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1 Introduction

Global developments play an important role in the determination of inflation rates. Pa-

pers such as Borio & Filardo (2007) and Ciccarelli & Mojon (2010) find that a substantial

amount of variation in a large set of national inflation rates can be explained by global

factors. Quoting Borio & Filardo (2007): “...proxies for global economic slack add consi-

derable explanatory power to traditional benchmark inflation rate equations, even allowing

for the influence of traditional indicators of external influences on domestic inflation, such

as import and Oil prices. Moreover, the role of such global factors has been growing over

time, especially since the 1990s. And in a number of cases, global factors appear to have

supplanted the role of domestic measures of economic slack.” This evidence has been re-

cently challenged by Lodge & Mikolajun (2016), whose results suggest that the relevance

of global factors for forecasting domestic inflation is related to their ability to capture

slow-moving trends, like those emphasized by Stock & Watson (2007) in their decomposi-

tion of US inflation into trend and cyclical components. Other empirical contributions, as

Bianchi & Civelli (2015) and Auer, Borio & Filardo (2017), show that financial openness

and Global Value Chains are positively related to the effects of global slack on inflation.

We do not take an a priori stance on this point, but we will use an econometric model

where the relative contribution of global and country-specific factors as drivers of inflation

developments is estimated and can vary over time and across countries.

Another point stressed by Stock & Watson (2007), which however dates back to at least

Engle (1982), is the importance of allowing for conditional time-varying volatility when

modelling inflation. While Engle introduced the ARCH specification as a model for in-

flation volatility, Stock & Watson (2007) used stochastic volatility, which is indeed more

common in macroeconomics applications and more flexible since it permits to have diffe-

rent shocks as drivers of the level and volatility of an economic variable. Stock and Watson

found that the introduction of SV improves the out of sample forecasting power of their

model for US inflation, and it is preferable also to alternative methods to allow for hete-

rosckedasticity, such as rolling estimation or Markov switching models. Inflation volatility

is also relevant for policy making as, for example, in periods of high volatility it is more

difficult to understand whether inflation movements are temporary or persistent.

Volatility needs to be modeled properly in multi-country studies on inflation determinants.

In particular, it seems important to understand whether and to what extent the cross-

country commonality among inflation levels is also present among inflation volatilities.

Furthermore, recent macro-financial literature has considered stochastic volatility as a

basis to construct measures of macro and financial uncertainty (see Jurado, Ludvigson
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& Ng, 2015, and Carriero, Clark & Marcellino, 2017). From this perspective, it may

be important for a policymaker to disentangle whether inflation uncertainty originates

locally or globally.

Mumtaz & Surico (2008) investigate co-movements in an unbalanced panel of inflation

rates from the 1970s to early 2000s for 11 countries, using a large dynamic factor model

that incorporates time-varying coefficients and stochastic volatility in the unobservable

factors’ law of motion. Mumtaz & Musso (2018) extend the analysis of Mumtaz & Su-

rico (2008) on a large set of financial and macroeconomic variables, to disentangle the

contributions of global, region-specific and country-specific uncertainty. They find that

“the volatility of inflation, interest rates and stock prices seems to be driven primarily by

the global common uncertainty component in most countries, although to a varying extent

over time”.

We have collected inflation rates for 20 OECD countries, over the period 1960Q1-2016Q4.

Figure 1 reports the time series of CPI inflation rates for each country, together with

their first principal component (PC). A visual inspection reveals a non-trivial degree of

commonality at low-medium frequencies, as pointed out by Lodge & Mikolajun (2016).

The first PC explains about 70% of the variability of all inflation rates. However, the

figure also highlights some country-specific movements in inflation rates, and changes in

the volatility of inflation, which seems overall smaller in the final part of the sample. To

provide descriptive evidence on commonality also in inflation volatility, we have estimated

autoregressive models with stochastic volatility (AR-SV) for each inflation rate, and in

Figure 2 we report the estimated volatilities together with their first principal component,

which explains almost 60% of their time variation.

Based on this empirical evidence, this paper introduces a new approach to model simulta-

neously commonality in the level and in the volatilities of a cross section of macro-economic

time series, also allowing for idiosyncratic level and volatility components. The keyword

here is “simultaneously”, which emphasizes that the common factor can explain both

changes in the levels and volatilities of the variables.

The approach builds on the multivariate index (MAI) model of Reinsel (1983), and its

Bayesian implementation in Carriero, Kapetanios & Marcellino (2016). A MAI model

is a vector autoregression (VAR) with a particular reduced rank structure imposed on

the coefficient matrices, such that each variable is driven by the lags of a limited number

of linear combinations of all variables (so called Indexes), which can be considered as

observable common factors. Stochastic volatility (SV) was introduced in the MAI model
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by Carriero, Corsello & Marcellino (2018), while Cubadda & Guardabascio (2017) allowed

for the possibility of autoregressive (AR) terms to capture idiosyncratic components. We

combine all these features into the MAI-AR-SV model, obtain an analytical representation

for the indexes (observable factors) law of motion, derive a decomposition of the SV

into common and idiosyncratic terms, and develop a novel Bayesian MCMC estimation

algorithm.

Importantly, the approach presented here hinges on a reduced rank Vector Autoregression

rather than on a factor model. This sets our approach apart from other contributions

in the literature. Contributions such as Stock & Watson (1989), Forni, Hallin, Lippi &

Reichlin (2000), Mumtaz & Surico (2008) and Mumtaz & Musso (2018) rely on a factor

model in which the factor has time varying volatility. Hence, in all these contributions

the common volatility factor is merely the volatility of the common factor. Since the

factor enters the conditional mean of the process, the volatility of the factor can explain

the volatility of the conditional mean of the data. However, neither the factor nor its

volatility can explain the conditional variance of the shocks. Instead in the approach

presented here the common factor is common to both the conditional mean and the

conditional variance of the model. Our methodology is also substantially different from

Delle Monache, Petrella & Venditti (2016), who extend the model of Stock & Watson

(2007) to a multi-country inflation setting for the euro area, since their model feature

a common permanent component with its own changing volatility estimated in a non-

Bayesian setting where time variation is driven by likelihood scores.

We work with a single index model where the index (a linear combination of all the na-

tional inflation rates) represents the global factor that drives both levels and volatilities

of all national inflation rates. Inflation levels and volatilities also have an idiosyncra-

tic, country-specific, component, whose relative importance with respect to the global

component is time-varying and empirically determined.

We find that the single common factor in the MAI-SV model explains on average about

70% of the variability of all inflation rates. Moreover, there is also substantial commo-

nality in the inflation volatilities, increased in the last two decades. The average (across

countries) share of stochastic volatility explained by the global component spans from

20% to 65% throughout the sample.

While various sources can be behind the global inflation factor, it turns out that since the

early ’90s its level and volatility are strongly correlated with those of Chinese PPI and Oil

inflation. Measures of global slack seem not to have additional explanatory power, and
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US monetary policy shocks are basically uncorrelated with shocks to the global inflation

factor. Hence, supply seems to matter more than demand to explain the global component

of inflation and its volatility.

We also find that the global inflation factor is highly persistent, and this persistence is

transmitted to the global component of the national inflation rates, in line with Ciccarelli

& Mojon (2010). Level components explained by the common factor show a larger degree

of persistence than idiosyncratic components.

We then repeat the same analysis on a panel of non-Food and non-Energy inflation rates

for the same set of OECD countries, using data available for the period 1979Q1-2016Q4,

we find a smaller but non-negligible degree of commonality. The global core inflation

factor explains roughly 25% of the variability of core CPI inflation levels and the average

(across countries) share of stochastic volatility explained by the global component spans

from 10% to 20% throughout the sample, without displaying sizable variation over time as

was the case for headline inflation rates. The remaining substantial national component

of core inflation level and volatility leaves scope for national monetary policies.

The evidence provided in this paper also contributes to the long standing debate on

globalisation, inflation and monetary policy. Rogoff (2003) and Rogoff (2006) discuss how

various structural elements accompanying the globalisation since the early 1990s may have

lowered the global long term equilibrium of inflation rates, fostering the strong global

comovement of CPIs and somehow diminishing the role of domestic slack and monetary

policy in determining national inflation. On this respect, and in line with our empirical

results, Wang & Wen (2007) show that, within a New Keynesian DSGE model with

nominal rigidities or in a sticky information monetary model, country-specific monetary

shocks are not able to explain the strong correlation between inflation of several advanced

economies present in the data.

However, as highlighted also in the recent speech by Carney (2017), core inflation seems to

be less affected by global dynamics, already when looking at simple pairwise correlation.

Our work and methodology allow to measure separately the degree of cross-country com-

monality in first and second moments of both headline and core inflation rates, providing

precious information to monetary policy makers pursuing their inflation mandate in an

increasingly global context.

Finally, point and density forecast evaluations show that the MAI-AR-SV model has a

very good out of sample performance for inflation rates, when compared with a set of

multivariate and univariate competitors, and the SV specification is particularly relevant
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for the proper calibration of density forecasts. These results hold for both all items

inflation and core inflation rates, and provide further empirical support for our proposed

model.

The paper is structured as follows. Section 2 introduces the econometric model and the

volatility decomposition. Section 3 discusses the choice of prior distributions and the Mar-

kov Chain Monte Carlo estimation methodology to draw from the posterior distribution

(with additional details in the Appendix). Section 4 presents the data and the empirical

results on the commonality in inflation rate levels and volatilities, and on their drivers.

Section 5 assesses the point and density forecasting performance of the MAI-AR-SV infla-

tion model. Section 6 concludes. The Appendix provides additional details and empirical

results.

2 The econometric model

2.1 The MAI-AR-SV model

We assume that the model for the n-dimensional zero mean process1 yt containing the

inflation rates of interest is:

yt =

q∑
`=1

Γ` · yt−` +

p∑
`=1

A` ·B0 · yt−` + ut, (1)

where A`, ` = 1, . . . , p are n× r matrices, B0 is an r× n matrix, and Γ`, ` = 1, . . . , q are

n-dimensional diagonal matrices with diagonal elements γ1,`, γ2,`, . . . , γn,`.

In this model, each of the n variables in yt is driven by its own lags, capturing country-

specific features of inflation, with associated coefficients Γ`, by the lags of r common

observable factors (B0 yt−`, the “indexes”), capturing global features of inflation, with

associated loading matrices A`, and by error terms, ut, whose properties are described

below. With respect to an unrestricted Vector Autoregression, the model above leads to

a substantial reduction in the number of parameters.2

The product A` · B0 is an n × n matrix with reduced rank (r), for each ` ∈ {1, . . . , p}.
As it happens also in factor models and in cointegrated VARs, it is the case that one can

rotate these matrices arbitrarily, e.g. A` · B0 = A`Q
′ · QB0, where Q is an orthogonal

1A non-zero mean can be easily allowed by inserting an intercept in the model.
2In our empirical application, we have p = q = 4, r = 1 and n = 20, so that there are 180 parameters

in the MAI-AR-SV while there would be 1600 parameters in an unrestricted VAR.
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matrix, and hence proper identification restrictions are needed to pin down only one of

these possible rotations. Identification can be straightforwardly achieved for example as

in Reinsel (1983) by assuming that the first r rows and columns of B0 form an identity

matrix, that is B0 =
[
Ir B̃0

]
. We will follow a similar approach, see Section 3.1.1 for

details.

In expression (1), the error term ut is assumed to be uncorrelated over time, with multiva-

riate Gaussian distribution ut ∼ N(0,Ωt), where Ωt is a time-varying variance-covariance

matrix. Following Cogley & Sargent (2005) and Primiceri (2005), we operate a triangular

reduction on the full matrix Ωt, so that the errors ut can be written as ut = G−1Σtεt,

where εt is i.i.d. with multivariate Gaussian distribution εt ∼ N(0, In), G is a triangu-

lar matrix containing reduced form covariances3, and {Σt}Tt=1 is the history of diagonal

matrices containing the stochastic volatilities. This implies the following factorization for

the variance covariance matrix Ωt:

Ωt = G−1ΣtΣt

(
G−1

)′
(2)

G =



1 0 . . . . . . 0

g1 1
. . . . . .

...

g2 g3 1
. . .

...
...

...
. . . . . . 0

gm−n+2 gm−n+3 . . . gm 1


, Σt =



σ1,t 0 . . . . . . 0

0 σ2,t
. . . . . .

...

0 0 1
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 σn,t


. (3)

The elements in the matrix G are further collected in the vector g = (g1, g2, ..., gm)′ which

has dimension m = n (n− 1) /2. Following Primiceri (2005), the law of motion for the

time-varying (TV) standard deviations, collected in the vector σt =
[
σ1,t, . . . , σn,t

]′
, is

defined in logarithms as:

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN ( 0, Qσ ) . (4)

We will refer to the model in (1) with the volatility specification in (2), (3) and (4) as the

MAI-AR-SV model.

3The matrix G can be also made time-varying, but at the cost of a substantial increase in computational
complexity when the number of variables is large.
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2.2 An alternative representation of the MAI-AR-SV model

Let us define the observable factors driving all variables as

Ft ≡ B0 · Yt, (5)

and note that the following decomposition holds:4

In = ΩtB
′
0Ξ−1

t B0 +B′0⊥Ξ−1
⊥,tB0⊥Ω−1

t , (6)

where B0⊥ is the (n − r) × n orthogonal matrix of B0 such that B0B
′
0⊥ = 0r×(n−r),

Ξt = B0ΩtB
′
0 and Ξ⊥,t = B0⊥Ω−1

t B′0⊥. Let us also define

Gt = B0⊥Ω−1
t yt, (7)

where Gt are n−r variables that can be interpreted as idiosyncratic components, because,

as we will see later on, they are driven by shocks uncorrelated with those driving the

common factors Ft.

Using (5)-(7), we can now write the MAI-AR-SV model in (1)-(2) as

yt =

q∑
`=1

Γ`[ΩtB
′
0Ξ−1

t B0 +B′0⊥Ξ−1
⊥,tB0⊥Ω−1

t ] yt−` +

p∑
`=1

A` ·B0 yt−` + ut,

or

yt =

q∑
`=1

Γ`B
′
0⊥Ξ−1

⊥,tGt−`+

max(p,q)∑
`=1

(Γ`ΩtB
′
0Ξ−1

t + A`)F t−` + ut. (8)

Next, we derive the model for the factors Ft implied by the MAI-AR-SV model. Starting

from (8) and multiplying both sides of it either by B0 or by B0⊥Ω−1
t , we obtain:

Ft =

q∑
`=1

B0Γ`B
′
0⊥Ξ−1

⊥,tG t−`+

max(p,q)∑
`=1

B0(Γ`ΩtB
′
0Ξ−1

t + A`)F t−` + ωt, (9)

Gt =

q∑
`=1

B0⊥Ω−1
t Γ`B

′
0⊥Ξ−1

⊥,tGt−`+

max(p,q)∑
`=1

B0⊥Ω−1
t (Γ`ΩtB

′
0Ξ−1

t + A`)F t−` + ψt,

where [
ωt

ψt

]
=

[
B0ut

B0⊥Ω−1
t ut

]
i∼MN

(
0,

[
Ξt 0

0 Ξ⊥,t

])
, (10)

4See Carriero et al. (2016) and the references therein for details.
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since

E(ωtψ
′

t) = E(B0utu
′

t Ω−1
t B

′

0⊥) = B0ΩtΩ
−1
t B

′

0⊥ = 0.

Hence, the r observable factors Ft and the n − r idiosyncratic components Gt jointly

evolve as a VAR, with block uncorrelated errors.

