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Abstract

We define a sentiment indicator that exploits two contrasting views of

return predictability, and study its properties. The indicator, which is based

on option prices, valuation ratios and interest rates, was unusually high dur-

ing the late 1990s, reflecting dividend growth expectations that in our view

were unreasonably optimistic. We interpret it as helping to reveal irrational

beliefs about fundamentals. We show that our measure is a leading indi-

cator of detrended volume, and of various other measures associated with

financial fragility. We also make two methodological contributions. First,

we derive a new valuation-ratio decomposition that is related to the Camp-

bell and Shiller (1988) loglinearization, but which resembles the traditional

Gordon growth model more closely and has certain other advantages for

our purposes. Second, we introduce a volatility index that provides a lower

bound on the market’s expected log return.
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This paper introduces a market sentiment indicator that exploits two contrast-

ing views of market predictability.

A vast literature has studied the extent to which signals based on valuation

ratios are able to forecast market returns and/or measures of dividend growth;

early papers include Keim and Stambaugh (1986), Campbell and Shiller (1988),

and Fama and French (1988). More recently, Martin (2017) argued that indexes of

implied volatility based on option prices can serve as forecasts of expected excess

returns; and noted that the two classes of predictor variables made opposing

forecasts in the late 1990s, with valuation ratios pointing to low long-run returns

and option prices pointing to high short-run returns.

Our paper trades off the two views of the world against one other. Consider

the classic Gordon growth model, which relates the market’s dividend yield to

its expected return minus expected dividend growth: D/P = E(R − G). Very

loosely speaking, the idea behind the paper is to use option prices to measure ER,

and then to calculate the expected growth in fundamentals implicit in market

valuations—our sentiment measure—as the difference between the option price

index and dividend yield, EG = ER− E(R−G).

Putting this thought into practice is not as easy as it might seem, however. For

example, the Gordon growth model relies on assumptions that expected returns

and expected dividend growth are constant over time. The loglinearized identity

of Campbell and Shiller (1988) showed how to generalize the Gordon growth

model to the empirically relevant case in which these quantities are time-varying.

Their identity relates the price-dividend ratio of an asset to its expected future

log dividend growth and expected log returns. It is often characterized as saying

that high valuation ratios signal high expected dividend growth or low expected

returns (or both). But expected returns are not the same as expected log returns.

We show that high valuations—and low expected log returns—may be consistent

with high expected returns if log returns are highly volatile, right-skewed, or fat-

tailed. Plausibly, all of these conditions were satisfied in the late 1990s. As they

are all potential explanations for the rise in valuation ratios at that time, we will

need to be careful about the distinction between log returns and simple returns.

Furthermore, we show that while the Campbell–Shiller identity is highly ac-

curate on average, the linearization is most problematic at times when the price-
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dividend ratio is far above its long-run mean. At such times—the late 1990s being

a leading example—a researcher who uses the Campbell–Shiller loglinearization

will conclude that long-run expected returns are even lower, and/or long-run ex-

pected dividend growth is even higher, than is actually the case. We therefore

propose a new loglinearization that does not have this feature, but which also

relates a measure of dividend yield to expected log returns and dividend growth.

The second ingredient of our paper is a lower bound on expected log returns.

(This plays the role of ER in the loose description above.) The lower bound

relies on an assumption closely related to the negative correlation condition of

Martin (2017); it can be computed directly from index option prices so is, broadly

speaking, a measure of implied volatility.

Volatility and valuation ratios have, of course, long been linked to bubbles. A

novel feature of our approach is that we use some theory to motivate our definitions

of volatility and of valuation ratios, and to make the link quantitative. Our

approach also satisfies the requirement noted by Brunnermeier and Oehmke (2013)

that practically useful risk measures should be “measurable in a timely fashion.”

There are various choices to be made regarding the details of the construction of

the indicator: we have tried to make these choices in a conservative way to avoid

“crying bubble” prematurely, in the hope that the indicator might be useful to

cautious policymakers in practice.

The paper is organized as follows. Section 1 discusses the link between val-

uation ratios, returns, and dividend growth; it analyzes the properties of the

Campbell–Shiller loglinearization, introduces our alternative loglinearization, and

studies the predictive relationship between the dividend yield measures and fu-

ture (log) returns and (log) dividend growth. Section 2 derives the lower bound

on expected returns. Section 3 combines the preceding sections to introduce the

sentiment indicator. Section 4 explores its relationship with volume and with

various other indicators of financial stress. Section 5 concludes.

