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1 Introduction

Global developments play an important role in the determination of inflation rates. Pa-
pers such as Borio & Filardo (2007) and Ciccarelli & Mojon (2010) find that a substantial
amount of variation in a large set of national inflation rates can be explained by global
factors. Quoting Borio & Filardo (2007): “...prozies for global economic slack add consi-
derable explanatory power to traditional benchmark inflation rate equations, even allowing
for the influence of traditional indicators of external influences on domestic inflation, such
as import and Oil prices. Moreover, the role of such global factors has been growing over
time, especially since the 1990s. And in a number of cases, global factors appear to have
supplanted the role of domestic measures of economic slack.” This evidence has been re-
cently challenged by Lodge & Mikolajun (2016), whose results suggest that the relevance
of global factors for forecasting domestic inflation is related to their ability to capture
slow-moving trends, like those emphasized by Stock & Watson (2007) in their decomposi-
tion of US inflation into trend and cyclical components. Other empirical contributions, as
Bianchi & Civelli (2015) and Auer, Borio & Filardo (2017), show that financial openness
and Global Value Chains are positively related to the effects of global slack on inflation.
We do not take an a priori stance on this point, but we will use an econometric model
where the relative contribution of global and country-specific factors as drivers of inflation

developments is estimated and can vary over time and across countries.

Another point stressed by Stock & Watson (2007), which however dates back to at least
Engle (1982), is the importance of allowing for conditional time-varying volatility when
modelling inflation. While Engle introduced the ARCH specification as a model for in-
flation volatility, Stock & Watson (2007) used stochastic volatility, which is indeed more
common in macroeconomics applications and more flexible since it permits to have diffe-
rent shocks as drivers of the level and volatility of an economic variable. Stock and Watson
found that the introduction of SV improves the out of sample forecasting power of their
model for US inflation, and it is preferable also to alternative methods to allow for hete-
rosckedasticity, such as rolling estimation or Markov switching models. Inflation volatility
is also relevant for policy making as, for example, in periods of high volatility it is more

difficult to understand whether inflation movements are temporary or persistent.

Volatility needs to be modeled properly in multi-country studies on inflation determinants.
In particular, it seems important to understand whether and to what extent the cross-
country commonality among inflation levels is also present among inflation volatilities.
Furthermore, recent macro-financial literature has considered stochastic volatility as a

basis to construct measures of macro and financial uncertainty (see Jurado, Ludvigson



& Ng, 2015, and Carriero, Clark & Marcellino, 2017). From this perspective, it may
be important for a policymaker to disentangle whether inflation uncertainty originates

locally or globally.

Mumtaz & Surico (2008) investigate co-movements in an unbalanced panel of inflation
rates from the 1970s to early 2000s for 11 countries, using a large dynamic factor model
that incorporates time-varying coefficients and stochastic volatility in the unobservable
factors’ law of motion. Mumtaz & Musso (2018) extend the analysis of Mumtaz & Su-
rico (2008) on a large set of financial and macroeconomic variables, to disentangle the
contributions of global, region-specific and country-specific uncertainty. They find that
“the volatility of inflation, interest rates and stock prices seems to be driven primarily by
the global common uncertainty component in most countries, although to a varying extent

over time”.

We have collected inflation rates for 20 OECD countries, over the period 1960Q1-2016Q4.
Figure 1 reports the time series of CPI inflation rates for each country, together with
their first principal component (PC). A visual inspection reveals a non-trivial degree of
commonality at low-medium frequencies, as pointed out by Lodge & Mikolajun (2016).
The first PC explains about 70% of the variability of all inflation rates. However, the
figure also highlights some country-specific movements in inflation rates, and changes in
the volatility of inflation, which seems overall smaller in the final part of the sample. To
provide descriptive evidence on commonality also in inflation volatility, we have estimated
autoregressive models with stochastic volatility (AR-SV) for each inflation rate, and in
Figure 2 we report the estimated volatilities together with their first principal component,

which explains almost 60% of their time variation.

Based on this empirical evidence, this paper introduces a new approach to model simulta-
neously commonality in the level and in the volatilities of a cross section of macro-economic
time series, also allowing for idiosyncratic level and volatility components. The keyword
here is “simultaneously”, which emphasizes that the common factor can explain both

changes in the levels and volatilities of the variables.

The approach builds on the multivariate index (MAI) model of Reinsel (1983), and its
Bayesian implementation in Carriero, Kapetanios & Marcellino (2016). A MAI model
is a vector autoregression (VAR) with a particular reduced rank structure imposed on
the coefficient matrices, such that each variable is driven by the lags of a limited number
of linear combinations of all variables (so called Indexes), which can be considered as

observable common factors. Stochastic volatility (SV) was introduced in the MAI model



by Carriero, Corsello & Marcellino (2018), while Cubadda & Guardabascio (2017) allowed
for the possibility of autoregressive (AR) terms to capture idiosyncratic components. We
combine all these features into the MAI-AR-SV model, obtain an analytical representation
for the indexes (observable factors) law of motion, derive a decomposition of the SV
into common and idiosyncratic terms, and develop a novel Bayesian MCMC estimation

algorithm.

Importantly, the approach presented here hinges on a reduced rank Vector Autoregression
rather than on a factor model. This sets our approach apart from other contributions
in the literature. Contributions such as Stock & Watson (1989), Forni, Hallin, Lippi &
Reichlin (2000), Mumtaz & Surico (2008) and Mumtaz & Musso (2018) rely on a factor
model in which the factor has time varying volatility. Hence, in all these contributions
the common volatility factor is merely the volatility of the common factor. Since the
factor enters the conditional mean of the process, the volatility of the factor can explain
the volatility of the conditional mean of the data. However, neither the factor nor its
volatility can explain the conditional variance of the shocks. Instead in the approach
presented here the common factor is common to both the conditional mean and the
conditional variance of the model. Our methodology is also substantially different from
Delle Monache, Petrella & Venditti (2016), who extend the model of Stock & Watson
(2007) to a multi-country inflation setting for the euro area, since their model feature
a common permanent component with its own changing volatility estimated in a non-

Bayesian setting where time variation is driven by likelihood scores.

We work with a single index model where the index (a linear combination of all the na-
tional inflation rates) represents the global factor that drives both levels and volatilities
of all national inflation rates. Inflation levels and volatilities also have an idiosyncra-
tic, country-specific, component, whose relative importance with respect to the global

component is time-varying and empirically determined.

We find that the single common factor in the MAI-SV model explains on average about
70% of the variability of all inflation rates. Moreover, there is also substantial commo-
nality in the inflation volatilities, increased in the last two decades. The average (across
countries) share of stochastic volatility explained by the global component spans from
20% to 65% throughout the sample.

While various sources can be behind the global inflation factor, it turns out that since the
early '90s its level and volatility are strongly correlated with those of Chinese PPI and Oil

inflation. Measures of global slack seem not to have additional explanatory power, and



US monetary policy shocks are basically uncorrelated with shocks to the global inflation
factor. Hence, supply seems to matter more than demand to explain the global component

of inflation and its volatility.

We also find that the global inflation factor is highly persistent, and this persistence is
transmitted to the global component of the national inflation rates, in line with Ciccarelli
& Mojon (2010). Level components explained by the common factor show a larger degree

of persistence than idiosyncratic components.

We then repeat the same analysis on a panel of non-Food and non-Energy inflation rates
for the same set of OECD countries, using data available for the period 1979Q1-2016Q4,
we find a smaller but non-negligible degree of commonality. The global core inflation
factor explains roughly 25% of the variability of core CPI inflation levels and the average
(across countries) share of stochastic volatility explained by the global component spans
from 10% to 20% throughout the sample, without displaying sizable variation over time as
was the case for headline inflation rates. The remaining substantial national component

of core inflation level and volatility leaves scope for national monetary policies.

The evidence provided in this paper also contributes to the long standing debate on
globalisation, inflation and monetary policy. Rogoff (2003) and Rogoff (2006) discuss how
various structural elements accompanying the globalisation since the early 1990s may have
lowered the global long term equilibrium of inflation rates, fostering the strong global
comovement of CPIs and somehow diminishing the role of domestic slack and monetary
policy in determining national inflation. On this respect, and in line with our empirical
results, Wang & Wen (2007) show that, within a New Keynesian DSGE model with
nominal rigidities or in a sticky information monetary model, country-specific monetary
shocks are not able to explain the strong correlation between inflation of several advanced

economies present in the data.

However, as highlighted also in the recent speech by Carney (2017), core inflation seems to
be less affected by global dynamics, already when looking at simple pairwise correlation.
Our work and methodology allow to measure separately the degree of cross-country com-
monality in first and second moments of both headline and core inflation rates, providing
precious information to monetary policy makers pursuing their inflation mandate in an

increasingly global context.

Finally, point and density forecast evaluations show that the MAI-AR-SV model has a
very good out of sample performance for inflation rates, when compared with a set of

multivariate and univariate competitors, and the SV specification is particularly relevant



for the proper calibration of density forecasts. These results hold for both all items
inflation and core inflation rates, and provide further empirical support for our proposed

model.

The paper is structured as follows. Section 2 introduces the econometric model and the
volatility decomposition. Section 3 discusses the choice of prior distributions and the Mar-
kov Chain Monte Carlo estimation methodology to draw from the posterior distribution
(with additional details in the Appendix). Section 4 presents the data and the empirical
results on the commonality in inflation rate levels and volatilities, and on their drivers.
Section 5 assesses the point and density forecasting performance of the MAI-AR-SV infla-
tion model. Section 6 concludes. The Appendix provides additional details and empirical

results.

2 The econometric model

2.1 The MAI-AR-SV model

We assume that the model for the n-dimensional zero mean process! y, containing the

inflation rates of interest is:

q p
yt:Z Ff'yt—é+z Ag- By - Yo+ uy, (1)
=1 (=1
where Ay, £ =1,...,p are n X r matrices, By is an r X n matrix, and I'y, £ =1,...,q are
n-dimensional diagonal matrices with diagonal elements 1 4,720, .-, Vn.e-

In this model, each of the n variables in g, is driven by its own lags, capturing country-
specific features of inflation, with associated coefficients I'y, by the lags of » common
observable factors (By y;_s, the “indexes”), capturing global features of inflation, with
associated loading matrices Ay, and by error terms, u;, whose properties are described
below. With respect to an unrestricted Vector Autoregression, the model above leads to

a substantial reduction in the number of parameters.?

The product Ay - By is an n X n matrix with reduced rank (r), for each ¢ € {1,...,p}.
As it happens also in factor models and in cointegrated VARs, it is the case that one can

rotate these matrices arbitrarily, e.g. A, - By = A,Q’ - QBy, where () is an orthogonal

LA non-zero mean can be easily allowed by inserting an intercept in the model.
2In our empirical application, we have p = ¢ =4, r = 1 and n = 20, so that there are 180 parameters
in the MAI-AR-SV while there would be 1600 parameters in an unrestricted VAR.



matrix, and hence proper identification restrictions are needed to pin down only one of
these possible rotations. Identification can be straightforwardly achieved for example as
in Reinsel (1983) by assuming that the first r rows and columns of By form an identity
matrix, that is By = [Ir EO]. We will follow a similar approach, see Section 3.1.1 for
details.

In expression (1), the error term w, is assumed to be uncorrelated over time, with multiva-
riate Gaussian distribution u; ~ N (0, €);), where €, is a time-varying variance-covariance
matrix. Following Cogley & Sargent (2005) and Primiceri (2005), we operate a triangular
reduction on the full matrix €, so that the errors u; can be written as u; = G~ 13,4,
where ¢; is i.i.d. with multivariate Gaussian distribution &, ~ N(0,1[,), G is a triangu-
lar matrix containing reduced form covariances®, and {Zt}le is the history of diagonal
matrices containing the stochastic volatilities. This implies the following factorization for

the variance covariance matrix €2;:

Q=655 (G (2)
[ 1 0 ... ... 0] (o, O ... ... 0]
g1 1 : 0 o9
G=| g g 1 , Z=l0 0 1 (3)
0 P |
| Om-nt+2 Gm-n+3 - Gm 1] | 0 0 ... 0 onf

The elements in the matrix G are further collected in the vector g = (g1, g2, .-, g )’ Which
has dimension m = n (n — 1) /2. Following Primiceri (2005), the law of motion for the
/

time-varying (TV) standard deviations, collected in the vector o, = [Ul,ta . 7Jn,t] , 18
defined in logarithms as:

logoy =108 0p 1 + Vg, Vor ~ MN (0, Q). (4)
We will refer to the model in (1) with the volatility specification in (2), (3) and (4) as the
MAI-AR-SV model.

3The matrix G can be also made time-varying, but at the cost of a substantial increase in computational
complexity when the number of variables is large.




