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1 Introduction

The credibility revolution in empirical economics has led researchers to set up more trans-

parent (quasi-)experimental research designs. This shift has increased the policy relevance

and the scientific impact of empirical work (Angrist and Pischke, 2010). An important ele-

ment that enhanced transparency is the visualization of treatment effects and/or identifying

assumptions. Differences-in-differences (DD) models are particularly popular in this respect

since they are directly connected to the rationale of experiments and the underlying identi-

fying assumptions are intuitive.

The event study (ES) design is the poster child of empirical methods in the DD family

since (i) empirical estimates can be plotted, (ii) graphs are very intuitive and immediately

show both dynamic post-treatment effects and the identifying assumption of “no pre-event

trends”, and (iii) the underlying econometrics are straightforward. The empirical specifi-

cation usually boils down to a simple two-way fixed effects panel data model where the

regressors of interest are a set of non-parametric event indicators which are defined relative

to the event. Originating from the finance literature1, event study designs are now widely

used in applied economics, mostly public and labor economics, where an event is usually

defined as a policy change whose effects are investigated. Figure 1 plots the use of event

study designs in economics over time. We proxy the use by the share of studies mentioning

the term “event study” in the Top Five economics journals.2 While we see a steady increase

since 1990, there is sharp increase since 2010. Moreover this increase is mostly driven by the

three journals focusing on applied microeconomic work among the Top-Five, i.e. the Amer-

ican Economic Review (AER), the Quarterly Journal of Economics (QJE), and the Journal

of Political Economy (JPE).

However, the intuitive appeal of event studies and its alleged simplicity entail a risk as

it apparently leads researchers to refer to and model event study designs rather loosely. In

more than one third of the event study papers published in the AER, QJE or JPE since 2010,

no regression equation is specified. The purpose of this paper is to clarify the understanding

of event study designs both in methodological and practical terms. We show below that the

inherent imprecision in specifying event study designs is dangerous since important and non-

trivial modeling decisions have to be made when specifying an event study model. These

modeling choices have different and important implications for the underlying identifying

assumptions of the model and eventually for treatment effect estimates.

We make three main methodological points that are important for applied researchers

1 Dating back to Dolley (1933), see also MacKinlay (1997) for a survey on the financial literature.
2 More than 80% of the studies mentioning event study designs actually implement one.
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Figure 1: The rise of event studies in economics

0
.0

1
.0

2
.0

3
.0

4
.0

5
Sh

ar
e 

of
 P

ub
lic

at
io

ns

1990 2000 2010 2020
year

AER + QJE + JPE Top 5

Notes: This graph plots the three-year moving average of the share of studies mentioning event study

designs in top economics journals. We use a 3-year moving average to control for mean reversion. The

Top 5 journals are the American Economic Review (AER), the Quarterly Journal of Economics (QJE),

the Journal of Political Economy (JPE), Econometrica and the Review of Economic Studies. We report

results for AER, QJE and JPE separately as these there journals are known to publish many applied

microeconometric studies.

when setting up event studies. We derive these three points formally, but discuss practical

implications and pitfalls along the way, making use of simple numerical examples to visualize

our claims.

First, researchers need to define the window for which the dynamic effects are studied.

We call this the effect window. While this choice is a practical necessity due to limited

data availability, it is far from being innocuous. Limiting the number of leads and lags to

a finite number requires the researcher to make assumptions about what happens beyond

the endpoints of the effect window. The last lag (lead) is often defined as an open interval

capturing all known events that (will) have happened in the past (future). We refer to this

practice as binning. We show that binning allows identifying the model econometrically by

separating the dynamic effects from the secular time trends even in the absence of never-

treated units. Intuitively, binning assigns the unit-year observations outside of the effect

window to the control group which pins down the secular time trends.

The literature has so far put little emphasis on the treatment of endpoints of the effect

window. Many studies have neglected the issue or discussed it not formally. Among the

studies published in the AER, QJE or JPE since 2010 that used event studies and speci-

fied an empirical model, only 15% provide information on what has been done at the ends

of the effect window. Among those 15%, researcher oftentimes discuss the treatment not
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formally, but only verbally, which aggravates reproducibility of results and might lead to

mistakes when implementing the specific model in a different context. Moreover, different

ways of treating endpoints of the effect window come along with different implicit parameter

restrictions. These restrictions are important as they determine whether a model is identified

econometrically and they affect the assignment of specific unit-year observations to treatment

and control group. Hence, they directly affect the treatment effect estimates. Our first con-

tribution is to highlight the importance of treating the endpoints of effect windows carefully

and transparently. We make the case that binning of endpoints is a convincing practice in

many institutional environments.

Second, we show that event study designs with binned endpoints and distributed-lag (DL)

models are equivalent. To be precise, the DL model is just a reparametrization of the ES

model with binned endpoints; event study estimates can be recovered from DL estimates by

properly normalizing the DL model and cumulating the post-treatment and pre-treatment

effects away from zero. This isomorphism provides an alternative, more transparent and

intuitive way to understand the role of parameter restrictions for identification. The isomor-

phism also offers the distributed-lag model as an alternative implementation in statistical

software which is less error-prone.

Third, we show that the simple event study can be generalized to account for multiple

events and/or events of different signs and intensities of the treatment. Such institutional

settings are common in public and labor economics. Consider, for instance, a sequence of

state-level minimum wage or tax reforms of different sign and sizes. In the past, DL models

were commonly recommended in such settings. We show that the equivalence result between

DL and ES models also holds in the general case and that correct binning is of particular

importance in such settings. Moreover, we discuss important modeling assumptions that are

necessary when applying event studies in environments with multiple, heterogeneous events.

In the final part of the paper, we demonstrate the practical relevance of our three contribu-

tions, replicating and expanding the study by Baker and Fradkin (2017), henceforth BF2017.

In the original paper, the authors suggest a neat way to measure worker search intensity based

on Google search data. BF2017 apply their new measure to test whether search intensity re-

sponds negatively to increases in the potential benefits duration (PBD) induced by state-level

reforms following the Great Recession. While their difference-in-difference estimates clearly

show the expected negative relationship, the original event study results are inconclusive.

We show that implementing the generalized event study design yields statistically highly

significant dynamic effects, which are well in line with the difference-in-difference estimates.

Hence, implementing our preferred specification of an event study design strengthens the

credibility of the novel measure of search effort suggested by Baker and Fradkin (2017) and
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provides even stronger support for their key empirical finding that PBD has a negative effect

on search effort.

Our paper is related to, but different from the recent methodological contributions focusing

on event study designs. Current research can be loosely grouped into two strands. The first

one deals with violations of the common trend assumption. Freyaldenhoven et al. (2019)

shows how to extend the standard event study design to account for unobserved confounders

generating a pre-treatment trend in the outcomes and still recover the causal effect of the

event. Roth (2019) shows that treatment effects can be biased conditional on passing the

flat pre-trend test. Malani and Reif (2015) point to the fact that non-flat pre-trends might

also be due to anticipation rather than unobserved confounders. The second strand of the

current methodological event study literature shows that standard event study specification

do not produce average treatment effects if treatment effects are heterogeneous across cohorts

(Abraham and Sun, 2018). This point is closely related to a current discussion on how

to correctly estimate average treatment effects in difference-in-difference models when the

treatment effects are heterogeneous (see Athey and Imbens, 2018; Borusyak and Jaravel,

2017; Callaway and Sant’Anna, 2018; de Chaisemartin and D’Haultfoeuille, 2019; Goodman-

Bacon, 2018a; Gibbons et al., 2019). Importantly, and as discussed in more detail in Section

2.2, our paper abstracts from these two current debates. Throughout the paper, we assume

that the common trend assumptions holds and that treatment effects are homogeneous across

cohorts (and groups). The first methodological contribution of our study is more basic as we

highlight practical pitfalls and potentially implausible implicit assumptions when setting up

an event study model under ideal conditions. Secondly, we put forward a sensible specification

that has been used in the form of distributed-lag models for a long time and, thirdly, we show

that the proposed specification is generalizable to institutional set-ups with multiple event

of various intensities.

The remainder of this paper is structured as follows. Section 2 introduces a standard

version of an event study design in the simplest institutional environment and discusses how

limiting the effect window and binning of endpoints imposes important parameter restrictions.

In Section 3, we show that the event study model is equivalent to a standard distributed-lag

model. In Section 4, we generalize the institutional environment and allow for multiple and

heterogeneous events across and within units. We show that event study designs can also be

used in such settings and discuss the additional adjustments and assumptions that need to be

made in these cases. In Section 5, we demonstrate the relevance of our methodological points.

We replicate and extend the study by Baker and Fradkin (2017) and further strengthen their

results. Section 6 concludes.
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2 Standard Event Study Design

In this section, we set up an event study model in the simplest institutional environment.

We refer to this model as the standard event study set-up throughout the paper. We use the

standard case to highlight the importance of introducing parameter restrictions to identify

the model. In Subsection 2.1, we demonstrate that restricting the effect window is a practical

necessity in applied work and advocate to bin the endpoints of effect windows. In Subsection

2.2, we show that binning of endpoints helps to overcome important underidentification

problems recognized in the literature.