The model in (8)-(9) is similar to a factor augmented VAR (FAVAR) model, as for example

in Bernanke et al. (2005), or Stock & Watson (2005) who also allow for variable-specific AR

terms. However, it differs from a FAVAR in three important ways. First, it also features

stochastic volatility both in the common (ωt) and in the idiosyncratic (ψt) shocks, which is

particularly relevant for modelling inflation, as we will see. Second, in the FAVAR model

the factors are unobservable, while they are observable in the MAI case, which simplifies

model estimation and interpretation of the results. Third, in general unobserved factors

should be modeled with a VARMA rather than a VAR model, as emphasized by Dufour

& Stevanović (2013), while in our case we can analytically derive the VAR model followed

by the observable factors Ft (jointly with the variables Gt).

2.3 Decomposing the volatilities

We decompose the stochastic volatility of the MAI-AR-SV errors ut into two orthogonal

sets of components, one of them driven by the volatility of the common shocks ωt, the

other by that of the idiosyncratic shocks, ψt.

Using again the decomposition in (6), we get:

ut = ΩtB
′
0Ξ−1

t ωt +B′0⊥
(
B0⊥Ω−1

t B′0⊥
)−1

ψt,

with Ξt = B0ΩtB
′
0. Hence, due to the orthogonality of ωt and ψt, we can then decompose

the total error volatility into the volatility of the common component and that of the

idiosyncratic component:

Ωt = Ωcom
t + Ωidio

t ,

where

Ωcom
t = ΩtB

′
0Ξ−1

t B0Ωt, Ωidio
t = B′0⊥Ξ−1

⊥,tB0⊥.
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2.4 Decomposing the levels and computing IRFs

It is interesting to decompose the inflation rates in yt into their common and idiosyncratic

components, where the common component is driven by the common shocks ωt and the

idiosyncratic component by the idiosyncratic shocks ψt. The decomposition can be also

used to compute impulse response functions (IRFs) to common shocks.

We cannot directly use the model in (8), as both Ft and Gt are driven by both ωt and ψt.

However, we can use the projection approach, proposed for example by Jordà (2005) for

IRF computation, to obtain the decomposition:

yt = B1(L)ωt +B2(L)ψt,

where ωt and ψt are defined in (10). The common and idiosyncratic components are

orthogonal at all leads and lags, due to temporal independence and orthogonality of ωt and

ψt. Therefore, empirically, we can obtain the common component as the fitted value in a

regression of yt on contemporaneous and lagged values of the (estimated) common shocks

ωt (and the idiosyncratic component as yt minus the estimated common component),

while the IRFs to common shocks are computed from the elements of B1(L)5.

3 Estimation

The model is estimated using Markov Chain Monte Carlo (MCMC) techniques. In this

Section we discuss, in turn, the priors on the model coefficients and the MCMC algorithm

we use to obtain draws from the posterior distributions.

3.1 Specification of the prior distributions

The prior distributions are constructed in various steps, which generally require the use

of a training sample {−T ∗, . . . ,−1, 0}.

3.1.1 Prior on B0

In order to identify the model, we need to restrict at least r2 elements in the r×n matrix

B0. Given that in our case r = 1, then B0 =
[
b0,1 . . . b0,n

]
is a row vector of weights,

and as identifying restrictions we simply normalize to 1 the first weight b0,1.

5In our empirical application on inflation, we have a single factor (r = 1), which explains on average
more than 70% of the cross-country inflation variability. In this case, ωt is a scalar, which further simplifies
the computation of the common component of inflation rates, and their impulse response functions to
global shocks.
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Prior knowledge for the unrestricted elements of B0 is elicited with a Normal distribution.

To set the prior moments for the elements of B0 =
[
b0,1 . . . b0,n

]
, we compute the largest

eigenvalue score St from the principal component analysis on the set of variables, and then

run the following n univariate regressions:

∀k ∈ {1, . . . , n} , St = b0,k · yt,k + uk,t, uk,t
iid∼ N

(
0, σ2

k

)
The OLS estimates of these regressions, and their standard errors, are used to calibrate

mean and variances of the prior distributions. For identification, b0,1 is set to 1, and the

remaining elements of B0 are divided by b̂0,1.

3.1.2 Prior on A

Defining A ≡
[
A1 . . . Ap

]
, the prior on a = vec (A′) is multivariate Normal, centered

on 0, and with diagonal variance Va resembling a Minnesota prior. In particular, it holds

that

Va = Diag



σ̂2
y,1
...

σ̂2
y,n


⊗


Ψ1 0 . . . 0

0 Ψ2
. . .

...
...

. . . . . . 0

0 . . . 0 Ψp

 ,∀` Ψ` =
λa
`d
·Diag



σ̂−2
F,1
...

σ̂−2
F,r


 ,

where σ̂2
y,j and σ̂2

F,s are the residual variances of a univariate AR(1) for, respectively, each

variable j and each factor s (computed using the prior mean of B0). λa is a tightness

parameter, and d is a decay parameter. We chose standard calibration borrowing from

the VAR literature, i.e. λa = 0.2 and d = 2.

3.1.3 Prior on Γ`

The prior distribution on the AR coefficients in the matrices Γ`, collected in the column

vector γ (see the Appendix for details), is a multivariate Normal distribution. In the

spirit of a Minnesota prior, we choose an a priori unitary mean for the first lag of each

variable whose dynamics resemble a random walk, and a zero mean for the higher lags.

Regarding the a priori covariance matrix, we assume no correlation across coefficients of

different lags and variables, and we set a prior structure for the variances which resembles

the Minnesota prior, using the tightness and decay parameters:
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γ̄ =


γ̄1

γ̄2

...

γ̄q

 =


1n×1

0n×1

...

0n×1

 , Vγ = λγ ·Diag




1−d

2−d

...

q−d


⊗ In.

Considering the smaller number of elements in γ in our empirical application, we chose a

less tight prior calibration than in the case of A, i.e. d = 1 and λγ = 0.1.

3.1.4 Prior on Ωt

The prior for the elements of G in expression (2), the matrix containing the stable covari-

ances among the MAI errors, is a multivariate Normal distribution centered at zero, with

large diagonal covariance matrix.

The priors to produce inference on the elements of σt in (4) are set as follows. The prior

for σ0 is a multivariate Normal, centered at
[
σ̂2
y,1 σ̂2

y,2 . . . σ̂2
y,n

]′
estimated as standard

deviations of univariate AR(1) residuals on each observable, with identity covariance

matrix, as in Primiceri (2005). The prior distribution for the innovation covariance matrix

Qσ is calibrated as in Primiceri (2005).

3.2 Gibbs Sampler

This subsection describes each step of the Gibbs Sampler (GS) used to simulate from the

joint posterior distribution of both parameters θ = {γ,A,B0, G,Qσ} and unobservable

states {σt}Tt=1 of the MAI-AR-SV model. Moreover, for volatility estimation the Omori

et al. (2007) procedure requires drawing the indexes of Normal components of a mixture

approximating a logχ2
1 distribution labeled as {St}Tt=1. This MCMC estimation approach

is needed as the joint posterior distribution cannot be analytically determined. The

algorithm innovates with respect to Carriero et al. (2018) since it introduces the step to

draw the AR coefficients, and it builds upon Carriero et al. (2016) to draw the reduced

rank structure of the VAR coefficients (A · B0), and on Primiceri (2005) and Del Negro

& Primiceri (2015) to draw the time-varying volatilities.

The steps are the following:

1. Draw a history of volatilities {σt}Tt=1

∣∣∣θ, {St}Tt=1 ,

2. Draw θ, {St}Tt=1 | {σt}
T
t=1. This second step is further split as follows:
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(a) Draw the elements in θ| {σt}Tt=1

i. Draw the covariance of volatilities’ innovations Qσ

∣∣∣γ,A,B0, G, {σt}Tt=1

ii. Draw the AR coefficients γ
∣∣∣A,B0, G,Qσ, {σt}Tt=1 ,

iii. Draw the loadings A
∣∣∣γ,B0, G,Qσ, {σt}Tt=1 ,

iv. Draw the factor weights B0

∣∣∣γ,A,G,Qσ, {σt}Tt=1 ,

v. Draw the off-diagonal elements in G
∣∣∣γ,A,B0, Qσ, {σt}Tt=1

(b) Draw a history of indexes of the mixture in {St}Tt=1 |θ, {σt}
T
t=1

It is important to note that steps iii and iv have yt − Xt · γ as dependent variable in

order to draw A and B0, while in step ii we use yt − A · Zt to draw the AR coefficients,

where

Zt ≡ (Ip ⊗B0) · vec
([
yt−1 . . . yt−p

])
, Xt =

[
Diag(yt−1) . . . Diag(yt−q)

]
.

The Gibbs Sampler is described in more detail in section A of the Appendix.

4 The global component of inflation volatility

4.1 Data

Following the literature on global inflation (e.g. Ciccarelli & Mojon, 2010 and Borio &

Filardo, 2007) we collected a panel of Consumer Price Indices for a set of 20 OECD

countries6, downloaded from the OECD main economic indicators database. The dataset

includes 228 observations at quarterly frequency, covering the period from 1960-Q1 to

2016-Q4. We then constructed inflation rates as year on year changes of the indexes7.

6USA, Australia, Austria, Belgium, Canada, Finland, France, Germany, Greece, Italy, Japan, Luxem-
bourg, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK

7Ciccarelli & Mojon (2010) use Year on Year changes of CPI inflation rates for the bulk of their analysis.
O’Reilly & Whelan (2005) adopt the same transformation stressing that is cited in the ECB’s official
inflation mandate. Lodge & Mikolajun (2016) point out that using YoY changes in CPI is preferable
since this transformation produces no seasonal pattern by construction.
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4.2 Common component and global shock transmission

We start by estimating a MAI-SV specification (that is with Γ` = 0, ∀`), with p = 4 lags

and with a single global factor (r = 1), similar to the preferred specification of Ciccarelli

& Mojon (2010). The resulting model is estimated by a simplified version of the MCMC

algorithm presented in Section 3.

Figure 3 reports the inflation rates for each country along with the posterior bands and

median of the estimated common global inflation factor. The model is clearly able to

capture the substantial co-movement of national inflation rates.

Measuring the in-sample fit of the MAI-SV model for each country, we find that on

average (across countries) the estimated common component explains roughly 73% of the

variance, which is in line with the Principal Component Analysis.

Next, as the residuals of the MAI-SV model are clearly serially correlated at least over

parts of the sample, we estimate a MAI-AR-SV model with p = 4 lags for the common

part, as for the MAI-SV, and q = 4 lags for the country-specific AR components8. The in-

sample fit for the MAI-SV and MAI-AR-SV models are reported in the Appendix. The

fit of the MAI-AR-SV is systematically higher than that of the MAI-SV specification,

reaching an average explained variance of about 94%. In particular, the MAI-AR-SV

specification is able to capture both the low and the high frequency variation of each

inflation series, due to the presence of both common and country-specific autoregressive

components.

Notwithstanding the differences mentioned above, the estimated global factor from the

MAI-SV and MAI-AR-SV models are very similar, see Figure 4. They are also very

similar to the first PC of the inflation rates. The latter is used to form the prior on

the B0 coefficients in the MAI models, but the prior variance is large enough so that

results are data driven rather than dictated by the prior. All such measures of common

components are also comparable, though with some differences, to an OECD measure

of global inflation, also reported in Figure 4. These results are in line with the findings

of Ciccarelli & Mojon (2010), even though their sample stops in 2008. As reported

also by Ferroni & Mojon (2016), our analysis suggests strong commonality in inflation

developments across OECD continues also in the more recent period, and, actually, it has

been particularly high during the last financial crisis9.

8Recall that the MAI-AR-SV model is a MAI-SV model with the addition of AR components.
9Using a more recent sample of inflation rates (1993-2014), Ferroni & Mojon (2016) find that the

fraction of national inflation rates’ variance that is explained by Global Inflation remains dominant.
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A simple local projection analysis shows how a shock to this global factor is transmitted

across countries. Figure 5 shows the responses to a unitary impulse to ωt, the innovation

of the global factor’s law of motion. We observe a similar hump shaped pattern in most

countries. With few exceptions, on impact and in the first periods after the impulse,

national inflation tends to increase, and then after some quarters it reverts back to the

impact response or even to lower values in some countries. This evidence shows how a

global shock to headline inflation rates induces a similar response over a set of advanced

economies, reinforcing our understanding of the degree of commonality.

4.3 Levels decomposition and persistence

Using the level decomposition discussed in section 2.4, we are able to decompose the

observed inflation series of each country into orthogonal components driven, respectively,

by common and idiosyncratic shocks. Moreover, for each country we measure how much

variation is explained by each component.

Figures 6 reports the level decomposition of inflation rates into common and idiosyncratic

components, compared with the actual series. The common components tend to explain

more than 50% of almost all countries’ inflation rates, and are particularly important in

large economies like the US, UK, Germany and Japan10.

Stock & Watson (2007) discuss the persistence of US inflation, using as a measure of

persistence the largest autoregressive root of the levels’ process. Inference about this

measure of persistence is made possible by the Stock (1991) method, which is appropriate

when dealing with series displaying high levels of persistence. Stock & Watson (2007) do

not find strong evidence of persistence changes in US inflation from the 1970s onwards,

reporting the largest AR root of US CPI inflation comprised between 0.85 and 1.05 (as

90% confidence interval). O’Reilly & Whelan (2005) report little evidence of instability

for inflation persistence in the Euro Area since the 1970s; they report rolling confidence

intervals for the largest AR root of Euro Area CPI inflation that are centered around 0.9

across almost the entire sample.

In light of this literature, using the entire sample, we computed the 90% confidence

intervals (CI) for the largest AR roots of all national CPI inflation series, of their common

and idiosyncratic components, and of the global factor. Figure 7 compares the CI for the

largest AR root of the observed series, their components and the global factor, separately

for each country. The picture clearly shows how the common global components tend

10Note that these values are lower than those reported for the explanatory power of the common global
factor Ft, as the evolution of Ft is partly explained by the idiosyncratic shocks, see (9).
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to preserve the high persistence of the observed series, while the idiosyncratic country-

specific components display wider confidence intervals centered on slightly smaller values.

The global factor shows a very narrow CI centered on 0.99.

These results are in line with what reported by Ciccarelli & Mojon (2010), who argue

that “the global component captures the most persistent and possibly nonstationary part

of inflation”. Indeed, using a different methodology, they report smaller persistence for

the so called “national” components; interpreting such results, they consider the global

factor as an attractor and the main driver of persistence coming from the observed data.

However, for this specific exercise they use annualized quarter on quarter inflation rates,

which is a transformation that tends to display a smaller degree of persistence than the

year on year transformation. Performing our analysis using QoQ CPI changes, we measure

a degree of persistence in line with Ciccarelli & Mojon (2010) for both global and national

inflation components.

4.4 Time-varying volatility decomposition

Figure 8 reports the posterior bands of the estimated conditional inflation volatilities of all

countries for the MAI-AR-SV, along with the decomposition discussed in Section 2.3. The

estimated volatilities display a relevant degree of commonality. Indeed, the first principal

component of the volatilities explains on average about 50% of their variation.

To better understand what is driving the volatilities, Figure 9 presents the contribution of

the estimated common and idiosyncratic components in determining volatilities. It turns

out that the contribution of the common component is non trivial, reaching values above

50% for some countries and time periods, especially during the last decades, in particular

during the Great Recession. In the 1970s the contribution of the global component to

stochastic volatility is generally smaller than in the Great Recession, standing for a smaller

degree of cross-country synchronization of changes in the unexplained residuals’ size.