2.2 An alternative representation of the MAI-AR-SV model

Let us define the observable factors driving all variables as
F, =B, Y, (5)
and note that the following decomposition holds:*
I, = WBE; "By + By, 21, Bo Y, (6)

where By, is the (n — ) x n orthogonal matrix of By such that ByB{, = 0,x(n_r),
== BB and =, ; = BOLQT/_IB{)L. Let us also define

G, = BOLQ{lyt, (7)

where G; are n—r variables that can be interpreted as idiosyncratic components, because,
as we will see later on, they are driven by shocks uncorrelated with those driving the

common factors Fj.

Using (5)-(7), we can now write the MAI-AR~-SV model in (1)-(2) as

q p
ye =Y TlUBIE Bo+ By E0Bou % e+ > Av- Bo oo+ i,

/=1
or
max(p,q)
fo By ZNGoet Y (DeuBiE + A Fog + uy. (8)
(=1

Next, we derive the model for the factors F; implied by the MAI-AR-SV model. Starting
from (8) and multiplying both sides of it either by By or by By €, !, we obtain:

max(p,q)
ZBorngl:lth Y BoTeuBIE" + A Fig +wy, (9)
(=1 {=1
max(p,q)
ZBOLQ TeBy ETNGrot Y Bor (TUBIE + A)F 4oy + W,
(=1 (=1
where
B i = 0
e Ao [T T, (10)
(o Bo 1y 0 =14

4See Carriero et al. (2016) and the references therein for details.
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since
E(with,) = E(Byugu, Q7'By, ) = BouQ; By, = 0.

Hence, the r observable factors F; and the n — r idiosyncratic components G; jointly

evolve as a VAR, with block uncorrelated errors.

The model in (8)-(9) is similar to a factor augmented VAR (FAVAR) model, as for example
in Bernanke et al. (2005), or Stock & Watson (2005) who also allow for variable-specific AR
terms. However, it differs from a FAVAR in three important ways. First, it also features
stochastic volatility both in the common (w;) and in the idiosyncratic (¢;) shocks, which is
particularly relevant for modelling inflation, as we will see. Second, in the FAVAR model
the factors are unobservable, while they are observable in the MAI case, which simplifies
model estimation and interpretation of the results. Third, in general unobserved factors
should be modeled with a VARMA rather than a VAR model, as emphasized by Dufour
& Stevanovi¢ (2013), while in our case we can analytically derive the VAR model followed

by the observable factors F; (jointly with the variables G;).

2.3 Decomposing the volatilities

We decompose the stochastic volatility of the MAI-AR-SV errors u; into two orthogonal
sets of components, one of them driven by the volatility of the common shocks w;, the
other by that of the idiosyncratic shocks, /.

Using again the decomposition in (6), we get:
— _ ~1
up = WBYE;  w + By, (Boi Q' By, ) U,

with =; = BOQtBé. Hence, due to the orthogonality of w; and 1;, we can then decompose
the total error volatility into the volatility of the common component and that of the

idiosyncratic component:
_ (Ocom idio
Q, = QF™ + O,

where

com __ /=—1 idio __ 5 =1



2.4 Decomposing the levels and computing IRF's

It is interesting to decompose the inflation rates in y; into their common and idiosyncratic
components, where the common component is driven by the common shocks w; and the
idiosyncratic component by the idiosyncratic shocks ¢,. The decomposition can be also

used to compute impulse response functions (IRFs) to common shocks.

We cannot directly use the model in (8), as both F; and G, are driven by both w; and .
However, we can use the projection approach, proposed for example by Jorda (2005) for

IRF computation, to obtain the decomposition:
yr = Bi(L)w + Ba(L)yy,

where w; and 1, are defined in (10). The common and idiosyncratic components are
orthogonal at all leads and lags, due to temporal independence and orthogonality of w; and
Y. Therefore, empirically, we can obtain the common component as the fitted value in a
regression of y; on contemporaneous and lagged values of the (estimated) common shocks
w; (and the idiosyncratic component as y; minus the estimated common component),

while the IRFs to common shocks are computed from the elements of By(L)®.

3 Estimation

The model is estimated using Markov Chain Monte Carlo (MCMC) techniques. In this
Section we discuss, in turn, the priors on the model coefficients and the MCMC algorithm

we use to obtain draws from the posterior distributions.

3.1 Specification of the prior distributions

The prior distributions are constructed in various steps, which generally require the use
of a training sample {—7",..., —1,0}.

3.1.1 Prior on By

In order to identify the model, we need to restrict at least 72 elements in the 7 x n matrix
By. Given that in our case r = 1, then By = |:b0,1 b(],n:| is a row vector of weights,

and as identifying restrictions we simply normalize to 1 the first weight by ;.

®In our empirical application on inflation, we have a single factor (r = 1), which explains on average
more than 70% of the cross-country inflation variability. In this case, wy is a scalar, which further simplifies
the computation of the common component of inflation rates, and their impulse response functions to
global shocks.

10



Prior knowledge for the unrestricted elements of By is elicited with a Normal distribution.
To set the prior moments for the elements of By = [50,1 e bo,n] , we compute the largest
eigenvalue score .S; from the principal component analysis on the set of variables, and then

run the following n univariate regressions:
id
Vk € {].,...,TL}, St = bO,k 'yt,k+uk,ta uk,t Zj\' (070-13)

The OLS estimates of these regressions, and their standard errors, are used to calibrate
mean and variances of the prior distributions. For identification, by is set to 1, and the

remaining elements of By are divided by /b\(),l.

3.1.2 Prioron A

Defining A = [Al o Ap}, the prior on a = vec (A’) is multivariate Normal, centered
on 0, and with diagonal variance V, resembling a Minnesota prior. In particular, it holds
that

o v, 0 ... O Ly
Ty, . . Op1
. . 0 ‘P2 . : )\a . .
o = G : ) ¢ = -7 - 1ha : )
. . 0 /d
057" O-F,%’
0O ... 0 Y,

where ’0\57 ; and 8%75 are the residual variances of a univariate AR(1) for, respectively, each
variable j and each factor s (computed using the prior mean of By). A, is a tightness
parameter, and d is a decay parameter. We chose standard calibration borrowing from
the VAR literature, i.e. A\, = 0.2 and d = 2.

3.1.3 Prior on I,

The prior distribution on the AR coefficients in the matrices I'y, collected in the column
vector 7 (see the Appendix for details), is a multivariate Normal distribution. In the
spirit of a Minnesota prior, we choose an a priori unitary mean for the first lag of each
variable whose dynamics resemble a random walk, and a zero mean for the higher lags.
Regarding the a priori covariance matrix, we assume no correlation across coefficients of
different lags and variables, and we set a prior structure for the variances which resembles

the Minnesota prior, using the tightness and decay parameters:

11



M1 1.1 1
. 0.
T2 P V, =\ -Diag | |7 | | ® L.

]|
Il

’Yq 0?’L><1

L

Considering the smaller number of elements in v in our empirical application, we chose a

less tight prior calibration than in the case of A, i.e. d =1 and A, = 0.1.

3.1.4 Prior on (),

The prior for the elements of G in expression (2), the matrix containing the stable covari-
ances among the MAI errors, is a multivariate Normal distribution centered at zero, with

large diagonal covariance matrix.

The priors to produce inference on the elements of o, in (4) are set as follows. The prior
for o¢ is a multivariate Normal, centered at 6\;’1 85,2 e G;JL / estimated as standard
deviations of univariate AR(1) residuals on each observable, with identity covariance
matrix, as in Primiceri (2005). The prior distribution for the innovation covariance matrix

(), is calibrated as in Primiceri (2005).

3.2 Gibbs Sampler

This subsection describes each step of the Gibbs Sampler (GS) used to simulate from the
joint posterior distribution of both parameters § = {~, A, By, G, @} and unobservable
states {o0;},_, of the MATI-AR-SV model. Moreover, for volatility estimation the Omori
et al. (2007) procedure requires drawing the indexes of Normal components of a mixture
approximating a log x? distribution labeled as {St}thl. This MCMC estimation approach
is needed as the joint posterior distribution cannot be analytically determined. The
algorithm innovates with respect to Carriero et al. (2018) since it introduces the step to
draw the AR coefficients, and it builds upon Carriero et al. (2016) to draw the reduced
rank structure of the VAR coefficients (A - By), and on Primiceri (2005) and Del Negro

& Primiceri (2015) to draw the time-varying volatilities.
The steps are the following:
1. Draw a history of volatilities {o,},_, [0, {S:},_,,

2. Draw 0, {S,},_, | {ov},_,. This second step is further split as follows:

12



(a) Draw the elements in 6| {o,},_,

i. Draw the covariance of volatilities” innovations Q, |7y, 4, By, G, {at}thl
ii. Draw the AR coefficients ~y ‘A, By, G, Q,, {at};[:l,
iii. Draw the loadings A ‘7, By, G,Q,, {at}thl,
iv. Draw the factor weights By ‘7, A G, Q,, {Jt}thl,

v. Draw the off-diagonal elements in G "y, A, By, Qy, {at}thl

(b) Draw a history of indexes of the mixture in {S,},_, |0, {o\}1_,

It is important to note that steps 4 and w have y, — &, - v as dependent variable in
order to draw A and By, while in step iz we use y;, — A - Z; to draw the AR coefficients,

where

Zy = (I, ® By) - vec <[yt,1 o yt,pD , X = [Dz'ag(yt,l) ... Diag(yi—q)

The Gibbs Sampler is described in more detail in section A of the Appendix.

4 The global component of inflation volatility

4.1 Data

Following the literature on global inflation (e.g. Ciccarelli & Mojon, 2010 and Borio &
Filardo, 2007) we collected a panel of Consumer Price Indices for a set of 20 OECD
countries®, downloaded from the OECD main economic indicators database. The dataset
includes 228 observations at quarterly frequency, covering the period from 1960-Q1 to

2016-Q4. We then constructed inflation rates as year on year changes of the indexes’.

SUSA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece, Italy, Japan, Luxem-
bourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK

"Ciccarelli & Mojon (2010) use Year on Year changes of CPI inflation rates for the bulk of their analysis.
O’Reilly & Whelan (2005) adopt the same transformation stressing that is cited in the ECB’s official
inflation mandate. Lodge & Mikolajun (2016) point out that using YoY changes in CPI is preferable
since this transformation produces no seasonal pattern by construction.

13



4.2 Common component and global shock transmission

We start by estimating a MAI-SV specification (that is with I’y = 0, V¢), with p = 4 lags
and with a single global factor (r = 1), similar to the preferred specification of Ciccarelli
& Mojon (2010). The resulting model is estimated by a simplified version of the MCMC

algorithm presented in Section 3.

Figure 3 reports the inflation rates for each country along with the posterior bands and
median of the estimated common global inflation factor. The model is clearly able to

capture the substantial co-movement of national inflation rates.

Measuring the in-sample fit of the MAI-SV model for each country, we find that on
average (across countries) the estimated common component explains roughly 73% of the

variance, which is in line with the Principal Component Analysis.

Next, as the residuals of the MAI-SV model are clearly serially correlated at least over
parts of the sample, we estimate a MAI-AR-SV model with p = 4 lags for the common
part, as for the MAI-SV, and ¢ = 4 lags for the country-specific AR components®. The in-
sample fit for the MAI-SV and MAI-AR-SV models are reported in the Appendix. The
fit of the MAI-AR-SV is systematically higher than that of the MAI-SV specification,
reaching an average explained variance of about 94%. In particular, the MAI-AR-SV
specification is able to capture both the low and the high frequency variation of each
inflation series, due to the presence of both common and country-specific autoregressive

components.

Notwithstanding the differences mentioned above, the estimated global factor from the
MAI-SV and MAI-AR-SV models are very similar, see Figure 4. They are also very
similar to the first PC of the inflation rates. The latter is used to form the prior on
the By coefficients in the MAI models, but the prior variance is large enough so that
results are data driven rather than dictated by the prior. All such measures of common
components are also comparable, though with some differences, to an OECD measure
of global inflation, also reported in Figure 4. These results are in line with the findings
of Ciccarelli & Mojon (2010), even though their sample stops in 2008. As reported
also by Ferroni & Mojon (2016), our analysis suggests strong commonality in inflation
developments across OECD continues also in the more recent period, and, actually, it has

been particularly high during the last financial crisis®.

8Recall that the MAI-AR-SV model is a MAI-SV model with the addition of AR components.
9Using a more recent sample of inflation rates (1993-2014), Ferroni & Mojon (2016) find that the
fraction of national inflation rates’ variance that is explained by Global Inflation remains dominant.
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A simple local projection analysis shows how a shock to this global factor is transmitted
across countries. Figure 5 shows the responses to a unitary impulse to wy, the innovation
of the global factor’s law of motion. We observe a similar hump shaped pattern in most
countries. With few exceptions, on impact and in the first periods after the impulse,
national inflation tends to increase, and then after some quarters it reverts back to the
impact response or even to lower values in some countries. This evidence shows how a
global shock to headline inflation rates induces a similar response over a set of advanced

economies, reinforcing our understanding of the degree of commonality.

4.3 Levels decomposition and persistence

Using the level decomposition discussed in section 2.4, we are able to decompose the
observed inflation series of each country into orthogonal components driven, respectively,
by common and idiosyncratic shocks. Moreover, for each country we measure how much

variation is explained by each component.