1 Fundamentals

We seek to exploit the information in valuation ratios, following Campbell and

Shiller (1988). We write Pt+1, Dt+1 and Rt+1 for the level, dividend, and gross
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return of the market, respectively: thus

Rt+1 =
Dt+1 + Pt+1

Pt
. (1)

It follows from (1) that

rt+1 − gt+1 = pdt+1 − pdt + log
(
1 + edpt+1

)
, (2)

where we write dpt+1 = dt+1− pt+1 = logDt+1− logPt+1, pdt+1 = pt+1− dt+1, and

gt+1 = dt+1 − dt. Campbell and Shiller (1988) linearized the final term in (2) to

derive a decomposition of the (log) price-dividend ratio,1

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) , (3)

where the constants k and ρ are determined by

ρ =
µ

1 + µ
and

k

1− ρ
= (1 + µ) log(1 + µ)− µ log µ , where µ = epd.

The approximation (3) is often loosely summarized by saying that high val-

uation ratios signal high expected dividend growth or low expected returns (or

both). But expected log returns are not the same as expected returns:2 we have

Et rt+1+i = logEtRt+1+i −
1

2
vart rt+1+i −

∞∑
n=3

κ
(n)
t (rt+1+i)

n!
,

where κ
(n)
t (rt+1+i) is the nth conditional cumulant of the log return. (If returns

are conditionally lognormal, then the higher cumulants κ
(n)
t (rt+1+i) are zero for

n ≥ 3.) Thus high valuations—and low expected log returns—may be consistent

1We follow the convention in the literature in writing approximations such as (3) with equals
signs. A number of our results below are in fact exact. We emphasize these as they occur.
We also assume throughout the paper that there are no rational bubbles, as is standard in the
literature. Thus, for example, in deriving (3) we are assuming that limT→∞ ρT pdT = 0.

2And expected log dividend growth is not the same as expected dividend growth. This
distinction is less important, however, as log dividend growth is less volatile than log returns.
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with high expected arithmetic returns if log returns are highly volatile, right-

skewed, or fat-tailed. Plausibly, all of these conditions were satisfied in the late

1990s. As they are all potential explanations for the rise in valuation ratios at

that time,3 we will need to be careful about the distinction between log returns

and simple returns.

Furthermore, the Campbell–Shiller first-order approximation is least accurate

when the valuation ratio is far from its mean, as we now show.

Result 1 (Campbell–Shiller revisited). The log price-dividend ratio pdt obeys the

following exact decomposition:

pdt =
k

1− ρ
+
∞∑
i=0

ρi (gt+1+i − rt+1+i)+
1

2

∞∑
i=0

ρiψt+1+i(1−ψt+1+i)
(
pdt+1+i − pd

)2
,

(4)

where the constants k and ρ are defined as above, and the quantities ψt+1+i lie

between ρ and 1/(1 + edpt+1+i).

Equation (4) becomes a second-order Taylor approximation if ψt is assumed

equal to ρ for all t,

pdt =
k

1− ρ
+
∞∑
i=0

ρi (gt+1+i − rt+1+i) +
ρ(1− ρ)

2

∞∑
i=0

ρi
(
pdt+1+i − pd

)2
, (5)

and reduces to the Campbell–Shiller loglinearization (3) if the final term on the

right-hand side of (4) is neglected entirely.

Proof. Taylor’s theorem, with the Lagrange form of the remainder, states that

(for any sufficiently well-behaved function f , and for x ∈ R and a ∈ R)

f(x) = f(a) + (x− a)f ′(a) +
1

2
(x− a)2 f ′′(ξ) , for some ξ between a and x. (6)

We apply this result with f(x) = log (1 + ex), x = dpt+1, a = dp = E dpt equal to

the mean log dividend yield. Equation (6) becomes

log
(
1 + edpt+1

)
= k + (1− ρ)dpt+1 +

1

2
ψt+1(1− ψt+1)

(
dpt+1 − dp

)2
,

3See, for example, Pástor and Veronesi (2003, 2006).
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where ψt+1 = 1/(1 + eξ) must lie between 1/(1 + edp) = ρ and 1/(1 + edpt+1).

Substituting into expression (2), we have the exact relationship

rt+1 − gt+1 = k − pdt + ρpdt+1 +
1

2
ψt+1(1− ψt+1)

(
pdt+1 − pd

)2
which can be solved forward to give the result (4). The approximation (5) follows.

Result 1 expresses the price-dividend ratio in terms of future log dividend

growth and future log returns—as in the Campbell–Shiller approximation—plus

a convexity correction.

This convexity correction is small on average. Take the unconditional expec-

tation of second-order approximation (5):

E pdt =
k

1− ρ
+

E (gt − rt)
1− ρ

+
ρ

2
var pdt ,

assuming that pdt, rt, and gt are stationary so that their unconditional means

and variances are well defined. Using CRSP data from 1947 to 2017, the sample

average of pdt is 3.483 (so that ρ is 0.970) and the sample standard deviation

is 0.436. Thus the unconditional average convexity correction ρ
2

var pdt is about

0.0924, that is, about 2.65% of the size of E pdt.
The convexity correction can be large conditionally, however. We have

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) +
ρ(1− ρ)

2

∞∑
i=0

ρi Et
(
pdt+1+i − pd

)2
,

and the final term may be quantitatively important if the valuation ratio is far

from its mean and persistent, so that it is expected to remain far from its mean

for a significant length of time.