In this multi-country context, it is complex to understand the structural drivers of the

common inflation volatility component. However, for a single country this can be done.

Carriero et al. (2018), focusing on the US, find that supply shocks are particularly impor-

tant, with demand shocks ranked second and monetary/financial shocks third. We will see

later on that the importance of supply factors is also confirmed for other countries.

Figure 10 shows the posterior bands of the global factor volatility, that is (Ξt)
T
t=1. Global

inflation volatility was moderate during the 1960s, increased dramatically during the

1970s before the sharp reduction starting in the 1980s associated with the change in
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monetary policy to fight inflation occurred in several countries. These results are in line

with the US inflation volatility estimated by Stock & Watson (2007). Global inflation

volatility has remained very low until mid 2000s, reaching a new spike during the Great

Recession, before turning back to the historically low values in the last three/four years

of the sample. Time variation is significant and relatively large throughout the entire

estimation sample.

4.5 Possible drivers of global inflation’s level and volatility

While there can be many drivers of the global inflation factor, Figure 11 shows that after

the 90’s it is correlated with the Chinese PPI inflation rate and the Oil inflation rate, with

correlations around 0.7 and 0.5 respectively. To compute Oil inflation, we use the WTI

price ($/barrel), while Chinese PPI inflation is available only from the early 1990s.

To obtain more reliable results on the role of these two variables as drivers of global

inflation, we have regressed the global factor on its own lags and on the simultaneous and

lagged values of the Chinese PPI and Oil inflation rates, starting the sample in the early

’90s due to data availability. The results indicate that the regressors are significant, with

the share of explained variance increasing to more than 90% when Chinese PPI and and Oil

inflation are included in the specification, compared to roughly 75% in the AR model, and

less autocorrelated residuals. Adding to such regressions the contemporaneous and lagged

OECD global output gap does not increase the explanatory power. These findings are also

qualitatively confirmed in regressions with differenced variables and suggest that supply

factors are more relevant than demand ones as drivers of global inflation dynamics11.

To further explore some other relevant sources of global inflation fluctuations, we regressed

the innovation to the common component, ωt, on simultaneous and lagged values of

two estimated exogenous innovations to the US economy: the Gertler & Karadi (2015)

measure of monetary policy shocks and the Beaudry & Portier (2006) measure of TFP

news shock12. The evidence shows that such important exogenous shocks relative to the

11Using quarterly data from the 1990s within an empirical Phillips-Curve estimation framework, Forbes
(2018) provides evidence that four global factors (global slack, commodity prices, exchange rates and
the degree of global price competition among producers) contribute to national inflation dynamics, even
though quite heterogeneously across countries. Moreover, the evidence provided shows that global factors
have not become as important in explaining core inflation dynamics as they have for headline CPI and that
the explanatory power of different global factors is very heterogeneous across time and across countries.
These findings are in line with our results.

12Ramey (2016) reviews and discusses several shocks driving US economic fluctuations. The Gertler &
Karadi (2015) monetary policy shocks are identified at high-frequency using federal funds futures, and
then aggregated at lower frequencies. The Beaudry & Portier (2006) series of news shock to productivity
is identified via short and long run restrictions using data on stock prices.
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US economy, which typically explain a large share of business cycle fluctuations according

to Ramey (2016), have almost no explanatory power for global inflation innovations.

Miranda-Agrippino & Rey (2018) also find that US monetary policy shocks explain a

very small share of inflation variance.

Next, to understand which global forces may correlate with global CPI inflation volatility,

we estimated stochastic volatilities from univariate AR-SV models for Oil inflation, the

Chinese PPI inflation and the global output gap. A comparison of the estimated (median)

volatilities is reported in Figure 12. From visual inspection, a clear co-movement between

Oil and global CPI inflation volatility stands out, showing a correlation around 0.5 from

the early 1970s and almost 0.8 from the early 1990s. Also the Chinese PPI inflation

volatility displays a positive correlation with global CPI uncertainty: the correlation is

around 0.7 from the early 1990s. The volatility of the output gap is instead much lower,

except for the recessionary period.

To provide additional evidence, we have regressed the (changes in the) volatility of the

global inflation factor on its lags and on the contemporaneous and lagged (changes in the)

volatility of Oil, Chinese PPI and output gap, either separately or jointly. The largest

explanatory power is achieved by the volatility of the Chinese PPI, with an R2 of about

0.80 with respect to about 0.39 for the AR model. Adding the other volatilities does not

help. Hence, overall, we find evidence for the volatility of Chinese PPI as a driver of the

volatility of global inflation, with oil volatility as second best.

So far we have analyzed separately the drivers of level and volatility of global inflation.

Joint evaluation leads to the same conclusions. In particular we have conducted a joint

analysis by modelling the global inflation factor, Oil inflation, Chinese PPI inflation and

global output gap with a VAR model with stochastic volatility. The estimation results

confirm the relevance of lags of Oil and Chinese PPI in the equation for the global inflation

factor, not of global output gap. Moreover, the first principal component of the four

estimated stochastic volatilities explains about 70% of their movements, even though the

stochastic volatility of the global output gap has almost zero weight.

4.6 Commonality in core inflations

In light of the correlation (both in levels and volatilities) between the global component of

headline CPI inflation and Oil, it is important to detect how much core components of the

CPIs remain correlated across countries. To this end, the same exercises of this section

have been performed using the non-Food and non-Energy Consumer Prices Indices for the
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same set of countries, downloaded from the OECD main economic indicators database.

These data are available only from the late ’70s onwards.

Non-Food and non-Energy inflation tends to display a lower degree of commonality, al-

ready from a quick graphical inspection13. Results of the decomposition are collected in

Appendix C. They indicate a smaller importance of the common component both in vola-

tilities and in levels: the global core inflation factor explains roughly 25% of the variability

of core CPI inflation levels, while the average (across countries) share of stochastic volati-

lity explained by the global component spans from 10% to 20% throughout the sample14.

The fact that core inflation dynamics remain mostly heterogenous across countries, leaves

ample scope for domestic monetary policies.

5 Forecasting inflation with the MAI-AR-SV model

To provide further evidence on the usefulness of the MAI-AR-SV as a model for multi-

country inflation, we now evaluate its out of sample properties, also in comparison with

a set of standard competitors.

Using the same inflation series employed in the structural analysis, several models are

recursively estimated on a forecasting window going from 1990Q1 to 2016Q4. The asso-

ciated out of sample forecasts are produced for six different models and 8 horizons, from

1 to 8 quarters ahead.

The models under evaluation are the following:

• the Multivariate Autoregressive Index model with AR components and Stochastic

Volatility (MAI-AR-SV)

• the Multivariate Autoregressive Index model with AR components (MAI-AR)

• the univariate Autoregressive model (AR)

• the univariate Autoregressive model with Stochastic Volatility (AR-SV)

13The lower degree of commonality may also stand for a low degree of synchronization between national
core inflation rates. Indeed, less volatile components of the CPI may be less responsive to global changes
in goods’ prices, and most importantly their time response can be heterogenous across countries. This
phenomenon is less evident in headline inflation rates since the most volatile components of prices are
more synchronous over the world and determine a non-trivial amount of variation in goods’ prices.

14To understand whether the different results we got for headline and core inflation rates could be due
to the different samples, we have also repeated the analysis for headline inflation using the same sample
as for core (i.e., from 1979 onwards). The results are qualitatively similar to what illustrated in the
previous subsections. There is a decline in the fraction of variance explained by the global inflation factor
to around 50%, but this value is still about two times larger than that for the core inflation rates. The
decline in the explanatory power of the global inflation factor over the shorter sample can be attributed
to the global relevance of oil price fluctuations in the ’70s.
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• the Vector Autoregressive model (VAR)

• the Vector Autoregressive model with Stochastic Volatility (VAR-SV)

All models are estimated using Bayesian techniques. AR and VAR priors are constructed

using the standard Litterman (1986) a priori assumption of univariate random walk pro-

cesses. The SV prior in all models is calibrated as in Primiceri (2005). The MAI prior is

specified as shown in section 3. Diagnostics are then computed in terms of both point and

density forecasting, following the evaluation framework of Clark & Ravazzolo (2015).

Specifically, to evaluate the accuracy in terms of point forecasting, we compute the fore-

casts posterior medians for all vintages, models, variables and horizons. Then, we compute

the Root Mean Squared Forecast Error (RMSFE) for each model, variable and horizon,

using the variation across vintages. Hence, for each variable j ∈ {1, . . . , n}, each horizon

h ∈ {1, . . . , H} and each model m ∈ {1, . . . ,M} we compute:

RMSEm
j,h =

√√√√ 1

T ∗

T+T ∗∑
t=T+1

(
yj,t+h − ŷmj,t+h

)2
,

where ŷmj,t+h is the median of the posterior distribution
(
ŷm,ij,t+h

)Lc

i=1
(Lc is the length of the

discretized posterior distribution). To test for significance of the squared forecast errors

differences across models, we compute the Diebold & Mariano (1995) t-tests for equality

of the average loss15.

To evaluate models in terms of density forecasting, we use two measures of accuracy:

the average log-predictive score and the average Continuous Ranked Probability Score

(CRPS). Even in this case, to test for significantly different performances we employ the

Diebold and Mariano test, following Clark & Ravazzolo (2015).

Log Predictive Scores are obtained via non-parametric kernel smoothing density estima-

tors. Adopting a normal kernel KN (·) and following an optimal selection strategy of the

bandwith parameter Ĥ, we can compute for each variable, model, horizon and vintage

the empirical density evaluted at the actual observation yj,t+h, that is:

f̂m

(
yj,t+h, Ĥ

)
=

1

Ĥ · Lc

Lc∑
i=1

KN

(
yj,t+h − ŷm,ij,t+h

Ĥ

)
.

15Monte Carlo evidence in Clark & McCracken (2011) and Clark & McCracken (2015) indicates that,
with nested models, the Diebold-Mariano test compared against normal critical values can be viewed as
a somewhat conservative (conservative in the sense of tending to have size modestly below nominal size)
test for equal accuracy in the finite sample.
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Then, applying logarithms and computing the average across forecasting vintages yields

the average log score for each variable, model and horizon:

logScore
m

j,h =
1

T ∗

T+T ∗∑
t=T+1

log f̂m

(
yj,t+h, Ĥ

)
.

To compute the average CRPS, following Clark & Ravazzolo (2015), we first compute

the CRPS per each variable, model, horizon and vintage, making use of the actual ob-

servations, the posterior distribution
(
ŷm,ij,t+h

)Lc

i=1
and a random permutation of the latter(

ŷ
m,i′(i)
j,t+h

)Lc

i=1
where i′ : {1, . . . , Lc} → {1, . . . , Lc} is randomly drawn without replacement.

Lastly, we simply compute the average across time vintages:

CRPSmj,t+h =
1

Lc

Lc∑
i=1

∣∣ŷm,ij,t+h − yj,t+h
∣∣− 1

2 · Lc

Lc∑
i=1

∣∣∣ŷm,ij,t+h − ŷ
m,i′(i)
j,t+h

∣∣∣ ,
CRPS

m

j,h =
1

T ∗

T+T ∗∑
t=T+1

CRPSmj,t+h.

Figure 13 portrays the relative performance of the competing set of models against the

benchmark model MAI-AR-SV, for each country and four selected horizons. Models’

point forecasting performance is reported as ratio between their own Root Mean Squared

Errors and the benchmark’s, so that values larger than one imply that the MAI-AR-SV

produces more accurate point forecasts. The MAI-AR-SV model improves significantly

upon its counterparts on most variables, especially at short horizons, even though in a

smaller number of cases this is reversed. The AR-SV shows competitive point forecasting

performance, especially at longer horizons. The highly parametrized VARs generally

achieve a lower degree of point forecasting accuracy than the benchmark16.

Moving to density forecast evaluation, Figure 14 reports the relative average log pre-

dictive scores for the chosen set of models and horizons. Alternative models’ performance

is reported in terms of log-scores differences with the benchmark MAI-AR-SV, so that

negative values favor the MAI-AR-SV. The benchmark model clearly improves upon its

competitors: the difference is negative and significant in most cases. Eventually, Figure

15 shows the CRPS reported comparatively as a ratio, where values greater than one in-

dicates a worse density forecasting performance with respect to the MAI-AR-SV. Results

are in line with the log-scores, with the benchmark model improving significantly upon

16Tables 1a and 1b in the online appendix report detailed results.
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its competitors17.

To conclude, our evidence shows that the MAI-AR-SV is also a good forecasting model

for inflation rates. The introduction of SV is particularly relevant to improve density

forecasts. This evidence is in line with findings reported by Clark & Ravazzolo (2015)

and D’Agostino et al. (2013). Moreover, the introduction of the MAI component further

increases the forecasting power. Furthermore, notwithstanding the smaller number of

coefficients due to the reduced rank restriction imposed by the MAI structure, the bench-

mark model attains a higher degree of forecasting accuracy with respect to the standard

unrestricted VAR estimated using a Minnesota Prior as shrinkage device18.

6 Conclusions

Global developments play an important role in the determination of inflation rates, and

indeed earlier literature has found that a substantial amount of the variation in a large

set of national inflation rates can be explained by a single global factor. This literature

has typically neglected inflation (conditional) volatility, while volatility is clearly relevant

both from a policy point of view and for structural analysis and forecasting.

In this paper we study the evolution of inflation rates in many countries, using a novel

model that allows for commonality in both levels and volatilities, in addition to country-

specific components. We find that allowing for inflation volatility is indeed important,

and a large fraction of it can be attributed to a global factor that is also driving the

inflation levels.

While other sources can be behind this global factor, it turns out that since the early

’90s it is strongly correlated with the Chinese PPI and Oil prices. Moreover, also the

17More detailed forecasting results are reported in Appendix B.
18As the common observable factor in the estimated MAI-AR-SV model is similar to the first principal

component (PC) of all inflation rates, which can be interpreted as an estimated factor in a factor model, it
can be expected that the forecasting performance of the MAI-AR-SV is similar to that of a factor model.
To verify empirically whether this is the case, we have also estimated a set of bivariate BVAR-SV models,
each of them for one inflation rate and the PC. The equation for the inflation rate can be interpreted as an
AR-PC(-SV) model, commonly used in the factor forecasting literature, complemented with the second
equation that describes the evolution of the PC. While direct estimation is commonly used in the factor
forecasting literature, we use an iterative scheme for comparability with the MAI-AR-SV. Note also that
we cannot use a single large BVAR-SV for all the inflation rates and the PC due to collinearity. It turns
out that indeed the forecasting performance of the BVAR-SVs is comparable to that of the MAI-AR-SV,
even slightly better in particular in terms of RMSE. Yet, as mentioned in the introduction, the possibility
of jointly modelling first and second moments with the MAI-AR-SV makes it preferable to a factor model
where only commonality in the first moments is considered. In this respect, it is actually encouraging
that the performance of the MAI-AR-SV is overall comparable to that of a factor model. These results
are available upon request.
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global factor stochastic volatility is highly correlated with that of Chinese PPI and Oil

prices.

Repeating the same analysis on core inflation rates for the same set of OECD countries,

the model finds a smaller but non-negligible degree of commonality. The substantial

national component of core inflation level and volatility leaves ample scope for domestic

monetary policies.

The MAI-AR-SV shows also very good out of sample properties, achieving a comparati-

vely better forecasting performance for inflation when compared with a set of prominent

alternative models, especially in terms of density forecasting.

