ is well identified from the composite posterior and if

the composite posterior has a unique maximum. As Canova and Sala (2009) have shown, such

properties may not hold in a number of structural models. Thus, we recommend users to report

both standard and adjusted percentiles.

4.4 Intepretations and time varations

One can think of composite posterior analysis in different ways. One is the sequential learning

interpretation provided in Canova and Matthes (2017): the composite posterior kernel can be

4Rather than finding H and J once, prior to running the algorithm, one could perform the adjustment adap-
tively, using C(φj |φj−1, y)C(φ|y) (see Ribatet et al, 2012, p. 826). In this way MCMC draws are recursively
centered, which insures faster convergence, but a numerical optimization is needed at each step of the procedure.
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obtained in K stages via an adaptive sequential learning process, where the information contained

in models whose density poorly relates to the observables is appropriately downweighted. Here,

the prior for θ at each stage of the learning process depends on the relative weights assigned to

the current and to all previous models and on their relative fit for θ.

Our composite posterior estimators are special quasi-Bayesian estimators. In this literature

(see e.g., Marin, 2012, Bissiri et al., 2016, and Scalone, 2018), one updates prior beliefs using

a loss function which downplays some undesirable features of the likelihood. In particular, a

moment-based loss functions provide estimators which reduce the inconsistencies of likelihood-

based methods when misspecification is present. Seen through this lens, the composite likelihood

is a moment-based loss function which uses a weighted average of each model’s scores.

Since the composite likelihood can be interpreted as an ”opinion” pool of agents/models

using different pieces of information, the composite quasi-posterior statistics we compute in

the next subsection are a Bayesian pool of opinions where each agent/model acts as a local

Bayesian statistician expressing an opinion in the form of a posterior distribution on the unknown

parameters, given a specific piece information, see Roche (2016). Thus, a composite likelihood

can be associated with a probability distribution on hypotheses, extending Bayesian analysis to

problems where the likelihood function is unknown.

Although ω’s are time independent, adjusting the MCMC algorithm to allow for time vary-

ing ω’s is easy. For example, one can accommodate time-varying weights non-parametrically,

repeating the computations using a rolling window of fixed-size data. Alternatively, one could

consider a parametric specification for the time variations, for example, assume a random walk

and add a MCMC step which draws the innovations from a Dirichlet distribution. With time

varying weights, one could look at their evolution to understand how the data is filtered. Thus,

as in Waggoner and Zha (2012), cross equation restrictions present in different models could

receive different weights in different portions of the sample.

4.5 Composite posterior statistics

Once composite estimates of the common parameters are available, one can proceed with stan-

dard analysis using the ”best” model as selected by the posterior of ω. Because of the instabili-

ties present in economic data and our Bayesian philosophy, we prefer to average the information

contained in various models using posterior estimates and the posterior weights.

Let ỹt+l be future values of the variables appearing in all models. Let f(ỹt+l|yit, θ, ηi) be the

prediction of ỹt+l, l = 1, 2, . . . made by model i, given (θ, ηi) and let f cl(ỹt+l|y1t, . . . , yKt, χ) =
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∏K
i=1 f(ỹt+l|yit, θ, ηi)ωi be a geometric pool of predictions of ỹt+l, given data up to t, the models,

and the parameters. Then

p(ỹt+l|y1t, . . . , yKt, ω1, . . . ωK) ∝
∫
. . .

∫
f cl(ỹt+l|y1t, . . . , yKt, χ)

p(θ, η1, . . . , ηK |y1t, . . . , yKt, ω1, . . . , ωK)dθdη1 . . . dηK

=

∫
. . .

∫ ∏
i

p(ỹt+l, θ, ηi|yit)ωidθdη1 . . . dηK (31)

is the composite predictive density of ỹt+l, given the data and the weights, and p(ỹt+l, θ, ηi|yit)ωi ≡
(f(ỹt+l|yit, θ, ηi)p(θ, η1, . . . ηK |ω, y1t, . . . , yKt))

ωi is an ”opinion” pool (see Roche, 2016)

Depending on the investigator’s loss function, one could compute (31) using the mode or the

posterior mean of ωi. One could also integrate (31) with respect to the marginal of ω, but given

that in many applications it makes sense to condition on the estimated ω’s (which represents

the posterior probability associated with each model), we believe (31) has larger appeal.

f(ỹt+l|yit, θ, ηi) is straightforward to compute since the models we consider have linear (Gaus-

sian) state space representation. Thus, (31) can be approximated by first generating draws from

the composite posterior, computing the predictive density for each draw in each i, geometrically

combining the predictions and, finally, averaging across draws of (θ, η1, . . . , ηK).

The problem of combining prediction densities is well studied in the literature (see e.g.

Geweke and Amisano, 2011 or Del Negro et al., 2016). Two approaches are typically suggested:

linear pooling, which lead to finite mixtures predictive densities such as BMA or static pools,

and logarithmic pooling, which is what a composite predictive density approach produces. Log-

arithmic pooling generates predictive densities which are generally unimodal and less dispersed

than linear pooling and satisfy external Bayesianity, the property of being invariant to the ar-

rival of new information (updating the components of the composite likelihood commutes with

the pooling operator). Relative to naive ex-post pools of predictive densities, the composite

predictive density uses the information in all models for estimation and to compute weights 5.

This may lead to large differences, especially when models are misspecified in different ways.

There is an expanding literature dealing with nonlinear model combinations (see e.g. Gneiting

and Rajan (2010) or Billio et al. (2013)). While such an approach is preferrable if nonlinearities

are suspected to exist over time, the logarithmic pooling implicit in (31) generally suffices for

the purposes of guarding against misspecification of linear macroeconometric models.

5Note that the logarithmic combination formula we present can be obtained as the solution to a well known
constrained optimization problem in information theory (see Cover and Thomas, 2006) which leads to exponential
tilting. Appendix C provides the link between the two approaches.
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In analogy with the prediction problem, one can compute statistics of interest by geometri-

cally weighting the densities of outcomes obtained with each model and the composite posterior

for the parameters. Take, for example, the computation of the responses for the subset of vari-

ables present in all models to a shock also present in all models. Given (θ, ηi), responses to

shock j for model i can be computed setting all other structural shocks to 0 - which is reason-

able given that the models considered are linear and shocks are uncorrelated. The density of

outcome paths, computed randomizing (θ, ηi) from their posterior, is the impulse response of

interest. The kernel of the composite posterior responses can then be computed analogously to

(31), with the density of outcome paths replacing predictive densities.