For the sake of argument, suppose the log price-dividend ratio follows an

AR(1), pdt+1 − pd = φ(pdt − pd) + εt+1, where vart εt+1 = σ2 so that var pdt =

σ2/(1−φ2); and set σ = 0.168 and φ = 0.923 to match the sample standard devi-

ation and autocorrelation in CRSP data from 1947–2017. The above expression
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becomes

pdt =
k

1− ρ
+
∞∑
i=0

ρi Et (gt+1+i − rt+1+i) +
ρ(1− ρ)φ2

2(1− ρφ2)

[(
pdt − pd

)2
+

σ2

(1− ρ)φ2

]
︸ ︷︷ ︸

convexity correction

.

At its peak during the boom of the late 1990s, pdt was 2.2 standard deviations

above its mean. The convexity term then equals 0.145: this is the amount by

which a researcher using the Campbell–Shiller approximation would overstate∑∞
i=0 ρ

i Et (gt+1+i − rt+1+i). With ρ = 0.970, this is equivalent to overstating

Et gt+1+i− rt+1+i by 14.5 percentage points for one year, 3.1 percentage points for

five years, or 1.0 percentage points for 20 years.4

The Campbell–Shiller approximation does not apply if dpt follows a random

walk (i.e., Et dpt+1 = dpt). But in that case we can linearize (2) around the

conditional mean Et dpt+1 to find5

Et (rt+1 − gt+1) = log
(
1 + edpt

)
= log

(
1 +

Dt

Pt

)
. (7)

Motivated by this fact, we define yt = log (1 +Dt/Pt). An appealing property

of this definition—and one that dpt does not possess—is that yt = log(1+Dt/Pt) ≈
Dt/Pt. We can then rewrite the definition of the log return (2) as the (exact)

relationship

rt+1 − gt+1 = yt+1 + log (eyt − 1)− log (eyt+1 − 1) . (8)

4The numbers are more dramatic if we use the long sample from 1871–2015 available on
Robert Shiller’s website. We find ρ = 0.960, σ = 0.136, and φ = 0.942 in the long sample, so
that the convexity correction is 0.0596 when pdt is at its mean, and 0.253 at the peak (which
was 3.2 standard deviations above the mean). This last number corresponds to overstating
Et gt+1+i − rt+1+i by 25.3 percentage points for one year, 5.5 percentage points for five years,
1.8 percentage points for 20 years, or 1.0 percentage points for ever.

5Campbell (2008, 2018) derives the same result via a different route, under further assump-
tions (that the driving shocks are homoskedastic and conditionally Normal) that we do not
require.
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In these terms, equation (7) states that

yt = Et (rt+1 − gt+1) , (9)

which is valid, as a first-order approximation, if dpt (or yt) follows a random walk.

Alternatively, if yt is stationary (as is almost always assumed in the literature)

we have the following result. We write unconditional means as y = E yt, r = E rt
and g = E gt.

Result 2 (A variant of the Gordon growth model). We have the loglinearization

yt = (1− ρ)
∞∑
i=0

ρi (rt+1+i − gt+1+i) , (10)

where6 ρ = e−y. As there is no constant in (10), and as (1− ρ)
∑∞

i=0 ρ
i = 1, this

is a variant of the Gordon growth model: y is a weighted average of future r − g.

To second order, we have the approximation

yt = (1− ρ)
∞∑
i=0

ρi (rt+1+i − gt+1+i)−
1

2

ρ

1− ρ

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
.

(11)

We also have the exact relationship

y = r − g, (12)

which does not rely on any approximation.

Proof. Using Taylor’s theorem to second order in equation (8), we have the second-

order approximation

rt+1 − gt+1 =
1

1− ρ
yt −

ρ

1− ρ
yt+1 +

1

2

ρ

(1− ρ)2
[
(yt+1 − y)2 − (yt − y)2

]
6This differs slightly from the definition of ρ in Result 1, though they are extremely close in

practice.

8



which can be rewritten

yt = (1− ρ)(rt+1 − gt+1) + ρyt+1 −
1

2

ρ

1− ρ
[
(yt+1 − y)2 − (yt − y)2

]
,

and then solved forward, giving (10) and (11). Equation (12) follows by taking

expectations of the identity (8) and noting that E log (eyt − 1) = E log (eyt+1 − 1)

by stationarity of yt.

We note in passing that equation (12) implies that r > g in any model in

which yt is stationary. Piketty (2015) writes that “the inequality r > g holds true

in the steady-state equilibrium of the most common economic models, including

representative-agent models where each individual owns an equal share of the

capital stock.” Our result shows that the inequality applies much more generally

and does not rely on equilibrium logic.