Finally, as we have seen that the MAI-AR-SV model can be reparametrized as an (obser-

vable) factor augmented VAR with stochastic volatility, it has a wide range of applicability

in empirical macroeconomics.

Bibliography

Abbate, A., Eickmeier, S., Lemke, W., & Marcellino, M. (2016). The changing interna-

tional transmission of financial shocks: Evidence from a classical time-varying favar.

Journal of Money, Credit and Banking, 48 (4), 573–601.

Auer, R. A., Borio, C. E., & Filardo, A. J. (2017). The globalisation of inflation: the

growing importance of global value chains. BIS Working Papers, (n. 602).

Bai, J. & Ng, S. (2006). Evaluating latent and observed factors in macroeconomics and

finance. Journal of Econometrics, 131 (1), 507–537.
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Figure 1: Inflation rates and their first principal component (thick red line)

Figure 2: CPI inflation rates Stochastic Volatilities estimated from univariate AR-SV, and their
first Principal Component (thick red line)
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Figure 3: MAI-SV estimated common factor (with posterior bands) Vs Data

Figure 4: Comparing common factor
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Figure 5: Responses of country inflation rates to a unitary impulse of the global inflation factor
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Figure 6: MAI-AR-SV, Inflation levels decomposition into common (red) and idiosyncratic (blue)
components
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Figure 7: Largest Autoregressive Root (90% confidence intervals) CPI inflation levels, compo-
nents, and global factor.
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Figure 8: MAI-AR-SV, Residuals’ Volatility, TV decomposition, Common (red), Idio (blue),
total (green)
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Figure 9: MAI-AR-SV, Residuals’ Volatility, TV decomposition shares (%), Common (red), Idio
(blue)
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Figure 10: MAI-AR-SV, Global Factor Volatility, Posterior bands.

Figure 11: Comparing MAI component with Chinese PPI, Oil Inflation and Global Output Gap
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Figure 12: Median Volatilities of Global Factor (MAI-AR-SV), Oil inflation (AR-SV), Chinese
PPI (AR-SV) and Global Output Gap (AR-SV)
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Figure 13: Relative Root Mean Squared Forecast Errors (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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Figure 14: Relative Log Predictive Scores (differences with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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Figure 15: Relative Continuous Rank Probability Scores (ratios with MAI-AR-SV)

The round filled marker is larger when the difference is significant according to the Diebold Mariano t-
statistic, see legend below.
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Online Appendix for

“The Global Component of Inflation Volatility”

The three sections of this online Appendix provide additional details on Gibbs Sampler

algorithm for the MAI-AR-SV model (Appendix A), the forecasting evaluation tables

(Appendix B), and the empirical results based on core inflation data (Appendix C).

Appendix A Detailed steps of the Gibbs Sampler for

the estimation of the MAI-AR-SV mo-

del

A.1 Stacking of the model

The MAI-AR-SV model written

yt =

q∑
`=1

Γ` · yt−` +

p∑
`=1

A` ·B0 · yt−` + ut, (11)

decomposes yt into the sum of the q autoregressive terms and the sum of the p terms

depending on the r common components B0 · yt−`, plus an error term. The equation in

(11) can be stated in a more compact formulation.

Focusing on the first summation, each Γ` is a diagonal matrix where the main diagonal

is the n× 1 vector γ`:

Γ` =


γ1,` 0 . . . 0

0 γ2,`
. . . 0

0
. . . . . . 0

0 . . . 0 γn,`

 = Diag



γ1,`

γ2,`

...

γn,`


 = Diag (γ`) .

Recalling that yt−` is a n× 1 vector of observables, the following holds:

Γ` · yt−` = Diag (γ`) · yt−`,

= Diag (yt−`) · γ`.
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If we define Yt−` ≡ Diag (yt−`), we can write:

q∑
`=1

Γ` · yt−` =

q∑
`=1

Yt−` · γ` =
[
Yt−1 Yt−2 . . . Yt−q

]
·


γ1

γ2

...

γq

 .

Defining the n × nq matrix Xt as Xt ≡
[
Yt−1 Yt−2 . . . Yt−q

]
and the nq × 1 vector γ

as γ ≡
[
γ′1 γ′2 . . . γ′q

]′
, we can finally formulate the first summation more compactly

as:
q∑
`=1

Γ` · yt−` = Xt · γ.

To express in compact form the second summation, we need to define the rp × 1 vector

of the stacked “observable” factors Zt as

Zt ≡


B0yt−1

...

B0yt−p

 = (Ip ⊗B0) · xt = vec (B0 · x•t ) ,

where x•t is the n× p matrix x•t =
[
yt−1 . . . yt−p

]
and xt ≡ vec (x•t ).

Stacking the n× r matrices A` in the n× rp matrix A =
[
A1 . . . Ap

]
, we can write the

second summation as:

p∑
`=1

A` ·B0 · yt−` =
[
A1 . . . Ap

] 
B0yt−1

...

B0yt−p

 = A · Zt.

We can eventually write the compact formulation of the model in (11):

yt = Xt︸︷︷︸
n×nq

· γ︸︷︷︸
nq×1

+ A︸︷︷︸
n×rp

· Zt︸︷︷︸
rp×1

+ ut. (12)
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A.2 Step 1: Draw a history of volatilities {σt}Tt=1

This step concerns the draw of the (unobservable) stochastic volatilities conditional on

θ = {γ,A,B0, G,Qσ} and the indexes of Normal components of the mixture {St}Tt=1. The

order of these steps is in line with Del Negro & Primiceri (2015).

In order to draw the volatilities, we start from (12) and apply the triangular reduction of

the errors ut = G−1Σtεt to transform the model in the following way:

yt = Xt · γ + A · Zt +G−1Σtεt,

G (yt −Xt · γ − A · Zt)︸ ︷︷ ︸
ỹt

= Σtεt,

ỹt = Diag (σt) · εt.

Moreover, using the Hadamard product operator, we can first write

Σtεt = Σt


ε1,t

ε2,t

...

εn,t

 =


σ1,t ε1,t

σ2,t ε2,t

...

σn,t εn,t

 = σt � εt,

and taking the square element by element on both sides of ỹt = Σtεt, we obtain:

(ỹt)
·2 = (Σtεt)

·2 = σ·2t � ε·2t ⇐⇒


ỹ2

1,t

ỹ2
2,t
...

ỹ2
n,t

 =


σ2

1,t ε
2
1,t

σ2
2,t ε

2
2,t

...

σ2
n,t ε

2
n,t

 .

We add on the left hand-side a small constant19 c̄ = 10−3 and apply the logarithm on

19The addition of a small constant term has numerical stability purposes, as explained in Fuller (2009)
and Primiceri (2005).
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both sides20 in order to break the non-linearity, to obtain:
log

(
ỹ2

1,t + c̄
)

log
(
ỹ2

2,t + c̄
)

...

log
(
ỹ2
n,t + c̄

)


︸ ︷︷ ︸

ỹ∗t

= 2


log σ1,t

log σ2,t

...

log σn,t

+


log ε2

1,t

log ε2
2,t

...

log ε2
n,t

 ,

ỹ∗t = 2 log σt + log
[
(εt)

·2] .
Since εt

iid∼ MN (0, In), each term log ε2
j,t has a logχ2

1 distribution, and log
[
(εt)

·2] is a

vector of independent logχ2
1 random variables.

Then, conditioning on {St}Tt=1, i.e. the sequence of n× 1 vectors that specify the indexes

of Normal components of the mixture, the vector log
[
(εt)

·2] has the following Gaussian

distribution:

log
[
(εt)

·2]∣∣ {St}Tt=1 ∼MN




mm
s1,t

mm
s2,t
...

mm
sn,t


︸ ︷︷ ︸
ϕt

,


mv
s1,t

0 . . . 0

0 mv
s2,t

. . .
...

...
. . . . . .

...

0 . . . 0 mv
sn,t


︸ ︷︷ ︸

Υt


Hence, given the Gaussian distribution of log

[
(εt)

·2]∣∣ {St}Tt=1, we can define the needed

state space form as:

ỹ∗t = ϕt + 2 log σt + ζt, ζt
i∼MN ( 0, Υt ) ,

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

At this point, the Forward Filtering Backward Sampling (FFBS) procedure, introduced

by Carter & Kohn (1994), can be implemented to draw a history of volatilities {σt}Tt=1.

The procedure is described below. For simplicity we define σ̃t ≡ log σt, since the FFBS

20Noticing that log

[
a
b

]
=

[
log a
log b

]
, and

[
a
b

]·2
=

[
a2

b2

]
.
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procedure is implemented on the log-volatilities.

The filter can be initialized at the following values:

σ̃0|0 = log(σ̄), Pσ,0|0 = P̄σ,

where log(σ̄) and P̄σ are respectively the mean and the covariance matrix of the prior

distribution of log σ0.

Recursively, for each
(
σ̃ t−1|t−1, Pσ, t−1|t−1

)
, we compute the filter:

Pσ, t|t−1 = Pσ, t−1|t−1 +Qσ,

Kσ,t = 2Pσ, t|t−1

(
4Pσ, t|t−1 + Υt

)−1
,

σ̃ t|t = σ̃ t−1|t−1 +Kσ,t

(
ỹ∗t − 2σ̃ t−1|t−1 − ϕt

)
,

Pσ, t|t = Pσ, t|t−1 − 2Kσ,tPσ, t|t−1.

Having an entire set of updating and prediction steps
(
σ̃ t|t, Pσ, t|t, Pσ, t|t−1

)T
t=1

, we start to

sample backward, beginning by sampling σ̃T fromMN
(
σ̃T |T , Pσ,T |T

)
, and then for each

t ∈ {T − 1, T − 2, . . . , 2, 1} we sample recursively each σ̃t from MN
(
σ̃ t|t+1, Pσ, t|t+1

)
where:

σ̃ t|t+1 = σ̃ t|t + Pσ, t|tP
−1
σ, t+1|t

(
σ̃t+1 − σ̃ t|t

)
,

Pσ, t|t+1 = Pσ, t|t − Pσ, t|tP−1
σ, t+1|tPσ, t|t.

A.3 Step 2(a): Draw θ| {σt}Tt=1

A.3.1 Substep 2(a).i: Draw the covariance of volatilities’ innovations Qσ

Conditioning on {σt}Tt=0, we can draw the covariance matrix Qσ. Indeed, recall that:

log σt = log σt−1 + νσ,t, νσ,t
iid∼ MN

 0, Qσ︸︷︷︸
n×n

 .

But then, having a complete history of the sigmas, given the random walk law of motion,

is equivalent to having a complete histories of innovations νσ,t. Stacking the νσ,t across
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time, we get:

ν∗σ︸︷︷︸
n×T

=
[
νσ,1 νσ,2 . . . νσ,T

]
,

and we can easily compute the innovations sum of squares matrix:

Sσ︸︷︷︸
n×n

= ν∗σ︸︷︷︸
n×T

ν∗′σ︸︷︷︸
T×n

.

If the prior on the matrix Qσ is a n×n Inverse Wishart with scale matrix Q̄σ and degrees

of freedom τσ,0:

Qσ ∼ IWn

(
Q̄σ, τσ,0

)
,

then the posterior is conjugate and given by:

Qσ
∣∣ {σit}Tt=0

∼ IWn

(
Sσ + Q̄σ, τσ,0 + T

)
.

A.3.2 Substep 2(a).ii: draw AR-coefficients γ

Starting from (12), and conditioning on B0 and A, we can obtain the following linear

regression model with common coefficients and variable specific regressors:

yt = Xt · γ + A · Zt + ut,

yt − A · Zt = Xt · γ + ut,

y◦t = Xt · γ + ut,

with

ut
i∼MN

 0, Ωt︸︷︷︸
n×n

 , ut = G−1Σtεt, εt
iid∼ MN ( 0, In ) .

Considering separate equations to estimate the AR coefficients contained in γ would ignore

the cross-correlations of the innovations in ut. Since within the GS we draw directly the

elements g in the matrix G and the stochastic volatilities σt in Σt, for efficiency purposes
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we can compute the following transformation of the equation:

y◦t = Xt · γ + ut,

y◦t = Xt · γ +G−1Σtεt,

Σ−1
t G · y◦t = Σ−1

t G · Xt · γ + Σ−1
t G ·G−1Σt︸ ︷︷ ︸

In

· εt,

Σ−1
t G · y◦t = Σ−1

t G · Xt · γ + εt,

ỹ◦t = X̃t · γ + εt.

We finally obtain a multivariate linear regression with homoskedastic residuals and unitary

diagonal covariance matrix:

ỹ◦t = X̃t · γ + εt, εt
iid∼ MN ( 0, In ) .

The transformed model can be stacked in columns:
ỹ◦1
...

ỹ◦T

 =


X̃1

...

X̃T

 · γ +


ε1

...

εT

 ,
Ỹ ◦︸︷︷︸
nT×1

= X̃︸︷︷︸
nT×nq

· γ︸︷︷︸
nq×1

+ ε◦︸︷︷︸
nT×1

, ε◦∼MN ( 0, IT ⊗ In ) .

With the stacked version of the model, adopting the Normal semi-conjugate prior for the

vector of coefficients γ:

γ∼MN ( γ̄, Vγ ) ,

we can eventually draw from the posterior distribution:

γ∼MN
(
γ̃, Ṽγ

)
,

where

γ̃ = Ṽγ ·
(
X̃ ′ · Ỹ ◦ + V −1

γ · γ̄
)
, Ṽγ =

(
X̃ ′ · X̃ + V −1

γ

)−1

.
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A.3.3 Substep 2(a).iii: Draw the loadings A

To draw the loadings contained in A, we restate (12) as:

yt −Xt · γ = A · Zt + ut,

y•t = A · Zt + ut,

and stack it as: 
y•′1

y•′2
...

y•′T

 =


Z ′1

Z ′2
...

Z ′T

A′ +

u′1

u′2
...

u′T

 ,
y•︸︷︷︸
T×n

= Z︸︷︷︸
T×rp

· A′︸︷︷︸
rp×n

+ u.

Defining a ≡ vec (A′), and exploiting the Kronecker product’s properties, this form can

be vectorized and transformed in:

vec (y•) = vec (Z · A′ · In) + vec (u) ,

Y •︸︷︷︸
nT×1

= (In ⊗ Z)︸ ︷︷ ︸
n×nrp

· a︸︷︷︸
nrp×1

+ U,

where U︸︷︷︸
nT×1

has the following distribution:

U ∼MN

 0, Vu︸︷︷︸
n×n

 ,
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and

Vu ≡



Ω
(1,1)
1 0 · · · 0 · · · · · · Ω

(1,n)
1 0 · · · 0

0 Ω
(1,1)
2

. . .
... · · · · · · 0 Ω

(1,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(1,1)
T · · · · · · 0 · · · 0 Ω

(1,n)
T

...
...

...
...

. . .
...

...
...

...
...

...
...

...
...

...
. . .

...
...

...
...

Ω
(n,1)
1 0 · · · 0 · · · · · · Ω

(n,n)
1 0 · · · 0

0 Ω
(n,1)
2

. . .
... · · · · · · 0 Ω

(n,n)
2

. . .
...

...
. . . . . . 0 · · · · · · ...

. . . . . . 0

0 · · · 0 Ω
(n,1)
T · · · · · · 0 · · · 0 Ω

(nn)
T


=

T∑
t=1

[Ωt ⊗ (et · e′t)] .