2.1 Restricting the Effect Window

We start our analysis with a standard event study set-up, where each unit i = 1, ..., N receives

at most one single treatment at unit-specific time ei. All units may receive treatment at the

same time or treatment may be staggered over time with different units receiving treatment

at different points in time. The treatment effect may unfold dynamically over time, but

treatment effects are assumed to be homogeneous across cohorts unlike in Abraham and Sun

(2018). We seek to estimate the dynamic effects of this treatment on our dependent variable

yit, which we observe in a balanced panel at different time periods t = t, ..., t̄. We call [t, ..., t̄]

the observation window for the dependent variable. Importantly, we do not consider cases in

which we are faced with data gaps in our dependent or treatment variable.

In this set-up, the standard event study specification is given for all t = t, ..., t̄ by:

yit =
∞∑

j=−∞

βjdi,t−j + µi + θt + εit (1)

where dit = 1[ei = t] is an event indicator that takes the value 1 in the year of the treatment,

ei, and zero otherwise. Unit fixed effects are denoted by µi and time fixed effects by θt. The

parameter βj is the dynamic treatment effect j time periods after (j ≥ 0) or before (j < 0)

the event. All results derived in this paper also hold when the models include additional

exogenous control variables Xit.

Remark 1 (Normalization).

The parameters βj are only identified up to a constant due to the individual fixed effect µi.

Treatment effects βj are therefore typically expressed relative to some reference period, for

example one period prior to the event. The corresponding coefficient is normalized to zero,

e.g. β−1 = 0. In practice, the normalization is implemented by dropping the event indicator

for the reference period, typically di,t−1.
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The intuition behind Remark 1 is straightforward: adding a constant to βj for all j =

−∞, ...,∞ and subtracting the same constant from the unit fixed effect µi for units with an

event between −∞ and ∞ does not alter equation (1).

In practice, researchers have to impose restrictions on the effect window to implement

the event study design since βj can never be estimated from the infinite past to the infinite

future. Commonly, the effect window is restricted to a finite number of leads and lags. This

restriction goes along with an important, but often unstated assumption about the dynamic

treatment effects, which is summarized in the following Remark 2.

Remark 2 (Restricted effect window).

Restricting the effect window to a finite number of leads, j, and/or lags, j̄, requires assump-

tions about the nature of the effect outside of the window. It is often economically plausible

to assume that treatment effects stay constant before j and/or after j̄, i.e. βj = βj̄ for all

j > j̄ and βj = βj for all j < j. These assumptions should be explicitly stated and defended.

Importantly, restricting the effect window also affects identification of treatment effects

βj as discussed in Section 2.2 and Remark 4.

Applying Remark 2, we rewrite equation (1) as

yit = βj

j∑
j=−∞

di,t−j +

j̄−1∑
j=j+1

βjdi,t−j + βj̄

∞∑
j=j̄

di,t−j + µi + θt + εit

which simplifies to our preferred standard event study specification:

yit =

j̄∑
j=j

βjb
j
it + µi + θt + εit (2)

with

bjit =


∑j

s=−∞ di,t−s if j = j

di,t−j if j < j < j̄∑∞
s=j̄ di,t−s if j = j̄.

(3)

We refer to coefficients bjit as binned event indicators, as the indicators at the endpoints,

i.e. the maximum lag (lead) take into account all observable past (future) events going beyond

the effect window. The definition of endpoints in equation (3) is for example used in Smith

et al. (2017) and Fuest et al. (2018). Endpoints can be equivalently defined as b
j

it =
∑∞

s=t−j dis
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and bj̄it =
∑t−j̄

s=−∞ dis. Another commonly used, equivalent definition is given by

bjit =


1[t ≤ ei + j] if j = j

1[t = ei + j] if j < j < j̄

1[t ≥ ei + j] if j = j̄ .

(4)

By Remark 1, we drop the indicator for the period before the event, b−1
it and normalize

β−1 to zero.

2.1.1 Special cases of effect window restrictions.

As stated in Remark 2, it is possible to only restrict the effect window pre or post treatment.

For example, one could only restrict the effects prior to the event and allow the treatment

effect to continue indefinitely, i.e. j̄ →∞. In this case, and for a balanced panel in real time,

the length of the effect window is determined by the units that were treated first. j̄ is equal

to maximum number of periods between the observed outcome and an event. Clearly, not

all lags will be identified by all units in such a case, which might be problematic in terms of

statistical power and economic interpretation.

An extreme form of restricting the effect window is to assume that there are no effects prior

to the event and the effect is constant at and after the event. Hence yit = β bit + µi + θt + εit

where bit is a dummy variable which takes the value 1 at and after the event. This is a

standard difference-in-differences model with staggered treatment, which may be written as

yit = β Treati · Postit + µi + θt + εit, where Treati is a dummy variable indicating whether

unit i was treated at some point, and Postit is a dummy variable indicating whether unit

i was treated in or before period t. Then, β is the average treatment effect relative to the

pre-treatment period under the assumption of homogeneous treatment effects across cohorts

and groups.

Another type of restriction, which is sometimes seen in the literature, is to restrict the effect

window but without binning of endpoints. Such a model implicitly assumes that treatment

effects drop to zero outside of the effect window – an assumption which is typically hard to

defend (cf. the replication exercise in Section 5).

2.1.2 Data Requirements

Due to the leads and lags of the effect window, we need to observe the treatment variable for

a longer observation window than the dependent variable. Restrictions on the effect window

determine the requirements on data availability for dependent variable yit and treatment

indicator dit. In many applications, the treatment indicator dit is generated from some
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variable that reports the status of the treatment, for example the level of tax rates or of

minimum wages. We call such a policy variable the treatment status xit. Hence dit =

xit − xi,t−1.

In the following remark, we summarize the data requirements for a given observation

window of the dependent variable.

Remark 3 (Data requirements).

For a given balanced panel of the dependent variable from [t, t̄] and a limited effect window

[j, j̄], we need to observe events from t − j̄ + 1 to t̄ + |j| − 1. If events are derived from

changes in policy variables we need to observe treatment status from t− j̄ to t̄+ |j| − 1. The

following figure visualizes the required width of the observation window for a given limited

effect window.

t− j̄ t t̄ t̄+ |j|

Observation window for dependent variable, yit

Observation window for treatment indicator, dit

Observation window for treatment status, xit

To understand the intuition behind Remark 3, it is first important to note that an event

that happens before t, i.e. the first data year of the dependent variable, can affect the outcome

like any other event happening between t and t̄ and needs to be taken into account. Likewise,

we should account for events that happen after t̄ if we want to test for pre-trends. This

rationale prompts the second question of how long before t and after t̄ we need to observe

events. By Remark 2, treatment effects are constant after j̄ and before j periods. Hence,

we need to observe events at least from t − j̄ to t̄ + |j|. Remark 3 states that it suffices to

observe events in one fewer year at each end of the data window, hence from t − j̄ + 1 to

t̄+|j|−1. To see this, consider a case where the event takes place at t− j̄. Due to the binning,

the treatment indicator bj̄it will be equal to one for this unit for all t. Conditional on unit

fixed effects, this unit cannot be used to identify treatment effects. An analogous argument

applies at the other end of the data window. If we generate event dummies from changes in

policy states, the observation window for the treatment status needs to be observed for an

additional period in the beginning, hence from t− j̄ onwards.

The top left panel of the numerical example shown in Section A.1 shows the construction

of the binned treatment indicator in practice. The matrix immediately demonstrates the need

9



for normalization (cf. Remark 1) as all row sums in the left matrix are equal to one. Binning

also implies that if the reform had happened on or before t = t− j̄ = 2000−4 = 1996 (rather

than in t = 2005 as assumed in the example), bj̄it = b4
it = 1 for all t from 2000 to 2010. In this

case of an always-treated unit, bj̄it = b4
it is a constant and its effect is absorbed in the unit

fixed effect µi. By the analogous argument, events on or after t = t̄+ |j| = 2010 + 3 = 2013

imply b
j

it = b−3
it = 1 for all t from 2000 to 2010 whose effect is absorbed in µi. It therefore

suffices to know all events from time period t − j̄ + 1 = 1997 to t = t̄ + |j| − 1 = 2012 to

estimate the model, see Remark 3.

2.2 Identification

It is important to assure that the model is econometrically identified such that the dynamic

effects βj are distinguished from secular time fixed effects θt. Throughout the paper, we

understand identification as the purely mechanical recovery of the coefficients of interest

β and not their causal interpretation. Borusyak and Jaravel (2017) nicely show that with

an infinite effect window, [j, j̄] = [−∞,∞], the dynamic effects are only identified up to

a linear trend. The argument can be easily replicated using our notation in equation (1):

yit =
∑∞

j=−∞ βjdi,t−j + µi + θt + εit =
∑∞

j=−∞(βj + λ · j)di,t−j + (θt − λ · t) + µ̃i + εit

where µ̃i = µi +λ · ei.3 Hence, adding a linear trend λ · j to the dynamic treatment effects

and adding the opposite linear trend −λ · t to the secular time fixed effects θt does not affect

the estimates of the model. The underidentification arises because all units are treated at

some point and
∑∞

j=−∞ j di,t−j =
∑∞

j=−∞ j 1[t = ei + j] = t − ei for all units i and all time

periods t.4 The presence of never-treated units would clearly solve the identification problem.