Figures 6 reports the level decomposition of inflation rates into common and idiosyncratic
components, compared with the actual series. The common components tend to explain
more than 50% of almost all countries’ inflation rates, and are particularly important in

large economies like the US, UK, Germany and Japan!®.

Stock & Watson (2007) discuss the persistence of US inflation, using as a measure of
persistence the largest autoregressive root of the levels’ process. Inference about this
measure of persistence is made possible by the Stock (1991) method, which is appropriate
when dealing with series displaying high levels of persistence. Stock & Watson (2007) do
not find strong evidence of persistence changes in US inflation from the 1970s onwards,
reporting the largest AR root of US CPI inflation comprised between 0.85 and 1.05 (as
90% confidence interval). O’Reilly & Whelan (2005) report little evidence of instability
for inflation persistence in the Euro Area since the 1970s; they report rolling confidence
intervals for the largest AR root of Euro Area CPI inflation that are centered around 0.9

across almost the entire sample.

In light of this literature, using the entire sample, we computed the 90% confidence
intervals (CI) for the largest AR roots of all national CPI inflation series, of their common
and idiosyncratic components, and of the global factor. Figure 7 compares the CI for the
largest AR root of the observed series, their components and the global factor, separately

for each country. The picture clearly shows how the common global components tend

1ONote that these values are lower than those reported for the explanatory power of the common global
factor F}, as the evolution of F} is partly explained by the idiosyncratic shocks, see (9).
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to preserve the high persistence of the observed series, while the idiosyncratic country-
specific components display wider confidence intervals centered on slightly smaller values.

The global factor shows a very narrow CI centered on 0.99.

These results are in line with what reported by Ciccarelli & Mojon (2010), who argue
that “the global component captures the most persistent and possibly nonstationary part
of inflation”. Indeed, using a different methodology, they report smaller persistence for
the so called “national” components; interpreting such results, they consider the global
factor as an attractor and the main driver of persistence coming from the observed data.
However, for this specific exercise they use annualized quarter on quarter inflation rates,
which is a transformation that tends to display a smaller degree of persistence than the
year on year transformation. Performing our analysis using QoQ CPI changes, we measure
a degree of persistence in line with Ciccarelli & Mojon (2010) for both global and national

inflation components.

4.4 Time-varying volatility decomposition

Figure 8 reports the posterior bands of the estimated conditional inflation volatilities of all
countries for the MAI-AR-SV, along with the decomposition discussed in Section 2.3. The
estimated volatilities display a relevant degree of commonality. Indeed, the first principal

component of the volatilities explains on average about 50% of their variation.

To better understand what is driving the volatilities, Figure 9 presents the contribution of
the estimated common and idiosyncratic components in determining volatilities. It turns
out that the contribution of the common component is non trivial, reaching values above
50% for some countries and time periods, especially during the last decades, in particular
during the Great Recession. In the 1970s the contribution of the global component to
stochastic volatility is generally smaller than in the Great Recession, standing for a smaller

degree of cross-country synchronization of changes in the unexplained residuals’ size.

In this multi-country context, it is complex to understand the structural drivers of the
common inflation volatility component. However, for a single country this can be done.
Carriero et al. (2018), focusing on the US, find that supply shocks are particularly impor-
tant, with demand shocks ranked second and monetary /financial shocks third. We will see

later on that the importance of supply factors is also confirmed for other countries.

Figure 10 shows the posterior bands of the global factor volatility, that is (Et)thl. Global
inflation volatility was moderate during the 1960s, increased dramatically during the

1970s before the sharp reduction starting in the 1980s associated with the change in
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monetary policy to fight inflation occurred in several countries. These results are in line
with the US inflation volatility estimated by Stock & Watson (2007). Global inflation
volatility has remained very low until mid 2000s, reaching a new spike during the Great
Recession, before turning back to the historically low values in the last three/four years
of the sample. Time variation is significant and relatively large throughout the entire

estimation sample.

4.5 Possible drivers of global inflation’s level and volatility

While there can be many drivers of the global inflation factor, Figure 11 shows that after
the 90’s it is correlated with the Chinese PPI inflation rate and the Oil inflation rate, with
correlations around 0.7 and 0.5 respectively. To compute Oil inflation, we use the WTI

price ($/barrel), while Chinese PPI inflation is available only from the early 1990s.

To obtain more reliable results on the role of these two variables as drivers of global
inflation, we have regressed the global factor on its own lags and on the simultaneous and
lagged values of the Chinese PPI and Oil inflation rates, starting the sample in the early
'90s due to data availability. The results indicate that the regressors are significant, with
the share of explained variance increasing to more than 90% when Chinese PPI and and Oil
inflation are included in the specification, compared to roughly 75% in the AR model, and
less autocorrelated residuals. Adding to such regressions the contemporaneous and lagged
OECD global output gap does not increase the explanatory power. These findings are also
qualitatively confirmed in regressions with differenced variables and suggest that supply

factors are more relevant than demand ones as drivers of global inflation dynamics!!.

To further explore some other relevant sources of global inflation fluctuations, we regressed
the innovation to the common component, w;, on simultaneous and lagged values of
two estimated exogenous innovations to the US economy: the Gertler & Karadi (2015)
measure of monetary policy shocks and the Beaudry & Portier (2006) measure of TFP

news shock!?. The evidence shows that such important exogenous shocks relative to the

1Using quarterly data from the 1990s within an empirical Phillips-Curve estimation framework, Forbes
(2018) provides evidence that four global factors (global slack, commodity prices, exchange rates and
the degree of global price competition among producers) contribute to national inflation dynamics, even
though quite heterogeneously across countries. Moreover, the evidence provided shows that global factors
have not become as important in explaining core inflation dynamics as they have for headline CPI and that
the explanatory power of different global factors is very heterogeneous across time and across countries.
These findings are in line with our results.

12Ramey (2016) reviews and discusses several shocks driving US economic fluctuations. The Gertler &
Karadi (2015) monetary policy shocks are identified at high-frequency using federal funds futures, and
then aggregated at lower frequencies. The Beaudry & Portier (2006) series of news shock to productivity
is identified via short and long run restrictions using data on stock prices.
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US economy, which typically explain a large share of business cycle fluctuations according
to Ramey (2016), have almost no explanatory power for global inflation innovations.
Miranda-Agrippino & Rey (2018) also find that US monetary policy shocks explain a

very small share of inflation variance.

Next, to understand which global forces may correlate with global CPI inflation volatility,
we estimated stochastic volatilities from univariate AR-SV models for Oil inflation, the
Chinese PPI inflation and the global output gap. A comparison of the estimated (median)
volatilities is reported in Figure 12. From visual inspection, a clear co-movement between
Oil and global CPI inflation volatility stands out, showing a correlation around 0.5 from
the early 1970s and almost 0.8 from the early 1990s. Also the Chinese PPI inflation
volatility displays a positive correlation with global CPI uncertainty: the correlation is
around 0.7 from the early 1990s. The volatility of the output gap is instead much lower,

except for the recessionary period.

To provide additional evidence, we have regressed the (changes in the) volatility of the
global inflation factor on its lags and on the contemporaneous and lagged (changes in the)
volatility of Oil, Chinese PPI and output gap, either separately or jointly. The largest
explanatory power is achieved by the volatility of the Chinese PPI, with an R? of about
0.80 with respect to about 0.39 for the AR model. Adding the other volatilities does not
help. Hence, overall, we find evidence for the volatility of Chinese PPI as a driver of the

volatility of global inflation, with oil volatility as second best.

So far we have analyzed separately the drivers of level and volatility of global inflation.
Joint evaluation leads to the same conclusions. In particular we have conducted a joint
analysis by modelling the global inflation factor, Oil inflation, Chinese PPI inflation and
global output gap with a VAR model with stochastic volatility. The estimation results
confirm the relevance of lags of Oil and Chinese PPI in the equation for the global inflation
factor, not of global output gap. Moreover, the first principal component of the four
estimated stochastic volatilities explains about 70% of their movements, even though the

stochastic volatility of the global output gap has almost zero weight.

4.6 Commonality in core inflations

In light of the correlation (both in levels and volatilities) between the global component of
headline CPI inflation and Oil, it is important to detect how much core components of the
CPIs remain correlated across countries. To this end, the same exercises of this section

have been performed using the non-Food and non-Energy Consumer Prices Indices for the
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same set of countries, downloaded from the OECD main economic indicators database.

These data are available only from the late "70s onwards.

Non-Food and non-Energy inflation tends to display a lower degree of commonality, al-
ready from a quick graphical inspection!®. Results of the decomposition are collected in
Appendix C. They indicate a smaller importance of the common component both in vola-
tilities and in levels: the global core inflation factor explains roughly 25% of the variability
of core CPI inflation levels, while the average (across countries) share of stochastic volati-
lity explained by the global component spans from 10% to 20% throughout the sample!4.
The fact that core inflation dynamics remain mostly heterogenous across countries, leaves

ample scope for domestic monetary policies.

5 Forecasting inflation with the MAI-AR-SV model

To provide further evidence on the usefulness of the MAI-AR-SV as a model for multi-
country inflation, we now evaluate its out of sample properties, also in comparison with

a set of standard competitors.

Using the same inflation series employed in the structural analysis, several models are
recursively estimated on a forecasting window going from 1990Q1 to 2016Q4. The asso-
ciated out of sample forecasts are produced for six different models and 8 horizons, from

1 to 8 quarters ahead.
The models under evaluation are the following:

e the Multivariate Autoregressive Index model with AR components and Stochastic
Volatility (MAI-AR-SV)

e the Multivariate Autoregressive Index model with AR components (MAI-AR)

e the univariate Autoregressive model (AR)

e the univariate Autoregressive model with Stochastic Volatility (AR-SV)

13The lower degree of commonality may also stand for a low degree of synchronization between national
core inflation rates. Indeed, less volatile components of the CPI may be less responsive to global changes
in goods’ prices, and most importantly their time response can be heterogenous across countries. This
phenomenon is less evident in headline inflation rates since the most volatile components of prices are
more synchronous over the world and determine a non-trivial amount of variation in goods’ prices.

14To understand whether the different results we got for headline and core inflation rates could be due
to the different samples, we have also repeated the analysis for headline inflation using the same sample
as for core (i.e., from 1979 onwards). The results are qualitatively similar to what illustrated in the
previous subsections. There is a decline in the fraction of variance explained by the global inflation factor
to around 50%, but this value is still about two times larger than that for the core inflation rates. The
decline in the explanatory power of the global inflation factor over the shorter sample can be attributed
to the global relevance of oil price fluctuations in the ’70s.
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e the Vector Autoregressive model (VAR)
e the Vector Autoregressive model with Stochastic Volatility (VAR-SV)

All models are estimated using Bayesian techniques. AR and VAR priors are constructed
using the standard Litterman (1986) a priori assumption of univariate random walk pro-
cesses. The SV prior in all models is calibrated as in Primiceri (2005). The MAI prior is
specified as shown in section 3. Diagnostics are then computed in terms of both point and

density forecasting, following the evaluation framework of Clark & Ravazzolo (2015).

Specifically, to evaluate the accuracy in terms of point forecasting, we compute the fore-
casts posterior medians for all vintages, models, variables and horizons. Then, we compute
the Root Mean Squared Forecast Error (RMSFE) for each model, variable and horizon,
using the variation across vintages. Hence, for each variable j € {1,...,n}, each horizon
h e {l,...,H} and each model m € {1,..., M} we compute:

T+T*

1
RMSE]), = T Z (yj,t+h_§/3n‘,t+h)27

t=T+1

where g7}, is the median of the posterior distribution (73%,) " (Lc is the length of the

discretized posterior distribution). To test for significance of the squared forecast errors
differences across models, we compute the Diebold & Mariano (1995) ¢-tests for equality

of the average loss'.

To evaluate models in terms of density forecasting, we use two measures of accuracy:
the average log-predictive score and the average Continuous Ranked Probability Score
(CRPS). Even in this case, to test for significantly different performances we employ the
Diebold and Mariano test, following Clark & Ravazzolo (2015).

Log Predictive Scores are obtained via non-parametric kernel smoothing density estima-
tors. Adopting a normal kernel ICx/(+) and following an optimal selection strategy of the
bandwith parameter 7:[\, we can compute for each variable, model, horizon and vintage

the empirical density evaluted at the actual observation y; 45, that is:

L ~m,0
- ~ 1 : Yjjith = Yjivn
fm <yj7t+h7 H) - 7:[\ L Z ICN ( 7:2—] > .

¢ =1

5Monte Carlo evidence in Clark & McCracken (2011) and Clark & McCracken (2015) indicates that,
with nested models, the Diebold-Mariano test compared against normal critical values can be viewed as
a somewhat conservative (conservative in the sense of tending to have size modestly below nominal size)
test for equal accuracy in the finite sample.
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Then, applying logarithms and computing the average across forecasting vintages yields

the average log score for each variable, model and horizon:

T+T*

- 1 ~ -~
logScoreM = 7. Z log fm (yj,t+h7H>-

t=T+1

To compute the average CRPS, following Clark & Ravazzolo (2015), we first compute

the CRPS per each variable, model, horizon and vintage, making use of the actual ob-
L

i and a random permutation of the latter

servations, the posterior distribution (g/jﬂih)

oo Le
(@Zi;j»kl where i’ : {1,..., L.} — {1,..., L.} is randomly drawn without replacement.