Given our focus on bubbles, we are particularly interested in the accuracy

of these loglinearizations at times when valuation ratios are unusually high or,

equivalently, when dpt and yt are unusually low. This motivates the following

definition and result.

Definition 1. We say that yt is far from its mean (at time t) if

Et
[
(yt+1+i − y)2

]
≤ (yt − y)2 for all i ≥ 0. (13)

Example.—If yt follows an AR(1), then a direct calculation shows that yt is far

from its mean if and only if it is at least one standard deviation from its mean.

Result 3 (Signing the approximation errors). We can sign the approximation

error in the Campbell–Shiller loglinearization (3):

dpt < −
k

1− ρ
+
∞∑
i=0

ρi Et (rt+1+i − gt+1+i) . (14)

The first-order approximation (10) is exact on average. That is,

E yt = (1− ρ)
∞∑
i=0

ρi E (rt+1+i − gt+1+i) (15)
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holds exactly, without any approximation. But if yt is far from its mean then (up

to a second-order approximation)

yt ≥ (1− ρ)
∞∑
i=0

ρi Et (rt+1+i − gt+1+i) . (16)

Proof. The inequality (14) follows immediately from (4) and equation (15) follows

directly from equation (12). To establish the inequality (16), rewrite

∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt+i − y)2

]
= − (yt − y)2 + (1− ρ)

∞∑
i=0

ρi (yt+1+i − y)2

= (1− ρ)
∞∑
i=0

ρi
[
(yt+1+i − y)2 − (yt − y)2

]
.

(17)

The inequality then follows from (11), (13), and (17).

Dividend yields, whether measured by dpt or by yt, were unusually low around

the turn of the millennium, indicating some combination of low future returns

and high future dividend growth. Result 3 shows that an econometrician who

uses the Campbell–Shiller approximation (3) at such a time—that is, who treats

the inequality (14) as an equality—will overstate how low future returns, or how

high future dividend growth, must be: and therefore may be too quick to con-

clude that the market is “bubbly.” In contrast, an econometrician who uses the

approximation (10) will understate how low future returns, or how high future

dividend growth, must be. Thus yt is a conservative diagnostic for bubbles.

To place more structure on the relationship between valuation ratios and r

and g, we will make an assumption about the evolution of dpt and yt over time.

The Campbell–Shiller approximation over one period states that rt+1 − gt+1 =

k+dpt−ρ dpt+1. If dpt follows an AR(1) with autocorrelation φ then Et dpt+1−dp =

φ
(
dpt − dp

)
, so

Et (rt+1 − gt+1) = c+ (1− ρφ)dpt, (18)

where we have absorbed constant terms into c.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.067 [0.049] 3.415 [1.317] 7.73%

−0.018 [0.050] 3.713 [1.215] 10.51%

−0.049 [0.028] −0.298 [0.812] 0.32%

0.417 [0.146] 0.107 [0.042] 7.58%

0.500 [0.138] 0.114 [0.041] 9.92%

−0.083 [0.085] −0.007 [0.024] 0.19%

Table 1: Full-sample regressions for S&P 500, annual data, cash reinvestment,
1947–2017.

Conversely, the first-order approximation underlying Result 2 states that

rt+1 − gt+1 =
1

1− ρ
yt −

ρ

1− ρ
yt+1. (19)

If yt follows an AR(1) with autocorrelation φy then this reduces to

Et (rt+1 − gt+1) = c+
1− ρφy
1− ρ

yt, (20)

where again we absorb constants into the intercept c. In view of (12), this can

also be written without an intercept as

Et (rt+1 − gt+1)− (r − g) =
1− ρφy
1− ρ

(yt − y) ,

so that the deviation of yt from its long-run mean is proportional to the deviation

of conditionally expected rt+1− gt+1 from its long-run mean. A further advantage

of yt over dpt is that the expression (20) is also meaningful if yt follows a random

walk: in this case, the coefficient on yt equals one and the intercept is zero, by

equation (9).

Equations (18) and (20) motivate regressions of realized rt+1 − gt+1 onto dpt

and a constant, or onto yt and a constant. The results are shown in Table 1; we

also report the results of regressing rt+1 and −gt+1 separately onto yt and onto
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dpt. We use end-of-year observations of the price level and accumulated dividends

of the S&P 500 index from CRSP.7 The table reports regression results in the

form

LHSt+1 = a0 + a1 × RHSt + εt+1,

with Hansen–Hodrick standard errors. (Under the AR(1) assumption, we could

also use (18) or (20) as estimates of Et(rt+1 − gt+1). This approach turns out to

give very similar results, as we show in the appendix: see Table 11.)

The variables yt and dpt have similar predictive performance and, consistent

with the prior literature, we find, in the post-1947 sample, that valuation ratios

help to forecast returns but have limited forecasting power for dividend growth.