However, observing a unit not be treated does not imply that this unit is never-treated.5

In practice, this underidentification can easily be overlooked as many statistical packages

automatically drop regressors in the case of multicollinearity. A non-identified linear trends

leads to dropping either one event dummy or one time dummy.

In the following section, we discuss how to deal with this underidentification problem in

the absence of never-treated units. First, in Subsection 2.2.1, we show that restricting the

effect window by Remark 2 gives rise to a natural solution. Second, in Subsection 2.2.2, we

3 Because
∑∞

j=−∞(λ · j · di,t−j − λ · t+ λ · ei) = λ
∑∞

j=−∞(j · 1[j = t− ei]− t+ ei) = 0.
4 Assuming that all units are potentially treatable, each unit will be treated at some point with a infinite

time horizon, i.e. t = ei + j for some t.
5 A unit could have been treated before or after the observed sample period or even in the yet unrealized

future. When treatment effects are allowed to have effects into the infinite future (or affect the infinite past),

no unit is known to be never-treated with certainty. If a unit cannot possibly be treated, it is unlikely to

serve as a valid control group for causal inference.
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discuss identification when the sample is also restricted in event time.

2.2.1 Restricted Effect Window

As introduced above, we are faced with a panel, in which units i receive a single treatment

at unit-specific event time ei. We argue that restricting the effect window as proposed in

Remark 2 introduces restrictions that allow separately identifying dynamic effects, βj, and

secular time trends, θt.

Remark 4 (Identification and restricted effect window).

Unit-year observations outside of the effect window serve as control group observations. The

length of the effect window hence directly affects identification and helps to separately identify

dynamic treatment and secular time fixed effects.

To see how restricting the effect window can help identification, let us formally reconsider

the underidentification results by Borusyak and Jaravel (2017). Restricting the effect window

as in Remark 2 leads to our equation (2), yit =
∑j̄

j=j βjb
j
it+µi+θt+εit. Here,

∑∞
j=−∞ j di,t−j =∑∞

j=−∞ j 1[t = ei + j] = 0 6= t − ei for time periods t outside the effect window, i.e. if

t < ei− |j|+ 1 or t > ei + j̄. Adding a linear trend λ · j to the restricted number of dynamic

treatment effects is therefore not offset by adding a linear trend to the secular time trend for

the observations outside of the effect window. These observations serve as a control group

and help to pin down secular time trends. Restricting the effect window may even produce

units i for which all treatments happen outside of the observation window for the treatment

variable (see Remark 3). Such units are never-treated in the observed sample and hence also

serve as a control group. Hence, binning of endpoints allows for identification with or without

the presence of never-treated units.

In Appendix B, we present intuitive and highly stylized examples demonstrating how

identification is achieved technically. To summarize, the model is econometrically identified

if two conditions are fulfilled: (i) for each lag/lead j, there is at least one unit i with an

observation j periods after/before the event; (ii) for at least one endpoint (j or j̄) observed

for some unit i in some period t, there is at least one other unit ` 6= i, which is outside of its

effect window in the same period t. Condition (ii) is automatically satisfied in the presence

of at least one never-treated unit. Condition (i) identifies all other effects either from a direct

comparison with a control group or from an iterative comparison of effects. The identified

endpoint allows backing out all other treatment effects and all time fixed effects iteratively –

akin to the econometric identification in staggered treatment difference-in-differences designs.
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2.2.2 Restricted Sample in Event Time

A common alternative to binning the event dummies di,t−j at the endpoints j and j̄, is

to restrict the sample to observations of the dependent variable within the effect window.

Hence, for each unit i, only observations in periods t with ei − |j| ≤ t ≤ ei + j̄ are used.

In such a sample, bjit = di,t−j for all j including the endpoints j and j̄. In our numerical

example in Appendix Section A.1, the sample would only span the years 2002 to 2009. Hence,

binning would have no effect on the estimates. However, in such a restricted sample, dynamic

treatment effects are only identified up to a linear trend because yit =
∑j̄

j=j βjdi,t−j + µi +

θt + εit =
∑j̄

j=j(βj + λ · j)di,t−j + (θt − λ · t) + µ̃i + εit where µ̃i = µi + λ · ei. The identity

holds because
∑j̄

j=j j di,t−j =
∑j̄

j=j j 1[t = ei + j] = t− ei for all i and all t which are here in

the effect window, i.e. t− |j| ≤ t ≤ t+ j̄.

There are three possibilities to overcome this inherent underidentification issue in a sample

restricted in event time. First, never-treated units could be included. Second, the effect

window could be restricted to be shorter than the observation window. Then identification

is again achieved as described in Remarks 2 and 4. The third option is to sacrifice unit

fixed effects.6 Clearly, this comes at the price of not controlling for unobserved time-constant

individual factors otherwise absorbed in µi. Hence, this practice is akin to estimating a

single-difference specification: yit = β Treati · Postit + θt + εit.

3 Event Studies and Distributed-lag Models

In this section, we show that event study (ES) models with binned endpoints and distributed-

lag (DL) models yield identical parameter estimates. In Subsection 3.1, we formally demon-

strate under which restrictions ES and DL models yield equivalent dynamic treatment effects.

In Subsection 3.2, we discuss the practical implications of this isomorphism and argue that DL

models are easier to implement and less-error prone. In Appendix Section A.1, we illustrate

all formal claims using a simple numerical example.

3.1 Equivalence

We start by showing the equivalence of event study and distributed-lag models in the general

case without binning of endpoints. Taking first differences of the standard event study specifi-

6 In the absence of unit fixed effects µi, adding a linear trend to both dynamic effects and secular time trend

changes the constant as as yit = α+
∑j̄

j=j βjdi,t−j+θt+εit = (α−λ·ei)+
∑j̄

j=j(βj+λ·j)di,t−j+(θt−λ·t)+εit.

Dynamic effects and secular trends are therefore separately identified at the price of not controlling for

unobserved time-constant individual factors.
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cation given in equation (1), we can rewrite the event study specification into a distributed-lag

model:

∆yit = yit − yi,t−1

=
∞∑

j=−∞

βjdi,t−j −
∞∑

j=−∞

βjdi,t−1−j + φt + ∆εit

=
∞∑

j=−∞

βjdi,t−j −
∞∑

j=−∞

βj−1di,t−j + φt + ∆εit

=
∞∑

j=−∞

γj di,t−j + φt + ∆εit

=
∞∑

j=−∞

γj∆xi,t−j + φt + ∆εit (5)

where γj = βj −βj−1 and φt = θt− θt−1 are time fixed effects and the event indicator di,t−j is

the first difference ∆xi,t = xit − xi,t−1 of the treatment status xit. In the standard case with

a single binary treatment, the treatment status xit is a dummy variable with an arbitrary

constant as initial value, for example zero, that increases by 1 if an event occurred in period

t. Parameters γj are the incremental changes of the treatment effects βj, measuring the slope

of treatment effects from one time period to the next. The distributed-lag specification in

equation (5) is the first difference of the following distributed-lag specification in levels

yit =
∞∑

j=−∞

γj xi,t−j + µi + θt + εit (6)

where µi denotes unit fixed effects. Note that the distributed-lag specification is either a

regression of levels on levels (eq. 6) or of changes on changes (eq. 5) while the event-study

specification is a regression of levels on (binned) changes (eq. 2).

We proved the equivalence between event study and distributed-lag models in the general

case without restricting the effect window. Next, we show that the equivalence between

ES and DL models for restricted effect windows holds only if endpoint are binned as in

Remark 2. The distributed-lag parameters γj are related to the event study parameters βj

by γj = βj − βj−1. Binning the upper endpoint, βj = βj̄ for all j > j̄, is therefore equivalent

to assuming that γj = 0 for all j > j̄; for the lower endpoint βj = βj for all j < j is equivalent

to γj = 0 for all j ≤ j. The event study model with restricted effect window between j and

j̄ and binned endpoints

yit =

j̄∑
j=j

βjb
j
it + µi + θt + εit (7)
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is therefore equivalent to a distributed-lag specification with j̄ lags and |j| − 1 leads

yit =

j̄∑
j=j+1

γjxi,t−j + µi + θt + εit (8)

Without binning, ES and DL specifications are based on different parameter restrictions

and yield different parameter estimates. We summarize this result in the following remark:

Remark 5 (Equivalence of Event Study and Distributed-Lag Model).

