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the incidence and nature of knowledge flows mediated by the collaboration networks of 
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innovation in which Israel should have a comparative advantage.  
 
We find the following: (I) the quality of the Israeli ICT/information security inventions is 
systematically linked to the structure of the collaborative network. In particular, we find 
positive and significant direct and indirect knowledge spillovers. (II) We find no evidence of 
such spillovers in either Fin-Tech or Med-Tech.  
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1. Introduction 

High-tech R&D is typically done by teams. Working in teams necessarily involves exchanging 

ideas and sharing information. Participants of such research teams carry this knowledge to 

other teams and other projects in which they are involved or become involved. Interestingly, 

though a great deal of research has focused on measuring knowledge spillovers in patents, over 

time and space, little previous research has tried to link knowledge spillovers in the networks 

formed by inventors' joint work to the quality of patents.  

 

In this paper, we use data on the inventors that appear in patent documents to trace out and 

construct two-mode networks: (I) a Patent Network and (II) an Inventor Network. In the case 

of the patent network, the nodes are patents, and two patents are linked if there is a common 

inventor who works on both patents. In the case of the inventor network, the nodes of this 

network are the inventors themselves. There is a link between two inventors if they are co-

inventors of the same patent.  

 
Using the network data, we then employ a simple model to examine the existence and 

importance of collaborator network-mediated knowledge spillovers in three areas of innovation 

using patents granted in the United States to Israeli innovators: 

 

(I) Information and Communication Technology/Information security (ICT/IS) 

(2) Financial Technology (Fin-Tech)   

(3) Medical Technology (Med-Tech) 

 

These are all areas of innovation that require computer science expertise and programming 

skills, areas in which Israel should have a comparative advantage. In the analysis, we use data 

from the United States Patent and Trademark Office (USPTO.)   

 

Using the theoretical model we present, we then regress patent invention quality, measured by 

the total number of forward citations, on network centrality measures within the patent network 

at the time when the patent application was submitted.  We control for other characteristics of 

the patent.  
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We find that the quality of the Israeli ICT/information security inventions is systematically 

linked to the structure of the collaborative network. In particular, we find positive and 

significant direct and indirect knowledge spillovers. Further, the spillovers are stronger when 

we restrict ourselves to patents in the narrow IS/ICT network, that is patents that do not also 

fall into Med-Tech or Fin-Tech. We find no evidence of spillovers in either Fin-Tech or Med-

Tech.  

 

One possible explanation for our results is that the connected networks formed in Elite Israel 

Defense Force (IDF) units, such as the well-known Unit 8200, play an important role in 

seeding successful ICT/IS startups in Israel by creating a connected network of programmers. 

Unit 8200, a military intelligence unit focusing on signal intelligence and code decryption, is 

the largest unit in the Israel Defense Forces, comprising several thousand soldiers.1 Once they 

leave the military, 8200 veterans use the network of 8200 veterans to found start-ups and 

develop ICT/IS technologies based in part on their experience and connections in the 

military.2 Such effects are not likely present in the Med-tech and Fin-tech categories.   

 
1.1 Literature Review 

 

With the exception of Gandal, Kunievsky, and Branstetter (2018,) which we discuss below, no 

previous studies in the economics literature have examined the impact of inventors' 

collaboration network traced out by coinventions (that is, inventors appearing together 

previously on the same patent document) on knowledge flows and invention quality. 