Table 2 reports results using cash reinvested dividends in the post-1926 period,

which is the longest sample CRSP has. Tables 3 and 4 report similar results using

semi-annual data. Tables 5 to 8 report results using the NYSE value-weighted

index price and dividend data and compare them with market reinvested S&P500

data. Table 9 uses the price and dividend data of Goyal and Welch (2008) (up-

dated to 2017 and taken from Amit Goyal’s webpage): this gives us a longer

sample, as it incorporates Robert Shiller’s data which goes back as far as 1871.

The predictability of r relative to g is to some extent a feature of the post-war pe-

riod. In the long sample, returns are substantially less predictable and dividends

substantially more predictable, perhaps because of the post-war tendency of cor-

porations to smooth dividends (Lintner, 1956). Encouragingly, though, we find

that the predictive relationship between yt (or dpt) and the difference rt+1 − gt+1

is fairly stable across sample periods and data sources.

7We calculate the monthly dividend by multiplying the difference between monthly cum-
dividend and ex-dividend returns by the lagged ex-dividend price: Dt = (Rcum,t − Rex,t)Pt−1.
As we aggregate the dividends paid out over the year, to address seasonality issues, we reinvest
dividends month-by-month until the end of the year, using the CRSP 30-day T-bill rate as our
risk-free rate. In the appendix, we report similar results with dividends reinvested at the cum-
dividend market return rather than at a risk-free rate; if anything, these results are somewhat
more favorable to our yt variable than to dpt.
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2 A lower bound on expected log returns

High valuation ratios are sometimes cited as direct evidence of a bubble. But

valuation ratios can be high for good reasons if interest rates or rationally expected

risk premia are low. In other words, if we use yt to measure Et (rt+1 − gt+1) as

suggested above, we may find that yt is low simply because Et rt+1 is very low,

which could reflect low interest rates rf,t+1, low (log) risk premia Et rt+1 − rf,t+1,

or both.

While interest rates are directly observable, risk premia are harder to measure.

We start from the following identity, which generalizes an identity introduced by

Martin (2017) in the case Xt+1 = Rt+1:

EtXt+1 =
1

Rf,t+1

E∗t (Rt+1Xt+1)− covt (Mt+1Rt+1, Xt+1) .

We have written E∗t for the time-t conditional risk-neutral expectation operator,

defined by the property that 1
Rf,t+1

E∗t Xt+1 = Et (Mt+1Xt+1) for any tradable

payoff Xt+1 received at time t+1. Assuming the absence of arbitrage, the identity

holds if the payoff Rt+1Xt+1 is tradable; it applies for any stochastic discount factor

Mt+1 and gross return Rt+1, though for our purposes Rt+1 will always be the gross

return on the market. We are interested in expected log returns, Xt+1 = logRt+1,

in which case the identity becomes

Et logRt+1 =
1

Rf,t+1

E∗t (Rt+1 logRt+1)− covt (Mt+1Rt+1, logRt+1) . (21)

To make further progress, we make two assumptions. As we will see below, we

will use option prices to bound the first term on the right-hand side of the identity

(21). Our first assumption addresses the minor8 technical issue that we observe

options on the ex-dividend value of the index, Pt+1, rather than on Pt+1 +Dt+1.

8In fact, it is so minor that the distinction between options on Pt+1 and options on Pt+1 +
Dt+1 is often neglected entirely in the literature. For example, Neuberger (2012) “avoid[s]
irrelevant complications with interest rates and dividends” by treating options on forward prices
as observable, as do Schneider and Trojani (2018), and (essentially equivalently) Carr and Wu
(2009) use options on stocks as proxies for options on stock futures. The analogous assumption
in our setting is that inequality (22) holds with equality.
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Assumption 1. If we define the dispersion measure Ψ(Xt+1) ≡ E∗t f(Xt+1) −
f(E∗t Xt+1), where f(x) = x log x is a convex function, then the dispersion of Rt+1

is at least as large as that of Pt+1/Pt:

Ψ (Rt+1) ≥ Ψ (Pt+1/Pt) . (22)

This condition is very mild. Expanding f(x) = x log x as a Taylor series to

second order around x = 1, f(x) ≈ (x2−1)/2. Thus, to second order, Assumption

1 is equivalent to var∗t Rt+1 ≥ var∗t (Pt+1/Pt), or equivalently var∗t (Pt+1 +Dt+1) ≥
var∗t Pt+1. A sufficient, though not necessary, condition for this to hold is that

the price Pt+1 and dividend Dt+1 are weakly positively correlated under the risk-

neutral measure.

Our second assumption is more substantive.

Assumption 2. The modified negative correlation condition holds:

covt (Mt+1Rt+1, logRt+1) ≤ 0 . (23)

Martin (2017) imposed the closely related negative correlation condition (NCC)

that covt (Mt+1Rt+1, Rt+1) ≤ 0. The two conditions are equivalent in the lognor-

mal case, as we show below, and more generally the two are plausible for similar

reasons: in any reasonable model, Mt+1 will be negatively correlated with the

return on the market, Rt+1, and we know from the bound of Hansen and Ja-

gannathan (1991), coupled with the empirical fact that high Sharpe ratios are

available, that Mt+1 is highly volatile. The following two examples are adapted

from Martin (2017).