To use an informative prior on a we follow the approach by Gelman et al. (2014). The

strategy incorporates the prior as observations. Considering a multivariate Normal prior

with the following moments:

a ∼MN ( ā, Va ) ,

it is possible to augment the model with nrp observations that express the prior informa-

tion: [
Y •

ā

]
=

[
In ⊗ Z
Inrp

]
a+

[
U

Ua

]
,

Y � = Z�a+ U�, U� ∼MN ( 0nT+nrp, V
� ) ,

V � =

[
Vu 0nT×nrp

0nrp×nT Va

]
.

A draw for a then comes from the following posterior:

a ∼MN
(
ã,
(
Z�′V �−1Z�

)−1
)
,

ã =
(
Z�′V �−1Z�

)−1
Z�′V �−1Y �.

In order to decrease the computational burden of this step throughout the sampling, the

strategy proposed by Carriero, Clark & Marcellino (2018) is adopted, as generalized in
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Carriero, Corsello & Marcellino (2018): the triangular structure of the error is exploited,

and coefficients are drawn equation by equation.

A.3.4 Substep 2(a).iv: Draw the factor weights elements in B0

Given the restrictions and the nonlinear role of B0, a Random Walk Metropolis step on

the kernel of the posterior of each element of B0 is implemented, nested into the GS. In

order to do this, we first write the likelihood of the model. Given the model in (12):

yt = Xt · γ + A · Zt + ut , ut
i∼MN ( 0, Ωt ) ,

using the chain rule, we can write the likelihood kernel as:

f
(
{yt}Tt=1

∣∣∣ γ,A, (Ωt)
T
t=1 , B0

)
∝

(
T∏
t=1

|Ωt|−
1
2

)
exp

{
−1

2

T∑
t=1

ŷ′t · Ω−1
t · ŷt

}
,

where

ŷt ≡ yt − A · Zt −Xt · γ.

Now we consider the r∗ ≡ n − r scalar unrestricted elements of B0, i.e. (b0,j)
r∗

j=1. Then,

∀j ∈ {1, . . . , r∗} we can define the set b0,j− ≡ (b0,s)s 6=j.

For a given prior f (b0,j) on each element b0,j, we can write the kernel of the conditional

posterior of b0,j as:

fpost

(
b0,j| (yt,Ωt)

T
t=1 , A, b0,j−

)
∝ f

(
(yt)

T
t=1

∣∣∣A, B0, (Ωt)
T
t=1

)
· f (b0,j) .

We are now ready to design the Metropolis step, separately for each j. Given the last

step Bi−1
0 , a random walk candidate is computed as:

b∗0,j = bi−1
0,j + cj · ηt,

where cj is a scaling factor calibrated to have an acceptance rate of approximately 30%-

35% and ηt
iid∼ N (0, vj), with vj being the variance of prior f (b0,j). The candidate draw

is accepted with probability:

αj = min

1,
fpost

(
b∗0,j
∣∣ (yt,Ωi−1

t

)T
t=1

, A, bi−1
0,j−

)
fpost

(
bi−1

0,j

∣∣ (yt,Ωi−1
t

)T
t=1

, A, bi−1
0,j−

)
 .
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When the candidate is accepted, then bi0,j− = b∗0,j, otherwise bi0,j− = bi−1
0,j−. Repeating this

procedure ∀j ∈ {1, . . . , r∗}, we build a draw Bi
0 from the distribution of interest.

A.3.5 Substep 2(a).v: draw the off-diagonal elements in G

To draw the off-diagonal elements, we restate the model in (12) as:

yt −Xt · γ − A · Zt = G−1Σtεt,

ŷt = G−1Σtεt,

G · ŷt = Σtεt.

Removing ones from the diagonal of G, and bringing off diagonal elements on the right

hand side, produces:

G = In +G∗.

This can be combined in the model to obtain:

(In +G∗) ŷt = Σt εt,

ŷt = −G∗ ŷt + Σt εt.

Exploiting the Kronecker product’s properties, we get:

− In G∗︸︷︷︸
n×n

ŷt︸︷︷︸
n×1

= −(In ⊗ ŷ′t)︸ ︷︷ ︸
n×n2

vec (G∗′)︸ ︷︷ ︸
n2×1

where vec (G∗′) has zeros in positions [(i− 1)n+ j]
i∈{1,...,n}
j∈{1,...,n}. By removing the zeros, we

obtain exactly the elements below the main diagonal of G gathered in the m-dimensional

vector g. Removing the corresponding columns in − (In ⊗ ŷ′t) we construct the matrix

Wt, which has the following form:

Wt︸︷︷︸
n×m

= −1 ·



0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

ŷ1,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 ŷ1,t ŷ2,t 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 ŷ1,t ŷ2,t ŷ3,t 0 . . . . . . . . . . . . . . . . . . . . . .
...

0 0 0 0 0 0
. . . . . .

...
...

...
... 0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ŷ1,t ŷ2,t ŷ3,t . . . ŷn−1,t


.
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We can then rewrite the model as:

ŷt = −G∗ŷt + Σtεt,

ŷt = − (In ⊗ ŷ′t) vec (G∗′) + Σtεt,

ŷt = Wt g + ε∗t , ε∗t ∼MN
(

0n×1, Σ2
t

)
.

Next, we stack the model as:
ŷ1

ŷ2

...

ŷT

 =


W1

W2

...

WT

 g +


ε∗1

ε∗2
...

ε∗T

 ,
ŷ︸︷︷︸

nT×1

= W︸︷︷︸
Tn×m

· g︸︷︷︸
m×1

+ ε∗, ε∗ ∼MN
(

0nT×1, Σ2
)
m

where Σ is the diagonal matrix containing all the stacked stochastic volatilities vectors in

the main diagonal:

Σ = Diag

([
σ′1 σ′2 . . . σ′T

]′)
.

We can then use a similar approach as the one implemented for a, following Gelman et al.

(2014). Given the prior :

g ∼MN ( ḡ, Vg ) ,

we augment the model with r observations that express the prior information:[
ŷ

ḡ

]
=

[
W

Im

]
g +

[
ε∗

εg

]
,

Ŷ � = W �g + ε�, ε� ∼MN ( 0nT+m, V
�
ε ) ,

V �ε =

[
Σ2 0nT×m

0m×nT Vg

]
.

A draw for g is finally obtained through the following posterior:

g ∼MN
(
g̃,
(
W �′V �−1

ε W �)−1
)
,

g̃ =
(
W �′V �−1

ε W �)−1
W �′V �−1

ε Ŷ �
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A.4 Step 2(b): Draw a history of indexes of the mixture {St}Tt=1 |θ, {σt}
T
t=1

Starting from the following formulation seen in Step 1 of the algorithm

ỹ∗t = 2 log σt + log
[
(εt)

·2] ,
we can notice that, since εt

iid∼ MN (0, In), each term log ε2
j,t has a logχ2

1 distribution,

and log
[
(εt)

·2] is a vector of independent logχ2
1 random variables.

Omori et al. (2007), improving upon Kim et al. (1998), show that the logχ2
1 distribution

is very well approximated by a mixture of ten Normal distributions:

flogχ2
1

(x) ≈
10∑
j=1

mp
j fN

(
x|mm

j ,m
v
j

)
,

where mp
j , m

m
j and mv

j are contained in the following table:

j 1 2 3 4 5 6 7 8 9 10

mp
j 0.00609 0.04775 0.13057 0.20674 0.22715 0.18842 0.12047 0.05591 0.01575 0.00115

mm
j 1.92677 1.34744 0.73504 0.02266 −0.85173 −1.97278 −3.46788 −5.55246 −8.68384 −14.65000

mv
j 0.11265 0.17788 0.26768 0.40611 0.62699 0.98583 1.57469 2.54498 4.16591 7.33342

Therefore, in order to have a conditionally Gaussian measurement equation, we should

condition each element of the vector log
[
(εt)

·2] on the index that specifies the Normal

components of the mixture. Defining the n × 1 vector St that contains the indexes of

components in period t, we can write

St ≡


s1,t

...

sn,t

 , where
[
log ε2

h,t

∣∣ sh,t = j
]
∼ N

(
mm
j ,m

v
j

)
.

Conditioning on a history of volatilities (σt)
T
t=1, we can restate the model as

log
[
(εt)

·2] = ỹ∗t − 2 log σt,

Then, the element sh,t that indexes the specific component from which log ε2
h,t is drawn,

has support J = {1, . . . , 10} and the following discrete probability distribution:

∀j ∈ J, Pr
[
sh,t = j| ỹ∗h,t, σt

]
=

mp
j fN

(
ỹ∗h,t − 2 log σh,t

∣∣mm
j ,m

v
j

)∑10
ι=1 m

p
ι fN

(
ỹ∗h,t − 2 log σh,t

∣∣mm
ι ,m

v
ι

) .
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Independent draws for all variables h ∈ {1, . . . , n} at all periods t ∈ {1, . . . , T} from this

distribution will form the new history of indexes of mixture’s components {St}Tt=1 |θ, {σt}
T
t=1.

Appendix B Forecast Evaluation Tables

The following tables contain the Root Mean Squares Errors, Predictive Log Scores and

Continous Rank Probability Scores relative to the forecast evaluation section.
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Table 1a: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.254 1.017∗∗∗ 1.024∗ 1.026 0.972∗∗∗ 0.976
h = 2 0.417 1.029∗∗∗ 1.032 1.045∗∗ 0.933∗∗ 0.923∗

h = 3 0.525 1.035∗∗∗ 1.061 1.073∗∗ 0.933 0.918
h = 4 0.602 1.046∗∗∗ 1.088 1.105∗∗ 0.947 0.922
h = 5 0.583 1.053∗∗∗ 1.127 1.148∗∗ 0.987 0.952
h = 6 0.553 1.048∗∗ 1.183 1.199∗∗ 1.046 1.004
h = 7 0.543 1.040∗∗ 1.242 1.255∗∗ 1.087 1.038
h = 8 0.538 1.023∗∗ 1.283 1.296∗∗ 1.096 1.054

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.203 0.983∗∗∗ 1.022∗∗∗ 1.020 1.015∗∗∗ 1.023
h = 2 0.309 0.976∗∗∗ 1.042∗∗∗ 1.046 1.035∗ 1.069
h = 3 0.401 0.971∗∗∗ 1.060∗∗∗ 1.067 1.081∗ 1.137∗

h = 4 0.485 0.974∗∗∗ 1.065∗∗∗ 1.078 1.091 1.162∗∗

h = 5 0.518 0.969∗∗∗ 1.087∗∗∗ 1.101 1.120∗ 1.198∗∗

h = 6 0.547 0.966∗∗∗ 1.105∗∗∗ 1.119∗ 1.132∗ 1.209∗∗

h = 7 0.562 0.963∗∗∗ 1.125∗∗∗ 1.137∗ 1.134∗ 1.195∗∗

h = 8 0.576 0.961∗∗∗ 1.149∗∗∗ 1.159∗ 1.133∗ 1.169∗∗

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.209 1.069∗∗∗ 1.024∗∗∗ 1.001 0.968∗∗∗ 0.948
h = 2 0.343 1.069∗∗∗ 1.020∗∗∗ 0.995 0.974∗∗∗ 0.919
h = 3 0.450 1.047∗∗∗ 1.022∗∗∗ 1.014 0.980∗ 0.920
h = 4 0.535 1.049∗∗∗ 1.027∗∗∗ 1.029 1.001 0.951
h = 5 0.575 1.062∗∗∗ 1.056∗∗∗ 1.055 1.033 0.979
h = 6 0.595 1.078∗∗∗ 1.099∗∗∗ 1.094 1.066 1.009
h = 7 0.618 1.094∗∗∗ 1.129∗∗∗ 1.125 1.097 1.039
h = 8 0.637 1.107∗∗∗ 1.148∗∗ 1.143 1.117 1.057

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.200 0.972∗∗∗ 1.020∗∗∗ 1.054∗∗∗ 1.010 1.040
h = 2 0.331 0.980∗∗∗ 1.042∗∗∗ 1.091∗∗ 0.982 0.973
h = 3 0.438 0.990∗∗∗ 1.045∗∗∗ 1.078∗ 0.959 0.927
h = 4 0.544 1.012∗∗∗ 1.034∗∗ 1.058 0.932 0.897
h = 5 0.594 1.027∗∗∗ 1.033∗ 1.057∗ 0.925 0.891
h = 6 0.609 1.037∗∗∗ 1.039 1.066∗ 0.942 0.900
h = 7 0.616 1.041∗∗∗ 1.053 1.078 0.955 0.902
h = 8 0.611 1.041∗∗∗ 1.077 1.103 0.960 0.898

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.227 1.000∗∗∗ 1.040 1.036∗ 0.975∗∗∗ 0.988
h = 2 0.363 0.997∗∗∗ 1.047 1.040∗ 0.950∗∗∗ 0.971
h = 3 0.456 0.993∗∗∗ 1.053 1.043 0.941∗∗∗ 0.964∗

h = 4 0.530 1.006∗∗∗ 1.048 1.041 0.936∗∗∗ 0.963∗∗

h = 5 0.551 1.002∗∗∗ 1.017 1.011 0.929∗∗ 0.978∗∗

h = 6 0.560 0.989∗∗∗ 0.989 0.983 0.921∗∗ 0.992∗∗

h = 7 0.574 0.986∗∗∗ 0.986 0.980 0.920∗ 0.999
h = 8 0.588 0.984∗∗∗ 0.995 0.987 0.925 1.008

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.124 0.991∗∗∗ 1.041∗∗∗ 1.022 1.098∗∗∗ 1.147∗∗∗

h = 2 0.233 1.006∗∗∗ 0.991∗∗∗ 0.963∗ 1.055∗∗ 1.108
h = 3 0.335 1.019∗∗∗ 0.973∗∗∗ 0.931∗∗ 1.013 1.073
h = 4 0.436 1.026∗∗∗ 0.966∗∗∗ 0.922∗∗ 0.985 1.046
h = 5 0.513 1.042∗∗∗ 0.961∗∗∗ 0.907∗ 0.990 1.041
h = 6 0.567 1.049∗∗∗ 0.973∗∗ 0.908 1.007 1.044
h = 7 0.606 1.056∗∗∗ 0.999∗ 0.925 1.032 1.047
h = 8 0.634 1.066∗∗∗ 1.026∗ 0.944 1.049 1.044

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 1.034∗∗∗ 0.972∗∗∗ 0.974∗∗ 1.072∗∗∗ 1.078
h = 2 0.180 1.080∗∗∗ 0.964∗∗∗ 0.956 1.089 1.091
h = 3 0.234 1.114∗∗∗ 0.991∗∗∗ 0.947 1.125 1.125
h = 4 0.292 1.144∗∗∗ 1.003∗∗∗ 0.955 1.113 1.125
h = 5 0.323 1.172∗∗∗ 1.016∗∗ 0.946 1.131 1.143
h = 6 0.341 1.196∗∗∗ 1.036∗∗ 0.937 1.169 1.173
h = 7 0.360 1.212∗∗∗ 1.050∗∗ 0.926 1.182 1.175∗∗

h = 8 0.382 1.22*** 1.059∗ 0.914 1.173 1.158∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.274 0.996∗∗∗ 0.982 0.984 1.026 1.035
h = 2 0.418 1.003∗∗∗ 0.978 0.991 1.063 1.051
h = 3 0.505 1.022∗∗∗ 1.018 1.030 1.136 1.104
h = 4 0.594 1.035∗∗∗ 1.042 1.057 1.152 1.124
h = 5 0.624 1.040∗∗∗ 1.063 1.078 1.186 1.171
h = 6 0.655 1.050∗∗∗ 1.084 1.102 1.202 1.188
h = 7 0.689 1.061∗∗∗ 1.101 1.120 1.210 1.186
h = 8 0.717 1.072∗∗∗ 1.111 1.132 1.224 1.188