Lastly, we simply compute the average across time vintages:

1 Le 1 Le

m . ~m,,i ~m,,i ~m,i’ (4)
CRPS} ), = T E : ‘yj,t-&-h - yj,t+h‘ 9. L. Yjit+n — Yjten |
¢ i=1 ¢ =1

1 T+T™
CRPSj, = ), CRPSi,),

t=T+1

Figure 13 portrays the relative performance of the competing set of models against the
benchmark model MAI-AR-SV, for each country and four selected horizons. Models’
point forecasting performance is reported as ratio between their own Root Mean Squared
Errors and the benchmark’s, so that values larger than one imply that the MAI-AR-SV
produces more accurate point forecasts. The MAI-AR-SV model improves significantly
upon its counterparts on most variables, especially at short horizons, even though in a
smaller number of cases this is reversed. The AR-SV shows competitive point forecasting
performance, especially at longer horizons. The highly parametrized VARs generally

achieve a lower degree of point forecasting accuracy than the benchmark!®.

Moving to density forecast evaluation, Figure 14 reports the relative average log pre-
dictive scores for the chosen set of models and horizons. Alternative models’ performance
is reported in terms of log-scores differences with the benchmark MAI-AR-SV, so that
negative values favor the MAI-AR-SV. The benchmark model clearly improves upon its
competitors: the difference is negative and significant in most cases. Eventually, Figure
15 shows the CRPS reported comparatively as a ratio, where values greater than one in-
dicates a worse density forecasting performance with respect to the MAI-AR-SV. Results

are in line with the log-scores, with the benchmark model improving significantly upon

6Tables 1a and 1b in the online appendix report detailed results.
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its competitors'’.

To conclude, our evidence shows that the MAI-AR-SV is also a good forecasting model
for inflation rates. The introduction of SV is particularly relevant to improve density
forecasts. This evidence is in line with findings reported by Clark & Ravazzolo (2015)
and D’Agostino et al. (2013). Moreover, the introduction of the MAI component further
increases the forecasting power. Furthermore, notwithstanding the smaller number of
coefficients due to the reduced rank restriction imposed by the MAI structure, the bench-
mark model attains a higher degree of forecasting accuracy with respect to the standard

unrestricted VAR estimated using a Minnesota Prior as shrinkage device!8.

6 Conclusions

Global developments play an important role in the determination of inflation rates, and
indeed earlier literature has found that a substantial amount of the variation in a large
set of national inflation rates can be explained by a single global factor. This literature
has typically neglected inflation (conditional) volatility, while volatility is clearly relevant

both from a policy point of view and for structural analysis and forecasting.

In this paper we study the evolution of inflation rates in many countries, using a novel
model that allows for commonality in both levels and volatilities, in addition to country-
specific components. We find that allowing for inflation volatility is indeed important,
and a large fraction of it can be attributed to a global factor that is also driving the

inflation levels.

While other sources can be behind this global factor, it turns out that since the early

'90s it is strongly correlated with the Chinese PPI and Oil prices. Moreover, also the

I"More detailed forecasting results are reported in Appendix B.

18 As the common observable factor in the estimated MAI-AR-SV model is similar to the first principal
component (PC) of all inflation rates, which can be interpreted as an estimated factor in a factor model, it
can be expected that the forecasting performance of the MAI-AR-SV is similar to that of a factor model.
To verify empirically whether this is the case, we have also estimated a set of bivariate BVAR-SV models,
each of them for one inflation rate and the PC. The equation for the inflation rate can be interpreted as an
AR-PC(-SV) model, commonly used in the factor forecasting literature, complemented with the second
equation that describes the evolution of the PC. While direct estimation is commonly used in the factor
forecasting literature, we use an iterative scheme for comparability with the MAI-AR-SV. Note also that
we cannot use a single large BVAR-SV for all the inflation rates and the PC due to collinearity. It turns
out that indeed the forecasting performance of the BVAR-SVs is comparable to that of the MAI-AR-SV,
even slightly better in particular in terms of RMSE. Yet, as mentioned in the introduction, the possibility
of jointly modelling first and second moments with the MAI-AR-SV makes it preferable to a factor model
where only commonality in the first moments is considered. In this respect, it is actually encouraging
that the performance of the MAI-AR-SV is overall comparable to that of a factor model. These results
are available upon request.
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global factor stochastic volatility is highly correlated with that of Chinese PPI and Oil

prices.

Repeating the same analysis on core inflation rates for the same set of OECD countries,
the model finds a smaller but non-negligible degree of commonality. The substantial
national component of core inflation level and volatility leaves ample scope for domestic

monetary policies.

The MAI-AR-SV shows also very good out of sample properties, achieving a comparati-
vely better forecasting performance for inflation when compared with a set of prominent

alternative models, especially in terms of density forecasting.

Finally, as we have seen that the MAI-AR-SV model can be reparametrized as an (obser-
vable) factor augmented VAR with stochastic volatility, it has a wide range of applicability

in empirical macroeconomics.
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Figure 1: Inflation rates and their first principal component (thick red line)
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Figure 13: Relative Root Mean Squared Forecast Errors (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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Significant at 5% Significant at 1%

Significant at 10%
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Figure 14: Relative Log Predictive Scores (differences with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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Figure 15: Relative Continuous Rank Probability Scores (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-

statistic, see legend below.
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Online Appendix for
“The Global Component of Inflation Volatility”

The three sections of this online Appendix provide additional details on Gibbs Sampler
algorithm for the MAI-AR-SV model (Appendix A), the forecasting evaluation tables
(Appendix B), and the empirical results based on core inflation data (Appendix C).

Appendix A Detailed steps of the Gibbs Sampler for
the estimation of the MAI-AR-SV mo-
del

A.1 Stacking of the model

The MAI-AR-SV model written

q p
Ut :Z Fg'yt—e+z Ar- By Yo+ w, (11)
£=1 =1

decomposes y; into the sum of the ¢ autoregressive terms and the sum of the p terms
depending on the r common components By - 3;_¢, plus an error term. The equation in

(11) can be stated in a more compact formulation.

Focusing on the first summation, each I'; is a diagonal matrix where the main diagonal

is the n x 1 vector ;:

e O ... 0 M1,
0 o0
Iy = Tt = Diag %.)’Z = Diag (7e) -
0 :
0 R 0 Yn,l Tn,L

Recalling that 13;_, is a n x 1 vector of observables, the following holds:

Lo~ yi—e = Diag (Ve) - Yi—e,

= Diag (Yi—¢) - Ve
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If we define Y,y = Diag (y;—¢), we can write:

g
? : Y2
Z Loy = Zyt—z Ve = [ytq Viea .. ytfq] :
=1 =1
Va
Defining the n X ng matrix &; as &; = [yH Viig ... yt,q} and the ng x 1 vector v
/
as Yy = vy vy ... fy;] , we can finally formulate the first summation more compactly

as:

q
Z Ly-ype = X - .

(=1

To express in compact form the second summation, we need to define the rp x 1 vector

of the stacked “observable” factors Z; as

Boyi-1
Zy = : = (I, ® By) - x¢ = vec (By - xy) ,

BOytfp
where z} is the n X p matrix z} = [yt_l . yt_p] and z;, = vec (7).

Stacking the n x r matrices A, in the n x rp matrix A = [Al . Ap] , we can write the

second summation as:

P Boyi—1
ZAZ'BO'yt—Z:[Al Ap} : =A-Z.
= BOyt—p

We can eventually write the compact formulation of the model in (11):

= X - + A - Zy +uy. 12
NN A (12)

nxng mngx1 nXrp  rpx1
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A.2 Step 1: Draw a history of volatilities {o,},_,

This step concerns the draw of the (unobservable) stochastic volatilities conditional on
0 ={v,A, By,G,Q,} and the indexes of Normal components of the mixture {St}thl. The
order of these steps is in line with Del Negro & Primiceri (2015).

In order to draw the volatilities, we start from (12) and apply the triangular reduction of

the errors u; = G~'¥,&; to transform the model in the following way:
y=X v+ A Z+ G 'Sy,

?(yt—Xt-v—A-Zt)ZEtet,

Yt

yr = Diag (oy) - €.

Moreover, using the Hadamard product operator, we can first write

€1t 01t €1t
ot O2¢ €24

D = Xy . = . =0y © &y,
En,t Un,t 5n,t

and taking the square element by element on both sides of y; = ¥,&;, we obtain:

~2 2 2
Y1t 01t €1t
~2 2 2
05, €
_\2 2 2 2 Yot 2t €2t
()" = (Beer)” =0, Og — = )
~2 2 2
yn,t Un,t 8n,t

We add on the left hand-side a small constant'® ¢ = 1072 and apply the logarithm on

9The addition of a small constant term has numerical stability purposes, as explained in Fuller (2009)
and Primiceri (2005).
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both sides® in order to break the non-linearity, to obtain:

E) log o1, log 5%7]5

+
log (93, +¢) 5 log 02, N log €3,

log (37,2” + E) log o4 log 531,15
Y;

y; = 2log oy + log [(et)'z] :
Since g, Y MN (0, 1,), each term log 6?’75 has a log x? distribution, and log [(Q)Q] is a
vector of independent log x? random variables.

Then, conditioning on {St}z;l, i.e. the sequence of n x 1 vectors that specify the indexes

of Normal components of the mixture, the vector log [(&)'Q] has the following Gaussian

distribution:
le,t mgu 0 0
. my, 0 mY
log [(0)*] {Si}ioy ~ MN A P
mg 0 o 00 omy
—— & ~— =y
Pt T,

Hence, given the Gaussian distribution of log [(&)’2] | {S;}]_,, we can define the needed

state space form as:

U, = gt +2log oy + ¢, G~ MN(O, Ty),
log oy = log oy—1 + Vo, Vot “MN 0, Q,
~

nxn

At this point, the Forward Filtering Backward Sampling (FFBS) procedure, introduced
by Carter & Kohn (1994), can be implemented to draw a history of volatilities {o}._,.
The procedure is described below. For simplicity we define o; = log oy, since the FFBS

20Noticing that log {Z} = ﬁ?)i Cbl]’ and [Z] _ {ZQ]'
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procedure is implemented on the log-volatilities.

The filter can be initialized at the following values:

Gojo = log(a), Py 010 = Fs,
where log(7) and P, are respectively the mean and the covariance matrix of the prior
distribution of log oy.
Recursively, for each (Et,”t,l, ngt,”t,l), we compute the filter:
PU,t\t—l = Pa,t—1|t—1 + Qa7
~1
Koy = 2P, 411 (4Pa,t|t—1 + Tt) ;
ot = Op1p—1 + Koy @: — 20 111 — <Pt) )
Pyt = P tji-1 — 2844 Py 111
Having an entire set of updating and prediction steps (Eﬂt, Py e Pg,ﬂt_l)tT:l , we start to
sample backward, beginning by sampling o7 from MN ( orrs Porr ), and then for each
t €e{T—-1,T—-2,...,2,1} we sample recursively each o; from MN ( Ttit1s Po gttt )
where:
Tittp1 = Ot + Pa,t\tpc;tlﬂ‘t (5t+1 — 5t\t) ;

-1
Pa,t|t+1 = Po,t\t - Pa,t|tp Pa',t\t-

o,t+1|t

A.3 Step 2(a): Draw 6| {o,},_,
A.3.1 Substep 2(a).i: Draw the covariance of volatilities’ innovations @,

Conditioning on {at};‘rzo, we can draw the covariance matrix Q. Indeed, recall that:

lOg O = lOg o1+ Vots Vot ZfZ\CJl MN 07 Qo’
~—

nxn

But then, having a complete history of the sigmas, given the random walk law of motion,

is equivalent to having a complete histories of innovations v,,. Stacking the v,, across
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time, we get:

*
Vo = [Va,l Voo ... Vor|s
~

nxT

and we can easily compute the innovations sum of squares matrix:

S, = v v,
~ =~~~
nxmn nxXT Txn

If the prior on the matrix Q, is a n x n Inverse Wishart with scale matrix Q, and degrees

of freedom 7, :

Qo‘ ~1IW, (Q_oa TG’,O) )

then the posterior is conjugate and given by:

QU‘ {Uz}tho ~IW, (Sa + Qo, To0 T T) )

A.3.2 Substep 2(a).ii: draw AR-coefficients v

Starting from (12), and conditioning on By and A, we can obtain the following linear

regression model with common coefficients and variable specific regressors:

=X v+ A Z, +u,

y—A-Zy =X -y +u,

Yy = Xy + w,
with
U ’L MN 0, Qt s Uy = G_lztf‘:t, Et Z’Z\-C’l MN( 0, -[n ) .
~—
nxn

Considering separate equations to estimate the AR coefficients contained in v would ignore
the cross-correlations of the innovations in u;. Since within the GS we draw directly the

elements ¢ in the matrix GG and the stochastic volatilities o; in 3, for efficiency purposes
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we can compute the following transformation of the equation:

Y, =Xy + g,
Yo =X v+ G 'Sy,

Zt_lG'y?:Zt_lG'Xt"7+2;1G'G_12t'8t,
—_——

In
Zt_lG'y?:Et_lG'Xt"Y‘i‘&ft,

@f:Xt~’y+€t.