The event study specification with an effect window limited to j̄ periods after and |j| periods

before the event given by equation (2) is equivalent to a distributed lag models with j̄ lags

and |j| − 1 leads as given by equation (8) if the endpoints of the effect window are binned

according to equation (3).

It is important to note that distributed-lag coefficients measure treatment effect changes,

such that one fewer lead has to be estimated: we include leads and lags running from γj

from j + 1 (not j as in the event study design) to j̄. Then event study parameters βj

can be calculated from the distributed-lag parameters γj by using the difference equation

βj = βj−1 + γj. The starting point for this difference equation is given by the normalization

in Remark 1. Normalizing to one period prior to the effect, i.e. β−1 = 0, treatment effects βj

can be uniquely recovered as

βj =


−
∑−1

k=j+1 γk if j ≤ −2

0 if j = −1∑j
k=0 γk if j ≥ 0.

(9)

We summarize this result in the following remark:

Remark 6 (Recovery of treatment effect from the distributed-lag model).

Dynamic event study treatment effects βj are recovered from distributed-lag parameters γj

as cumulative sums starting from a reference period, typically the period prior to the effect,

according to equation (9).

As in the event study model, we need a normalization in the distributed-lag model since

parameters βj are only identified up to a constant due to the individual fixed effect µi (cf.

Remark 1). Equation (9) shows how to recover the dynamic treatment effects βj as the

cumulative sums of distributed-lag parameters γj. Concretely, for post-treatment effects

j > −1, we intuitively cumulate upwards: βj = βj−1 + γj with β−1 = 0. Importantly, for
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pre-treatment effect j ≤ −1, we cumulate downwards with a negative sign: βj = βj−1 − γj−1

with β−1 = 0. For instance, β−2 = −γ−1; we must not assume γ−1 = 0.7

3.2 Practical Implications

The equivalence formally defined in Remark 5 has various implications when applying event

study or distributed-lag models in practice. We briefly discuss the most important ones in

the following subsection.

Model choice. The estimates of the event study parameters and corresponding cumulative

distributed-lag parameters are numerically equivalent. The choice of the model is therefore

purely a question of convenience, yet there are some practical (dis-)advantages for both

models to be discussed below.

Binning vs. cumulating. In the event study design, treatment variables have to be binned

at the endpoints of the effect window according to equation (3). Consequently, the event

study model delivers direct estimates of the dynamic treatment effects and therefore read-

ily interpretable parameters. In contrast, the coefficients from the distributed-lag model

γ = [γj+1, ..., γj̄]
′ have to be cumulated following equation (9) to obtain the event study

parameters β = [βj, ..., β−2, β0, ...βj̄]
′. This linear transformation transfers the statistical

properties (consistency and asymptotic normality) of γ̂ to the calculated β̂. Standard er-

rors of β̂j can be calculated from the variances and covariances of the vector γ̂ by the usual

formula for linear combinations and are identical to the direct event study estimates.

Misspecification due to missing data. While the data requirements (cf. Remark 3) for

the distributed-lag model are by Remark 5 identical to the ones in the event study model,

they are more transparent in the DL specification. The distributed-lag model with restricted

effect window given in equation (8) reveals immediately that treatment status xit needs to be

observed from period (t− j̄) to (t̄+ |j| − 1) and hence treatment dummy dit from (t− j̄ + 1)

to (t̄+ |j| − 1). In the distributed-lag model, a shorter observation window for the treatment

variable will lead to missing values in leads and/or lag, which automatically reduces the

estimation sample. In case the data contains event indicators di,t, the treatment status xit

has to be generated according to: xit = xi,t−1 + ∆xi,t = xi,t−1 + di,t. The starting value

for the treatment status xi,t−j̄ will be absorbed by the individual fixed effects µi and can

be set to an arbitrary number, typically zero. In contrast, in the event study model, a too

7 In our example 1 with effect window from j = −3 to j̄ = 4, the coefficients are β−3 = −(γ−1 + γ−2),

β−2 = −γ−1, β−1 = 0, β0 = γ0, β1 = γ0+γ1, β2 = γ0+γ1+γ2, β3 = γ0+γ1+γ2+γ3, β−3 = γ0+γ1+γ2+γ3+γ4.

15



short observation window is easily overlooked when binning of endpoints, which might lead

to a bias if events happened in the time interval between [(t − j̄), t] and/or [t̄, (t̄ + |j| − 1)]

(cf. Remark 3). For this reason, we argue that implementing the distributed-lag model is less

error-prone.

Fixed effect vs. first difference estimator. Both the event study model in equation (2)

and the distributed-lag model in equation (8) are panel data models including unit and time

effects. The parameters β or γ can be estimated either with standard fixed effects estimation

in levels or in first differences. Both estimators are consistent and asymptotically normal

under standard assumptions for panel data models. In finite samples, the estimates obtained

with the fixed effect estimator differ from the ones obtained with the first difference estimator.

The deviation between fixed effects and first difference estimation is small if the dynamic

nature of the effect is modeled correctly, i.e. if the effect is truly constant j̄ periods after the

event. If, however, the true treatment effect continues to unfold beyond j̄, fixed effects and

first difference estimates can differ strongly. As an example, assume that the true treatment

effect is negligible at and shortly after treatment and only materializes after several post-

treatment periods. Further assume, that the researchers includes too few post-treatment

parameters to capture the full treatment effect. In this case, the first difference estimator

will be close to zero while the fixed effect estimator will pick up some average of the delayed

response. Both estimator will clearly underestimate the true long-term response. In contrast,

if the number of lags is specified such that the treatment effect has fully materialized within

the effect window (cf. Remark 2), both the fixed effects and the first difference estimator will

correctly pick up the dynamic effects and correctly estimate the long-run effect.

4 Generalized Event Study Design

In many applications, treatment may occur repeatedly and be of different intensities across

units and/or time. In this section, we show that the standard event study design can be

generalized to accommodate institutional set-ups where multiple events with known but

varying treatment intensity take place. We formally derive the generalized event study in

Subsection 4.1. Subsection 4.2 discusses four typical institutional environments in which

the generalized event study can be applied. Appendix Section A.2 provides an empirical

numerical example visualizing such a case.
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4.1 Set-up and Equivalence in the Generalized Design

In the following, we set up a generalized event study design that can be used in case of

multiple events of identical intensity, single events with varying treatment intensity, and

multiple events of different intensities. The set-up also nests the standard event study design

set up in Section 2 as a special case.

In the generalized design, the treatment variable is defined as the change in the treatment

status ∆xit = xit − xi,t−1. In other word, the treatment variable measures the exact size of

a change in a certain policy variable (e.g. a tax rate) from unit t − 1 to unit t. In contrast,

the treatment variable in the standard design is a dummy indicating that any change in the

policy variable happened.

It is easy to see that the equivalence between event study designs and distributed-lag

models shown in Section 3.1 also holds in the general case. The standard event study design

with infinite event windows shown in equation (1) becomes:

yit =
∞∑

j=−∞

βj∆xi,t−j + µi + θt + εit (10)

where ∆xit = xit − xi,t−1.

Taking first differences of equation (10) and rewriting yields the distributed-lag model

∆yit =
∞∑

j=−∞

γj∆xi,t−j + φt + ∆εit (11)

where γj = βj − βj−1. The distributed-lag model in levels is given by

yit =
∞∑

j=−∞

γj xi,t−j + µi + θt + εit. (12)

The event study specification given in equation (10) is a regression of levels (yit) on changes

(∆xit) which may look disturbing. However, it is derived from the equivalent distributed-lag

model in levels which is a completely intuitive regression of levels (yit) on levels (xit). The

event study specification just takes care of the re-parametrization and directly delivers the

cumulative effects βj rather than the incremental effects γj.

When restricting the effect window to j̄ periods after and j before the event, the generalized

event study in levels is given by:

yit =

j̄∑
j=j

βjc
j
it + µi + θt + εit (13)
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where binned treatment variables cjit are easily generated analogously to the definition for

binned treatment dummies in (3):

cjit =


∑j

s=−∞∆xi,t−s if j = j

∆xi,t−j if j < j < j̄∑∞
s=j̄ ∆xi,t−s if j = j̄.

(14)

Note that the more common definition in (4) cannot be generalized, which is why we prefer

the more versatile event indicator definition given in equations (3) or 14. The analogous

distributed lag model is

yit =

j̄∑
j=−j+1

γj xi,t−j + µi + θt + εit. (15)

Remark 1 on normalization, Remarks 2 and 4 on restricting the event window, Remark 3

on data requirements and the practical implications in Section 3.2 on estimating the event

study vs. the distributed-lag models also hold in the general case.

Importantly, estimating dynamic treatment effects using the generalized event study only

produces unbiased estimates under a linearity and additivity assumption, which is summa-

rized in the following remark.

Remark 7 (Applicability of the Generalized Event Study Design).

Assuming that the treatment effect is proportional to the observed treatment intensity, the

generalized event study described by equations (13) and (14) delivers unbiased estimates of

the dynamic treatment effect. Treatment effects can also be estimated using a distributed-lag

models as specified in equation (12).