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.111 1.044∗∗∗ 1.011∗∗∗ 0.996 1.138∗∗∗ 1.069∗∗∗

h = 2 0.193 0.985∗∗∗ 1.027∗∗∗ 0.984 1.161∗∗∗ 1.097∗∗∗

h = 3 0.256 0.999∗∗∗ 1.057∗∗∗ 0.985 1.169∗∗∗ 1.082∗∗∗

h = 4 0.297 0.999∗∗∗ 1.087∗∗∗ 0.988 1.193∗∗∗ 1.083∗∗

h = 5 0.306 1.004∗∗∗ 1.151∗∗∗ 1.005 1.239∗∗∗ 1.110∗∗

h = 6 0.313 1.023∗∗∗ 1.239∗∗∗ 1.045 1.277∗∗∗ 1.151∗∗

h = 7 0.312 1.065∗∗∗ 1.359∗∗∗ 1.116 1.320∗∗∗ 1.190∗∗

h = 8 0.311 1.124∗∗∗ 1.490∗∗∗ 1.206 1.336∗∗∗ 1.205∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.065 1.135∗∗∗ 1.032∗∗∗ 0.960∗∗∗ 1.172∗∗∗ 1.126∗∗∗

h = 2 0.128 1.074∗∗∗ 1.024∗∗∗ 0.946∗∗ 1.146∗∗∗ 1.155∗∗

h = 3 0.187 1.057∗∗∗ 1.040∗∗∗ 0.951∗ 1.116∗ 1.190
h = 4 0.250 1.057∗∗∗ 1.023∗∗∗ 0.937 1.080 1.190
h = 5 0.296 1.059∗∗∗ 1.030∗∗∗ 0.933 1.061 1.191
h = 6 0.331 1.058∗∗∗ 1.054∗∗∗ 0.939 1.049 1.185
h = 7 0.363 1.064∗∗∗ 1.071∗∗∗ 0.940 1.027 1.160
h = 8 0.387 1.066∗∗∗ 1.101∗∗∗ 0.956 0.998 1.137

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 1b: Root Mean Squared Forecast Errors (RMSE for MAI-AR-SV, RMSE ratios in all
others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.142 1.131∗∗∗ 1.092∗∗∗ 1.018 1.143∗∗∗ 1.119∗∗∗

h = 2 0.230 1.180∗∗∗ 1.113∗∗∗ 0.969∗ 1.218∗∗∗ 1.123∗

h = 3 0.313 1.230∗∗∗ 1.131∗∗∗ 0.927∗∗ 1.274∗∗∗ 1.134
h = 4 0.400 1.253∗∗∗ 1.159∗∗∗ 0.908∗∗ 1.273∗∗∗ 1.107
h = 5 0.464 1.289∗∗∗ 1.178∗∗∗ 0.867∗∗∗ 1.278∗∗∗ 1.085
h = 6 0.517 1.312∗∗∗ 1.21*** 0.851∗∗∗ 1.262∗∗∗ 1.063
h = 7 0.563 1.322∗∗∗ 1.243∗∗∗ 0.848∗∗∗ 1.234∗∗∗ 1.033
h = 8 0.602 1.330∗∗∗ 1.264∗∗∗ 0.842∗∗∗ 1.208∗∗∗ 1.016

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.194 0.998∗∗∗ 1.013∗∗∗ 1.024 1.020 1.042∗∗

h = 2 0.307 1.015∗∗∗ 1.014∗∗∗ 1.030 1.027 1.042
h = 3 0.377 1.027∗∗∗ 1.029∗∗∗ 1.042 1.038 1.048
h = 4 0.448 1.033∗∗∗ 1.046∗∗ 1.059 1.021 1.029
h = 5 0.473 1.041∗∗∗ 1.066∗∗ 1.083 1.027 1.033
h = 6 0.474 1.038∗∗∗ 1.101∗∗ 1.118 1.046 1.046
h = 7 0.485 1.030∗∗∗ 1.140∗∗ 1.155∗ 1.069 1.062
h = 8 0.492 1.024∗∗∗ 1.168∗∗∗ 1.182∗ 1.096 1.086

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.156 0.980∗∗∗ 1.030∗∗∗ 1.012 1.157∗∗∗ 1.085∗∗

h = 2 0.231 0.991∗∗∗ 1.032∗∗∗ 1.007 1.231∗∗∗ 1.168∗∗

h = 3 0.283 1.000∗∗∗ 1.065∗∗∗ 1.040 1.267∗∗∗ 1.234∗

h = 4 0.359 1.009∗∗∗ 1.033∗∗∗ 1.025 1.200∗ 1.201
h = 5 0.400 1.032∗∗∗ 1.025∗∗∗ 1.006 1.168 1.186
h = 6 0.436 1.051∗∗∗ 1.033∗∗ 1.005 1.130 1.158
h = 7 0.480 1.068∗∗∗ 1.019∗∗ 0.996 1.090 1.110
h = 8 0.510 1.083∗∗∗ 1.015∗ 0.987 1.072 1.075

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.153 0.962∗∗∗ 0.966∗∗∗ 0.959 1.101∗∗∗ 1.082∗

h = 2 0.259 0.935∗∗∗ 0.928∗∗∗ 0.873 1.140∗∗ 1.134
h = 3 0.354 0.919∗∗∗ 0.925∗∗ 0.813 1.133∗ 1.141
h = 4 0.437 0.922∗∗∗ 0.942∗∗ 0.811 1.102∗∗ 1.120
h = 5 0.491 0.921∗∗∗ 0.948∗∗ 0.782 1.064∗∗ 1.085∗∗

h = 6 0.532 0.921∗∗∗ 0.964∗∗ 0.765 1.036∗ 1.045∗

h = 7 0.561 0.931∗∗∗ 0.986∗∗ 0.760 1.008 0.998
h = 8 0.575 0.947∗∗∗ 1.021∗∗ 0.768 0.984 0.951

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.248 1.004∗∗∗ 1.028∗∗∗ 0.999 0.965 0.961
h = 2 0.350 1.090∗∗∗ 1.086∗∗∗ 1.012 0.957 0.940∗

h = 3 0.443 1.121∗∗∗ 1.121∗∗∗ 1.014 0.936 0.929∗

h = 4 0.538 1.134∗∗∗ 1.145∗∗∗ 1.020 0.917 0.905∗

h = 5 0.578 1.162∗∗∗ 1.171∗∗∗ 1.001 0.938 0.903
h = 6 0.601 1.165∗∗∗ 1.224∗∗∗ 1.014 0.959 0.901
h = 7 0.614 1.157∗∗∗ 1.282∗∗∗ 1.036 0.973 0.898
h = 8 0.630 1.140∗∗∗ 1.327∗∗∗ 1.063 0.972 0.889

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.079 1.500∗∗∗ 1.375∗∗∗ 1.013∗∗∗ 1.361∗∗∗ 1.085∗∗∗

h = 2 0.136 1.341∗∗∗ 1.384∗∗∗ 1.014∗∗∗ 1.287∗∗∗ 1.064∗∗∗

h = 3 0.182 1.261∗∗∗ 1.446∗∗∗ 1.023∗ 1.274∗∗∗ 1.094∗∗∗

h = 4 0.227 1.148∗∗∗ 1.504∗∗∗ 1.035 1.276∗∗∗ 1.112∗∗∗

h = 5 0.257 1.080∗∗∗ 1.580∗∗∗ 1.048 1.267∗∗∗ 1.099∗∗∗

h = 6 0.286 1.032∗∗∗ 1.637∗∗∗ 1.058 1.220∗∗∗ 1.076∗∗∗

h = 7 0.312 0.995∗∗∗ 1.690∗∗∗ 1.079 1.154∗∗∗ 1.050∗∗

h = 8 0.335 0.998∗∗∗ 1.729∗∗∗ 1.093 1.094∗∗∗ 1.032∗∗

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.116 0.982∗∗∗ 1.012∗∗∗ 0.984∗∗ 1.065∗∗∗ 0.989
h = 2 0.204 0.983∗∗∗ 0.987∗∗∗ 0.936∗∗ 1.028∗∗∗ 0.999
h = 3 0.277 0.994∗∗∗ 1.001∗∗∗ 0.922∗∗ 1.006 1.011
h = 4 0.341 1.017∗∗∗ 1.013∗∗∗ 0.911∗ 0.979 1.012
h = 5 0.385 1.026∗∗∗ 1.027∗∗∗ 0.894∗ 0.968 1.018
h = 6 0.421 1.026∗∗∗ 1.048∗∗∗ 0.882∗∗ 0.955 1.002
h = 7 0.457 1.028∗∗∗ 1.063∗∗∗ 0.875∗ 0.934 0.977
h = 8 0.488 1.033∗∗∗ 1.081∗∗∗ 0.874∗ 0.916 0.968

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.235 1.024∗∗∗ 1.038∗∗∗ 1.033 1.047 1.093∗

h = 2 0.383 1.044∗∗∗ 1.053∗∗ 1.052 1.056 1.070
h = 3 0.499 1.050∗∗∗ 1.089∗∗ 1.077 1.075 1.055
h = 4 0.609 1.059∗∗∗ 1.108∗∗ 1.093 1.031 0.992
h = 5 0.668 1.069∗∗∗ 1.126∗∗ 1.105 1.014 0.966
h = 6 0.698 1.081∗∗∗ 1.170∗∗∗ 1.138 1.012 0.956
h = 7 0.721 1.097∗∗∗ 1.215∗∗∗ 1.172 1.007 0.942
h = 8 0.740 1.109∗∗∗ 1.257∗∗∗ 1.206 1.01 0.938

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.194 1.085∗∗∗ 1.017∗∗∗ 0.988∗∗∗ 1.155∗∗∗ 1.165∗∗∗

h = 2 0.355 1.081∗∗∗ 0.988∗∗ 0.956∗∗∗ 1.143∗ 1.157∗

h = 3 0.496 1.083∗∗∗ 0.976 0.941∗∗∗ 1.125 1.128
h = 4 0.609 1.097∗∗∗ 0.974 0.937∗∗ 1.111 1.098
h = 5 0.673 1.121∗∗∗ 0.985 0.941∗ 1.114 1.071
h = 6 0.705 1.152∗∗∗ 1.012 0.952∗ 1.137 1.052
h = 7 0.733 1.179∗∗∗ 1.041 0.968 1.166 1.037
h = 8 0.762 1.198∗∗∗ 1.067 0.982 1.199 1.030

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.114 1.054∗∗∗ 1.008∗∗∗ 0.989∗∗∗ 1.201∗∗∗ 1.112
h = 2 0.184 1.062∗∗∗ 1.044∗∗∗ 1.003∗∗∗ 1.245∗∗ 1.138
h = 3 0.245 1.069∗∗∗ 1.057∗∗∗ 0.980∗∗ 1.237 1.154
h = 4 0.316 1.073∗∗∗ 1.035∗∗∗ 0.939∗∗ 1.173 1.132
h = 5 0.359 1.077∗∗∗ 1.043∗∗∗ 0.921∗ 1.122 1.104
h = 6 0.396 1.077∗∗∗ 1.056∗∗∗ 0.911∗ 1.088 1.080
h = 7 0.433 1.074∗∗∗ 1.073∗∗ 0.918∗ 1.063 1.054
h = 8 0.459 1.072∗∗∗ 1.107∗∗ 0.947∗ 1.047 1.035

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2a: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in all others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.166 −0.292∗∗∗ −1.263 −0.032 −1.506 −0.022
h = 2 −0.343 −0.277∗∗∗ −1.161 −0.063∗ −0.971 −0.016
h = 3 −0.600 −0.267∗∗∗ −0.532 −0.094∗ −0.410 −0.044
h = 4 −0.805 −0.241∗∗∗ −0.229 −0.130∗∗ −0.110 −0.048
h = 5 −0.842 −0.276∗∗∗ −0.180∗ −0.154∗∗ −0.053 −0.056
h = 6 −0.867 −0.308∗∗∗ −0.162∗∗ −0.180∗∗∗ −0.052 −0.073
h = 7 −0.892 −0.337∗∗∗ −0.180∗∗ −0.208∗∗∗ −0.067 −0.086
h = 8 −0.927 −0.343∗∗∗ −0.182∗∗ −0.223∗∗∗ −0.064 −0.087

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.206 −0.334∗∗∗ −0.139∗∗ −0.044 −0.069 0.025
h = 2 −0.291 −0.197∗∗ −0.052 −0.050 0.012 −0.024
h = 3 −0.552 −0.163∗ −0.053 −0.083 −0.013 −0.080
h = 4 −0.722 −0.169 −0.075 −0.104 −0.026 −0.112
h = 5 −0.770 −0.215∗ −0.136 −0.139 −0.067 −0.139∗∗

h = 6 −0.809 −0.238∗∗ −0.183∗ −0.164∗ −0.091 −0.150∗

h = 7 −0.833 −0.260∗∗ −0.216∗∗ −0.182∗ −0.105 −0.134∗

h = 8 −0.871 −0.256∗∗ −0.233∗∗ −0.204∗ −0.105 −0.114

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.126 −0.516∗∗∗ −0.265∗∗∗ 0.004 −0.146∗ 0.052
h = 2 −0.377 −0.386∗∗∗ −0.172∗ −0.007 −0.044 0.102
h = 3 −0.696 −0.241∗ −0.078 0.022 0.047 0.143
h = 4 −0.863 −0.195 −0.064 −0.040 0.045 0.088
h = 5 −0.919 −0.213∗∗ −0.102 −0.081 0.002 0.045
h = 6 −0.957 −0.227∗∗ −0.132 −0.128 −0.023 0.021
h = 7 −1.016 −0.212∗ −0.131 −0.170∗ −0.032 0.000
h = 8 −1.059 −0.206 −0.129 −0.204∗∗ −0.039 −0.014

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.239 −0.283∗∗∗ −0.110∗∗ −0.040 −0.074 −0.058
h = 2 −0.191 −0.307∗∗∗ −0.189∗∗∗ −0.101∗∗∗ −0.151∗ −0.535
h = 3 −0.453 −0.288∗∗ −0.247∗∗ −0.111∗ −0.376∗ −0.650
h = 4 −0.723 −0.226∗ −0.191∗ −0.106 −0.232 −0.694
h = 5 −0.822 −0.240∗∗ −0.151∗ −0.125∗ −0.051 0.050
h = 6 −0.863 −0.267∗∗ −0.154∗ −0.152∗∗ −0.038 0.060
h = 7 −0.912 −0.270∗∗∗ −0.140∗ −0.172∗∗∗ 0.007 0.077
h = 8 −0.942 −0.273∗∗∗ −0.141∗ −0.195∗∗∗ 0.046 0.096

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.075 −0.119∗∗ −0.064 −0.086∗∗ −0.032 −0.003
h = 2 −0.352 −0.130∗∗ −0.127 −0.109∗∗ −0.147 −0.004
h = 3 −0.556 −0.160∗∗ −0.127 −0.137∗ −0.070 −0.020
h = 4 −0.705 −0.173∗∗ −0.126 −0.122 −0.066 −0.005
h = 5 −0.758 −0.193∗∗ −0.096 −0.109 0.030 0.019
h = 6 −0.789 −0.211∗∗ −0.086 −0.104 0.063 0.036
h = 7 −0.826 −0.227∗∗ −0.095 −0.124 0.069 0.047
h = 8 −0.862 −0.232∗∗ −0.105 −0.149∗ 0.067 0.034