 

This omission in the innovation literature is striking given the significant attention placed on 

collaboration networks in economics. Recent studies have examined the relationship between 

network structure and behavior (e.g., Ballester, Calvó-Armengol, & Zenou, 2006; Calvo-

Armengol & Jackson, 2004; Goyal, van der Leij and Moraga-Gonzalez, 2006; Jackson & 

Yariv, 2007; Karlan, Mobius, Rosenblat, & Szeidl, 2009) and the relationship between network 

structure and performance (Ahuja, 2000; Calvó-Armengol, Patacchini, & Zenou, 2009, 

                                                
1  See Idan Tendler, “From the Israeli Army Unit 8200 to Silicon Valley,” 23 March 2015, available at 
https://techcrunch.com/2015/03/20/from-the-8200-to-silicon-valley/ 
2 It is claimed that 70 percent of successful Israeli startups are led by 8200 graduates. See “from “High-tech 
elites to nurture Arab-Israeli startups,”17.4.2016, available at http://www.israel21c.org/high-tech-elites-to-
nurture-arab-israeli-startups/. 
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Fershtman and Gandal (FG 2011), and Gandal and Stettner, 2016).   Gandal, Kunievsky, and 

Branstetter (2018) were the first to apply the FG (2011) methodology to patents.  They did the 

analysis for the case if ICT/IS patents; this paper extends their analysis for Med-tech and Fin-

tech across different software fields.  Our results suggest that spillovers are not universal across 

all “software” industries.  

 

2. Theoretical Foundations for Network-Mediated Knowledge Spillovers 
 

Network-mediated knowledge spillovers can be either direct or indirect. In the case of network-

mediated spillovers between patented inventions, direct spillovers occur when two patented 

inventions have a common inventor who transfers knowledge from one patent to another. That 

is, an inventor takes the knowledge that he/she acquired while working on a previously patented 

invention and implements it in another invention. However, knowledge may also flow between 

invention teams even if they are not directly connected by a common inventor. The indirect 

route occurs whenever an inventor learns something from participating in one invention, takes 

the knowledge to a second invention and "shares" it with another inventor on that invention 

team, who, in turn, uses it when she works on a third invention. In such a scenario, knowledge 

flows from the first patent to the third patent, even though they do not have any inventors in 

common. Clearly, such indirect spillovers may be subject to decay depending on the distance 

(the number of the indirect links) between the patents. 

 

Fershtman and Gandal (FG 2011) show theoretically that when there are project spillovers that 

decrease with decay, there should be a positive correlation between project success and project 

closeness centrality, which is defined as the inverse of the sum of all distances between the 

project and all other projects. Closeness centrality measures how far each project is from all 

the other projects in the network.  

 
2.1 A Formal Model for Exploring Network-Mediated Knowledge Spillovers 

 

As discussed, the academic literature has frequently used forward patent citations as a measure 

of invention quality. Following this convention, we assume that the quality (denoted Si) of each 

patent “i” is closely related to its count of forward citations, i.e., the citations received from 

subsequently granted patents. As is typical, we exclude self-citations (both to assignees and to 

inventors.) We write: 
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(1) Si = Xi ω + εi 

 

where Xi is a vector of observable patent characteristics, ω is a vector of parameters to be 

estimated, and εi is an error term. 

 

We define two patents to be linked if they have an inventor in common.  Similarly, we define 

two inventors to be connected if they work together on a patent. 

 

We focus on national networks.  A patent is defined to be from a country if all its inventors are 

residents of that country, i.e., all inventors have an address in that country on a given patent 

document.  

 

We now present a simplified version of the FG (2011) model. The model assumes that each 

patent i may enjoy positive spillovers from patents that are directly connected and patents that 

are indirectly connected, but that these spillovers are subject to decay that increases as the 

distance between the patents - that is, the number of intervening connections - in the patent 

network increases. Formally when the distance between patent i and j is d(i,j), we assume that 

the quality of each patent is γ/  where γ is the magnitude of the spillover.3  

 

Under this assumption, the quality of each patent i can be written 

 

(1) (2) 𝑆𝑆𝑖𝑖 = 𝑋𝑋𝑖𝑖𝜔𝜔 +    γ
Σ𝑗𝑗𝑑𝑑(𝑖𝑖,𝑗𝑗)

 +  εi 

 

 

Formally, closeness centrality is the inverse of the sum of all the (shortest) distances between 

a focal patent and all other patents multiplied by the number of other patents. Closeness 

centrality measures how far each patent is from all the other patents in a network and is 

calculated as:  

                                                
3 For two patents that are directly connected (that is, share an inventor in common), d(i,j) = 1. For two patents 
that are indirectly linked via a third patent, d(i,j) = 2. 