Counterfactuals can be similarly computed. Let ȳkt+l be a selected path for the future

values t + l in the k-th element of ỹt+l. Using f(ȳkt+l|yit, εjit+l, θ, ηi) for submodel i, one can

find the path of εjit+l consistent with the assumed ȳkt+l. With this path one can then compute

f(ȳk′t+l|yit, εjit+l, θ, ηi), for k′ 6= k. Composite counterfactuals can be computed as in (31).

5 Two applications

We evaluate our framework of analysis in two applications. In the first we show how to robustify

inference about the marginal propensity to consume (MPC) out of transitory income. In the

second, how to shed light on the role of technology shocks as drivers of output fluctuations.

5.1 Measuring the marginal propensity to consume

We consider five models suggested in the literature to explain the dynamics of the MPC in the

data: the first is a standard permanent income model; the others add aspects of the consumption-

income relationship left out of the workhorse model. In the baseline model there is a represen-

tative agent with quadratic preferences, constant interest rate, (1 + r)β = 1, and exogenous

permanent and transitory income components. The second model has similar features but pref-

erences are exponential (in the spirit of Caballero, 1990). Because the variance of income shocks

affect consumption decisions, precautionary saving matter and consumption is no longer a ran-

dom walk. To make the model empirically interesting we allow the volatility of both income

components to be time dependent and assume a simple AR(1) specification for the log of the

variance. In the third model we make the real rate endogenous. We consider a real business cycle

(RBC) structure featuring consumption-leisure choices, production requiring capital and labor,

and a technological disturbance with transitory and permanent components. Here preferences

have a separable CRRA format. The fourth specification introduces agents’ heterogeneity: a
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Table 4: Posterior distribution of ρ

Model 16th 50th 84th

BASIC 0.44 0.57 0.66
PRECAUTIONARY 0.90 0.91 0.91
RBC 0.41 0.52 0.63
ROT 0.46 0.56 0.65
LIQUIDITY 0.70 0.77 0.84

Composite 0.85 0.90 0.96
Composite (without RBC) 0.80 0.85 0.91

fourth of the agents consume all their current income, as in Gali et al., 2004. Preferences and

constraints are the same as in the basic specification. The last model also has two types of

agents, but one is liquidity constrained (in the spirit of Chah et al., 2006). This model retains

exogenous income, constant interest rate equal to the inverse of the rate of time preference of the

non-liquidity constrained agent but features a non-separable utility in non-durable and durable

consumption goods (which depreciate at the rate δ). Furthermore, constrained agents must

finance a fraction of non-durable expenditure with accumulated assets. We make the liquidity

constraint binding in the steady state by assuming that constrained agents are more impatient.

We name the models: BASIC, PRECAUTIONARY, RBC, ROT, LIQUIDITY, respectively.

The log-linearized conditions are in appendix E.

Although models feature different endogenous variables, we use aggregate real per-capita non-

durable consumption, real per-capita income, and real per-capita value of assets as observables

for 1980:1-2017:2 for all specifications - in the RBC model we equate real per-capita assets

with the per-capita capital of the representative agent. This choice of observables allows us to

compare composite and BMA ranking of models and predictions. All variables are quadratically

detrended. Estimation is performed with MCMC techniques using the likelihood of each model

or the composite likelihood, restricting the persistence of the transitory income process ρ, which

as seen in section 2 matters for the MPCyT , to be common across specifications. The prior for

ωi, i=1...5, is Dirichlet with mean equal 0.20. The priors for all other parameters are proper but

loose and truncated, when needed, to the region with economic interpretation.

Table 4 presents a summary of the posterior of ρ. The first five rows display single model

percentiles; the sixth row the composite percentiles. Although Cogley and Nason (1995) have

shown that income persistence in a RBC model is largely driven by the persistence of TFP, one

may argue that TFP persistence and exogenous income persistence are parameters with different

economic interpretations. Thus, the last row of table 4 presents composite percentiles when ρ
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is restricted to be common only across models with exogenous labor income.

For BASIC, ROT and RBC models the median estimate is around 0.55 and the envelope of

the 68 percent posterior ranges is [0.40-0.65]; for the model with liquidity constraint the median

estimate is 0.77 and significantly different from those of the first three models. Finally, in a

model with precautionary motive, transitory income is very persistent and precisely estimated.

The composite posterior estimate is also high: its median value (0.90) is close to the one obtain

in the precautionary model (0.91), but the posterior range is larger, reflecting the heterogeneity

of single model estimates. Eliminating the RBC model from the composite estimation leaves

the composite posterior percentiles of ρ practically unchanged.

Figure 1: Prior and posterior for ω

Why is the composite posterior median of ρ high? Figure 1, which presents the prior and

the posterior of ω for the five models, shows that the precautionary model receives the highest

a-posteriori weight. Thus, the fact that interest rate is constant, that labor supply decision and

heterogeneities are disregarded are less of a problem when characterizing the MPC than leaving

precautionary motives out of the basic model. Note that the weights are very stable over time

(estimates available on request). Thus, income uncertainty is not a dominant factor only in the

last 10 years of data.

Figure 2 present dynamic estimates of MPCyT , computed as MPCTy (l) =
∑l
j=1 ct+j |eTt∑l
j=1 yt+j |eTt

, l =

1, 2, ...., where ct+j(yt+j) is the response of real per-capita consumption (transitory income)

at t + j, eTt is a transitory income shock, and l the horizon. When ρ is estimated to be low,

MPCyT is also low. Consistent with the discussion in section 2, instantaneous posterior estimates
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of MPCyT obtained with BASIC, RBC, and LIQUIDITY models are around 0.05. Estimates

increase at longer horizons but after two years the 68 percent range is still below 0.10. The

instantaneous MPC slightly higher in the ROT model (the median value is now 0.25). Still,

after two years the economy consumes only 30 percent of the cumulative transitory income.

With the PRECAUTIONARY model, the instantaneous posterior estimate of MPCTy is also

higher. However, also with this specification, only 15 percent of transitory income is spent the

first quarter and less than 25 percent after two years.