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.651 −0.550∗∗∗ −0.271∗∗∗ −0.022 −0.199∗∗∗ −0.108∗∗

h = 2 0.055 −0.478∗∗∗ −0.204∗∗∗ −0.049 −0.111 −0.114
h = 3 −0.301 −0.402∗∗∗ −0.156∗ 0.014 −0.045 −0.091
h = 4 −0.581 −0.307∗∗ −0.093 −0.018 0.020 −0.042
h = 5 −0.759 −0.259∗ −0.056 0.018 0.048 −0.010
h = 6 −0.850 −0.249∗ −0.068 −0.007 0.040 −0.004
h = 7 −0.924 −0.235∗ −0.074 −0.031 0.032 0.014
h = 8 −0.978 −0.232 −0.082 −0.056 0.020 0.022

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.806 −0.429∗∗∗ −0.153∗∗∗ 0.028 −0.119∗∗ −0.072∗

h = 2 0.340 −0.519∗∗∗ −0.190∗∗∗ −0.003 −0.149∗ −0.088
h = 3 0.078 −0.550∗∗∗ −0.219∗∗∗ −0.032 −0.172 −0.129
h = 4 −0.163 −0.488∗∗∗ −0.182∗ −0.040 −0.142 −0.124
h = 5 −0.263 −0.502∗∗∗ −0.207∗∗ −0.043 −0.175 −0.136
h = 6 −0.333 −0.514∗∗∗ −0.223∗∗ −0.046 −0.206∗ −0.163∗

h = 7 −0.410 −0.503∗∗∗ −0.221∗∗ −0.043 −0.211∗ −0.167∗∗

h = 8 −0.479 −0.498∗∗∗ −0.216∗∗ −0.039 −0.211∗ −0.171∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 −0.072 −0.178∗∗∗ −0.035 −0.014 −0.062 −0.052
h = 2 −0.504 −0.172∗∗ −0.023 −0.037 −0.073 −0.055
h = 3 −0.706 −0.188∗∗ −0.054 −0.081 −0.127 −0.099
h = 4 −0.904 −0.162∗ −0.047 −0.103∗∗ −0.092 −0.105
h = 5 −0.994 −0.165∗ −0.039 −0.127∗∗ −0.079 −0.092
h = 6 −1.068 −0.162∗ −0.042 −0.139∗∗∗ −0.071 −0.091
h = 7 −1.140 −0.151∗ −0.036 −0.153∗∗∗ −0.064 −0.073
h = 8 −1.194 −0.141∗ −0.031 −0.155∗∗∗ −0.059 −0.067

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.839 −0.761∗∗∗ −0.428∗∗∗ −0.002 −0.369∗∗∗ −0.104∗∗∗

h = 2 0.314 −0.752∗∗∗ −0.414∗∗∗ −0.003 −0.339∗∗∗ −0.109∗∗

h = 3 0.035 −0.777∗∗∗ −0.423∗∗∗ −0.022 −0.340∗∗∗ −0.122∗

h = 4 −0.139 −0.768∗∗∗ −0.424∗∗∗ −0.039 −0.342∗∗∗ −0.131∗

h = 5 −0.216 −0.793∗∗∗ −0.458∗∗∗ −0.047 −0.372∗∗∗ −0.145∗∗

h = 6 −0.269 −0.806∗∗∗ −0.491∗∗∗ −0.056 −0.391∗∗∗ −0.170∗∗

h = 7 −0.306 −0.821∗∗∗ −0.527∗∗∗ −0.067 −0.405∗∗∗ −0.187∗∗∗

h = 8 −0.350 −0.820∗∗∗ −0.545∗∗∗ −0.081 −0.399∗∗∗ −0.198∗∗∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 1.262 −0.956∗∗∗ −0.616∗∗∗ 0.101∗∗∗ −0.431∗∗∗ −0.146∗∗∗

h = 2 0.638 −0.843∗∗∗ −0.522∗∗∗ 0.063 −0.283∗∗∗ −0.142∗∗∗

h = 3 0.254 −0.752∗∗∗ −0.451∗∗∗ 0.043 −0.179 −0.139∗

h = 4 −0.026 −0.644∗∗∗ −0.375∗∗ 0.039 −0.117 −0.125
h = 5 −0.190 −0.596∗∗∗ −0.352∗∗ 0.030 −0.111 −0.127
h = 6 −0.298 −0.574∗∗∗ −0.350∗∗ 0.029 −0.128 −0.131
h = 7 −0.394 −0.547∗∗∗ −0.338∗∗ 0.029 −0.128 −0.126
h = 8 −0.468 −0.529∗∗∗ −0.338∗∗ 0.012 −0.124 −0.126

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 2b: Average Log Predictive Scores (scores for MAI-AR-SV, score differences in all others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.505 −0.666∗∗∗ −0.356∗∗∗ 0.000 −0.251∗∗∗ −0.094∗∗

h = 2 0.033 −0.609∗∗∗ −0.331∗∗∗ 0.051 −0.243∗∗∗ −0.091
h = 3 −0.270 −0.553∗∗∗ −0.306∗∗∗ 0.093∗ −0.241∗∗ −0.082
h = 4 −0.537 −0.475∗∗∗ −0.260∗∗ 0.128∗∗ −0.201 −0.040
h = 5 −0.671 −0.474∗∗∗ −0.274∗∗ 0.151∗∗ −0.214 −0.037
h = 6 −0.788 −0.453∗∗∗ −0.267∗∗ 0.167∗∗ −0.197 −0.016
h = 7 −0.870 −0.445∗∗∗ −0.276∗∗ 0.172∗∗ −0.190 −0.007
h = 8 −0.946 −0.426∗∗∗ −0.270∗∗ 0.181∗∗ −0.167 0.008

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.245 −0.302∗∗∗ −0.094∗∗ −0.075 −0.079∗∗ −0.027
h = 2 −0.199 −0.304∗∗∗ −0.120∗∗∗ −0.072∗ −0.174 −0.038
h = 3 −0.426 −0.307∗∗∗ −0.130∗∗ −0.070 −0.19 −0.055
h = 4 −0.619 −0.282∗∗∗ −0.127 −0.105∗ −0.048 −0.054
h = 5 −0.687 −0.312∗∗∗ −0.149∗ −0.117∗∗ −0.042 −0.060
h = 6 −0.718 −0.332∗∗∗ −0.182∗∗ −0.133∗∗ −0.038 −0.054
h = 7 −0.766 −0.332∗∗∗ −0.193∗∗∗ −0.145∗∗ −0.027 −0.058
h = 8 −0.803 −0.333∗∗∗ −0.207∗∗∗ −0.148∗∗ −0.025 −0.076

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.388 −0.623∗∗∗ −0.347∗∗∗ 0.020 −0.237∗∗∗ −0.064
h = 2 −0.002 −0.625∗∗∗ −0.342∗∗∗ −0.006 −0.219∗∗∗ −0.106∗

h = 3 −0.213 −0.604∗∗∗ −0.338∗∗∗ −0.037 −0.211∗∗ −0.130∗

h = 4 −0.441 −0.508∗∗∗ −0.261∗∗ −0.030 −0.151 −0.108
h = 5 −0.540 −0.500∗∗∗ −0.255∗∗ −0.032 −0.141 −0.111
h = 6 −0.634 −0.479∗∗∗ −0.232∗∗ −0.022 −0.123 −0.109
h = 7 −0.729 −0.451∗∗∗ −0.197∗ −0.016 −0.108 −0.102
h = 8 −0.792 −0.438∗∗∗ −0.176 −0.006 −0.099 −0.105

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.501 −0.511∗∗∗ −0.227∗∗∗ 0.009 −0.198∗∗∗ −0.056∗

h = 2 0.008 −0.512∗∗∗ −0.226∗∗∗ −0.008 −0.195∗∗∗ −0.087∗

h = 3 −0.249 −0.524∗∗∗ −0.264∗∗∗ −0.015 −0.214∗∗∗ −0.112∗

h = 4 −0.442 −0.481∗∗∗ −0.259∗∗ −0.014 −0.189∗∗ −0.109∗

h = 5 −0.540 −0.465∗∗∗ −0.275∗ 0.012 −0.171∗ −0.083
h = 6 −0.591 −0.463∗∗∗ −0.308∗ 0.024 −0.186 −0.079
h = 7 −0.645 −0.450∗∗∗ −0.319∗ 0.037 −0.183 −0.062
h = 8 −0.691 −0.436∗∗∗ −0.323∗ 0.041 −0.167 −0.048

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.040 −0.350∗∗∗ −0.162∗∗∗ 0.000 −0.064 0.003
h = 2 −0.361 −0.311∗∗∗ −0.152∗∗ −0.019 0.001 0.032
h = 3 −0.624 −0.265∗∗∗ −0.144 −0.047 0.068 0.058
h = 4 −0.836 −0.210∗∗ −0.129 −0.065 0.136 0.121
h = 5 −0.940 −0.184 −0.128 −0.052 0.152 0.165
h = 6 −0.984 −0.188 −0.167 −0.070 0.144 0.198∗

h = 7 −0.995 −0.204 −0.218 −0.095 0.115 0.201∗

h = 8 −1.022 −0.204 −0.249∗ −0.120 0.110 0.201∗

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.998 −1.281∗∗∗ −0.973∗∗∗ 0.094∗∗∗ −0.848∗∗∗ −0.194∗∗∗

h = 2 0.525 −1.049∗∗∗ −0.818∗∗∗ 0.045 −0.673∗∗∗ −0.193∗∗∗

h = 3 0.258 −0.949∗∗∗ −0.765∗∗∗ −0.010 −0.581∗∗∗ −0.210∗∗∗

h = 4 0.051 −0.870∗∗∗ −0.737∗∗∗ −0.044 −0.497∗∗∗ −0.208∗∗

h = 5 −0.067 −0.803∗∗∗ −0.738∗∗∗ −0.064 −0.464∗∗∗ −0.212∗

h = 6 −0.155 −0.753∗∗∗ −0.744∗∗∗ −0.092 −0.429∗∗∗ −0.217∗

h = 7 −0.232 −0.698∗∗∗ −0.750∗∗∗ −0.106 −0.390∗∗ −0.213
h = 8 −0.304 −0.650∗∗∗ −0.738∗∗∗ −0.107 −0.345∗∗ −0.202

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.734 −0.670∗∗∗ −0.393∗∗∗ 0.029 −0.236∗∗∗ −0.040
h = 2 0.189 −0.520∗∗∗ −0.286∗∗ 0.071 −0.136 −0.050
h = 3 −0.196 −0.376 −0.173 0.159 −0.005 0.022
h = 4 −0.429 −0.310 −0.127 0.152 0.052 0.019
h = 5 −0.485 −0.361∗∗ −0.201 0.089 −0.001 −0.036
h = 6 −0.577 −0.340∗ −0.205 0.094 0.002 −0.033
h = 7 −0.653 −0.328∗∗ −0.212 0.065 0.011 −0.020
h = 8 −0.729 −0.308∗∗ −0.204 0.058 0.027 −0.005

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 −0.320∗∗∗ −0.146∗∗ −0.046 −0.102 −0.036
h = 2 −0.425 −0.184∗ −0.092 −0.140 −0.086 −0.012
h = 3 −0.784 −0.052 −0.025 −0.567 −0.047 0.063
h = 4 −0.981 −0.044 −0.052 −0.420 −0.022 0.073
h = 5 −1.081 −0.040 −0.060 −0.095 0.020 0.105
h = 6 −1.098 −0.083 −0.134 −0.157 0.010 0.089
h = 7 −1.103 −0.125 −0.208 −0.209 −0.006 0.071
h = 8 −1.118 −0.145 −0.256∗ −0.272∗∗ −0.014 0.047

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.199 −0.374∗∗∗ −0.103∗∗∗ 0.020 −0.135∗∗∗ −0.111∗∗∗

h = 2 −0.362 −0.297∗∗∗ −0.072 0.021 −0.148∗∗ −0.134
h = 3 −0.715 −0.215∗∗ −0.021 0.000 −0.118 −0.104
h = 4 −0.935 −0.179∗∗ 0.008 −0.001 −0.094 −0.078
h = 5 −1.048 −0.183∗∗ 0.007 −0.010 −0.076 −0.036
h = 6 −1.102 −0.201∗∗ −0.019 −0.016 −0.088 −0.009
h = 7 −1.153 −0.213∗∗∗ −0.029 −0.013 −0.102 0.009
h = 8 −1.197 −0.215∗∗ −0.050 −0.027 −0.126 0.007

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.738 −0.681∗∗∗ −0.351∗∗∗ 0.106∗ −0.284∗∗∗ −0.082∗∗∗

h = 2 0.227 −0.663∗∗∗ −0.356∗∗∗ 0.108 −0.245∗∗∗ −0.074∗

h = 3 −0.061 −0.645∗∗∗ −0.364∗∗∗ 0.141 −0.229∗∗∗ −0.091∗

h = 4 −0.287 −0.579∗∗∗ −0.330∗∗∗ 0.176 −0.202∗∗ −0.096
h = 5 −0.414 −0.553∗∗∗ −0.319∗∗ 0.191 −0.187∗∗ −0.101
h = 6 −0.500 −0.536∗∗∗ −0.321∗∗ 0.182 −0.188∗∗ −0.110
h = 7 −0.580 −0.520∗∗∗ −0.316∗∗ 0.163 −0.189∗∗ −0.108
h = 8 −0.636 −0.511∗∗∗ −0.324∗∗∗ 0.107 −0.204∗ −0.121

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3a: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

USA
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.123 1.098∗∗∗ 1.028 1.02 0.993 1.000
h = 2 0.206 1.115∗∗∗ 1.060∗ 1.042∗∗ 0.987 0.966
h = 3 0.264 1.126∗∗∗ 1.097∗∗ 1.071∗∗ 0.998 0.970
h = 4 0.315 1.126∗∗∗ 1.109∗∗ 1.106∗∗ 0.993 0.966
h = 5 0.318 1.155∗∗∗ 1.125∗∗ 1.141∗∗∗ 1.006 0.983
h = 6 0.316 1.172∗∗∗ 1.153∗∗∗ 1.185∗∗∗ 1.028 1.019
h = 7 0.319 1.194∗∗∗ 1.195∗∗∗ 1.227∗∗∗ 1.056 1.055
h = 8 0.327 1.197∗∗ 1.218∗∗∗ 1.249∗∗∗ 1.052 1.063

Australia
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.107 1.191∗∗∗ 1.081∗∗ 1.045 1.033 1.004
h = 2 0.176 1.086∗∗ 1.041 1.040 1.008 1.039
h = 3 0.231 1.051 1.055 1.071 1.043 1.107
h = 4 0.277 1.056 1.063 1.081 1.063 1.141∗

h = 5 0.293 1.075 1.103 1.117 1.095 1.175∗∗

h = 6 0.306 1.090 1.137 1.143 1.107 1.184∗∗

h = 7 0.312 1.107 1.172∗ 1.165 1.109 1.165∗

h = 8 0.320 1.112 1.196∗ 1.186 1.107 1.141

Austria
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.114 1.404∗∗∗ 1.172∗∗∗ 1.006 1.065 0.951
h = 2 0.191 1.268∗∗∗ 1.102∗ 1.002 1.001 0.918
h = 3 0.248 1.192∗∗∗ 1.087 1.031 0.998 0.929
h = 4 0.301 1.138∗∗∗ 1.066 1.053 1.001 0.963
h = 5 0.327 1.142∗∗∗ 1.092 1.081 1.027 0.987
h = 6 0.343 1.148∗∗∗ 1.124 1.121∗ 1.052 1.008
h = 7 0.361 1.149∗∗∗ 1.142 1.158∗∗ 1.074 1.030
h = 8 0.375 1.153∗∗ 1.152 1.179∗∗ 1.088 1.043