∑ j
jid ),(
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(3)  , 

where N is the number of patents and d(i,j) is the shortest distance between patents i and j, as 

measured by the network of coinventions traced out in patent documents. Patents that indirectly 

link to a large number of other patents have a higher closeness centrality measure than patents 

near or at the edge of a network. (See Freeman (1979), pp. 225-226.) 

 

Using (3), the expression for closeness centrality, patent i's success can be rewritten as  

 

(4) 𝑆𝑆𝑖𝑖 = 𝑋𝑋𝑖𝑖𝜔𝜔 + 𝛾𝛾 𝐶𝐶𝑖𝑖
𝑁𝑁−1

+ 𝜖𝜖𝑖𝑖 

 

Hence, for each patent (denoted “i”), we calculate the cited patent’s closeness centrality.  By 

construction, we only consider the possibility of intranational knowledge spillovers, because 

our networks are based on co-inventions between inventors who “meet” in Israel.4  The 

closeness centrality measure is only defined within groups of patents that are actually 

connected to each other by common inventors.  For that reason, following the usual practice in 

the network literature, we will focus our analysis on the largest single group of patents within 

Israel that are connected to a common network.  This is referred to in the literature as the “giant 

component.” The second largest component is typically significantly smaller. 

 

If controlling for other factors, closeness centrality is significant in explaining the success of a 

patent, then there are both direct and indirect knowledge spillovers from directly and indirectly 

connected nodes, and the spillovers decay with distance between the patents. 

 

We need to address the endogeneity issue associated with network formation. High quality 

patents will attract large numbers of citations from subsequently granted patents.  This raises 

the possibility that the causal linkage between network density and invention quality runs in 

both directions, with higher quality patents growing a denser network around them after they 

are invented.   

                                                
4 This does not imply the assumed absence of international spillovers but rather the difficulty of tracking 
inventor networks across countries and our interest in measuring the impact of intranational networks, especially 
in Israel, on invention quality.  To the extent that unmeasured international collaborations raise the quality of 
invention, our approach is likely to generate a downward-biased estimate of the impact of Israeli inventor 
networks on inventions quality. 

∑ ∈

−
≡

Nj
i jid

NC
),(

)1(
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To address this issue, we need to distinguish between the “ex-ante” network that was in effect 

when the application for the patent was filed, and the “ex-post” network that exists at the end 

of our data window.  To do this, following Gandal, Kunievsky, and Branstetter (2018,) we 

create, for each patent, the network that exists at the time of the patent filing — meaning that 

there is a different network for each patent.  Logically, this “ex ante” network is the network 

that could have plausibly raised the quality of the invention.  

 

This methodology (using the “ex-ante” network) solves the endogeneity issue, unless agents 

(inventors) are forward-looking when forming links with other inventors. In the case of patents, 

inventors do not typically form links in a forward-looking manner: (I) Patents are generally 

held by one firm and (II) typically all inventors on a particular patent work at that firm. 

Virtually no inventor would choose to leave a firm just to apply for a patent with someone else 

at another firm.   

 

3. Data and Empirical Analysis 
In order to begin, we first define the relevant i patent classes for the three areas: 

 

• ICT/IS: From detailed examination of United States Patent and Trademark Office 

(USPTO) patent class descriptions, we were able to determine the patent classes 

relevant for information security innovations, broadly defined. In particular, the 

USPTO defines patent classes that contain information security patents.5 We use this 

definition.   Thus, our data include patents outside of information security, but they are 

likely to encompass the full universe of relevant patents. If we only had used narrow 

Information Security patents, we would not have enough observations to conduct an 

econometric analysis.   See Appendix A1. 