0 10 20 30 40

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

M
P

C

BASIC

0 10 20 30 40

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6
PRECAUTIONARY

0 10 20 30 40

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6
RBC

0 10 20 30 40

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6

M
P

C

ROT

Lower 16, ML
Median, ML
Upper 84, ML
Lower 16, CL
Median, CL
Upper 84, CL

0 10 20 30 40

Horizon

0

0.1

0.2

0.3

0.4

0.5

0.6
LIQUIDITY

Figure 2: Likelihood and composite likelihood estimates of MPCyT

With composite posterior estimates ρ, the instantaneous value of MPCTy generally increases

but with the exception of the ROT model, MPCyT estimates are still below 30 percent for the

first two years. Thus, even when income is relatively persistent, rational consumers save the

majority of their transitory income. Interestingly, with composite estimates of ρ, differences in

MPCyT estimates across models are smaller.

Rather than plugging composite posterior estimates in a model, one may want to robustify

inference by computing a composite MPCTy estimate, weighting the MPCyT of each model by

the posterior ωi. Figure 3 presents such a measure together with two standard combinations:

one constructed using BMA weights and one using naive equal weights.

Composite and BMA estimates of MPCyT are similar - BMA puts all posterior weight on the

PRECAUTIONARY model. Since posterior standard errors are also similar, the two measures
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Figure 3: Composite, BMA and naive posterior estimates of the MPC

give similar conclusions about the propensity to consume of US agents. The naive combination,

instead, produces MPCTy estimates which are almost twice as large for the first two years,

because the ROT model gets a much larger weight than in the other two combinations.

Finally, we examine whether the composite model is less misspecified by computing the

average KL divergence for detrended real per-capita consumption for each of the five models

and for the composite one. Unsurprisingly, given ω estimates, the PRECAUTIONARY model

is closest to the DGP (KL=117.80) but the composite model is significantly better (KL=76.60).

In sum, our analysis indicates that over a two-years horizon, US consumers spend at most

one-third of their cumulative transitory income on non-durable goods. Whether the rest is

used to repay debt, to purchase non-durable goods or to make intergenerational transfers is an

important question we leave for future research.

5.2 The role of technology shocks for output fluctuations

The importance of technology shocks in accounting output fluctuations has been discussed for

over 35 years with contrasting conclusions (see e.g. Kydland and Prescott, 1982 or Gali, 1999).

Differences in the results are due, in part, to specification choices and, in part, to the sample

used in the computations. In general, larger models featuring dynamic evolution for the capital

stock find a smaller role than smaller models featuring no or constant capital.

To show how a composite approach can shed light on the issue we first estimate the medium

scale New Keynesian (NK) model of Justiniano et al. (2010) (JPT henceforth) using post-1984

US data. We then pair it with the small NK model without capital of Herbst and Schorfheide
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(2015) (HS henceforth) and jointly estimate two models by composite methods, restricting the

slope of the New Keynesian Phillips curve κ and the persistence of the stationary TFP shock ρz

to be common. Clearly, one could restrict other parameters (e.g. Taylor rule coefficients). We

constrain only a few parameters to be common to highlight the stark differences obtained when

estimating the JPT model separately or jointly with the HS model. The optimality conditions

are in appendix F. Note that both models feature permanent and transitory technological dis-

turbances; that the HS model is not nested in the JPT model via parametric restrictions; and

that we can approximate a RBC framework through prior parameter restrictions. Thus, one

can also think of our exercise as combining NK and RBC frameworks without having to worry

about the typical poor fit of RBC models for nominal variables.

We estimate the weights assuming that the two models are a-priori equally likely. Since we

use different observables in estimation (output, inflation and the nominal rate for the HS model;

output, inflation, the nominal rate, consumption, investment, hours and real wages for the JPT

model), no comparison with BMA is possible here.

When the JPT model is estimated in isolation, estimates of κ and ρz are low (means 0.02 and

0.14, standard deviations 0.0001 and 0.0041, respectively). The mean estimates are similar to

the point estimates reported by Justiniano et al. (0.10 and 0.24), despite a different estimation

sample 6. They imply that technology shocks explain 30-40 percent of output fluctuations at

typical business cycle horizons. Mean estimates increase to κ = 0.22 and ρz = 0.93 when

composite methods are used (standard deviations are 0.0023 and 0.0002, respectively). With

composite posterior estimates technology shocks become the major source of output fluctuations

at horizons greater than one year (see figure 4).

How does one interpret these findings? First, notice that the HS model receives a-posteriori

higher weight (mean estimate for ω is 0.63 and standard deviation 0.0003). Second, in the HS

model technology shocks enter only the Euler equation, while in the JPT model they affect

several equations. Thus, when the JPT model is estimated in isolation, technology are used

to fit a number of equations, but when it is paired with the HS model, they are restricted

to fit well the Euler equation. This constraint moves posterior estimation to a region of the

parameter space where nominal rigidities are smaller (price stickiness mean estimate drops from

0.66 to 0.47), real rigidities are larger (the investment adjustment cost parameter mean estimate

increases from 1.54 to 2.57) and demand shocks less persistent (mean value of the persistence

of preference shocks drops from 0.76 to 0.23). The combined effect of higher persistence of

the stationary component of technology shock, of higher real and lower price rigidities, and of

6The value κ is obtained using estimates of the parameters they report.
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Figure 4: Fraction of output fluctuations due to TFP shocks, JPT model

lower persistence of demand shocks make technology disturbances more important for output

fluctuations. These conclusions remain when we restrict the HS model to mimic a RBC model.

To know whether composite inference should be trusted, we compute the KL divergence for

output and inflation for the JPT model (using posterior estimates) and the composite pool.

While misspecification is roughly the same (average KL is 0.025 for the composite model and

0.021 for the JPT model), our results indicate that the JPT model possesses modes featuring

mechanics of transmission of structural disturbances different from the usual ones. Clearly, more

work is needed but our evidence warns about dismissing technology shocks as major sources of

output fluctuations in medium scale New Keynesian models.

6 Conclusions and implications for practice

This paper proposes a new approach to deal with the inherent misspecification of current DSGE

models. We consider a set of potentially misspecified models, geometrically combine their like-

lihood functions, and estimate the parameters with the resulting composite likelihood. The

composite likelihood shrinks individual likelihood estimates toward a weighted average of all

other models’ estimates. Thus, composite estimation guards against misspecification by requir-

ing estimates of the common parameters consistent with the structure present in all models. We

highlight the properties of our approach and relate our methodology to existing ones.