Example 1.—Suppose that the SDF Mt+1 and return Rt+1 are condition-

ally jointly lognormal and write rf,t+1 = logRf,t+1, µt = logEtRt+1, and σ2
t =

vart logRt+1. Then the modified NCC is equivalent to the assumption that the

conditional Sharpe ratio of the asset, λt ≡ (µt− rf,t+1)/σt, exceeds its conditional

volatility, σt; and hence also equivalent to the original NCC, covt(Mt+1Rt+1, Rt+1) ≤
0.

Proof. By Stein’s lemma, covt (Mt+1Rt+1, logRt+1) = covt (logMt+1 + logRt+1, logRt+1).

By lognormality of Mt+1 and Rt+1, the fact that Et (Mt+1Rt+1) = 1 is equiv-
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alent to logEtMt+1 + logEtRt+1 = − covt (logMt+1, logRt+1). It follows from

these two facts that covt (Mt+1Rt+1, logRt+1) ≤ 0 if and only if vart logRt+1 ≤
logEtRt+1 − rf,t+1: that is, if and only if λt ≥ σt. This condition is equivalent to

covt(Mt+1Rt+1, Rt+1) ≤ 0 in the lognormal case, as shown by Martin (2017).

The Sharpe ratio of the market is typically thought of as being on the order

of 30–50%, while the volatility of the market is on the order of 16–20%. Thus the

modified NCC holds in the calibrated models of Campbell and Cochrane (1999),

Bansal and Yaron (2004), Bansal et al. (2014) and Campbell et al. (2016), among

many others.

Our second example does not require lognormality.

Example 2.—Suppose that there is an unconstrained investor who maximizes

expected utility over next-period wealth, who chooses to invest his or her wealth

fully in the stock market, and whose relative risk aversion (which need not be

constant) is at least one at all levels of wealth. Then the modified NCC holds for

the market return.

Proof. The given conditions imply that the SDF is proportional (with a constant

of proportionality that is known at time t) to u′(WtRt+1). We must therefore

show that covt(u
′(WtRt+1)Rt+1, logRt+1) ≤ 0. This holds for the very strong

reason—much stronger than is actually needed for the NCC or modified NCC to

hold—that u′(WtRt+1)Rt+1 is decreasing in Rt+1: its derivative is u′(WtRt+1) +

WtRt+1u
′′(WtRt+1) = −u′(WtRt+1) [γ(WtRt+1)− 1], which is negative because rel-

ative risk aversion γ(x) ≡ −xu′′(x)/u′(x) is at least one.

We can now state our lower bound on expected log returns.

Result 4. Suppose Assumptions 1 and 2 hold. Write callt(K) and putt(K) for

the time t prices of call and put options on Pt+1 with strike K, and Ft for the time

t forward price of the index for settlement at time t+ 1. Then we have

Et rt+1 − rf,t+1 ≥
1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
︸ ︷︷ ︸

LVIXt

. (24)
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Proof. As E∗t Rt+1 = Rf,t+1 and E∗t Pt+1 = Ft, the inequality (22) can be rear-

ranged as

1

Rf,t+1

E∗t Rt+1 logRt+1 − logRf,t+1 ≥
1

Rf,t+1

[
E∗t
(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft
Pt

log
Ft
Pt

]
.

(25)

The right-hand side of this inequality can be measured directly from option

prices using a result of Breeden and Litzenberger (1978), which can be rewritten

to give, for any sufficiently well behaved function g(·),

1

Rf,t+1

[E∗t g(Pt+1)− g(E∗t Pt+1)] =

∫ Ft

0

g′′(K) putt(K) dK+

∫ ∞
Ft

g′′(K) callt(K) dK.

Setting g(x) = x
Pt

log x
Pt

, we have g′′(x) = 1/(Ptx). Thus

1

Rf,t+1

[
E∗t
(
Pt+1

Pt
log

Pt+1

Pt

)
− Ft
Pt

log
Ft
Pt

]
=

1

Pt

{∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

}
.

(26)

The result follows on combining the identity (21), the inequalities (23) and

(25), and equation (26).

We refer to the right-hand side of equation (24) as LVIX because it is reminis-

cent of the definition of the VIX index which, in our notation, is

VIX2
t = 2Rf,t+1

{∫ Ft

0

putt(K)

K2
dK +

∫ ∞
Ft

callt(K)

K2
dK

}
,

and of the SVIX index introduced by Martin (2017),

SVIX2
t =

2

Rf,t+1P 2
t

{∫ Ft

0

putt(K) dK +

∫ ∞
Ft

callt(K) dK

}
.