• Fin-Tech and Med-Tech: USPTO documentation was not helpful here. We 

categorized Fin-Tech and Med-Tech (digital medicine) patents by utilizing the 

International Patent Classification (IPC) code classification system. Like ICT/IS, we 

use the IPC’s broad definition for these classes. Similar, to ICT/IS these data include 

patents outside digital medicine (Med-Tech) or Fin-Tech, but they are likely to 

encompass the full universe of relevant patents.  In order to identify Fin-Tech and 

                                                
5 See https://www.uspto.gov/web/patents/classification/uspc726/defs726.htm, accessed 1 December 2018.  
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digital medicine patents, we followed a multi-stage process. The first step utilizes the 

text in the IPC code definitions and considers any IPC codes that explicitly mention 

any relevant key words, such as “finance” or “payment” in the case of Fin-Tech or 

“health” or “medicine” in the case of digital medicine. The textual definitions of the 

IPC classes containing any of these key words were then examined to identify the most 

relevant. Finally, after narrowing down the set of classes, we examined the IPC classes 

of patents taken out by top firms in each category to ensure no important categories 

were missing. These patent classes appear in Appendix A2. 

3.1 Descriptive Data 

We first examine the data descriptively.  We use data from the USPTO, which are patents 

issued in the US.  Overall, there have been 1,145,089 patents issued up through application 

year 2014 in the areas of ICT/IS, Fin-Tech and Med-Tech. During the same period, there were 

12,194 Israeli patents (or slightly more than 1% of all such patents.) These patents are Israeli 

in the sense that all innovators on the patent had an address in Israel at the time the patent was 

issued.  Table 1 below shows that Israeli patents as a proportion of patents in these areas 

increased steadily over time.  

 

Additionally, the Table shows that 71% of the Israeli patents in these fields were applied for in 

the 2005-2014 period.  In the rest of the world, 57% of the patents in these categories were 

applied for in the 2005-2014 period.  This illustrates the increased prominence of Israel in these 

fields. Despite this increase, the “narrative” is that the quality of the Israeli information 

software patents make them stand out. 
 

Application Year All patents Israeli Patents Percent Israeli 

Before 2000 269,953 1,398 0.52 

2000-2004 217,969 2,120 0.97 

2005-2009 294,218 3,551 1.21 

2010-2014 362,949 5,125 1.41 

All (through 2014)  1,145,089 12,194 1.06 

Table 1. ICT/IS + Fin-Tech + Med-Tech patents through application year 2014 

 

Some patents fall into just one of the three categories, while other patents fall into multiple 

categories.  In the case of Israel, 31% of the patents are Med-Tech only, 22% of the patents are 
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ICT/IS only, and 9% of the patents are Fin-Tech only.  Thus 61% of the Israeli patents in these 

fields do not overlap into another field. (See Table 2.)  

 

Overall, 68% of the patents in the “rest of the world” do not overlap into another field.  See 

Table3. Thus, Israeli “software” patents are more interdisciplinary in some sense.  Fully 18% 

of the Israeli patents fall into both Fin-Tech and Med-Tech fields, while 13% of all patents fall 

into both Fin-Tech and Med-Tech fields.   

 

 
 
 
Application Year % Med-Tech Only % ICT/IS only % Fin-Tech Only Percent Mixed 

Before 2000 0.41 0.29 0.02 0.28 

2000-2004 0.30 0.29 0.03 0.38 

2005-2009 0.28 0.26 0.07 0.39 

2010-2014 0.31 0.11 0.16 0.42 

All (through 2014) 0.31 0.21 0.09 0.39 

Table 2. Israel: Distribution of ICT/IS + Fin-Tech + Med-Tech patents (through 2014) 

 
 