We finally obtain a multivariate linear regression with homoskedastic residuals and unitary

diagonal covariance matrix:
?7?:2'7"‘5,5, €t%l./\/l./\/’<0, [n)

The transformed model can be stacked in columns:

0t X €1

Yr Xr €T
Ve = X - e’
~—~ ~—~ 7 ,_'_v’
nT'x1 nT'xXng pgx1 nTx1

E~MN (0, 1 ® 1, ).

With the stacked version of the model, adopting the Normal semi-conjugate prior for the

vector of coefficients ~:

I~MN (7, Vs ),
we can eventually draw from the posterior distribution:

Y~ MN ( 3, V, ) ,
where

%':VW-<2F’-}7°+VW_1-7>, V7:<)?’-2?+V{1>1.
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A.3.3 Substep 2(a).iii: Draw the loadings A

To draw the loadings contained in A, we restate (12) as:

Y — Xy = A Zp + g,
y = A Zy 4+ uy,

and stack it as:

W] [# ua

o/ Z/ u/
Yo '2 A 2 7
yr Zry (e

. /

= 7 - A U.
Y N~ +
Txn TXrp rpXn

Defining a = vec (A’), and exploiting the Kronecker product’s properties, this form can
be vectorized and transformed in:

vec (y*) =vec(Z - A"+ I,) + vec(u),

Y* =(1,®%Z) _a +U,

nTx1 nxnrp ~ WPX1

where U  has the following distribution:
Tx1
nit X
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and

QD 0 Qb 0
0 levl) : e e le,n)
: : 0
0 0o oY 0 0 Qi
V. = _
Qml g 0 SO 0
0 an 1) 0 Q;n n)
0 : 0
0 0 o 0 0 Q™|

T
Z Qt® €t €t
t=1

To use an informative prior on a we follow the approach by Gelman et al. (2014). The
strategy incorporates the prior as observations. Considering a multivariate Normal prior

with the following moments:

a~MN(a, V,),
it is possible to augment the model with nrp observations that express the prior informa-
tion:
Y* I, ® 7 U
a—+ ,
a In’rp Ua

Y® =Z% + UO, U® ~ MN( OnT-i-nTp) Ve )7

V<> — Vu OnT Xnrp

OnranT V;z

A draw for a then comes from the following posterior:
a ~ MN ( a’ (ZO/V<>712<>>—1 > :
3= (ZO/V<>71Z<>) -1 gy o-lyo.

In order to decrease the computational burden of this step throughout the sampling, the

strategy proposed by Carriero, Clark & Marcellino (2018) is adopted, as generalized in
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Carriero, Corsello & Marcellino (2018): the triangular structure of the error is exploited,

and coefficients are drawn equation by equation.

A.3.4 Substep 2(a).iv: Draw the factor weights elements in B,

Given the restrictions and the nonlinear role of By, a Random Walk Metropolis step on
the kernel of the posterior of each element of By is implemented, nested into the GS. In
order to do this, we first write the likelihood of the model. Given the model in (12):

=X -v+A Zi+u, ut’z’MN(()?Qt);

using the chain rule, we can write the likelihood kernel as:

T T
_1 1 1o~
f ({yt}tT:1 7, A, (Qt)thla By ) x (E\Qt‘ 2) exp {—52@ -7 '%}»

t=1
where

Y=y —A-Zy— X .
Now we consider the r* = n — r scalar unrestricted elements of By, i.e. (bo,j);f*:l. Then,
Vj € {1,...,r"} we can define the set by ;— = (bo,s),;-

For a given prior f (by ;) on each element by ;, we can write the kernel of the conditional

posterior of by ; as:

fpost (bO,j’ (?/t, Qt)zzl ) Aa bO,j7> X f ((yt)zzl

A, Bo, (W) - f (o).

We are now ready to design the Metropolis step, separately for each j. Given the last

step By ', a random walk candidate is computed as:
* i—1
0 = b0, +¢itne

where ¢; is a scaling factor calibrated to have an acceptance rate of approximately 30%-
35% and 7, “° N (0, v;), with v; being the variance of prior f (by,). The candidate draw
is accepted with probability:

T

fpost <b613| (yta Qi_l)t:17 A’ bg,_jl—>
Foost (86551 (0o 27, A, 0

aj =min ¢ 1,
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When the candidate is accepted, then béjj_ = bg,;, otherwise bgyj_ = bf)’jl_ Repeating this

procedure Vj € {1,...,r*}, we build a draw B}, from the distribution of interest.

A.3.5 Substep 2(a).v: draw the off-diagonal elements in G

To draw the off-diagonal elements, we restate the model in (12) as:

Yy — Xy — A Zy = G ' Sey,
@; - G_lztgta

G:&\t = Etgt‘

Removing ones from the diagonal of GG, and bringing off diagonal elements on the right

hand side, produces:

G=1,+G".

This can be combined in the model to obtain:

Exploiting the Kronecker product’s properties, we get:

- I, G 1y =—(I,®7) vec(G”
G G = (L83 vee(G")
XM X1 nxmn? n2x1
where vec (G*') has zeros in positions [(i — 1) n + ]];Ee{{llcg By removing the zeros, we

obtain exactly the elements below the main diagonal of G gathered in the m-dimensional

vector g. Removing the corresponding columns in — (1, ® ¥;) we construct the matrix

Wy, which has the following form:

O 0
e 0
0 vis U O

W, =—1- Yit Y2t oo

m 0 0 0 Y1t Yot Y3 O
o 0 0 0 0 0 . . o : f : 0
|0 0 Vit Yot UYsu Yn—1,t

o1



We can then rewrite the model as:

i/y\t = _G*@\t + Etgt)
U= — (I, @ 7;) vec (G¥) + Liey,

/y\t:th‘i‘gz, é‘INMN(Onxl, E?)

Next, we stack the model as:

m Wi €1
Y2 W €5
. = . g+ A )
yr Wr Er
gy = W - g +¢ e~ MN (Opry1, B2 )m
nTx1 Tnxm mx1

where Y is the diagonal matrix containing all the stacked stochastic volatilities vectors in

/
E:Diag([ai gy ... a’T]>.

We can then use a similar approach as the one implemented for a, following Gelman et al.

(2014). Given the prior :

the main diagonal:

g~ MN (g, Vy),

we augment the model with r observations that express the prior information:

W
=

Y® = Wog + 50, g%~ MN( OnT-i-ma ‘/80 ) )

*

19
g+

Y

Y

g

22 0nT><m

OanT %

Ve =

£

A draw for ¢ is finally obtained through the following posterior:
g~ MN (G (weveTwe) T,

:(j _ (WO/VE@*lWo) -1 Wo/‘/;ofl}’}o
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A.4 Step 2(b): Draw a history of indexes of the mixture {S;}/_, |6, {o,},_,

Starting from the following formulation seen in Step 1 of the algorithm
y; = 2log oy + log [(st)'Q] ,

we can notice that, since g, % MAN (0, 1,,), each term log €2, has a log x} distribution,

and log [(gt)'Q] is a vector of independent log x? random variables.

Omori et al. (2007), improving upon Kim et al. (1998), show that the log x? distribution

is very well approximated by a mixture of ten Normal distributions:
10
flogx% (LU) ~ me fN (SL’| m;n7m;)) )
j=1

where mf , m7* and mj are contained in the following table:

F 1 2 | 3 | 4| 5| 6 | 7| 8 9 10

m? | 0.00609 | 0.04775 | 0.13057 | 0.20674 0.22715 0.18842 0.12047 0.05591 0.01575 0.00115

J

my | 1.92677 | 1.34744 | 0.73504 | 0.02266 | —0.85173 | —1.97278 | —3.46788 | —5.55246 | —8.68384 | —14.65000
m? | 0.11265 | 0.17788 | 0.26768 | 0.40611 0.62699 0.98583 1.57469 2.54498 | 4.16591 7.33342

J

Therefore, in order to have a conditionally Gaussian measurement equation, we should
condition each element of the vector log [(5,5)'2} on the index that specifies the Normal
components of the mixture. Defining the n x 1 vector S; that contains the indexes of

components in period ¢, we can write

S1t

Si=| i |, where [log e},|sne=j] ~N (m],mY).

Jj oot

Sn,t

Conditioning on a history of volatilities (ot)thl, we can restate the model as

log [(57&)'2] =y, — 2log oy,

Then, the element s;; that indexes the specific component from which log 5,217,5 is drawn,

has support J = {1,...,10} and the following discrete probability distribution:

mé’ v (g;;t — 2log O'hﬂg} my, m;’)

S0 ml f (7, — 2log ong| mim,my)

Vied,  Prlsw=jli,0] =
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Independent draws for all variables h € {1,...,n} at all periods ¢t € {1,...,T} from this

distribution will form the new history of indexes of mixture’s components {St}thl 6, {at}tT:l.

Appendix B Forecast Evaluation Tables

The following tables contain the Root Mean Squares Errors, Predictive Log Scores and

Continous Rank Probability Scores relative to the forecast evaluation section.
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Table la: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)

USA Australia
MAI- ) . . BVAR- MAL , BVAR-
ARSV MAL-AR| AR AR-SV BVAR s ARSY MAIL-AR AR AR-SV BVAR ov
h=1| 0254 LI | L0247 1.026 0.972° | 0.976 h=1] 0203 0.983" 1.0227° | 1.020 LO15™ | 1.023
h=2| 0417 1.0207 | 1.032 1.0457 0.933* | 0.923" h=2] 0.309 0.976" 1.0427° | 1.046 1.035 1.069
h=3| 0525 1.035%" | 1.061 1.073™ 0.933 0.918 h=3] 0401 0.971°" 1.060" | 1.067 1.081° 1137
h=4] 0.602 1.0467% | 1.088 11057 0.947 0.922 L=4] 0485 0.974 1.0657 | 1.078 1.091 1162
h=5| 0.583 10537 | 1.127 11487 0.937 0.952 h=5] 0518 0.9697 107 | 1101 11207 11987
h=6| 0.553 1.048% 1.183 1.199% 1.046 1.004 h=06] 0.547 0.966" 11057 | 1.119° 1.132° 1.200°
h=7| 0.543 1.040% 1.242 1.2557 1.087 1.038 =T 0562 0,963 T125%% | L.137 1134 1.195°
h=8| 0.538 1.023" 1.283 1.206° 1.096 1.054 L=8] 0576 0.961° 11497 | 1.159° 1.133 1.169°
Austria Belgium
MAL i . BVAR- MAI- BVAR-
ARSY MAIL-AR AR AR-SV BVAR o ARSY MAI-AR AR AR-SV | BVAR oy
0.209 1069 1.0247 | 1.001 0.968" | 0.948 h=1] 0.200 0.972° 10207 1054 |  1.010 | 1.040
0.343 10697 1.0207% | 0.995 0.974% | 0.919 R=2| 0331 0.980" 1.0427% 1.0917 0.982 | 0973
0.450 1047 1.0227% | 1.014 0.980" 0.920 h=3] 0438 0.990° 1.045° 1.078° 0.959 | 0.927
0.535 1.049° 10277 | 1.029 1.001 0.951 h=4] 0544 10127 1.034 1.058 0.932 | 0.807
0.575 10627 1.056™ | 1.055 1.033 0.979 h=5] 059 1027 1.057° 0.925 | 0.891
0.595 10787 1.0997 | 1.094 1.066 1.009 h=06] 0.609 1.037 1.066" 0.942 | 0.900
0.618 1.000 11207 112 1.097 1.039 L=7| 0616 1.0417 1.078 0.955 | 0.902
0.637 1107 11487 1.143 1117 1.057 R=8] 0611 1041 1.103 0.960 | 0.808
Canada Finland
AL marar| ar | arsv | par | POF AN warar| ar | amsv | pvar | BUAR
h=1 0.227 1.000° 1.040 1.036* 0.975"* | 0.988 h=1| 0124 0.9917* 10417 1.022 1098 | L1147
=2 0363 0.997 1.047 1.040° 0.950"* | 0.971 h=2| 0233 1.006" 0.9917 0.963" 1.0557 | 1103
h=: 0.456 0.993* 1.053 1.043 0.941%F | 0.964* L=3| 0335 1019 0.973" 0.931 1.013 1.073
h= 0.530 1.006" 1.048 1.041 0.936" | 0.963™ h=4] 0436 1.026™ 0.966" 0.922 0.985 1.046
=5 0551 1.002% 1.017 1.011 0.929% | 0.978"™ h=35| 0513 1.0427 0.9617 0.907" 0.990 1.041
=6 0.560 0.939%* | 0.989 0.983 0.921% | 0.992™ h=6] 0.567 1049 0.973" 0.908 1.007 1.044
h= 0.574 0.986" 0.986 0.980 0.920 0.999 h=17]  0.606 1.056"" 0.999° 0.925 1.032 1.047
h=2g8 0.588 0.984% 0.995 0.987 0.925 1.008 h=38 0.634 1.066™* 1.026* 0.944 1.049 1.044
France Germany
‘, MAI- , BVAR-
Azgv MALAR AR AR-SV var | B Z’iR ARy | MAFAR| AR | AR-SV | BVAR SV
h=1] 0.108 1.0347 0,972 0.974" L0727 | 1.078 h=1] 0274 0.996™ |  0.982 0.984 1026 | 1.035
=2 0.180 1.080° 0.964"* 0.956 1.089 1.091 h=2 0.418 1.003™~ 0.978 0.991 1.063 1.051
h=3| 0234 11147 0.9917 0.947 1125 1.125 h=3| 0.505 1.022°* 1.018 1.030 1.136 1.104
h=4| 0292 11447 1003 0.955 1113 1.125 h=4| 0.5% 1.035"* 1.042 1.057 1.152 1.124
h=5] 0323 L172™ 1.016™ 0.946 1131 1143 h=5] 0624 1.040"* 1.063 1.078 1.186 1171
h=6 0.341 1.196*** 1.036™ 0.937 1.169 1.173 h=6 0.655 1.050"* 1.084 1.102 1.202 1.188
h=7| 0360 12127 1.050™ 0.926 1182 175" =71 0630 1060 1101 1120 1210 1156
h=8] 038 Low ]  LO59T | 091 LI | IS8T h=8] 0717 10727 | LIl | 1132 | 124 | Liss
Greece Italy
AA 1{;151 v MAI-AR AR AR-SV BVAR B;{/R AA;AS[ v MAIL-AR AR AR-SV pvar | © }9’2}2 i
h=1| 0111 10447 10117 | 0.996 LI38% | 1.069** h=1| 0.065 11357 10327 0.960" 1727 | 1126
h=2] 0.193 0.985" 10277 | 0.984 TI617 | 1.097 h=2] 0128 1074 10247 0.946™ 146" | 11557
L=3] 0.256 0.999° 1.0577* | 0.985 1169 | 1.082 h=3| 0.187 1057 1.040 0.951° T116° 1190
h=4] 0207 0.999° 1.0877 | 0.988 11937 | 1.083" h=4] 0250 1057 1023 0.937 1.080 1190
h=5] 0.306 1004 TI507 | 1.005 1230 | 1.1107 h=5] 0296 1.059° 1030 0.933 1.061 1.191
h=6] 0313 10237 12307 | 1.045 1277 11507 h=6] 0331 1058 L0547 0.939 1.049 1185
h=7] 0312 1.065° 13507 | 1.116 13207 | 1.190" n=7| 0363 10647 10717 0.940 1.027 1.160
h=28 0.311 1.124% 1.490% 1.206 1.336"** 1.205* h=38 0.387 1.066** 1.101% 0.956 0.998 1.137