We describe a MCMC approach to draw sequences from the composite posterior distribu-

tions, and show how to adjust the MCMC percentiles to produce posterior credible sets with the
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right asymptotic coverage. We also discuss how posterior weights inform us about the relative

misspecification of different models and show how to construct composite posterior statistics.

We use the methodology to estimate the marginal propensity to consume out of transitory

income, and to evaluate of the role of technology shocks for output fluctuations. MPC estimates

are generally low when models are estimated separately but they significantly increase when

models are jointly estimated. Composite posterior and BMA MPC estimates are similar and

lower than a naive combination of individual MPC estimates. Technology shocks explain about

one-third of output fluctuations in a standard medium scale NK model at business cycle horizons

but their importance increases when such a model is paired with a smaller scale model without

capital and the persistence of technology shocks jointly estimated.

We conclude with some practical suggestions to potential users. First, to make the approach

meaningful the models entering the composite likelihood should capture different aspects left out

(or mis-represented) in the baseline specification. Gains from composite estimators depend on a

careful selection of models entering the pool. Second, when a researcher perceives that the models

are economically incompatible, the composite likelihood can still be employed since if θ = ∅,
the approach produces likelihood estimates, model by model. Third, while the methodology

robustifies estimation and inference, given existing models, it is not a substitute for having

better models. Section 5 shows how it can be used to gauge which missing features should

be included in a benchmark model,and how conclusions could be altered when estimation is

restricted in a meaningful way. Fourth, the approach has a number of benefits relative to

likelihood-based estimation of the structural parameters (see Canova and Matthes, 2017). For

example, when a large scale model is available, the composite likelihood constructed using model

blocks has shape and properties which are similar to those of the likelihood of the full model,

without the numerical difficulties. Thus, our approach is not only useful to examine in which

direction a model should be improved, but also to estimate the larger scale models one is likely

to build after the initial experimentation. Fifth, although we focus on linearized models, one

can combine the likelihoods of models perturbed at higher order and we expect the gains to

remain. Finally, the approach is suited to deal with structural time varying coefficients models,

which are complicated to estimate and interpret with standard likelihood-based technology.
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On-line Appendices

Appendix A: Classical composite likelihood estimators

Asymptotic properties of composite likelihood estimators In a standard approach one

has a known DGP which produces a parametric density F (yt, ψ) for anm×1 vector of observables

yt, given a q×1 vector of parameters ψ = (θ, η), where θ is q1×1 and η is q− q1×1. When yt is

of high dimensions or contains latent variables, it may be difficult to use F (yt, ψ) for estimation

purposes.

The key idea of composite methods is to construct arbitrary sets of low dimensional densities

and to combine them for estimation purposes. This may be viewed as divide-and-conquer method

of approximating the full likelihood.

Let f(yit ∈ Ai, φi) be sub-densities of F (yt, ψ) obtained by marginalizing (or conditioning on

portions of) F (yt, ψ), where Ai is a set and i = 1, . . . ,K. For ease of reading, the integrals and the

conditioning sets are left implicit. Each sub-density defines a sub-model, has an associated vector

of parameters φi = [θ, ηi]
′, where ηi are (nuisance) sub-density specific, and has implications for

a sub-vector yit of length Ti. The elements of yit need not be mutually exclusive across i and Ti

may be different than Tj . Given a vector of fixed weights ωi, the composite likelihood is

CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) = ΠK
i=1 f(yit ∈ Ai, θ, ηi)ωi ≡ ΠK

i=1L(θ, ηi|yit ∈ Ai)ωi (32)

Although CL(φ, y) ≡ CL(θ, η1, . . . , ηK , y1t, . . . , yKT ) is not a likelihood function, if y[1,t]

=(y1, . . . , yt) is an independent sample from F (yt, ψ) and ωi are fixed, θCL, the maximum

composite likelihood estimator satisfies θCL
P→ θ and

√
T (θCL − θ)

D→ N(0, G−1) (33)

for T going to infinity, K fixed (see e.g. Varin, et al., 2011) where

G = HJ−1H Godambe information (34)

J ≡ varθu(φ, y[1,t]|ω) Variability matrix (35)

H ≡ −Eθ[5θu(φ, y[1,t]|ω)] Sensitivity matrix (36)

u(φ, y[1,t]|ω) =
∑
i

ωi 5θ li(θ, ηi, y[1,t]) Composite scores (37)
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5θli(θ, ηi, y[1,t]) are the score associated with the log of f(yit ∈ Ai, θ, ηi), and H 6= J 7.

Consistency obtains because each sub-model i provides an unbiased estimating function for

θ. Since the ML estimator of each sub-model converges to the true parameter vector as T

increases, θCL
P→ θ. Asymptotic normality holds because, typically, the sampling distribution

of the maximum likelihood estimator of each i can be approximated quadratically around the

same mode. θCL is inefficient - G equals Fisher information matrix, I, only if the composite

likelihood is the likelihood of the true model. Careful choices ωi may improve efficiency and

optimal weights can be designed by minimizing the distance between G and I, or by insuring

that the composite likelihood ratio statistics has an asymptotic χ2 distribution, see Pauli et al.

(2011).

If consistency is all that one cares about, one could set ωi = 1
K ,∀i or use a data-based

approach, e.g. select ωi = exp(ζi)

1+
∑K−1
i=1 exp(ζi)

, where ζi are functions of some statistics of past data,

ζi= ζ(Yi,[−τ :0]). If these statistics are updated over time, ωi could also be made time varying.

There is a large forecasting literature (see e.g. Aiolfi et al., 2010) which can be used to select

training sample-based estimates of ωi and to make them time varying.

The asymptotic properties of θ depend on (η1, . . . , ηK). In standard exercises ηi are assumed

to be known, so the dependence disappears. When ηi are unknown, but estimable a two-step

approach is generally implemented: ηi are estimated separately from each log f(yit ∈ Ai, θ, ηi)
and plugged in the composite likelihood, which is then optimized with respect to θ, see e.g.

Pakel et al. (2011). Consistency of θCL is unaffected as long as ηi are consistently estimated,

but standard errors need to be properly adjusted. A two-step approach is convenient when K

or the number of nuisance parameters is large, since joint estimation of (θ, η1, . . . , ηK) may be

demanding.