Application Year % Med-Tech Only % ICT/IS only % Fin-Tech Only Percent Mixed 

Before 2000 0.30 0.46 0.04 0.20 

2000-2004 0.21 0.36 0.10 0.33 

2005-2009 0.22 0.30 0.13 0.35 

2010-2014 0.30 0.12 0.20 0.38 

All (through 2014) 0.26 0.30 0.13 0.31 

Table 3. World: Distribution of ICT/IS + Fin-Tech + Med-Tech patents (through 2014) 

 
We then collected data from the USPTO on all of these patents. Our data include the number 

of forward citations, backward citations (citations made to previously granted patents), grant 

year, application year, location of inventor (hence we know whether the inventor(s) are Israeli), 

number of inventors, and the assignee (owner) of the patent.  
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For each patent in each of the three categories, we calculate its proximity to other patents in 

the network, where the links are through inventors. We then calculate the closeness centrality 

of these patents within the network, in a manner defined below.  

 
Typically, over time networks are characterized by one giant component and many other 

smaller components.   Closeness centrality is only defined for connected nodes. Because we 

construct the patent network (for each patent) at the time the patent was applied for, we need 

to have a large enough existing giant component of connected patents already in existence.  

Hence, we begin the empirical analysis with patents that were applied for in 2006 or later. (We 

have patent data through 2014.) 

   

 

Since we have two networks (a patent network and an inventor network,) we can construct a 

giant component in two ways: 

• Using the patent network (where two patents are linked if they have an inventor in 

common) 

• Using the inventor network, where two inventors are linked in they work together on a 

patent.  Since the analysis is done at the level of the patent, we then take the average 

closeness value of the inventors (from the inventor network) for each patent, using the 

patents that are in the giant component connected via the inventor network. 

• Most, but not all patents are in both giant components. Hence, we will have two sets of 

descriptive statistics and two sets of regressions.  Both sets of analysis are at the level 

of the patent. The results are qualitatively the same, regardless of how we do this. 6 

 

 

For these patents, all inventors had an address in Israel. We exclude patents with both Israeli 

inventors and inventors from other countries (primarily the US) from the main analysis, since 

we want to focus on the local network.  

 

The variables used in the analysis are 

                                                
6 It is also possible to use the average closeness of the inventors from the inventor giant component – and do the 
analysis using the patent giant component. Additionally, we could take the maximum value of closeness of the 
relevant inventors on a patent, rather than the average. The results are qualitatively unhanged when using these 
alternative specifications. 
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• Number of Forward Citations “no self-citations” (that is forward citations excluding 
forward citations from the same inventor and same assignee  

• Application Year7 
• Number of Backward Citations received by the Patent 
• Number of Inventors on the Patent 
• Closeness Centrality 

 

Descriptive Statistics appear below.   

 

3.2 Summary Measures on Patents Using Inventor Giant Component 

 

In the case of ICT/IS, descriptive statistics appear in Table 4a; Fin-Tech descriptive statistics 

appear in Table 4b, and Med-Tech descriptive statistics appear in Table 4c.  

 

 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 874 1.45 5.76 0 64 

Application Year 874 2009.78 1.83 2006 2014 

# of inventors 874 2.78 1.49 1 11 

Backward Citations 874 33.82 80.17 0 548 

Closeness Centrality 874 0.00012 0.000074 0.000044 0.00064 

Table 4a: Descriptive Statistics – Giant Component – IS/ICT - Inventor Giant Component 

 

 
 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 766 0.093 0.89 0  17 

Application Year 766 2012.23 1.66 2006 2014 

# of inventors 766 3.07 1.59   1  11 

Backward Citations 766 15.02 35.06 0  366 

Closeness 766 0.00025 0.00058 0.000041 .0044 

Table 4b: Descriptive Statistics – Giant Component Fin-Tech - Inventor Giant Component 

 
 

 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 1,105  0.36 6.69  0  218  

                                                
7 We include dummy variables for application year in the regressions, but do not report the estimated 
coefficients. 
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Application Year 1,105 2011.98 1.95 2006 2014 