We do not annualize our definition (24), so to avoid unnecessary clutter we have

also not annualized the definitions of VIX and SVIX above. We will typically

choose the period length from t to t + 1 to be six or 12 months. The forecasting

horizon dictates the maturity of the options, so for example we use options expiring

in six months to measure expectations of six-month log returns.
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Figure 1: The LVIX index.

VIX, SVIX, and LVIX place differing weights on option prices. VIX has a

weighting function 1/K2 on the prices of options with strike K; LVIX has weight-

ing function 1/K; and SVIX has a constant weighting function. In this sense

we can think of LVIX as lying half way between VIX and SVIX. (We could also

introduce a factor of two into the definition of LVIX to make the indices look even

more similar to one another, but have chosen not to.)

We calculate LVIX using end-of-month interest rates and S&P 500 index op-

tion prices from OptionMetrics ; full details of the calculation are provided in the

appendix. Figure 1 plots LVIXt over our sample period from January 1996 to

December 2017.

2.1 A benchmark case

It is natural from an empirical perspective, and as a guide to intuition, to wonder

whether the inequality (24) might (approximately) hold with equality. For this

to be the case, we would need both (22) and (23) to hold with (approximate)

equality. As the conditional volatility of dividends is substantially lower than

that of prices, it is reasonable to think that this is indeed the case for (22), and

as noted in footnote 8, much of the literature implicitly makes that assumption.

Meanwhile the modified NCC (23) would hold with equality if (but not only if)
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one thinks from the perspective of an investor with log utility who chooses to

hold the market, as is clear from the proof provided in Example 2 above. The

perspective of such an investor has been shown to provide a useful benchmark

for forecasting returns on the stock market (Martin, 2017), on individual stocks

(Martin and Wagner, 2018), and on currencies (Kremens and Martin, 2018).

Table 10 in the Appendix reports the results of running the regression

rt+1 − rf,t+1 = α + β × LVIXt + εt+1 (27)

at horizons of 3, 6, 9, and 12 months. Returns are computed by compounding

CRSP monthly gross return of S& P 500. We report Hansen–Hodrick standard

errors to allow for heteroskedasticity and autocorrelation that arises due to over-

lapping observations. If the inequality (24) holds with equality, we should find

α = 0 and β = 1. We do not reject this hypothesis at any horizon; and at the six-

and nine-month horizons we can reject the hypothesis that β = 0 at conventional

significance levels.

3 A sentiment indicator

We can now put the pieces together. We will measure expectations about funda-

mentals by subtracting Et (rt+1 − gt+1), as revealed by valuation ratios under our

AR(1) assumption, from Et rt+1, as revealed by interest rates and option prices:

Et gt+1 = rf,t+1 + Et (rt+1 − rf,t+1)− Et (rt+1 − gt+1)

≥ rf,t+1 + LVIXt − Et (rt+1 − gt+1) . (28)

The inequality follows (under our maintained Assumptions 1 and 2) because

Et rt+1 − rf,t+1 ≥ LVIXt, as shown in Result 4.

We refer to the lower bound as the sentiment indicator, Bt. Our central

definition uses yt to measure Et(rt+1 − gt+1) via the fitted value â0 + â1yt, as

in Table 1, giving

Bt = rf,t+1 +
1

Pt

[∫ Ft

0

putt(K)

K
dK +

∫ ∞
Ft

callt(K)

K
dK

]
− (â0 + â1yt) .
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Figure 2: Left: The sentiment indicator. Right: The three components of the
indicator.

We estimate the coefficients â0 and â1 on a rolling basis: for example, at time t

they are estimated using data from 1947 until time t. Thus Bt is observable at

time t.

If Et gt+1 itself follows an AR(1), as in the work of Bansal and Yaron (2004) and

many others, then Bt can also be interpreted as a (rescaled) lower bound on long-

run dividend expectations. For if we have Et+1 gt+2− g = φg (Et gt+1 − g) + εg,t+1

then long-run expected dividend growth at time t is9

(1− ρ)
∑
i≥0

ρi (Et gt+1+i − g) =
1− ρ

1− ρφg
(Et gt+1 − g) .

The left panel of Figure 2 plots Bt over our sample period.10 The figure

also plots a modified indicator, Bdp,t, that uses dpt rather than yt to measure

Et (rt+1 − gt+1) (as in (18)). This has the advantage of familiarity—dpt has been

widely used in the literature—but the disadvantage that it may err on the side of

signalling a bubble too soon, as shown in Result 3. Consistent with this prediction,

the two series line up fairly closely, butBdp,t is less conservative—in that it suggests

9We introduce the factor 1−ρ in the definition of long-run expected dividend growth so that
the weights (1 − ρ)ρi sum to 1 and long-run expected dividend growth can be interpreted as a
weighted average of all future periods’ expected growth.

10Figure 6, in the appendix, shows the corresponding results using the full sample period from
1947 to 2017 to estimate the relationship between yt (or dpt) and rt+1 − gt+1.
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even higher Et gt+1—during the period in the late 1990s when valuation ratios were

far from their mean.