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 1b: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)
Japan Luxembourg
MAL BVAR- MAL- ) BVAR-
ARsy | MAFAR AR AR-SV BVAR | V) An-sy | MALAR AR | AR-SV | BVAR SV
h=1 0.142 1131 1.002°* 1.018 1119 h=1 0.194 0.998*** 1.013** 1.024 1.020 1.042**
= 0.230 1180 1113 0.969" 1123 =2 0307 1.015" 1.014% | 1.030 1.027 | 1.042
h=3| 0313 1230 1130 0.927 1131 h= 0.377 1.027% 1.02077 | 1.042 1033 | 1.048
h=4| 0400 1.253° 11507 0.908 1107 h=4] 0448 1.033" 1.046™ 1.059 1.021 1.029
h=5] 0464 1.280° 1.085 h=5] 0473 10417 1.066" 1.083 1.027 | 1.033
h=6] 0517 13127 1.063 h=6 0.474 1.038° 1.101%* 1.118 1.046 1.046
h=T] 0563 1.3227 12347 ] 1.033 R=7| 0485 1030 1.140" L.155° 1.069 | 1.062
h=8| 0602 1.330" 1.208™ | 1.016 h=8] 0492 .02 11687 | 1.182°| 1.096 | 1.086
Netherlands New Zealand
MAL- ) - ; BVAR- MAI- . , BVAR-
ARSY MAIL-AR AR AR-SV BVAR o ARSY MAIL-AR AR AR-SV BVAR sy
0.156 0.980° 1.0307* | 1.012 1157 | 1.085" L=1| 0.153 0.962° 0.966"* | 0.959 11017 | 1.082°
0.231 0.991° 1.0327% | 1.007 12317 1.168" h=2] 0259 0.935" 0.928% | 0.873 L1407 | 1134
0.283 1.000° 5 1.040 12677 | 12347 R=3| 0351 0.919°" 0.9257 0813 1.133" 1.141
0.350 10097 1.025 1.200° 1.201 h=4| 0437 0.922° 0.9427 0.811 1102 | 1.120
0.400 10327 1.006 1.168 1.186 h=5| 0491 0.9217 0.948" 0.782 10647 | 1.085"
0.436 10517 1.005 1.130 1.158 h=06] 0.532 0.9217 0.964™ 0.765 1.036" 1.0457
0.480 1068 10197 0.996 1.090 1.110 R=7| 0.561 0.931°* 0.986™ 0.760 1.008 0.998
0.510 1083 015 0.987 1.072 1.075 L=8] 057 0.947 T.021% 0.763 0.984 0.951
Norway Portugal
MAI- BVAR- ;
AR-SV MAI-AR AR AR-SV | BVAR v 4%451‘/ MAI-AR AR AR-SV BVAR B;’éR
0.248 1.004** 1.028** 0.999 0.965 0.961 h=1 0.079 1.500* 1.375" 1.013"* 1.361* 1.085*
0.350 1.090%** 1.086"* | 1012 0.957 | 0.9407 h=2] 0.136 1341 13347 10147 1877 | 1064
0.443 11217 L1217 1.014 0.936 | 0.929° h=3| 0182 1261 1446 1.023° 12747 | 10047
0.533 11347 11457 1.020 0.917 | 0.905° h=4| 0227 1148 15047 1.035 1276 | 1112
0.578 11627 1171 1.001 0.933 | 0.903 h=5| 0257 1.080° 15807 1.048 1267 | 1099
0.601 1.165%* 1.224%* 1.014 0.959 0.901 h=6 0.286 1.032%** 1.637* 1.058 1.220%** 1.076%
0,611 1157+ T35 1036 0973 T 0803 h=17] 0312 0.995" 1690 1.079 11547 | 10507
0630 110+ T3+ 1063 0973 1 0.559 h=38] 033% 0.998" 17207 1.093 1094 | 1.0327
Spain Sweden
MAI- , i BVAR- MAL- IAL 1R BVAR-
Amsy | MALAR AR AR-SV BVAR | 7 AR.SY | MALAR AR | AR-SV | BVAR | =
h=1 0.116 0.0827 1.012 0.984% 1.065° | 0.989 h=1 0.235 1.024** 1.038*** 1.033 1.047 1.093*
h=2| 0204 0.983" 0.987 0.936" L0287 0.999 =2 0383 10447 1053~ 1.052 1.056 | 1.070
h=3| 0277 0.9947 10017 0.9227 1.006 1011 h=: 0.499 10507 1.089" 1.077 1.075 | 1.055
h=4| 0341 1017 10137 0.911° 0.979 1.012 =4 0.609 10507 1.108 1.093 1.031 | 0.992
h=5 0.385 1.026™ 1.027 0.894* 0.968 1.018 h=5 0.668 1.069*** 1.126* 1.105 1.014 0.966
h=06 0.421 1.026™* 1.048** 0.882* 0.955 1.002 h=6 0.698 1.081%* 1.170%* 1.138 1.012 0.956
h=T 0.457 1.028" 1.063* 0.875% 0.934 0.977 =7 0.721 1.097* 1.215%* 1.172 1.007 0.942
h=38 0.488 1.033*** 1.081*** 0.874* 0.916 0.968 h=28 0.740 1.109% 1.257 1.206 1.01 0.938
Switzerland United Kingdom
MAI- . BVAR- MAI- ) BVAR-
RSV MAI-AR AR AR-SV BVAR sv RSV MAIL-AR AR AR-8V BVAR sv
0.194 1.085° 1017 0.938° 11557 | 1165 h=1| 0114 1.054 1.008° 0.989° 12007 | 1112
0.355 1081 0.988° 0.956" 1.143° 1157 h= 0.184 1.062° 10447 1003 12457 | 1138
0.496 1.083° 0.976 0.9417 1125 1128 h=3] 0245 1.069° 1057 0.930" 1.237 1154
0.609 1097 0.974 0.937° 1111 1.008 h=4| 0316 10737 1,035 0.939" 1173 1.132
0.673 1121 0.985 0.941° 1114 1.071 h=5| 0359 1043 0.921° 1122 1104
0.705 11527 1.012 0.952° 1137 1.052 h=6| 0396 1.056" 0.911° 1.088 1.080
0.733 1179 1.041 0.963 1.166 1.037 h=7| 0433 1.073" 0.918" 1.063 1.054
0.762 1198 1.067 0.982 1199 1.030 n=8| 0459 1107 0.947° 1.047 1.035

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2a: Average

Log Predictive Scores (scores for MAI-AR-SV, score differences in

all others)