# of inventors 1,105  2.70 1.43  1  11  

Backward Citations 1,105 33.70 85.74 0  823  

Closeness 1,105 0.00014  0.00026 0.0000010  0.0016 

Table 4c: Descriptive Statistics – Giant Component Med-Tech - Inventor Giant Component 

 

3.3 Summary Measures on Patents Using Patent Giant Component 

 

In the case of ICT/IS, descriptive statistics appear in Table 5a; Fin-Tech descriptive statistics 

appear in Table 5b, and Med-Tech descriptive statistics appear in Table 5c.  

 

 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 857 1.45 5.81 0 64 

Application Year 857 2009.82 1.85 2007 2014 

# of inventors 857 2.77 1.49 1 11 

Backward Citations 857 34.28 80.89 0 548 

Closeness Centrality 857 .00010 .000051 .000034 .00024 

Table 5a Descriptive Statistics – Giant Component – IS/ICT - Using Patent Giant Component 

 

 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 763 0.081 0.76 0 17 

Application Year 763 2012.24 1.61 2008 2014 

# of inventors 763 2.91 1.53 1 11 

Backward Citations 763 16.30 37.66 0 366 

Closeness 763 .00026 .00048 .000024 .0026 

Table 5b: Descriptive Statistics – Giant Component Fin-Tech - Using Patent Giant Component 

 

 
 # of Obs. Mean Std. Dev Min Max 

Forward Citations – “No self cites” 1,153 0.41 6.56 0 218 

Application Year 1,153 2011.67 2.08 2006 2014 

# of inventors 1,153 2.73 1.48 1 11 

Backward Citations 1,153 36.07 92.97 0 823 
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Closeness 1,153 .000193 .00033 .000020 .0022 

Table 5c: Descriptive Statistics – Giant Component Med-Tech - Using Patent Giant 

Component 

 

4.  Estimation and Results  
We now estimate equation (4) which we repeat below 

(4) 𝑆𝑆𝑖𝑖 = 𝑋𝑋𝑖𝑖𝜔𝜔 + 𝛾𝛾 𝐶𝐶𝑖𝑖
𝑁𝑁−1

+ 𝜖𝜖𝑖𝑖 

Recall that Si, the number of forward citations received by a given patent, is our measure of 

quality. We exclude self-citations and citations made by patents from the same assignee and 

the same inventor. We further assume that the number of forward citations received by patent 

i depends on a vector of observable factors, denoted Xi. Ci is the closeness centrality of patent 

i in the Israeli network and γ is the parameter associated closeness.  We use the existing network 

for each patent (at the time the application was submitted.)   

 

Citations are highly skewed; additionally, some of the independent variables (like the number 

of inventors) are also highly skewed. Hence, it makes sense to use logarithms and employ the 

log/log specification. The term “ln” before the variable means natural log. The dependent 

variable used in the regressions in Tables 6 and 7 is the natural log of forward citations 

excluding citations from the same inventor and assignee.  Since some patents receive no 

forward citations, following a common practice in the patents literature, we will add one to the 

number of forward citations and take the natural log of this transformed variable. 

 

Results Using Patent Component Giant Component: 

 

Table 6 displays our results when we used the giant component formed by the Patent Network.  

Column 1 shows the results for the ICT/IS patents. The estimated coefficient on closeness (γ) 

is positive and significant at the 1% level, suggesting that there are both direct and indirect 

knowledge spillovers from ex-ante “connections” in the giant component. Recall that the 

coefficient on closeness (γ) captures both direct and indirect spillovers.8  

 

                                                
8 We include dummy variables for application year in all regressions, but do not report the coefficient estimates 
for these variables. “ln” before the variable means natural log. 
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In columns 2 and 3, we repeat the analysis in column 1 for Fin-Tech and Med-Tech. As Table 

6 shows, we find no evidence of knowledge spillovers in Fin-Tech and Med-Tech.   