As the generalized event study specification incorporates the intensity of treatment, esti-

mated effects can be interpreted as the effect of a one-unit increase akin to the interpretation

in a generalized differences-in-differences model. This way, event study estimates can be used

to infer long-term effects on an intuitive scale.

4.2 Typical Cases and Applications

In this subsection, we discuss typical cases of the generalized event study design and provide

selected examples from recently published applications.

Case 1: Single Events of Identical Intensity. This is the standard case discussed in

Section 2.
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Case 2: Multiple Events of Identical Intensity. Consider the case in which events of

identical intensity take place repeatedly for a unit. Using definition (14), this implies that

∆xit = dit is an event dummy that takes value 1 in any period where an event took place and

0 in other periods (see Appendix C.1 for a numerical example). Few analyses have applied

event studies in such an institutional context (see Dube et al., 2011, for an exception).

However, many institutional set-ups, such as hospital admissions or firm switches, fit the

model. Sometimes, only the first of potentially many events is considered in a standard

event study framework as developed in Section 2. This approach leads to biased estimates

unless the second and subsequent events are known to have no additional effect at all.

Case 3: Single Events of Varying Treatment Intensity. Next, consider the case

where each unit receives one treatment, but treatment intensity si differs across units, hence

∆xit = dit · si in definition (14). A numerical example is given in Appendix C.2. This case is

quite frequently applied as it fits an institutional setting where a shock at some aggregate level

hits units at a disaggregate level with different intensities (see, e.g., Alsan and Wanamaker,

2018; Charles et al., 2018; Clemens et al., 2018; Goodman-Bacon, 2018b). Many applications

of this type formally refer to the standard event study model but discuss generalization and

treatment of endpoints only verbally if at all.

Case 4: Multiple Events of Different Intensities and Direction. Last, we consider

the most general case, developed in Section 4.1, in which events may occur multiple times

per unit and their treatment intensity differs both across individuals and across events. A

numerical example is given in Appendix Section A.2. There are many settings that fit this

model, such as multiple tax changes or minimum wage hikes, and correspondingly many

applications. Traditionally, the respective models were framed as distributed-lag models

rather than event study designs (Suárez Serrato and Zidar, 2016; Drechsler et al., 2017;

Fuest et al., 2018).

A special case is when events have a different direction. Assume that dit is a variable

that takes the value 1 in periods with a “positive” treatment, value −1 in periods with a

“negative” treatment and value 0 in periods without a treatment. The parameter βj estimates

the average effect j periods after the event of all “positive” treatments and – with reversed

sign – all “negative” treatments. In other words, the effects of “positive” and “negative”

treatments are assumed symmetric with opposing signs. A typical example would be the

introduction of a new law in some period and the abolition of the law in some later period, or

the opening and closing of plants across regions. We are not aware of any recent application

of this case.
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4.3 Dichotomizing treatment variables.

A common alternative empirical specification used when treatment effects are of different

sizes is to dichotomize treatment variables and use a dummy variable that is only switched

on for large events (see, e.g., Simon, 2016; Fuest et al., 2018). However, the parameter

estimates of such a dichotomization are harder to interpret both in magnitude and direction.

To see this, consider the following case: each unit is treated once, there are two types of

treatment: a small reform dsit = 1 or a large reform d`it = 2; treatments are distributed

randomly in time and treatment effects are linear in the intensities of the reform. Ignoring

small events and applying the standard event dummy set-up yields dsit = 0, d`it = 1. In this

case, units with small reforms become part of the the control group although they respond

to the reform. This induces a bias in the time fixed effects and thereby also in the treatment

coefficients. Depending on the elasticity of the treatment effect with respect to the reform

intensity, the share of large vs. small reforms and the size of the effect window relative to the

observation window, it is possible that estimates in the model only using the large reforms can

be larger, smaller or identical to the model using all reforms. A possible fix for this ambiguity

is to exclude units with small events from the sample, in which case, the model is, however,

estimated on a different and possibly selective sample. Moreover, the dichotomization of the

treatment variable eliminates valuable information which could otherwise be used to identify

the magnitude of the effect.

5 Replication

In this section, we demonstrate the relevance of the results derived in Sections 2 to 4 by repli-

cating and extending the study by Baker and Fradkin (2017) (BF2017). We will particularly

focus on the importance of restricting the effect window and on the power of the generalized

event study design.

BF2017 makes an important contribution to the literature on search models and unem-

ployment insurance (UI) by proposing a novel way to measure job search effort using Google

Search data. Job search is a key parameter in theoretical search and matching models but it

is notoriously difficult to quantify and measure precisely. The proposed Google Job Search

Index (GJSI) is a convenient and broadly applicable way to operationalize job search in

empirical studies. In the last part of the study, BF2017 apply their novel measure and

test whether job search behavior responds to changes of potential benefit duration (PBD)).

Theoretically, we would expect a negative effect of extended PBD on search behavior.

Empirically, the authors exploit variation in unemployment insurance generosity across
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US states and time, and regress the Search Index on PBD in a state-month panel. They

first estimates a simple differences-in-differences model (reported in Table 7 of their paper),

in which they regress GJSI (in logs) on PBD (in weeks) controlling for state and time fixed

effects, state-specific quadratic time trends, state-level total unemployment (second order

polynomial) and the fraction of the population in the labor force. The results clearly indicate

the expected negative effect of potential benefit duration on job search. In the preferred

specification (4), they find a highly significant estimate of −0.00207, which implies that a

ten week increase in UI benefits leads to 2.07 % drop in aggregate job search.

In a next step, the authors analyze the dynamics of the relationship by implementing an

event study design. We recast their preferred event study model in our notation as:

lnGJSIit =
4∑

j=−3

βjdi,t−j + w′itξ + µi + θt + εit, (16)

where GJSIst is the the natural logarithm of the Google Job Search Index in state i and

period t (year-month), di,t−j is an indicator variable that indicates whether PBD in state i

was changed j ∈ [−3, 4] month before or after t. Parameter µi captures state fixed effects

and θt denotes period fixed effects. The vector wit captures state-year specific covariates.

BF2017 control for the number of unemployment insurance claims in state i and period t

(month-year) divided by state population.

Changes in PBD happen frequently and with different intensities across US states over

time. The authors analyze PBD increases and decreases in separate regressions and for

different time windows. Increases of PBD mainly occurred during the Great Recession up

to 2011 while, decreases occurred thereafter. BF2017 consequently investigate the effects

of PBD increases using data from January 2006 to December 2011 and the effects of PBD

decreases using data from January 2012 to December 2015; we refer to the former as the

“crisis sample” and the latter as the “recovery sample”. For both increases and decreases,

BF2017 only focus on large changes. For increases, dst is equal to 1 if PBD in state i and

period t (year-month) has increased by 13 weeks or more; for decreases, the dummy dit is

switched on for decreases of 7 weeks or more. In the respective models, the event indicator

dit is zero if (i) no change happened, (ii) a change of the same sign but with smaller absolute

size occurred, or (iii) the state adjusted PBD in the respectively opposite direction. The

results from these specifications are presented in specifications (3) and (5) of BF2017-Table 8

and BF2017-Figure 4.8

8 In columns (1), (2), (4) of Baker and Fradkin (2017)’s Table 8, the authors estimate different specifica-

tions, in which they focus on the largest single change observed within a state, exclude observations when

other changes happen within this largest event’s window and/or match control state-time-periods for the
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In BF2017’s sample, states experience up to five large increases in the crisis and seven

large decreases in the recovery sample. In Panels A and B of Figure 2, we replicate the main

event study results for large increases and large decreases on the two respective samples

estimating equation (16). Our results are identical to the original version. Unlike the results

from differences-in-differences model, the BF2017 event study estimates do not point to a

strong negative relationship between search effort and PBD. However, the results depicted

in Panel A of Figure 2 are based on strong implicit assumptions and parameter restrictions

embodied in equation 16, which speak directly to our main points raised in the previous

sections. While the empirical model looks like a classic event study design and therefore

innocuous at first sight, event indicators dit are not binned at the endpoints (cf Remark 2)

and no coefficient is normalized to zero (cf Remark 1). This implies that treatment effects

are implicitly normalized to be zero four and more periods before the event as well as five and

more periods after the event, i.e. βj = 0 for all j ≤ −4 and for all j ≥ 5. In particular, the

assumption β5 = 0 is very strong since it assumes that the effect builds up over 4 years and

then immediately drops to zero (cf. Remark 4). In contrast, binning of endpoints assumes

that the effect builds up over 4 years and stays constant thereafter which is an assumption

more in line with the theoretical priors.

Next, we estimate equation (16) as an event study model with restrictions suggested in

Sections 2.1 and 4. We bin endpoints according to Remark 2 and we normalized the pre-event

coefficient β−1 = 0 according to Remark 1. As events can occur several times per state in our

application, this leads to Case 2 “multiple events of identical intensity” in our Section 4.2.