Asymptotic properties of composite estimators under misspecification When f(yit ∈
A, θ, ηi) are not marginal or conditional representations of F (yt, ψ), the previous conclusions need

to be modified. Let y[1,t] be a sample from F (yt, ψ) with respect to some σ-measure µ. Suppose

model i with density fi(y[1,t], φi), where φi ∈ Φ ⊂ Rm is a vector of parameters, is used in the

analysis and let its log-likelihood be li(φi) =
∑

t log fi(yt, φi). The model is misspecified because

F (y[1,t], ψ) 6= fi(y[1,t], φi), ∀φi. Let φi,ML = supφi li(φi). Since T−1li(φi) → E(log fi(y[1,t], φi)),

by the uniform law of large numbers, φi,ML is consistent for φi,0 = argmaxφi E log fi(y[1,t], φi),

where the expectations are taken with respect to F . If F is absolutely continuous with respect

7If T is fixed, but K → ∞, and the sub-models are independent, the result still holds. On the other hand,
when {yt}Tt=1 has correlated observations similar results can be proved, see Engle et al. (2008). Note also that a
standard Newey-West correction to J(θ) can be used if y[1,t] is not an independent sample.
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to fi

E log fi(y[1,t], φi)− E logF (y[1,t], ψ) = −
∫
F (y[1,t], ψ) log

F (y[1,t], ψ)

fi(y[1,t], φi)
dµ(y[1,t]) = −KLi(φi)

(38)

Hence, φi,0 is also the minimizer of KLi, the Kullback-Liebler divergence between F and fi.

Let sit(φi) = 5φi ln fi(yt, φi) be the score of observation t and let hit(φi) = 5φis
i
t(φi). When

the maximum is in the interior of Φ,
∑

t s
i
t(φi) = 0, and taking a first order expansion we have

0 ≈ T−0.5
∑
t

sit(φi,0) + T 0.5V −1
1 (φi,ML − φi,0) (39)

where V1 = −E(hit(φi,0)) = 52
φKLi(φi)φi=φi,0 . Using a central limit theorem for uncorrelated ob-

servations, we have T−0.5(φi,ML−φi,0) ∼ N(0, V ), where V = V1V2V
′

1 , V2 = E(sit(φi)s
i
t(φi)

′)φi=φi,0 ,

with the standard correction for V2, if y[1,t] has correlated observations.

In typical applications sit(φi) are computed with the Kalman filter and are function of mar-

tingale difference processes (the shocks of the model). Thus,
∑

t s
i
t(φi) = 0 is likely to hold.

Further regularity conditions need to be imposed for the arguments to hold precisely (see, e.g.

Mueller, 2013).

The composite likelihood geometrically averages different fi(yt, φi), each of which is misspeci-

fied. Thus, the composite model is, in general, misspecified with density g(y1t, . . . , yKt, θ, η1, . . . ηK)

≡ g(yt, φ) =
∏
i fi(yit, φi)

ωi . Repeating the argument of the previous paragraph, and under

regularity conditions discussed in Xu and Reid (2011), when ωi are fixed, φCL, the compos-

ite likelihood estimator, is consistent for φ0,CL, the minimizer of the KL divergence between

the g and F . Furthermore, the scaled difference between φCL and φCL,0 has an asymptotic

normal distribution with zero mean and covariance matrix VCL = VCL,1VCL,2V
′
CL,1 where

VCL,2 = E(sCL,t(φ)sCL,t(φ)′), VCL,1 = −E[5φsCL,t(φ)] and sCL,t(φ) = 5φ ln g(yt, φ), all evalu-

ated at φ = φCL. When the sub-models have different sample size, one needs to let minTi →∞.

When the weights are random, the asymptotic distribution of φi depends on ω1, . . . , ωK .

Under standard assumptions that ensure that the estimator of ω1, . . . ωK converges to the KL

pseudo value ω10, . . . , ωK0, and that no ωi0 is on the boundary of the parameter space, asymptotic

normality still holds but the standard errors for φCL need to be adjusted for the randomness

in ωi. As long as the Godambe matrix is block diagonal in (φ, ω), one can ignore this extra

uncertainty for inferential purposes.
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Appendix B: Issues in quasi-posterior estimation

Drawing ωi in MCMC algorithm There are various ways to draw candidate weights ωi,

i = 1, ...,K. If K is small, an independent Dirichlet proposal works well. When K is large,

one could first logistically transform the weights and then use a random walk proposal for the

transformed weights. This approach has the disadvantage that the proposal is no longer a

multivariate random walk (in particular, it is no longer symmetric). Furthermore, one needs to

compute the Jacobian of the mapping, which may be tedious to code and may lead to numerical

instabilities because of non-linearities.

Our preferred approach is to use a proposal density which directly operates on the weights.

We call it ’random-walk Dirichlet’, since the expected value of the proposal is the last accepted

draw. Denote by ωa the last accepted vector of weights, by ωp a proposal draw, and by λ > 0

a scalar regulating the variance of the proposal. The proposal density is Dirichlet, denoted by

pD(ωp|ωa, λ), with parameter λωa. The mean of this proposal is independent of λ and equal to

ωa. The variance of any element of ωp is a decreasing function of λ. In an initial adaptive phase,

where draws are discarded before computing posterior quantities, we adjust λ so as to achieve a

reasonable acceptance probability (20-30%). This proposal density is not symmetric, and thus

the acceptance probability needs to be properly modified.

Asymptotic properties of MCMC estimators Let χCL be the maximum composite like-

lihood estimator of χ = (θ, η1, . . . , ηK , ω1, . . . , ωK) and let χp be the mode of the prior p(χ). Sup-

pose both χCL and χp are in the interior of the parameter space. Let h(χCL) = −O2
χ logCL(χCL|yt)

and h(χp) = −O2
χ log p(χp). Expanding quadratically the composite posterior pCL(χ|yt) we have

∝ exp{logCL(χCL|yt)− 0.5(χ− χCL)Th(χCL)(χ− χCL) + log p(χp)− 0.5(χ− χp)Th(χp)(χ− χp)}

≈ N(χ̂, h(χCL, χp)
−1) (40)

where χ̂ = h(χCL, χp)
−1(h(χCL)χCL + h(χp)χp) and h(χCL, χp) = h(χCL) + h(χp).