 

The results in columns 1-3 are for the broadly defined categories.  Hence, they include some 

overlapping patents.  When we repeat the analysis for the narrowly defined networks, we find 

that in the case of ICT/IS, the estimated coefficient on closeness centrality is 0.32 for the narrow 

ICT/IS network vs. 0.22 for the case of the broad ICT/IS network. This suggests stronger 

spillovers in the narrowly defined networks for ICT/IS patents.  In the case of narrowly defined 

Fin-Tech and Med-Tech sectors, there are no knowledge spillovers, which is what we found 

for the broadly defined networks. 

 

 
 IS/ICT broadly defined Fin-Tech broadly 

defined 
Med-Tech broadly 

defined 
Dependent Variable ln(Forward_Citations) ln(Forward_Citations) ln(Forward_Citations) 

 coefficient (std. error) coefficient (std. error) coefficient (std. error) 
Independent Variables    

    
ln(# of Inventors) -0.026 (0.040) 0.026 (0.014)* 0.030 (0.018)* 

ln(Backward Cites) 0.11 (0.016)*** -0.0028 (0.0060) 0.0058 (0.0092) 
ln(Closeness) 0.22 (0.089)*** 0.0075 (0.0091) 0.040 (0.033) 
Adjusted R2  0.27 0.21 0.23 

Observations  857 763 1,153 
Table 6: Regression Analysis using Patent Giant Component9 

 

Results Using Patent Inventor Component: 

 

We then repeat the analysis for the giant component formed by the Inventor Network.  Table 7 

displays our results.  Column 1 shows the results for the ICT/IS patents. Again, as in Table 6, 

the estimated coefficient on closeness (γ) is positive and significant (here at the 0.08 level,) 

suggesting that there are both direct and indirect knowledge spillovers from ex-ante 

“connections” in the giant component. In columns 2 and 3, we repeat the analysis in column 1 

for Fin-Tech and Med-Tech. As Table 7 shows, we find no evidence of knowledge spillovers 

in Fin-Tech and Med-Tech.   

 

                                                
9 The dependent variable is the natural log of one plus the number of forward citations. While counting forward 
citations, we exclude citations made by the patent's inventors other patents, and citations made by other patents 
that are listed under the patent's assignee. Standard errors appear in the parentheses.  (*=significant at 10% level, 
**=significant at 5% level, ***=significant at 1% level.) 
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When we repeat the analysis for the narrowly defined networks, we find that in the case of 

ICT/IS, the estimated coefficient on closeness centrality is 0.26 for the narrow ICT/IS network 

vs. 0.19 for the case of the broad ICT/IS network.  This suggests stronger spillovers in the 

narrowly defined networks.  In the case of narrowly defined Fin-Tech and Med-Tech sectors, 

there are no knowledge spillovers, which is what we found for the broadly defined networks. 

 
 

 IS/ICT broadly defined Fin-Tech broadly 
defined 

Med-Tech broadly 
defined 

Dependent Variable ln(Forward_Citations) ln(Forward_Citations) ln(Forward_Citations) 
 coefficient (std. error) coefficient (std. error) coefficient (std. error) 

Independent Variables    
    

ln(# of Inventors) -0.023 (0.040) 0.033 (0.014)** 0.030*(0.017) 
ln(Backward Cites) 0.11 (0.016)*** -0.0038 (0.0061) 0.015 (0.0092)* 

ln(Closeness) 0.19 (0.11)* 0.027 (0.045) 0.026 (0.016) 
Adjusted R2  0.26 0.23 0.25 

Observations  874 766 1,105 
Table 7: Regression Analysis using Inventor Giant Component 

 

 