The β-coefficients can be estimated by creating binned treatment indicators at the endpoints

j = −3 and j = 4 according to equation (3). Alternatively, γ-coefficients can be estimated

in a distributed-lag model with 4 lags and 2 (not 3) leads and β-coefficients can be recovered

according to equation (9). The two methods are equivalent and lead to identical parameter

estimates and standard errors as shown in Remark 5. The choice of the estimation method

is purely a question of convenience as explained in Section 3.2. Panel B of Figure 2 shows

results with binned endpoints and normalized pre-event period. Different from the original

results in Panel A, large increases of potential benefit duration (PBD) have a negative effect

on job searches building up over 4 months and becoming statistically significant at the 5%-

level 3 and 4 months after the increase. The long-term effect is estimated as −0.036 (s.e. =

0.012), i.e. a fall in job searches by 3.6% for every large increase in potential benefit duration

by 13 weeks or more. There are no significant effects prior to the large increase in PBD

indicating that the parallel trends assumption is satisfied prior to the treatment. Hence,

respective largest changes without any PBD decrease. While we replicate the results in our programs posted

online, we only focus on Baker and Fradkin (2017)’s preferred models here.
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Figure 2: Baseline Results and the Role of Binning

Panel A: No binning and no normalization at −1 (Baker and Fradkin, 2017)

Large increases, crisis sample

-.0
2

0
.0

2
.0

4

Ef
fe

ct
 o

n 
lo

g 
se

ar
ch

 in
te

ns
ity

 

-3 -2 -1 0 1 2 3 4
 

Months relative to reform
 
Observations: 3672, states: 51, periods: 72 (1/2006 - 12/2011).

Large decreases, recovery sample

-.0
2

0
.0

2
.0

4

Ef
fe

ct
 o

n 
lo

g 
se

ar
ch

 in
te

ns
ity

 

-3 -2 -1 0 1 2 3 4
 

Months relative to reform
 
Observations: 2448, states: 51, periods: 48 (1/2012 - 12/2015).

Panel B: Binning and normalization at −1 (own calculations)
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Observations: 2346, states: 51, periods: 46 (1/2012 - 10/2015).

Notes: The figure replicates and extends the main event study estimates reported in (Baker and

Fradkin, 2017), BF2017. The graphs show point estimates and 95%-confidence intervals based on

standard errors clustered by states. Graphs in Panel A replicate the estimates reported in specifications

(3) and (5) of BF2017-Table 8 and plotted in the two panels of BF2017-Figure 4. The left graph in

Panel A plots the dynamic effect of large increase (at least 13 weeks) in potential benefit duration

(PBD) on log search intensity as measured with the newly proposed Google Job Search Index (GJSI).

States that experiences no changes in a certain months or smaller changes, including negative ones

are in the control group. The right graph in Panel A shows the analogous results for large PBD

decreases (at least 7 weeks). Panel B extends the original specifications by binning endpoints of the

effect window according to Remark 2 and by normalizing the effect at the pre-event period to zero

according to Remark 1. All models are estimated in levels with state and time fixed effects.
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the estimated dynamic treatment effects are fully consistent with the simple difference-in-

differences estimation. In contrast, the large decreases occurring during the recovery period

after the Great Recession do not seem to have a systematic effect on search intensity as shown

in subgraph B2.

Note that the number of observations differs between Panels A and B of Figure 2. This

is due to obeying the data requirements for observations windows for the dependent variable

and the treatment status as stipulated in Remark 3. For increases, i.e. the crisis sample, the

observation window for the dependent variable runs from 1/2006 to 12/2011. For the last

month (12/2011), we are able to generate all leads up until j = −3 as we observe treatment

status until 12/2015. However, at the beginning of the observation window, we can calculate

the first binned endpoint for a specification with four lags b4
it in 5/2006. Consequently,

our sample is j = 4 periods shorter and 4 · 51 = 204 observations smaller. An analogous

argument applies for the decrease specification and the corresponding recovery sample. Here,

BF2017 set the observation window for the dependent variable from 1/2012 to 12/2015. Given

that we observe treatment status from 1/2006, we can generate all lags at time 1/2012.

However, we cannot generate all leads in 12/2015. Following Remark 3, we have to shorten

our estimation sample by j̄ − 1 = 2 periods. The sample is automatically reduced to the

correctly shortened observation window when the distributed-lag model is estimated as we

discuss in Section 3.2. By estimating the models on the respective larger samples, Baker and

Fradkin (2017) implicitly assume that there are no changes in the PBS prior to 1/2006 and

after 12/2015, which might be true, but would need to be demonstrated or at least explicitly

assumed.

In their event study, BF2017 follow standard practice and dichotomize the changes in the

PBD into a zero-one treatment dummy, which is only switched on for large reforms. While

Panel B of Figure 2 shows that binning endpoints leads to convincing event study coeffi-

cients, which match the difference-in-differences estimates, the zero-one models do not use

all available information. First, increases and decreases are estimated in two separate models

(and samples). Second, smaller changes are ignored and used as control group observations,

i.e. untreated observations. In the following, we therefore estimate a generalized event study

design of Case 4 that exploits all available variation. Moreover, we estimate the model on

the full sample, merging the “crisis” sample (1/2006 – 12/2011) and the “recovery” sample

(1/2012 – 2015).

As described in equations (13) and (14), all events are scaled with the respective treatment

intensities, i.e. the changes in PBD of different magnitudes. The resulting left graph in Figure

3 shows a strong and more precisely estimated negative effect of potential benefit duration

(PBD) on job search effort (GJSI). Pre-trends are reasonably flat and never significantly
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Figure 3: Generalized Event Study Design
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Observations: 5814, states: 51, periods: 114 (5/2006 - 10/2015).
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Observations: 3468, states: 51, periods: 68 (5/2006 - 12/2011).

Notes: The figure plots the results when applying the generalized event study as defined by equations

(13) and (14) to the setting in (Baker and Fradkin, 2017). The graphs shows the dynamic effect of an

increase the potential benefit duration by one week on log search intensity as measured by Google Job

Search Index (GJSI). 95% confidence intervals are plotted.

different from zero, which corroborates the parallel trend assumption of the research design.

As expected confidence bands are much tighter as this specification uses all available variation

in the data to identify the policy effects. In terms of magnitude, a 10-week increase in

potential benefit duration leads to a decrease in log job search activity of -0.027 (s.e. =

0.007), i.e. 2.7%, after 4 months. Conventionally, the estimates of the generalized event

study design are measured on the same scale as simple difference-in-differences model and

can be readily compared (see below for more details).

Merging crisis and the recovery samples is not per se the right thing to do. The generalized

event study relies on the assumption that treatment effects are proportional to observed

treatment intensities as stated in Remark 7. In the context of the replication, the remark

implies symmetry between increases and decreases. It is crucial to test these assumptions,

e.g. by separating between treatments of different signs (see, e.g., Fuest et al., 2018; Benzarti

et al., 2019) and/or splitting by clear-cut time periods as done by BF2017. Panel B of Figure 2

has already pointed to asymmetric effects, with increases in PBD leading to a strong and

significant negative effect in search intensity, while decreases in PBD show no effect. For

this reason, we also estimate the generalized event study model on the crisis sample only,

where mainly increases occurred. The right graph in Figure 3 shows that effects are stronger

when focusing only on the crisis sample and pre-trends become even flatter. Hence, there are

good reasons to follow BF2017 and analyze the crisis and the recovery sample separately –
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Figure 4: Varying the Effect Window (Crisis Sample)
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Notes: The figure plots the results when applying the generalized event study as defined by equations

(13) and (14) to the setting in (Baker and Fradkin, 2017). The graphs shows the dynamic effect of an

increase the potential benefit duration by one week on log search intensity as measured by Google Job

Search Index (GJSI) for specifications with a varying number of lags. The dashed blue estimate the

standard effect window with four lags in the estimation sample of the specification with the longest

effect window of 18 lags. Confidence intervals are omitted.

either because increases and decreases of PBD have asymmetric effects or because treatment

effects are different during crisis and recovery period or both. We make the crisis sample our

baseline sample for the remainder of the analysis.

Next, we study the role of determining the size of the effect window. By Remark 2, binning

of endpoints comes along with the assumption that treatment effects have fully materialized

after j̄ periods. In Figure 3, we see that treatment effects are still on the decline four months

after the reform. Moreover, the slope of the event study graph becomes steeper between lag

3 and lag 4. This is an indication that treatment effects have not fully materialized within

the effect window and that the assumption of Remark 2 might not hold. We explore this in

the following.

One procedure to determine the length of the effect window is to simply increase the

number of lags until the treatment effect flattens out. However, this approach comes at

a cost as it will often reduce sample size and precision. Nonetheless, we re-estimate the

generalized event study design given in equations (13) and (14) gradually increase j̄ to one

and a half years (18 months). Results are presented in Figure 4. The figure suggests that

treatment effects have fully materialized approximately after 16 months. As a result, the

long-run effect of PBD on search intensity is around −0.005 (0.001). This effect is higher

than the DiD estimate of −0.002 because DiD is an average of the smaller short-run effects
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Figure 5: Fixed Effects vs. First Differences (Crisis Sample)
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Observations: 3468, states: 51, periods: 68 (5/2006 - 12/2011).