Under regularity conditions, p(χ) will vanish as T → ∞. Then, almost surely, the strong

law of large number implies that

T−1h(χCL, χp) → −E(O2 logCL(χ̂0|yt)) ≡ H(χ̂0) (41)

χ̂ = (T−1h(χCL, χp))
−1(T−1h(χCL)χCL + T−1h(χp)χp)→ χ̂0 (42)
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. Thus as T → ∞ pCL(χ|yt) ≈ N(χ̂0, T
−1H(χ̂0)−1). Sufficient conditions that insure that is

the case are, for example, in Deblasi and Walker (2013). Rubio and Villaverde (2004) provide

conditions which are somewhat easier to verify in practice.

When χCL is not in the interior of the parameter space, for example, because ωi → 0, for

some i, ηi may become non-identifiable from the composite likelihood and the above result may

not hold. If we let p(ηi) = p(ηi|y0t), where y0t is a training sample of size T̄ , letting both T an

T̄ go to infinity, we will have that (41)-(42) hold for identified parameters while for those ηi for

which ωi → 0, pCL(ηi|yt, y0t) ≈ N(η̂i0, T̄
−1H(η̂i0)−1), where η̂i0 is the asymptotic pivot of, e.g.,

ML estimator for ηi in the training sample.

Note that when weak identification problems are present, the above results should be carefully

evaluated. In particular, the properties of ωi may deviate from the standard ones stated in the

text.

Appendix C: Tilting vs composite predictors

We look for a predictive density p(z|y) solving:

p̂ = argmin
p
KL(p(z|y), f(z, φ)) (43)

where z is any future sequence of y and φ a vector of parameters, subject to the constraint

Ep{log
f(z|yt, φ)

f(z, φ)
} = EZ|Y=y{log

f(z|yt, φ)

f(z, φ)
} t = 1, . . . , T (44)

and the normalization Ep(1) = 1, where Ep is the expectation with respect to the density

p(z|y), and f(z, φ) is any preliminary density of z, for example, its marginal. In words, we

seek for the predictive density which is closest in the KL sense to any preliminary density

f(z, φ) and reproduces the same conditional expectation as the true density f(z|y, φ) on func-

tions log f(z|yt,ψ)
f(z,φ) . Note that when f(z) is disregarded, the problem becomes one of maxi-

mizing the entropy -Ep[log p(z|y)], subject to the constraints (44). The solution is p̂(z|y) =

f(z, φ) exp{
∑

t ξt log f(z|yt,φ)
f(z,φ) }−κ(yt, φ, ξ)} where κ(yt, φ, ξ) is a normalizing constant, ξt are the

Lagrange multipliers on the constraints (44). p̂(z|y) has an exponential tilting format: we tilt

f(z, φ) in the directions spanned by log f(z|yi,φ)
f(z,φ) . If ξt ≥ 0,

∑
t ξt ≤ 1, then p̂(z|y) is the scaled

version of the composite predictive density derived in section 4.5 with ωt = ξt, t = 1, . . . , T

and ω0 = 1−
∑

t ξt, where ω0 is the weight on f(z, φ). Note that in this setup, ωt satisfies the
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following (score) equation:

∂Ez|Y=y log fp(Z|y, φ, ωt)
∂ωt

= 0, t = 1, . . . , T (45)

Thus, it can be chosen to maximize the conditional expected logarithmic score (45).

Appendix D: Choosing the composite pool when K is large

In the paper we have assumed that K is given (and small) and that a researcher includes all

models in the composite likelihood. Here we discuss how to choose the optimal combination

of models entering the composite likelihood when K is large. That is, how to choose both the

dimensionality of the composite pool and the models entering the pool. This problem may be

relevant when the information provided by the models is not necessarily independent. In this

case, there may be a trade-off between the number of models to be included and the estimation

gains that can be obtained with a composite methods when the K models are all misspecified.

Let S =
∑K−2

k=2
k!

r!(k−r)! be an index for the composite combination, where we allow a minimum

of r=2 models to appear in the composite pool, let y = y1 = y2 = . . . = yS and let ωi be fixed.

Let αs be the weight on combination s = 1, . . . , S. When the prior for αs is proportional to

the expected Kullback-Leibler (KL) divergence between that combination and the best fitting

pool D(s, s0), and the prior for the parameters p(φs) satisfies standard regularity conditions

that allow the composite marginal likelihood to be computed in the neighbor of the composite

likelihood estimator, one can follow the steps of Lv and Liu (2014) and show that a Laplace

expansions of the marginal composite likelihood leads to the generalized BIC criteria:

GBICs,CL = −2CL(φs,CL, yt) + 1 + 2dim(φs,CL) log Ts + 2I(Hs, Js) (46)

where I(Hs, Js) = 1
2(tr(Qs) − ln |Qs| − dim(φs)) , Qs = J−1

s Hs. I(Hs, Js) is the log of the KL

divergence between two dim(φs) vectors of normal random variables, one with zero mean and

covariance Js and one with zero mean and covariance Hs, where Js and Hs are the variability

and the sensitivity matrices of the composite combination s.

(46) features the two standard elements of a BIC criteria (a measure of fit, and a term

penalizing model complexity) and an additional term reflecting composite model misspecification

relative to the best fitting model (in a KL sense). When the composite model s̄ is correctly

specified, Js̄ ≈ Hs̄, I(Js̄, Hs̄) u 0, and GBIC=BIC. Thus, there are three dimensions that
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matter when choosing composite pools: fit, dimensionality, and misspecification.

When models do not share the same observables, the expansion in (46) becomes non-

comparable across composite pools - the measure of fit will always be weakly higher for a pool

that includes larger scale models. To apply (46), the measure of fit must be restricted to the

same observables. This can be done, solving out equations until the same observables are present

in all the models. While ω informs us about the relative support of a model in the composite

pool, I(Hs, Js) tells us about the relative misspecification of different estimation pools.

If we allow composite pools to include just one model and assume that the prior on the pool

s has a Dirichlet format with α1 = α2 = .... = αS , the expression in (46) simplifies to

GBICs,CL = −2CL(φs,CL, yt) + 2dim(φs,CL) log Ts − ln |Qs| (47)

(47) can be used to compare composite vs. maximum likelihood estimators of the parameters.

Also in this case, there will be three terms that matter: the fit of each model as measured by the

maximized value of the likelihood relative to the maximized value of the marginal likelihood; a

penalty for the relative dimensionality of the parameter space; and a term reflecting misspecifi-

cation. Note that ln |Qs| provides an approximation to the KL divergence. Thus, if the s̄-model

is correctly specified, Qs = Idim(φs) and ln |Qs| = 0. Once again, (47) can be applied only to

models sharing the same observables.