USA Australia
MAI- ) BVAR- MAI- | BVAR-
ARSV MAI-AR AR AR-SV | BVAR s AR-SV MAI-AR AR AR-SV | BVAR SV
0.166 —0.292"* | —1.263 —0.032 —1.506 | —0.022 h=1 0.206 —0.334** —0.139" | —0.044 —0.069 0.025
—0.343 —0.277 | —1.161 —0.063" | —0.971 | —0.016 h=2| —0.291 —0.197% | —=0.052 | —0.050 0.012 | —0.024
—0.600 —0.2677 | —0.532 —0.094" | —0.410 | —0.044 =3 —0.163 —0.053 | —0.083 | —0.013 | —0.080
~0.805 —0.2417F | —0.229 —0.130" | —0.110 | —0.048 h=14 —0.169 —0.075 | —0.104 | —0.026 | —0.112
—0.842 —0.276"" | —0.1807 —0.154 | —0.053 | —0.056 h=5 —0.215" —0.136 | —0.139 | —0.067 | —0.139"
—0.867 —0.308"* | —0.162"" —0.180"* | —0.052 | —0.073 h=6| —0.809 —0.238** —0.183* —0.164* | —0.091 | —0.150*
—0.892 —0.337** | —0.180* |  —0.208"*| —0.067 | —0.086 h=7| —0.833 —0.260% | —0.216" | —0.182* | —0.105 | —0.134*
—0.927 —0.3437F | —0.182% | —0.2237"| —0.064 | —0.087 h=38] —0.871 —0.256™ | —0.233"| —0.204* | —0.105 | —0.114
Austria Belgium
MAI- ) R BVAR- MAL BVAR-
RSV MAIL-AR AR AR-SV | BVAR s AR MAI-AR AR AR-SV | BVAR o
h=1| 0.126 —0.5167F | —0.265"" 0.004 | —0.146" | 0.052 =1 0239 —0.2837 | —0.110" —0.040 —0.074 | —0.058
h=2] —0.377 —0.386" | —0.172 —0.007 | —0.044 | 0.102 h=2] —0.191 —0.307 | —0.189"*| —0.101""" | —0.151" | —0.535
h=3| —0.696 —0.2417 —0.078 0.022 0.047 | 0143 h=3| —0453 —0.288" —0.247 —0.111" | —0.376" | —0.650
h=4] —0.863 —0.195 —0.064 —0.040 0.045 | 0.088 h=4] —0.723 —0.226" —0.1917 —0.106 —0.232 | —0.694
h=5| —0.919 —0.213" —0.102 —0.081 0.002 | 0.045 h=5] —0.822 —0.2407 —0.1517 —0.125" | —0.051 | 0.050
h=6| —0.957 —0.227 —0.132 —0.128 | —0.023 | 0.021 h=06| —0.863 —0.267" —0.1547 —0.152" | —0.033 | 0.060
h=7] —1.016 —0.212° —0.131 —0.170° | —0.032 | 0.000 Lh=7] —0912 —0.270"* | —0.140" Z0.172"" | 0.007 | 0.077
h =8| —1.059 —0.206 —0.129 —0.2047 | —0.039 | —0.014 h=8] —0.942 —0.2737 [ —0.141* —0.195"[ 0.046 | 0.096
Canada Finland
) Y Y BVAR- MAL BVAR-
MAFAR| AR AR-SV | BVAR SV iy | MAEAR AR | AR-SV BVAR | 7
—0.119" | —0.064 —0.086"" | —0.032 | —0.003 h=1] 0651 —0.550° | 02717 | —0.022 —0.199* | —0.108"
—0.130" | —0.127 —0.109"* | —0.147 | —0.004 h=2] 005 —0.4787F | =0.204"F | —0.049 —0.111 | —0.114
—0.160" | —0.127 | —0.137" | —0.070 | —0.020 h=3| —0.301 —0.4027" | —0.156" 0.014 —0.045 | —0.091
—0.173% ] —0.126 | —0.122 | —0.066 | —0.005 h=4| —0.581 —0.307"" —0.093 —0.018 0.020 | —0.042
—0.193% | —0.096 | —0.109 0.030 | 0.019 h=5] —0.759 —0.250° —0.056 0.018 0.048 | —0.010
09117 | —0.086 | —0.104 0.063 | 0.036 h=06| —0.850 —0.2497 —0.068 —0.007 0.040 | —0.004
0o 0095 | 0.1 0.069 | 0.047 h=7| —0.924 —0.235" —0.074 —0.031 0.032 0.014
0955 | 0105 | —0.149° 0067 | 0.03d =8| —0.978 —0.232 —0.082 —0.056 0.020 0.022
France Germany
MAI- i BVAR- MAI- o BVAR-
AR-SV MAI-AR AR AR-SV BVAR sy ARGV MALI-AR| AR AR-SV | BVAR Sy
h=1] 0.806 —0.42077 | 01537 |  0.028 | —0.119" | —0.072" h=1] —0.072 —0.178% | —0.035 —0.014 —0.062 | —0.052
h= 0.340 —0.5197" | —0.190"* | —0.003 | —0.149" | —0.088 h=2] —0.504 —0.172% | —0.023 —0.037 —0.073 | —0.055
h=3] 0078 Z0.5507 | —0.2197 | —0.032 | —0.172 | —0.129 =3[ —0.706 —0.188% | —0.054 —0.081 —0.127 | —0.099
h=4| —0.163 —0.4387F | —0.1827 | —0.040 | —0.142 | —0.124 =4 —0.904 —0.162° | —0.047 —0.103* | —0.092 | —0.105
h=5| —0.263 —0.5027F | —0.207" | —0.043 | —0.175 | —0.136 h=5| —0.994 —0.165° | —0.039 —0.127% | —0.079 | —0.092
h=06] —0.333 —05147" |  —0.223" | —0.046 | —0.206" | —0.163" h=06] —1.068 —0.162° | —0.042 —0.139% | —0.071 | —0.091
h=7| —0.410 —0.5037F | —0.2217 | —0.043 | —0.211" | —0.167" h=7| —1.140 —0.151° | —0.036 —0.1537 | —0.064 | —0.073
h=8| —0479 —0.4987F [ —0.216™ | —0.039 | —0.211" | —0.171" h=8] —1.194 —0.141* | —0.031 —0.155"" | —0.059 | —0.067
Greece Italy
AgAS] v MAI-AR AR AR-SV BVAR Bg‘iﬁ AA ég‘ MAI-AR AR AR-SV pvar | B ;’2}2 i
R=1| 0839 —0.761 —0.002 —0.369" | —0.1047 h=1| 1262 20,956 | —0.616" 0.1017" | —0.431"" | —0.146"
h=2] 0314 —0.003 —0.3397 | —0.109 h=2] 00638 208137 | —0.5227 0.063 —0.2837 | —0.142°
h=: 0.035 —0.777 —0.022 0310 | —0.122° h= 0.254 ~0.7 04517 0.043 0179 | —0.139°
h=4] —0.139 —0.7687 | —0.424™ | —0.039 —0.312"" | —0.131" h=1] —0.026 —0.375" 0.039 —0.117 | —0.125
h=5| —0216 07937 | —0458"" | —0.047 —0.372 | —0.145" h=5] —0.190 0.030 —0.111 | —0.127
h=6] —0.26 —0.806™" | —0.491"* | —0.056 —0.3917 | —0.170" =6 —0.208 0.029 —0.128 | —0.131
h=T7] —0.306 —0.821% —0.067 —0.405"* [ —0.187" h=T7] —0.394 0.029 —0.128 —0.126
=8| —0.350 —0.8207" | —0.545"" | —0.081 —0.399" | —0.198" h=8[ —0.468 —0.529" 0.012 0124 | -0.126

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* ** and ** correspond respectively to 10%,5% and 1% significance levels




Table 2b: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in all others)

Japan Luxembourg
MAIL- . ; BVAR- MAI- , . . BVAR-
ARSY MAIL-AR AR AR-SV BVAR sy ARSV MAI-AR AR AR-SV BVAR SV
0.505 —0.666"" | —0.356"" 0.000 —0.251 | =0.094" h=1 0.245 —0.302%F | —0.094% | —0.075 —0.079" | —0.027
0.033 —0.609" | —0.331°" 0.051 —0.2437 | =0.091 h=2] —0.199 —0.304% | —0.120°F | —0.072° | —0.174 | —0.038
—0.270 —0.5537 | —0.306" 0.093° —0.241 | —0.082 h=3] —0.426 —0.307 | —0.130" | —0.070 —0.19 | —0.055
—0.537 —0.4757 | =0.260 01287 =0.201 | —0.040 h=4] —0.619 —0.282% [ 0127 —0.105" | —0.048 | —0.054
—0.671 —0.474F | 20,2747 01517 0214 | —0.037 h=5] —0.637 —03127 | —0.149° —0.117%] —0.042" | —0.060
—0.788 —0.4537F | —0.267" 0.167°|  —0.197 | —0.016 h=6] —0.718 —0.332% | —0.182% | —0.133"| —0.038 | —0.054
—0.870 —0.4457 | 0.2767 01727 =0.190 | —0.007 h=7] —0.766 —0.332°F | —0.193"* |  —0.145" | —0.027 [ —0.058
—0.946 —0.426"" ] —0.270" 0.1817"] 0167 0.008 h=8] —0.803 —0.333" | —0.207""] —0.148"] —0.025 | —0.076
Netherlands New Zealand
MAI- BVAR- MAI- , S BVAR-
ARSV MAI-AR AR AR-SV BVAR SV ARSV MAI-AR AR AR-SV BVAR SV
h=1 0.388 —0.623 | 0347 0.020 —0.2377 | —0.064 h=1 0.501 —0.511°% | 02277 0.009 —0.198%* | —0.056"
h=2] —0.002 —0.625" | —0.342"F [ —0.006 —0.219" | —0.106" h=2[ 0.008 —0.5127 | —0.226" | —0.008 —0.195"* | —0.087"
h=3] —0213 —0.604 | —0.338" | —0.037 —0.211% | =0.130" h=3] —0.249 —0.528% | =0.264" [ —0.015 —0.214% | —0.112°
h=4] 0441 —0.508* | —0.261"" | —0.030 —0.151 | —0.108 h=4] 0442 —0.481"" | —0.250" | —0.014 —0.189"* | —0.109"
h=5 —0.540 —0.500%" | —0.255" | —0.032 —0.141 | —0.111 h=5 —0.540 —0.4657 | —0.275" 0.012 —0.171" | —0.083
h=6] —0.634 —0.479% | 02327 | —0.022 —0.123 | —0.109 h=6] —0.591 —0.4637 | —0.308" 0.024 —0.186 | —0.079
—0.729 —0.451"* | —0.197" | —0.016 —0.108 | —0.102 h=T7] —0.645 —0.450** | —0.319" 0.037 —0.183 | —0.062
h=8] —0.792 —0.438"* ] —0.176 —0.006 —0.099 | —0.105 h=8] —0.691 —0.436"" |  —0.323" 0.041 —0.167 | —0.048
Norway Portugal
MAI- BVAR- y
AR.SYy | MALAR AR | AR-SV | BVAR SV A%Aslx MAL-AR AR AR-SV pvar | B Zj?/R'
h=1 0.040 —0.350"* | —0.162"" 0.000 | —0.064 0.003 0.998 —1L.8T7 [ —0.973 0.004% | —0.8487 | —0.194
h=2] —0.361 —0.311% [ —0.152" | —0.019 0.001 0.032 0.525 —1.0497 | 08187 0.045 —0.673" | =0.193"
h=3] —0.624 —0.265" | —0.144 —0.047 0.068 0.058 0.258 —0.9497 | 0765 |  —0.010 —0.581 | =0.210°*
h=4] —0.836 —0.210% —0.129 —0.065 0.136 0.121 0.051 —08707 | 0377 —0.044 —0.497 | —0.208"
h=5] —0.940 —0.184 —0.128 —0.052 0.152 0.165 v=5] —0.067 —0.803"** | —0.738""] —0.064 —0.464" | —0.212*
h=6] —0.984 —0.188 —0.167 —0.070 0.144 | 0.198 h=6| —0.155 —0.753" | 0744 —0.092 —0.429" | —0.217"
h=17] —0.995 —0.204 ~0.218 ~0.095 0.115 0.201* h=T[| —0.232 —0.698* —0.750* —0.106 —0.390"* | —0.213
=3 —1.0»2 —0.001 0009 —0120 0110 0201 h=8] —0.304 —0.650°7 | 0738 —0.107 —0.345" | —0.202
Spain Sweden
MAI- BVAR- MAI- , . BVAR-
ARSV MAI-AR AR AR-SV BVAR s AR-SV MAIFAR AR AR-SV | BVAR SV
h=1 0.734 Z0.6707 —0.393° 0.029 —0.236"* | —0.040 h = 0.108 —0.320"" | —0.146"" | —0.046 —0.102 | —0.036
h=2] 0189 —0.520"* | —0.286"" 0.071 —0.136 | —0.050 h= —0.425 —0.184° —0.092 —0.140 —0.086 | —0.012
h=3] —0.196 —0.376 —0.173 0.159 —0.005 0.022 h=3] —0.784 —0.052 —0.025 —0.567 | —0.047 0.063
h=4] —0.429 —0.310 —0.127 0.152 0.052 0.019 h=4] —0981 —0.044 —0.052 —0.420 —0.022 0.073
h=5 —0.485 —0.361* —0.201 0.089 —0.001 | —0.036 h=5| —1.081 —0.040 —0.060 —0.095 0.020 0.105
h=6] —0.577 —0.340° —0.205 0.094 0.002 | —0.033 h=6| —1.098 —0.083 —0.134 —0.157 0.010 0.089
h=T7| —0.653 —0.328** —0.212 0.065 0.011 —0.020 h=7] —1.103 —0.125 —0.208 —0.209 —0.006 0.071
h=8| —0.729 —0.308"* —0.204 0.058 0.027 —0.005 h =8| —1.118 —0.145 —0.256* 0272 —0.014 0.047
Switzerland United Kingdom
MAI- BVAR- MAI- . B BVAR-
ARSV MAI-AR AR AR-SV BVAR i ARSV MAI-AR AR AR-SV BVAR i
h=1 0.199 —0.374% | 01037 0.020 —0.135"F | —0.111° h= 0.738 —0.681° | 03517 0.106" | —0.284"F | —0.082"
h=2] —0.362 —0.072 0.021 —0.148"% | —0.134 h=2| 0227 —0.663* | —0.356"* | 0.108 —0.245"F | —0.074"
h=3] —0.715 —0.021 0.000 —0.118 | —0.104 h=3] —0.061 —0.645 | —0.364"* | 0.141 —0.229"* | —0.091"
h=4] —0.935 0.008 —0.001 —0.094 | —0.078 h=4] —0.287 —0.579" | —0.330"*[  0.176 —0.202* | —0.096
h=5 —1.048 —0.183% 0.007 —0.010 —0.076 | —0.036 h=5| —0414 —0.553"* | —0.319" 0.191 —0.187 | —0.101
h=6| —1.102 —0.201% —0.019 —0.016 —0.088 | —0.009 h=6| —0.500 —0.536"* | —0.321" 0.182 —0.188% | —0.110
h=T7] -1.153 —0.213* ] —0.029 —0.013 —0.102 0.009 h=7] —0.580 —0.520"* | —0.316" 0.163 —0.189" | —0.108
h=8] -1.197 —0.215* —0.050 —0.027 —0.126 0.007 h=8] —0.636 —0.511° [ —0.324"]  0.107 —0.204" | —0.121

Statistically significant differences according to the Diebold-Mariano t-statistic

*** and ** correspond respectively to 10%,5% and 1% significance levels

are indicated by asterisks, where




Table 3a: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios

in all others)