Long effect window (18 lags)
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Observations: 2754, states: 51, periods: 54 (7/2007 - 12/2011).

Notes: The figure plots the results when applying the generalized event study as defined by equations

(13) and (14) to the setting in (Baker and Fradkin, 2017). The graphs shows the dynamic effect of

an increase the potential benefit duration by one week on log search intensity as measured by Google

Job Search Index (GJSI) for specifications estimated in levels with a fixed effects model (circle) and

in first differences (triangle). 95% confidence intervals are plotted.

and the larger long-run effects.

While increasing the length of the effect window may be possible in some applications,

data restrictions and sample size might prevent researchers from reaching the point at which

treatment effects have fully materialized. An alternative check to assess whether the effect

window is long enough is to compare estimates from a model specified in levels and estimated

with unit fixed effects with estimates from a model estimated in first differences. At the end-

point of the effect window, the first difference model only accounts for the change happening

from j̄ − 1 to j̄, while the fixed effects model takes into account a weighted average of the

remaining changes. As a result, coefficients from the fixed effects and the first difference

specification will deviate if the effect has not fully materialized within the given effect win-

dow. This pattern is nicely demonstrated in Figure 5, which shows a clear deviation between

first difference and fixed-effects estimates for a short (Panel A) but smaller differences for a

longer effect window (Panel B). Clearly, in case the effect window is too short and treatment

effects unfold monotonically, the long-run estimates will be biased toward zero.
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6 Conclusion

This paper makes three interrelated methodological points, which are important to bear in

mind when setting up event study designs in economics. The points are valid in general, and

might be particularly helpful when applying the event study technique to settings in public

and labor economics with multiple policy shocks of different intensities.

First, researchers need to define an effect window, i.e. the window within which the effect

is studied. While this choice is a practical necessity due to limited data availability, it is far

from being innocuous. Setting the number of leads and lags to a finite number, practically

requires to define the last lag (lead) as an open interval capturing all known events that

(will) have happened in the past (future). We refer to this practice as binning. We show

that binning affects which unit-year observations are assigned to treatment or control group

and thus directly affects the identifying assumption. At the same time, binning introduces

important parameter restrictions, which help to identify the model econometrically.

Second, we demonstrate that event study designs and distributed-lag models are equiva-

lent. To be precise, the distributed-lag model is a reparametrization of an event study with

binned endpoints. Event study estimates can be recovered from distributed-lag models by

cumulating the post-treatment and pre-treatment effects away from zero. We use this isomor-

phism to reinforce the necessity and importance of limiting the effect window properly and

critically discuss the plausibility of alternative parameter restrictions used in the literature.

The distributed-lag model is in our view also less error-prone in the practical implementation.

Third, we generalize the simple event study with single event dummy events to account

for multiple events and/or events of different sign and intensity of the treatment. We show

that the event study methodology is perfectly applicable to such environments and that the

equivalence between event study and distributed-lag models also holds in the general case.

We point to the necessary underlying assumptions and briefly discuss where generalized event

study designs could be implemented in light of current empirical research.

In a final part of the paper, we demonstrate the practical relevance of our three method-

ological points replicating and discussing the event study in Baker and Fradkin (2017).
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Appendix A Numerical Examples

A.1 The Standard Case

In the following, we illustrate the standard event study design set-up, discussed in Section

2 using a simple numerical example. The example also demonstrates the equivalence result

between event study and distributed lag models summarized in Remark 5.

Example A.1. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For unit i, the single event takes place at ei = 2005.

In example A.1, the explanatory variables of the event study model in levels (equation 7)

and in first differences are visualized by the following matrices, respectively.

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

b−3
it b−2

it b−1
it b0

it b1
it b2

it b3
it b4

it

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 1

∆b−3
it ∆b−2

it ∆b−1
it ∆b0

it ∆b1
it ∆b2

it ∆b3
it ∆b4

it

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0 -1 1 0 0 0 0 0

0 0 -1 1 0 0 0 0

0 0 0 -1 1 0 0 0

0 0 0 0 -1 1 0 0

0 0 0 0 0 -1 1 0

0 0 0 0 0 0 -1 1

0 0 0 0 0 0 0 0

The following matrices visualize the explanatory variables of the distributed-lag model

(eq. 8) applied to Example A.1, again in levels and first-differences respectively.
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t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

1 1 1 0 0 0 0

1 1 1 1 0 0 0

1 1 1 1 1 0 0

1 1 1 1 1 1 0

1 1 1 1 1 1 1

1 1 1 1 1 1 1

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0

Note how the event study model with effects up to j̄ = 4 years after event and |j| = 3 years

before the event corresponds to a distributed-lag model with j̄ = 4 lags and |j|−1 = 2 leads.

Also notice that the right matrix becomes a zero matrix if the event takes place on or before

1996 and on or after 2013. Hence, again only information of events between 1997 and 2012 is

necessary to estimate the model. The four matrices can also be used to verify the condition

that allow deriving our Result 5: bjit = di,t−j = ∆xi,t−j and bji,t−1 = di,t−j−1 = ∆xi,t−j−1

for j = −3 < j < j̄ = 4 as well as ∆b
j

it = ∆b−3
it = −di,t−j−1 = −di,t−2 = −∆xi,t−2 and

∆bj̄it = ∆b4
it = di,t−j̄ = di,t−4 = ∆xi,t−4.

In example A.1, the event study effects are calculated according to equation (9) from the

distributed-lag/lead coefficients as β−3 = −(γ−1 + γ−2), β−2 = −γ−1, β−1 = 0, β0 = γ0,

β1 = γ0 + γ1, β2 = γ0 + γ1 + γ2, β3 = γ0 + γ1 + γ2 + γ3, β4 = γ0 + γ1 + γ2 + γ3 + γ4.

A.2 The General Case

In the following subsection, we present a brief generic numerical example that features the

general case derived in Section 4.

Example A.2. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, one event of intensity di,2003 = 0.2 takes place in

2003, another event of intensity di,2004 = −0.1 in 2004 and yet another event of intensity

di,2006 = 0.3 in 2006; there are no events in the other years.

The following four matrices show the explanatory variables for the event study in levels bjit

and in first differences ∆bjit, as well as for the distributed-lag model in levels, xit = xit+∆xi,t−1

with initial value xi,t−j̄ = 0, and in first differences, ∆xit = dit:

32



t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

c−3
it c−2

it c−1
it c0

it c1
it c2

it c3
it c4

it

0.4 0 0 0 0 0 0 0

0.2 0.2 0 0 0 0 0 0

0.3 -0.1 0.2 0 0 0 0 0

0.3 0 -0.1 0.2 0 0 0 0

0 0.3 0 -0.1 0.2 0 0 0

0 0 0.3 0 -0.1 0.2 0 0

0 0 0 0.3 0 -0.1 0.2 0

0 0 0 0 0.3 0 -0.1 0.2

0 0 0 0 0 0.3 0 0.1

0 0 0 0 0 0 0.3 0.1

0 0 0 0 0 0 0 0.4

∆c−3
it ∆c−2

it ∆c−1
it ∆c0

it ∆c1
it ∆c2

it ∆c3
it ∆c4

it

-0.2 0.2 0 0 0 0 0 0

0.1 -0.3 0.2 0 0 0 0 0

0 0.1 -0.3 0.2 0 0 0 0

-0.3 0.3 0.1 -0.3 0.2 0 0 0

0 -0.3 0.3 0.1 -0.3 0.2 0 0

0 0 -0.3 0.3 0.1 -0.3 0.2 0

0 0 0 -0.3 0.3 0.1 -0.3 0.2

0 0 0 0 -0.3 0.3 0.1 -0.1

0 0 0 0 0 -0.3 0.3 0

0 0 0 0 0 0 -0.3 0.3

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0.2 0 0 0 0 0 0

0.1 0.2 0 0 0 0 0

0.1 0.1 0.2 0 0 0 0

0.4 0.1 0.1 0.2 0 0 0

0.4 0.4 0.1 0.1 0.2 0 0

0.4 0.4 0.4 0.1 0.1 0.2 0

0.4 0.4 0.4 0.4 0.1 0.1 0.2

0.4 0.4 0.4 0.4 0.4 0.1 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.1

0.4 0.4 0.4 0.4 0.4 0.4 0.4

∆xi,t+2∆xi,t+1∆xit∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0.2 0 0 0 0 0 0

-0.1 0.2 0 0 0 0 0

0 -0.1 0.2 0 0 0 0

0.3 0 -0.1 0.2 0 0 0

0 0.3 0 -0.1 0.2 0 0

0 0 0.3 0 -0.1 0.2 0

0 0 0 0.3 0 -0.1 0.2

0 0 0 0 0.3 0 -0.1

0 0 0 0 0 0.3 0

0 0 0 0 0 0 0.3
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Appendix B Identification

In the following, we present intuitive examples that demonstrate how identification is achieved.