Appendix E: Models of section 5.1

1) Basic model with quadratic preferences, constant interest rate, exogenous per-

manent and transitory income process. Let G = 1 + g be the growth rate of permanent

income. Let c̃t = ct
yPt

; ãt = at
yPt
, yt = yTt y

P
t . The log linearized conditions are

ˆ̃ct = ê2t+1 + ˆ̃ct+1 (48)

ˆ̃at =
1

ā/G+ ȳT − c̄
(ā/Gˆ̃at−1 − ā/Gê2t + ȳŷTt − c̄ˆ̃ct) (49)

ŷPt = ŷPt−1 + ê2t (50)

ŷTt = ρŷTt−1 + ê1t (51)

ĉt = ˆ̃ct + ŷPt (52)

ât = ˆ̃at + ŷPt (53)
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where ct is consumption, at are savings, yt is income,ρ the persistence of transitory income,

(1 + r) the gross real rate of interest (1 + r)β = 1, σi, i = 1, 2 the standard deviation of the

transitory and permanent income, and variables with a bar indicate steady state quantities.

2) Model with exponential utility, constant interest rate, exogenous permanent

and transitory income process. The instantaneous utility function is u(c) = −1
θ exp(−θct),

where θ > 0 is the coefficient of risk aversion. The log linearized equations are:

−ĉt = −ĉt+1 +
1

θc̄
(σ̂t + ê2t) (54)

ˆ̃at =
1

ā
G∗σ̄ + ȳT − ¯̃c

(
ā

Gσ̄
ˆ̃at−1 −

ā

Gσ̄
ê2t −

ā

G
σ̂t + ȳT ŷTt − c̄ˆ̃ct) (55)

ŷPt = ŷPt−1 + σ̂t + ê2t (56)

ŷTt = ρ1ŷ
T
t−1 + σ̂t + ê1t (57)

σ̂t = ρ2σ̂t−1 + ê3t (58)

ĉt = ˆ̃ct + ŷPt (59)

ât = ˆ̃at + ŷPt (60)

where σt is the standard deviation of the permanent and transitory income shock, and ρ2 the

persistence of the volatility process.

3) RBC model with separable CRRA preferences, labor supply decisions, capital ac-

cumulation, endogenous interest rate, permanent and transitory technology shocks.

Letting α be the share of capital in production, γ the risk aversion coefficient, δ the capital

depreciation rate, η the inverse of the Frish elasticity of labor supply. and assuming that log e2t
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has zero mean, the log-linearized conditions are

γ ˆ̃ct + ηN̂t = ˆ̃Yt − N̂t (61)

−γ ˆ̃ct = (1− γ)ê2t+1 − γ ˆ̃ct+1 +
r

1 + r
r̂t+1 (62)

r̂t =
α

1 + r
( ˆ̃Yt − ˆ̃Kt−1) (63)

ˆ̃Yt = α( ˆ̃Kt−1) + (1− α)(N̂t + ζ̂Tt ) (64)

ˆ̃Yt =
c̄

Ȳ
ˆ̃ct +

K̄

Ȳ
ˆ̃Kt +

(1− δ)
G

K̄

Ȳ
ˆ̃Kt−1 −

(1− δ)
G

K̄

Ȳ
ê2t+1 (65)

ζ̂Pt = G+ ζ̂Pt−1 + ê2t (66)

ζ̂Tt = ρ ˆζTt−1 + ê1t (67)

ĉt = ˆ̃ct + ŷPt (68)

k̂t =
ˆ̃
kt + ŷPt (69)

ŷt = ˆ̃yt + ŷPt (70)

where kt is the capital stock and Nt is hours, ζt the technology disturbance and ρ the persistence

of its transitory component.

4) Model with two types of agents optimizers and Rule of thumb (ROT) consumers,

constant interest rate, permanent and transitory income components. Let 1− ω be

the share of ROT consumers. The log linearized conditions are

−γ ˆ̃c1t = (1− γ)ê2t+1 − γ ˆ̃c1t+1 (71)

ˆ̃cROTt = ŷTt (72)

ˆ̃at =
1

ā/G+ ȳT − c̄
(ā/Gˆ̃at−1 − ā/Gê2t + ȳŷTt − c̄1

ˆ̃c1t) (73)

ŷPt = G+ ŷPt−1 + ê2t (74)

ŷTt = ρŷTt−1 + ê1t (75)

ĉ1t = ˆ̃c1t + ŷPt (76)

ĉROTt = ˆ̃cROTt + ŷPT (77)

ĉt = ωĉ1t + (1− ω)ĉROTt (78)

ât = ˆ̃at + ŷPt (79)
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where γ is the coefficient of relative risk aversion and the superscript ROT indicate the variables

of the agents which do not save. We calibrate ω = 0.2, (1 + r) = 1.01.

5) Model with two types of optimizing agents, liquidity and non-liquidity con-

strained, constant interest rate, permanent and transitory income components.

Utility depends on durable and non-durable consumption, relative price of non-

durable is exogenous. The log-linear conditions are

ˆ̃c1t − ˆ̃
d1t =

1

ζ1
(p̂t −

1− δ
1 + r

p̂t+1) (80)

ˆ̃a1t − ˆ̃
d1t − p̂t = 0 (81)

p̄d̄1δ(p̂t +
ˆ̃
d1t) + c̄1

ˆ̃c1t + ā1
ˆ̃a1t =

(1 + r)ā1
ˆ̃a1t−1 + ŷTt − [(1 + r)ā1 − (1− δ)p̄d̄1)]ê2t (82)

ˆ̃c2t − ˆ̃
d2t =

1

ζ2
(p̂t(1 + ψ(β2(1 + r)− 1))− β2(1− δ)p̂t+1 +

(γ − 1)β2[ψ(1 + r)− (1− δ)](c̄2
ˆ̃c2t+1 − c̄2

ˆ̃c2t − d̄2
ˆ̃
d2t+1 + d̄2

ˆ̃
d2t+1)) (83)

p̄d̄2δ(p̂t +
ˆ̃
d2t) + c̄2

ˆ̃c2t + ā2
ˆ̃a2t =

(1 + r)ā2
ˆ̃a2t−1 + ŷTt − [(1 + r)ā2 − (1− δ)p̄d̄2)]ê2t (84)