USA Australia
) MAI- VAR-
Aﬂé{ IS{L MALIAR AR ar-sv | pvar | ? Z/Ll,R' 4 1{{15[ v | MAFAR| AR | AR-SV | BVAR b L?/R
h=1 0.123 1.098* 1.028 1.02 0.993 1.000 0.107 1191 1.081* 1.045 1.033 1.004
=2 0206 115 1.060" 1.0427 0.987 | 0.966 0.176 1.086* 1.041 1.040 1.008 1.039
=3 0.264 1126 1097 071 0.993 | 0.970 0.231 1.051 1.055 1.071 1.043 | 1107
h=4] 0315 11267 11097 1.106™ 0.993 | 0.966 0.277 1.056 1.063 1.081 1.063 | 1.141°
=5 0318 1155 11257 T14T7 | 1.006 | 0.983 0.293 1.075 1.103 1117 109 | 1175
h=G6| 0316 L1727 1153 LI85™* [  1.028 | 1.019 0.306 1.090 1.137 1.143 1107 | 1.184%
h=T 0.319 1.194* 1.195"* 1.227* 1.056 1.055 0.312 1.107 1.172° 1.165 1.109 1.165°
h=8] 0327 1197 12187 12497 1.052 | 1.063 0.320 1112 1.196* 1186 1107 | 1141
Austria Belgium
MAI- R BVAR- MAI- B . BVAR-
Ar.gy | MALAR AR AR-SV | BVAR | = o, AR.Sy | MALAR AR AR-SV | BVAR | ©
h=1] 0.114 14047 L1727 1.006 1.065 | 0.951 h= 0.107 11287 1.053" 1.047 1.050 | 1.060
h=2| 0191 1.268" 1.1027 1.002 1.001 | 0918 h=2| 0.169 11397 10997 1.096° 1.055 | 1.029
h= 0.248 11927 1.087 1.031 0.998 | 0.929 =3 0215 11437 LI 1.103" 1012 | 0.989
h=4] 0301 1.138 1.066 1.053 1.001 | 0.963 h=4| 0274 L1227 1037 1.089" 0.999 | 0.944
h=5] 0327 11427 1.092 1.081 1.027 | 0.987 =5 0.309 L1277 1.083 1.099" 0.975 | 0.921
h=06] 0.343 11487 1124 L1217 1.052 | 1.008 0.325 11447 1.095 11217 0973 | 0913
h=7| 0.361 11497 1142 11587 1.074 | 1.030 0.339 L7 1.101 11357 0.972 | 0910
h= 0.375 1.153" 1152 L1797 | 1088 | 1.043 0.346 L1507 LT 158" 0.959 | 0.900
Canada Finland
MAI- BVAR- ) ~
AR.gy | MAFAR| AR | AR-SV | BVAR | = AL Marar AR | arsv | pvan | PUE
h=1 0.126 1.044% 1.039 1.049* 0.983 0.996 =1l 0.069 1365 155 1014 T 1133
h=2 0.196 1.048* 1.060 1.060 0.969 0.984 h=2 0.128 1.091% 0.970 1.092 1.129
h=3] 0246 1.053* 1.073 1.073 0.976 0.993 h= 0.184 1.052 0.943 1.046 1.107
h=4] 0285 1.065 1.060 1.063 0.971 0.990 h=4| 0241 1.027 0.945 1.003 1.068
h=5 0.297 1.081** 1.039 1.044 0.968 1.001 h=5 0.286 1.149* 1.011 0.934 0.987 1.044
h=6 0.305 1.087 1.029 1.034 0.945 0.994 h=6 0.319 1.138** 1.017 0.942 0.981 1.026
=T 031 1093~ 1031 1018 0.931 0.933 h=7] 0345 L129° 1035 0.966 0.984 1.009
h= 0.324 L1027 | 1046 | 1063 | 0.922 | 0981 h=8] 0365 L15" 1053 0.986 0989 | 0997
France Germany
MAL- BVAR- MAL ; § , BVAR-
ARSY MAI-AR| AR AR-SV BVAR v ARSY MAL-AR| AR AR-SV | BVAR v
h=1| 0059 1.271° 1.053* 0.966 1.108% |  1.090% h=1| 0147 L0727 | 0.989 0.992 1.028 | 1.053
h= 0.095 1.382° 1.083" 0.984 1.146 1.120 h=2| 0225 1.079" 0.951 0.995 1050 | 1.055
=3 0122 1.436" 1.124° 0.998 1.199 1.180 h=3| 0274 1.093" 1.027 1.042 1102 | 1.097
h= 0.156 1.302° 1.105 1.007 1172 1174 4] 0329 1089 1.046 1.070 1100 | 1.101
h=5| 0174 LA07™ 1121 1.002 1.191 1.185 h=5| 0354 1.100% 1.059 1.096* 1107 | 1.116
h= 0.188 L4217 1137 0.995 1.214 1.201% h=6| 0379 1.099* 1.065 1.114* 1122 | 1124
=7 0202 14207 1.140 0.989 1.215 1.193" h=T7| 0405 1.TFF 1.073 1.128% 1132 | 112
h= 0.217 1.416 1.144 0.930 1.200 1175 h=8| 0427 1.008™ 1.077 1134 | 1142 | 1115
Greece Italy
MAI- BVAR- MAIL- . . BVAR-
ARSV MAI-AR AR AR-SV BVAR o ARSV MAIL-AR AR AR-SV BVAR sy
h= 0.059 1507 125277 | 1.003 12707 | 1.085" L=1| 0.036 2.026 15007 | 0.948 1370 | 1.158
L=2| 0.01 1563 12507 | 1.000 12677 [ 1107 L=2| 0.068 1797 1338 | 0.959 1.238" 1174
n=3| 0133 1616 1.286™* | 1.016 1286 | 1.1207 n=3| 0.0l L6517 13207 0.968 1.150 1.193
h=4] 0.158 L6157 1.300" 1.025 13057 | 1.1247 n=4| 0136 15027 1.243% 0.957 1.089 1182
=5 0.167 1667 1.366™ 1.043 13517 | 1.150° =5 0.163 14427 1.221 0.954 1.074 1178
=6 0174 L7 L440™ | 1.076 13357 | 1.184 L=6| 0183 1408 1.224 0.960 1.078 1173
=7 0178 L7617 15337 | 1.7 L5 | 1.2097 =7 0201 1.3347 1.225 0.964 1.07 1.155
=8| 0182 1.800° 1.6097* | 1.164 1408 | 1.215" L=8] 0216 13767 1.239 0.983 1.054 114

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

* ** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3b: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

Japan Luxembourg
MAI- ) BVAR- MAI- ) ) , BVAR-
RSV MAI-AR AR AR-SV BVAR ov AR-SV MAI-AR AR AR-SV BVAR SV
h=1 0.079 1.558%** 1.253%** 1.021 1.209%** 1117 h=1 0.103 1171+ 1.054** 1.031 1.036 1.030
h=2 0.129 1.502%* 1.236"** 0.962 1.234* 1.117 h=: 0.164 1.168** 1.051 1.043 1.047 1.047
h=3 0.177 1.456™* 1.219%* 0.911* 1.252* 1.115 h= 0.201 1.191% 1.076 1.061 1.060 1.059
h=4 0.226 1.423%* 1.227%* 0.889% 1.245 1.083 h= 0.244 1177 1.089 1.087 1.034 1.037
h=5 0.264 1.418"* 1.2357 0.851* 1.247 1.053 h=5 0.263 1.190%* 1.107 1.106* 1.035 1.036
R=6] 0299 L.106° LoA™ 0.835" 1.223 1.025 h= 0.269 1.206" 1.150" LI4 | 1.038 | 1.034
=7 03X 1397 1266 | 0.8317 1.199 1.000 h= 0.280 1.201° 1179 LI71%]  1.053 [ 1.051
h=38] 0353 13347 12767 | 08267 1.160 0.985 =8l 0239 1 1196~ 11855 1.066 | 1.066
Netherlands New Zealand
MAI- , BVAR- MAI- ) o . BVAR-
AR-SV MAI-AR AR AR-SV BVAR SV AR-SV MAI-AR AR AR-SV BVAR SV
h=1 0.087 1483 1.233** 1.006 1.230% 1.096* h=1 0.082 1.313* 1.085** 0.969 1.152%* 1.067
h=2 0.130 1.484** 1.224%* 1.017 1.250%* 1.151* h=2 0.139 1.276*** 1.061 0.933 1.170** 1.114
h=3 0.160 1.465* 1.239%* 1.053 1.271* 1.212* h=3 0.186 1.265** 1.080 0.904 1.179* 1.137
h = 0.199 1.379* 1.184* 1.054 1.208 1.189 h=4 0.229 1.213** 1.081 0.899 1.135 1.120
h=5 0.224 1361 1.163 1.038 1.172 1.169 h=5 0.256 1.193* 1.093 0.872 1.105 1.089
h=6 0.246 1.347* 1.152 1.029 1.133 1.147 h=6 0.274 1.181* 1.118 0.849 1.089 1.061
h=T1T 0.275 1.311% 1.112 1.018 1.09 1.112 h=17 0.289 1.180* 1.144 0.841 1.068 1.020
h=38 0.295 1.303*** 1.089 1.005 1.071 1.090 h=28 0.293 1.187* 1.174 0.844 1.052 0.983
Norway Portugal
VA I- /AR- q
fé‘gv MALAR AR | AR-SV | BVAR BL?,R Aﬁé’g&, MALAR AR | AR-SV pvar | B ?‘4/1? g
h=1 0.132 1.189** 1.084** 0.996 1.007 0.979 h=1 0.046 2. 787 2.130"** 0.971 1.922%** 1.158***
h=2 0.194 1.206* 1.115* 1.010 0.978 0.959 h=2 0.076 2.214** 1.864** 1.004 1.661*** 1.150%*
h=3 0.250 1.194* 1.137 1.018 0.940 0.935 h=3 0.101 2.006* 1.821%* 1.037 1.551%** 1.170*
h=4 0.303 1.183* 1.151* 1.036 0.908 0.903 h=4 0.124 1.857* 1.821" 1.069 1.482%* 1.179
h=5 0.333 1.184* 1.171* 1.024 0.913 0.881 h=5 0.140 1.739"* 1.870* 1.095 1.447 1.181
h = 0.349 1.186** 1.225%* 1.045 0.919 0.863 h=6 0.155 1.639*** 1.902** 1.118 1.394% 1.175
h=7 0.356 11847 1.201° 1.071 0.926 0.848 h=7] 0.170 1547 1,923 1.134 1323 | 1.158
h=23 0.368 1.168** 1.331% 1.098 0.919 0.836 h=8 0.184 14757 1.923* 1.137 1.247 1.135
Spain Sweden
MAI- BVAR- MAI- . BVAR-
AR-SV MAI-AR AR AR-SV BVAR % AR-SV MAI-AR AR AR-SV | BVAR SV
0.063 1.514% 1.248* 0.981 1.171%* 1.027 h=1 0.124 1.182% 1.067 1.016 1.064 1.070
0.109 1.358"* 1.163** 0.941 1.102 1.036 h=2 0.209 1.113** 1.065 1.044 1.069 1.041
0.148 1.208"* 1.147 0.932 1.069 1.041 h=3 0.275 1.093* 1.099 1.071 1.095 1.032
0.186 1.251%* 1.127 0.923 1.018 1.033 h=4 0.342 1.083 1.112 1.082 1.047 0.977
0.212 1.234% 1.132 0.909 1.001 1.033 h=5 0.381 1.082 1.125 1.090 1.024 0.947
0.236 1208 1.138 0.901 0.980 1.014 h=06 0.399 1.097 1.179* 1.131 1.023 0.941
0.260 1.180% 1.137 0.900 0.951 0.985 h=T17 0.410 1.120 1.246** 1.186* 1.026 0.936
0.280 117+ 1.142 0.905 0.931 0.974 h=38 0.420 1.137* 1.305%* 1.240% 1.033 0.944
Switzerland United Kingdom
MATI- .y . BVAR- MAI- ; B BVAR-
AR-SV MAI-AR AR AR-SV BVAR SV AR-SV MAI-AR AR AR-SV BVAR SV
h=1 0.108 1.256*** 1.057* 0.985 1151+ 1.145%* h=1 0.063 1.533** 1.195%* 0.936 1.238"** 1.086*
h=: 0.194 1.192%* 1.017 0.960 1.149* 1.151 h=2 0.104 1.531% 1.224** 0.952 1.243* 1.100
h=: 0.274 1.151%* 0.996 0.954 1.133 1.128 h=3 0.138 1.517* 1.245% 0.933 1.241% 1.130*
h = 0.343 1.138** 0.984 0.953 1.103 1.088 h=4 0.176 1.436™* 1.205 0.903 1.195% 1.123
h=5 0.384 1.153** 0.994 0.957 1.096 1.050 h=15 0.202 1.406*** 1.195 0.883 1.158 1.105
h=6 0.406 1.175%* 1.019 0.969 1.115 1.021 h=6 0.222 1.382%* 1.197 0.878 1.135 1.087
h=7 0.426 1.199** 1.047 0.987 1.144 1.001 h="17 0.241 1.368"* 1.214 0.898 1.126 1.074
h=38 0.446 1.215%** 1.074 1.003 1.179 0.995 h=38 0.255 1.3617 1.241 0.940 1.126 1.068

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*7** and *k

correspond respectively to 10%,5% and 1% significance levels
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Appendix C Additional Figures

Headline Inflation
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Figure 16: MAI-SV in-sample fit
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Figure 17
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Figure 19: Non-Food & non-Energy inflation rates (year on year growth rates in quarterly CPIs)
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