4. Brief Conclusions 

 
This study seeks to advance the literature by using the pattern of inventor interaction traced out 

in patent documents to create measures of inventor networks; we go on to empirically measure 

the association between the location of a patent within this network and the quality of invention 

as measured by forward citations. We find that the quality of Israeli inventions is systematically 

related to the location of these patents within the Israeli invention network in the case of ICT/IS, 

but not for Fin-Tech and Med-Tech.  This may in part may be due to the networks formed in 

the 8200 intelligence unit.  
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Appendix A: Patent Classes 
 
A1: Relevant Patent Classes for ICT/Information security: 
 
326,  Electronic Digital Logic Circuitry, subclass 8 for digital logic circuits acting to disable or 

prevent access to stored data or designated integrated circuit structure. 
340,  Communications: Electrical, subclasses 5.2 through 5.74, for authorization control without 

significant data process features claimed, particularly subclasses 5.22-5.25 for programmable 
or code learning authorization control; and subclasses 5.8-5.86 for intelligence comparison for 
authentication. 

365,  Static Information Storage and Retrieval, subclass 185.04 for floating gate memory device 
having ability for securing data signal from being erased from memory cells. 

380,  Cryptography, subclasses 200 through 242for video with data encryption; subclasses 243-246 
for facsimile encryption; subclasses 247-250 for cellular telephone cryptographic 
authentication; subclass 251 for electronic game using cryptography; subclasses 255-276 for 
communication using cryptography; subclasses 277-47 for key management; and subclasses 
287-53 for electrical signal modification with digital signal handling. 

455,  Telecommunications, subclass 410 for security or fraud prevention in a radiotelephone system. 
704,  Data Processing: Speech Signal Processing, Linguistics, Language Translation, and Audio 

Compression/Decompression, subclass 273 for an application of speech processing in a 
security system. 

705,  Data Processing: Financial, Business Practice, Management, or Cost/Price Determination, 
subclass 18 for security in an electronic cash register or point of sale terminal having password 
entry mode, and subclass 44 for authorization or authentication in a credit transaction or loan 
processing system. 

708,  
 
709, 

Electrical Computers: Arithmetic Processing And Calculating, subclass 135 for electrical 
digital calculating computer with specialized input for security. 
Electrical Computers and Digital Processing Systems: Multicomputer Data Transferring,  
subclass 225 for controlling which of plural computers may transfer data via a communications 
medium. 

710,  Electrical Computers and Digital Data Processing Systems: Input/Output, 
subclasses 36 through 51for regulating access of peripherals to computers or vice-versa; 
subclasses 107-125 for regulating access of processors or memories to a bus; and subclasses 
200-240 for general purpose access regulating and arbitration. 

711,  Electrical Computers and Digital Processing Systems: Memory, subclass 150 for regulating 
access to shared memories, subclasses 163-164 for preventing unauthorized memory access 
requests. 

713,  Electrical Computers and Digital Processing Systems: Support, subclasses 150 through 181for 
multiple computer communication using cryptography; subclasses 182-186 for system access 
control based on user identification by cryptography; subclass 187 for computer program 
modification detection by cryptography; subclass 188 for computer virus detection by 
cryptography; and subclasses 189-194 for data processing protection using cryptography. 

714,  Error Detection/Correction and Fault Detection/Recovery, subclasses 1 through 57for 
recovering from, locating, or detecting a system fault caused by malicious or unauthorized 
access (e.g., by virus, etc.). 

726 Protection of data processing systems, apparatus, and methods as well as protection of 
information and services. 
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A2: Relevant Patent Classes for Fin-Tech and Med-Tech: 
    
 

 Fin-Tech Med-Tech 
IPO Patent Classes G06Q 20 

G06Q 40 
G06Q 30 
G06F 3 
G06F 12 
G06F 17 
G06F 21 
H04L 

A61B 
G01T 
G06F 3 
G06F 11 
G06F 17 
G06F 19 
G16H 
G0Q 50 
G06T 
H04B 
H04L 
H04M 
H04Q 
H04W 

 