Belgium
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.107 1.128∗∗∗ 1.053∗∗ 1.047 1.050 1.060
h = 2 0.169 1.139∗∗∗ 1.099∗∗∗ 1.096∗∗ 1.055 1.029
h = 3 0.215 1.143∗∗∗ 1.117∗∗ 1.103∗∗ 1.042 0.989
h = 4 0.274 1.122∗∗∗ 1.087∗ 1.089∗ 0.999 0.944
h = 5 0.309 1.127∗∗∗ 1.083 1.099∗ 0.975 0.921
h = 6 0.325 1.144∗∗∗ 1.095 1.121∗∗ 0.973 0.913
h = 7 0.339 1.147∗∗∗ 1.101 1.135∗∗ 0.972 0.910
h = 8 0.346 1.150∗∗∗ 1.117∗ 1.158∗∗∗ 0.959 0.900

Canada
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.126 1.044∗∗ 1.039 1.049∗ 0.983 0.996
h = 2 0.196 1.048∗ 1.060 1.060 0.969 0.984
h = 3 0.246 1.053∗ 1.073 1.073 0.976 0.993
h = 4 0.285 1.065∗∗ 1.060 1.063 0.971 0.990
h = 5 0.297 1.081∗∗ 1.039 1.044 0.968 1.001
h = 6 0.305 1.087∗∗ 1.029 1.034 0.945 0.994
h = 7 0.314 1.093∗∗ 1.034 1.048 0.931 0.983
h = 8 0.324 1.102∗ 1.046 1.063 0.922 0.981

Finland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.069 1.368∗∗∗ 1.155∗∗∗ 1.014 1.141∗∗∗ 1.133∗∗

h = 2 0.128 1.295∗∗∗ 1.091∗ 0.970 1.092 1.129
h = 3 0.184 1.232∗∗∗ 1.052 0.948 1.046 1.107
h = 4 0.241 1.172∗∗∗ 1.027 0.945 1.003 1.068
h = 5 0.286 1.149∗∗ 1.011 0.934 0.987 1.044
h = 6 0.319 1.138∗∗ 1.017 0.942 0.981 1.026
h = 7 0.345 1.129∗ 1.035 0.966 0.984 1.009
h = 8 0.365 1.13* 1.053 0.986 0.989 0.997

France
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.059 1.271∗∗∗ 1.053∗ 0.966 1.108∗∗ 1.090∗

h = 2 0.095 1.382∗∗∗ 1.083∗ 0.984 1.146 1.120
h = 3 0.122 1.436∗∗∗ 1.124∗ 0.998 1.199 1.180
h = 4 0.156 1.392∗∗∗ 1.105 1.007 1.172 1.174
h = 5 0.174 1.407∗∗∗ 1.121 1.002 1.191 1.185
h = 6 0.188 1.421∗∗∗ 1.137 0.995 1.214 1.201∗

h = 7 0.202 1.420∗∗∗ 1.140 0.989 1.215 1.193∗∗

h = 8 0.217 1.416∗∗∗ 1.144 0.980 1.200 1.175∗∗

Germany
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.147 1.072∗∗∗ 0.989 0.992 1.028 1.053
h = 2 0.225 1.079∗∗ 0.981 0.995 1.050 1.055
h = 3 0.274 1.093∗∗ 1.027 1.042 1.102 1.097
h = 4 0.329 1.089∗∗ 1.046 1.070 1.100 1.101
h = 5 0.354 1.100∗∗ 1.059 1.096∗ 1.107 1.116
h = 6 0.379 1.099∗∗ 1.065 1.114∗ 1.122 1.124
h = 7 0.405 1.1** 1.073 1.128∗∗ 1.132 1.12
h = 8 0.427 1.098∗∗ 1.077 1.134∗∗ 1.142 1.115

Greece
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.059 1.597∗∗∗ 1.252∗∗∗ 1.003 1.270∗∗∗ 1.085∗∗

h = 2 0.101 1.563∗∗∗ 1.250∗∗∗ 1.000 1.267∗∗∗ 1.107∗

h = 3 0.133 1.616∗∗∗ 1.286∗∗∗ 1.016 1.286∗∗∗ 1.120∗

h = 4 0.158 1.615∗∗∗ 1.300∗∗ 1.025 1.305∗∗∗ 1.124∗

h = 5 0.167 1.667∗∗∗ 1.366∗∗ 1.043 1.351∗∗∗ 1.150∗

h = 6 0.174 1.711∗∗∗ 1.440∗∗∗ 1.076 1.385∗∗∗ 1.184∗

h = 7 0.178 1.761∗∗∗ 1.533∗∗∗ 1.117 1.415∗∗∗ 1.209∗

h = 8 0.182 1.800∗∗∗ 1.609∗∗∗ 1.164 1.408∗∗∗ 1.215∗

Italy
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.036 2.026∗∗∗ 1.509∗∗∗ 0.948 1.370∗∗∗ 1.158∗∗∗

h = 2 0.068 1.797∗∗∗ 1.388∗∗∗ 0.959 1.238∗ 1.174∗∗

h = 3 0.101 1.651∗∗∗ 1.321∗∗∗ 0.968 1.150 1.193
h = 4 0.136 1.502∗∗∗ 1.243∗∗ 0.957 1.089 1.182
h = 5 0.163 1.442∗∗∗ 1.221 0.954 1.074 1.178
h = 6 0.183 1.408∗∗∗ 1.224 0.960 1.078 1.173
h = 7 0.201 1.384∗∗∗ 1.225 0.964 1.07 1.155
h = 8 0.216 1.376∗∗∗ 1.239 0.983 1.054 1.14

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Table 3b: Average Continuous Rank Probability Scores (CRPS for MAI-AR-SV, CRPS ratios
in all others)

Japan
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.079 1.558∗∗∗ 1.253∗∗∗ 1.021 1.209∗∗∗ 1.117∗∗∗

h = 2 0.129 1.502∗∗∗ 1.236∗∗∗ 0.962 1.234∗∗ 1.117
h = 3 0.177 1.456∗∗∗ 1.219∗∗∗ 0.911∗ 1.252∗ 1.115
h = 4 0.226 1.423∗∗∗ 1.227∗∗∗ 0.889∗ 1.245 1.083
h = 5 0.264 1.418∗∗∗ 1.235∗∗∗ 0.851∗∗ 1.247 1.053
h = 6 0.299 1.406∗∗∗ 1.244∗∗∗ 0.835∗∗ 1.223 1.025
h = 7 0.328 1.397∗∗∗ 1.266∗∗∗ 0.831∗∗ 1.199 1.000
h = 8 0.353 1.384∗∗∗ 1.276∗∗∗ 0.826∗∗ 1.169 0.985

Luxembourg
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.103 1.171∗∗∗ 1.054∗∗ 1.031 1.036 1.030
h = 2 0.164 1.168∗∗∗ 1.051 1.043 1.047 1.047
h = 3 0.201 1.191∗∗∗ 1.076 1.061 1.060 1.059
h = 4 0.244 1.177∗∗∗ 1.089 1.087 1.034 1.037
h = 5 0.263 1.190∗∗∗ 1.107 1.106∗ 1.035 1.036
h = 6 0.269 1.206∗∗∗ 1.150∗∗ 1.141∗∗ 1.038 1.034
h = 7 0.280 1.201∗∗∗ 1.179∗∗ 1.171∗∗ 1.053 1.051
h = 8 0.289 1.197∗∗∗ 1.196∗∗ 1.185∗∗ 1.066 1.066

Netherlands
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.087 1.483∗∗∗ 1.233∗∗∗ 1.006 1.230∗∗∗ 1.096∗

h = 2 0.130 1.484∗∗∗ 1.224∗∗∗ 1.017 1.250∗∗ 1.151∗

h = 3 0.160 1.465∗∗∗ 1.239∗∗∗ 1.053 1.271∗ 1.212∗

h = 4 0.199 1.379∗∗∗ 1.184∗∗ 1.054 1.208 1.189
h = 5 0.224 1.361∗∗∗ 1.163 1.038 1.172 1.169
h = 6 0.246 1.347∗∗∗ 1.152 1.029 1.133 1.147
h = 7 0.275 1.311∗∗∗ 1.112 1.018 1.09 1.112
h = 8 0.295 1.303∗∗∗ 1.089 1.005 1.071 1.090

New Zealand
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.082 1.313∗∗∗ 1.085∗∗ 0.969 1.152∗∗∗ 1.067
h = 2 0.139 1.276∗∗∗ 1.061 0.933 1.170∗∗ 1.114
h = 3 0.186 1.265∗∗∗ 1.080 0.904 1.179∗ 1.137
h = 4 0.229 1.213∗∗∗ 1.081 0.899 1.135 1.120
h = 5 0.256 1.193∗∗ 1.093 0.872 1.105 1.089
h = 6 0.274 1.181∗ 1.118 0.849 1.089 1.061
h = 7 0.289 1.180∗ 1.144 0.841 1.068 1.020
h = 8 0.298 1.187∗ 1.174 0.844 1.052 0.983

Norway
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.132 1.189∗∗∗ 1.084∗∗∗ 0.996 1.007 0.979
h = 2 0.194 1.206∗∗∗ 1.115∗∗ 1.010 0.978 0.959
h = 3 0.250 1.194∗∗∗ 1.137∗∗ 1.018 0.940 0.935
h = 4 0.303 1.183∗∗∗ 1.151∗ 1.036 0.908 0.903
h = 5 0.333 1.184∗∗∗ 1.171∗ 1.024 0.913 0.881
h = 6 0.349 1.186∗∗∗ 1.225∗∗ 1.045 0.919 0.863
h = 7 0.356 1.184∗∗∗ 1.291∗∗ 1.071 0.926 0.848
h = 8 0.368 1.168∗∗ 1.331∗∗∗ 1.098 0.919 0.836

Portugal
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.046 2.787∗∗∗ 2.130∗∗∗ 0.971 1.922∗∗∗ 1.158∗∗∗

h = 2 0.076 2.214∗∗∗ 1.864∗∗∗ 1.004 1.661∗∗∗ 1.150∗∗

h = 3 0.101 2.006∗∗∗ 1.821∗∗∗ 1.037 1.551∗∗∗ 1.170∗

h = 4 0.124 1.857∗∗∗ 1.821∗∗∗ 1.069 1.482∗∗∗ 1.179
h = 5 0.140 1.739∗∗∗ 1.870∗∗∗ 1.095 1.447∗∗∗ 1.181
h = 6 0.155 1.639∗∗∗ 1.902∗∗∗ 1.118 1.394∗∗∗ 1.175
h = 7 0.170 1.547∗∗∗ 1.923∗∗∗ 1.134 1.323∗∗ 1.158
h = 8 0.184 1.475∗∗∗ 1.923∗∗∗ 1.137 1.247 1.135

Spain
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.063 1.514∗∗∗ 1.248∗∗∗ 0.981 1.171∗∗∗ 1.027
h = 2 0.109 1.358∗∗∗ 1.163∗∗∗ 0.941 1.102 1.036
h = 3 0.148 1.298∗∗∗ 1.147∗∗ 0.932 1.069 1.041
h = 4 0.186 1.251∗∗∗ 1.127 0.923 1.018 1.033
h = 5 0.212 1.234∗∗∗ 1.132 0.909 1.001 1.033
h = 6 0.236 1.208∗∗∗ 1.138 0.901 0.980 1.014
h = 7 0.260 1.180∗∗ 1.137 0.900 0.951 0.985
h = 8 0.280 1.17** 1.142 0.905 0.931 0.974

Sweden
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.124 1.182∗∗∗ 1.067 1.016 1.064 1.070
h = 2 0.209 1.113∗∗∗ 1.065 1.044 1.069 1.041
h = 3 0.275 1.093∗ 1.099 1.071 1.095 1.032
h = 4 0.342 1.083 1.112 1.082 1.047 0.977
h = 5 0.381 1.082 1.125 1.090 1.024 0.947
h = 6 0.399 1.097 1.179∗ 1.131 1.023 0.941
h = 7 0.410 1.120 1.246∗∗ 1.186∗ 1.026 0.936
h = 8 0.420 1.137∗ 1.305∗∗∗ 1.240∗∗∗ 1.033 0.944

Switzerland
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.108 1.256∗∗∗ 1.057∗∗ 0.985 1.151∗∗∗ 1.145∗∗∗

h = 2 0.194 1.192∗∗∗ 1.017 0.960 1.149∗ 1.151
h = 3 0.274 1.151∗∗∗ 0.996 0.954 1.133 1.128
h = 4 0.343 1.138∗∗∗ 0.984 0.953 1.103 1.088
h = 5 0.384 1.153∗∗∗ 0.994 0.957 1.096 1.050
h = 6 0.406 1.175∗∗∗ 1.019 0.969 1.115 1.021
h = 7 0.426 1.199∗∗∗ 1.047 0.987 1.144 1.001
h = 8 0.446 1.215∗∗∗ 1.074 1.003 1.179 0.995

United Kingdom
MAI-

AR-SV
MAI-AR AR AR-SV BVAR

BVAR-

SV
h = 1 0.063 1.533∗∗∗ 1.195∗∗∗ 0.936 1.238∗∗∗ 1.086∗

h = 2 0.104 1.531∗∗∗ 1.224∗∗ 0.952 1.243∗∗ 1.100
h = 3 0.138 1.517∗∗∗ 1.245∗∗ 0.933 1.241∗∗ 1.130∗

h = 4 0.176 1.436∗∗∗ 1.205 0.903 1.195∗ 1.123
h = 5 0.202 1.406∗∗∗ 1.195 0.883 1.158 1.105
h = 6 0.222 1.382∗∗∗ 1.197 0.878 1.135 1.087
h = 7 0.241 1.368∗∗∗ 1.214 0.898 1.126 1.074
h = 8 0.255 1.361∗∗∗ 1.241 0.940 1.126 1.068

Statistically significant differences according to the Diebold-Mariano t-statistic are indicated by asterisks, where

*,** and ** correspond respectively to 10%,5% and 1% significance levels
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Appendix C Additional Figures

C.1 Headline Inflation

Figure 16: MAI-SV in-sample fit
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Figure 17: MAI-AR-SV in-sample fit
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Figure 18: MAI-AR-SV, Residuals’ Volatility, posterior bands
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C.2 Core Inflation, Data and Decompositions

Figure 19: Non-Food & non-Energy inflation rates (year on year growth rates in quarterly CPIs)

Figure 20: MAI-AR-SV estimated common factor (with posterior bands) Vs Data. Core inflation
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Figure 21: MAI-AR-SV, Residuals’ Volatility, posterior bands. Core inflation
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Figure 22: MAI-AR-SV, Residuals’ Volatility, TV decomposition, Common (red), Idio (green),
total (blue). Core inflation
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Figure 23: MAI-AR-SV, Residuals’ Volatility, TV decomposition shares (%), Common (red),
Idio (blue). Core inflation
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Figure 24: MAI-AR-SV, Core inflation levels decomposition into common (red) and idiosyncratic
components
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