ā2

B
ˆ̃a2t +

1− ā2

B
(p̂t +

ˆ̃
d2t) = 0 (85)

These equations have six unknowns (ˆ̃c1t, ˆ̃c2t,
ˆ̃
d1t,

ˆ̃
d2t, ˆ̃a1t, ˆ̃a2t), given yTt , y

P
t , pt. The remaining
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equations are

(γ − 1)(c̄2
ˆ̃c2t − d̄2

ˆ̃
d2t) +

1

β2(1 + r)− 1
(β2(1 + r)(γ − 1)(c̄2

ˆ̃c2t+1 − c̄2
ˆ̃c2t − d̄2

ˆ̃
d2t+1 + d̄2

ˆ̃
d2t)) = µ̂t (86)

ˆ̃cit + ŷPt = ĉit (87)

ˆ̃ait + ŷPt = âit (88)

ˆ̃
dit + ŷPt = d̂it (89)

ŷPt−1 + ê2t = ŷPt (90)

ρ1ŷ
T
t−1 + ê1t = ŷTt (91)

ρ2p̂t−1 + ê3t = p̂t (92)

ŷPt + ŷTt = ŷt (93)

ωĉ1t + (1− ω)ĉ2t = ĉt (94)

ωâ1t + (1− ω)â2t = ât (95)

ωd̂1t + (1− ω)d̂2t = d̂t (96)

where i=1,2, 1 − ω is the share of liquidity constrained consumers and γ the Cobb-Douglass

share of non-durable good dit in the utility. ζ1 = (1− 1−δ
1+r ), ζ2 = (1−β2((1− δ)−ψ(1 + r))− 1),

ψ is the share of durable financiable with assets, β2 > β1 and µ̂ is the Lagrange multiplier on

the liquidity constraint (in percentage deviation from steady states). We calibrate ω = 0.2, ψ =

0.95, B = 0.05, (1 + r) = 1.01.

Appendix F: Models of section 5.2

1) Herbst and Schorfheide (2015) model

yt = Et(yt+1)− 1

τ
(Rt − Et(πt+1)− Et(zt+1)) + gt − Et(gt+1) (97)

πt = βEt(πt+1) + κ(yt − gt) (98)

Rt = ρRRt−1 + (1− ρR)(φ1πt + φ2(yt − gt)) + εR,t (99)

zt = ρzzt−1 + εz,t (100)

gt = ρggt−1 + εg,t (101)

where yt is output, πt inflation, Rt the nominal rate, zt a technology shock, gt a demand shock
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and eR,t a monetary policy shock.

2) Justiniano, Primiceri and Tambalotti (2010) model

ŷt =
y + F

y

[
αk̂t + (1− α) L̂t

]
(102)

ρ̂t = ŵt + L̂t − k̂t (103)

ŝt = αρ̂t + (1− α) ŵt (104)

π̂t = γfEtπ̂t+1 + γbπ̂t−1 + κŝt + κλ̂p,t (105)

λ̂t =
hβeγ

(eγ − hβ) (eγ − h)
Etĉt+1 −

e2γ + h2β

(eγ − hβ) (eγ − h)
ĉt +

heγ

(eγ − hβ) (eγ − h)
ĉt−1 (106)

+
hβeγρz − heγ

(eγ − hβ) (eγ − h)
ẑt +

eγ − hβρb
eγ − hβ

b̂t (107)

λ̂t = R̂t + Et

(
λ̂t+1 − ẑt+1 − π̂t+1

)
(108)

ρ̂t = χût (109)

φ̂t = (1− δ)βe−γEt
(
φ̂t+1 − ẑt+1

)
+
(
1− (1− δ)βe−γ

)
Et

[
λ̂t+1 − ẑt+1 + ρ̂t+1

]
(110)

λ̂t = φ̂t + ût − e2γS′′ (ι̂t − ι̂t−1 + ẑt) + βe2γS′′Et

[
ι̂t+1 − ι̂t + ẑt+1

]
(111)

k̂t = ût + ˆ̄kt−1 − ẑt (112)

ˆ̄kt = (1− δ) e−γ
(

ˆ̄kt−1 − ẑt
)

+
(
1− (1− δ) e−γ

)
(ût + ι̂t) (113)

ŵt =
1

1 + β
ŵt−1 +

β

1 + β
Etŵt+1 − κwĝw,t + (114)

+
ιw

1 + β
π̂t−1 +

1 + βιw
1 + β

πt +
β

1 + β
Etπ̂t+1 + (115)

+
ιw

1 + β
zt−1 −

1 + βιw − ρzβ
1 + β

zt + κwλ̂w,t (116)

ĝw,t = ŵt −
(
νL̂t + b̂t − λ̂t

)
(117)

R̂t = ρRR̂t−1 + (1− ρR) [φππ̂t + φX (x̂t − x̂∗t )] + φdX [(x̂t − x̂t−1)−
(
x̂∗t − x̂∗t−1

)
] + η̂mp,t(118)

x̂t = ŷt −
ρk

y
ût (119)

1

g
ŷt =

1

g
ĝt +

c

y
ĉt +

i

y
ι̂t +

ρk

y
ût (120)

47



Additional References

Aiolfi, M., Capistran, C., and A. Timmerman (2010). Forecast combinations in Clements, M.

and D. Hendry (eds.) Forecast Handbook. Oxford University Press, Oxford.

Deblasi, P. and S. Walker (2013) Bayesian asymptotics with misspecified models. Statistica

Sinica, 23, 169-187.

Lv, J. and J. Liu (2014) Model selection principles in misspecified models. Journal of the

Royal Statistical Society, 76, part 1, 141-167

Pakel, C., Shephard N. and K. Sheppard (2011). Nuisance parameters, composite likelihoods

and a panel of GARCH models. Statistica Sinica, 21, 307-329.

Pauli, F., Racugno, W., and L. Ventura (2011). Bayesian composite marginal likelihoods.

Statistica Sinica, 21, 149-164.

J. Fernandez Vilaverde and J. Rubio Ramirez (2004). Comparing dynamic general equilib-

rium models to data: A bayesian approach.Journal of Econometrics, 123, 128-157.

Xu, X. and N. Reid (2011) On the robustness of the maximum composite likelihood estimator.

Journal of Statistical Planning and Inference, 141, 3047-3054.

48