The empirical model is described by equation (5), hence

∆yit = γ−1di,t−1 + γ0di,t + γ1di,t+1 + θt + ∆εit.

There are no unit fixed effects and there is no constant in this regression, so no time fixed

effect has to be dropped for identification. Moreover, the examples in this appendix reveal

that identification is most easily studied in the first difference version of the distributed-lag

specification.

Consider the following seven examples with an effect window from j = −2 to j̄ = 1.

Example B.1 (identified). Unit 1 is treated in t = 2, unit 2 is not treated, panel from

t = 0 to t̄ = 3.

The matrix of explanatory variables in Example B.1 is given by

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

1 0 0

0 1 0

0 0 1

. . .

0 0 0

0 0 0

0 0 0

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y1 one period before event

← control for ∆y1 at event

← control for ∆y1 after period before event

This is the example given in Borusyak and Jaravel (2017). The non-treated unit pins

down the time fixed effects, which thereby can be separated from the dynamic treatment

effects. The matrix of explanatory variables has full rank.
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Example B.2 (not identified). Both units are treated in t = 2, panel from t = 0 to

t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

Clearly, the model in Example B.2 is not identified. Treatment and time effects cannot

be separated. This can be remedied if we shift the treatment of one unit by one year.

Example B.3 (identified). Unit 1 treated in t = 2, unit 2 treated in t = 3, panel from

t = 0 to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

1 0 0

0 1 0

0 0 1

. . .

0 0 0

1 0 0

0 1 0

← observation of ∆y1 one period before event

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y1 one period before event

Example B.3 demonstrates the main intuition behind the identification when binning

endpoints. The staggered treatment enables to pin down one time fixed effects for unit 2 and

t = 1. If t1 is identified, we can back out dt−1 for unit 1, then t2 for unit 2, and so on. For

such an iterative procedure it is necessary that we observe all event indicators in the data

window, they do not have to observable completely for one unit.

Example B.4 (identified). Unit 1 treated in t = 2, unit 2 treated in t = 4, panel from

t = 0 to t̄ = 3.
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t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

0 1 0

0 0 1

0 0 0

. . .

0 0 0

0 0 0

1 0 0

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y2 one period before event

← control for ∆y1 at event

← control for ∆y1 one period after event

← observation of ∆y2 one period before event

Again, we can iteratively separate event from time effects even though we do not observe

a full set of event effects for a single unit. However, it is important that we observe at least

one endpoint in a year t where the other unit is not treated.

Example B.5 (not identified). Unit 1 treated in t = −1, unit 2 treated in t = 4, panel

from t = 0 to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

0 0 1

0 0 0

0 0 0

. . .

0 0 0

0 0 0

1 0 0

← observation of ∆y1 one period after event

← control for ∆y2 one period before event

← control for ∆y1 one period after event

← observation of ∆y2 one period before event

Here, identification is not achieved. The matrix of explanatory variables has rank 5, as

e.g., dt+1 = t1 − t3 − dt−1. The effect one period before and one period after the event are

identified but the effect at the event is not observed for any unit.
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Example B.6 (not identified). Unit 1 treated in t = 1, unit 2 treated in t = 3, panel

from t = 0 to t̄ = 3.

t i

0 1

1 1

2 1

3 1

0 2

1 2

2 2

3 2

t1 t2 t3

. . .

1 0 0

0 1 0

0 0 1

. . .

1 0 0

0 1 0

0 0 1

dt+1 dt dt-1

. . .

0 1 0

0 0 1

0 0 0

. . .

0 0 0

1 0 0

0 1 0

← observation of ∆y1 at event

← observation of ∆y1 one period after event

← control for ∆y2 at event

← control for ∆y1 at event

← observation of ∆y2 one period before event

← observation of ∆y2 at event

Here, identification is not achieved. The matrix of explanatory variables has rank 5, as

e.g., dt−1 = t2 − dt+1. Iterative identification is not possible. The reason is that only two

endpoints in the data window are observed in the same year (t = 2).

Example B.7 (identified). Unit 1 treated in t = 0, unit 2 treated in t = 1, unit 3 treated

in t = 2, unit 4 not treated, panel from t = 0 to t̄ = 1.

t i

0 1

1 1

0 2

1 2

0 3

1 3

0 4

1 4

t1

.

1

.

1

.

1

.

1

dt+1 dt dt-1

. . .

1 0 0

. . .

0 1 0

. . .

0 0 1

. . .

0 0 0

← observation of ∆y1 one period before event

← observation of ∆y2 at event

← observation of ∆y3 one period after event

← control for ∆y1,t−1, ∆y2,t, ∆y3,t+1

All three dynamic effects are directly identified in direct comparison to a never-treated

unit. The matrix of explanatory variables is full rank. This example shows that the obser-

vation window for the dependent variable can be shorter than the effect window.
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Appendix C More Numerical Examples

C.1 Multiple Events of Identical Intensity

Example C.2. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, a first event takes place at 2004 and a second at

2006.

The explanatory variables for the event study in levels, cjit = bjit, and in first differences,

∆cjit = ∆bjit, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

c−3
it c−2

it c−1
it c0

it c1
it c2

it c3
it c4

it

2 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 1 0 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 2

∆c−3
it ∆c−2

it ∆c−1
it ∆c0

it ∆c1
it ∆c2

it ∆c3
it ∆c4

it

0 0 0 0 0 0 0 0

-1 1 0 0 0 0 0 0

0 -1 1 0 0 0 0 0

-1 1 -1 1 0 0 0 0

0 -1 1 -1 1 0 0 0

0 0 -1 1 -1 1 0 0

0 0 0 -1 1 -1 1 0

0 0 0 0 -1 1 -1 1

0 0 0 0 0 -1 1 0

0 0 0 0 0 0 -1 1

The explanatory variables of the distributed-lag model in levels, xit = xit + ∆xi,t−1 =

xit + di,t−1 with xi,t−j̄ = 0, and in first differences, ∆xit = dit, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 1 0 0 0 0 0

2 1 1 0 0 0 0

2 2 1 1 0 0 0

2 2 2 1 1 0 0

2 2 2 2 1 1 0

2 2 2 2 2 1 1

2 2 2 2 2 2 1

2 2 2 2 2 2 2

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 0 1 0 0 0

0 0 1 0 1 0 0

0 0 0 1 0 1 0

0 0 0 0 1 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1
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C.2 Single Events of Varying Treatment Intensity

Example C.3. We assume a panel that runs from t = 2000 to t̄ = 2010 and an effect window

from j = −3 to j̄ = 4. For individual i, the single event of intensity di = 0.1 takes place at

ei = 2005.

The explanatory variables for the event study in levels, cjit = bjit×si, and in first differences,

∆cjit = ∆bjit ×∆si, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

c−3
it c−2

it c−1
it c0

it c1
it c2

it c3
it c4

it

0.1 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0

0.1 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0

0 0 0 0.1 0 0 0 0

0 0 0 0 0.1 0 0 0

0 0 0 0 0 0.1 0 0

0 0 0 0 0 0 0.1 0

0 0 0 0 0 0 0 0.1

0 0 0 0 0 0 0 0.1

∆c−3
it ∆c−2

it ∆c−1
it ∆c0

it ∆c1
it ∆c2

it ∆c3
it ∆c4

it

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0.1 0.1 0 0 0 0 0 0

0 -0.1 0.1 0 0 0 0 0

0 0 -0.1 0.1 0 0 0 0

0 0 0 -0.1 0.1 0 0 0

0 0 0 0 -0.1 0.1 0 0

0 0 0 0 0 -0.1 0.1 0

0 0 0 0 0 0 -0.1 0.1

0 0 0 0 0 0 0 0

The corresponding explanatory variables of the distributed-lag model in levels, xit =

xit + ∆xi,t−1 = xit + dit × si with xi,t−j̄ = 0, and in first differences ∆xit = dit × si, are

t

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

xi,t+2xi,t+1 xit xi,t−1xi,t−2xi,t−3xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.1 0 0 0 0 0 0

0.1 0.1 0 0 0 0 0

0.1 0.1 0.1 0 0 0 0

0.1 0.1 0.1 0.1 0 0 0

0.1 0.1 0.1 0.1 0.1 0 0

0.1 0.1 0.1 0.1 0.1 0.1 0

0.1 0.1 0.1 0.1 0.1 0.1 0.1

0.1 0.1 0.1 0.1 0.1 0.1 0.1

∆xi,t+2∆xi,t+1 ∆xit ∆xi,t−1∆xi,t−2∆xi,t−3∆xi,t−4

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0.1 0 0 0 0 0 0

0 0.1 0 0 0 0 0

0 0 0.1 0 0 0 0

0 0 0 0.1 0 0 0

0 0 0 0 0.1 0 0

0 0 0 0 0 0.1 0

0 0 0 0 0 0 0.1

0 0 0 0 0 0 0
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