Note, moreover, that net dividend growth satisfies Et Dt+1

Dt
− 1 > Et gt+1, be-

cause egt+1−1 > gt+1. Thus our lower bound on expected log dividend growth im-

plies still higher expected arithmetic dividend growth. As a rule of thumb, if divi-

dend growth is conditionally lognormal then we would have logEt Dt+1

Dt
= Et gt+1+

1
2

vart gt+1. The variance term is small unconditionally—we have var gt+1 ≈ 0.005

in our sample period—but it is plausible that during the late 1990s there was

unusually high uncertainty about log dividend growth.

The right panel of Figure 2 plots the three components of the sentiment indi-

cator Bt from 1996 to 2018. LVIX and Et(gt+1−rt+1) moved in opposite directions

for most of our sample period, with high valuation ratios occurring at times of

low risk premia. But all three components were above their mean during the late

1990s.

3.1 What if this time really is different?

A skeptic might argue that our measure of Et (rt+1 − gt+1), which is based on

an assumption that yt (or dpt) follows an AR(1), breaks down during the late

1990s. If the breakdown is assumed to be temporary—a brief period during which

valuation ratios behave differently, before subsequently reverting to business-as-

usual—then we are happy to absorb such an interpretation into our definition of

a bubble.

But what if one were prepared to believe in a genuinely New Economy? An

aggressive skeptic might argue that the price-dividend ratio had ceased to mean-

revert entirely. Conversely, a cautious central banker might justify inaction on

the basis that valuation ratios could remain very high indefinitely.

Either perspective suggests considering the possibility that valuation ratios

follow a random walk, pdt = Et pdt+1.
11 If so, then yt = Et(rt+1 − gt+1) from

11As mentioned in footnote 5, Campbell (2008, 2018) considered this possibility—and perhaps
with the same motivation.
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Figure 3: The sentiment indicators Bt and B̃t.

equation (9), so that

Et gt+1 = Et rt+1 − yt ≥ LVIXt + rf,t − yt.

This motivates the indicator B̃t = LVIXt + rf,t − yt. Aside from its appeal to

the conservative central banker, this has the further advantage of not requiring

estimation of any parameters. Figure 3 plots the time series of B̃t against the real-

time version of Bt. Even if valuation ratios were expected to follow a random walk

in the late 1990s—a dubious proposition in any case—the implied expectations

about cashflow growth appear implausibly high.

We note that B̃t also has a natural interpretation if yt follows an AR(1). For

if dividend growth is unforecastable, as in the work of Campbell and Cochrane

(1999) among many others, then valuation ratios directly reveal long-run expecta-

tions of log returns while LVIX reveals the corresponding short-run expectation,

so the loglinearization (10) and the inequality Et rt+1 − rf,t ≥ LVIXt together
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imply, after some algebra,12 that

Et rt+1 − (1− ρ)
∑
i≥0

ρi Et rt+2+i ≥
B̃t − g
ρ

. (29)

Under this interpretation, B̃t is a rescaled measure of short-run expected log

returns relative to subsequent long-run expected log returns.

4 Other indicators of financial conditions

In this section, we compare the sentiment indicator to some other indicators of

financial conditions that have been proposed in the literature.

We start by exploring the relationship with volume, which has been widely

proposed as a signature of bubbles (see, for example, Harrison and Kreps, 1978;

Duffie, Gârleanu and Pedersen, 2002; Cochrane, 2003; Lamont and Thaler, 2003;

Ofek and Richardson, 2003; Scheinkman and Xiong, 2003; Hong, Scheinkman and

Xiong, 2006; Barberis et al., 2018). We construct a daily measure of volume using

Compustat data from January 1983 to December 2017, by summing the product

of shares traded and daily low price over all S&P 500 stocks on each day.13 As

volume trended strongly upward during our sample period, we subtract a linear

trend from log volume. We do so on a rolling basis using backward-looking data,

so that our detrended log volume measure, which we call vt, is (like Bt) observable

at time t.

Figure 4a plots detrended log volume, vt, and Bt over the sample period, with

12If dividend growth is unforecastable, then from equation (10)

yt = (1− ρ)

∞∑
i=0

ρi Et [rt+1+i − gt+1+i] = (1− ρ)Et[rt+1] + (1− ρ)ρ

∞∑
i=0

ρi Et[rt+2+i]− g,

and hence

Et[rt+1]− (1− ρ)

∞∑
i=0

ρi Et[rt+2+i] =
Et[rt+1]− yt − ḡ

ρ
≥ B̃t − ḡ

ρ
.

13We have also constructed the corresponding measure using daily high prices: this gives
essentially identical results.

22



both series standardized to zero mean and unit variance. There is a remarkable

similarity between the two series, so it is worth emphasizing that they are each

based on entirely different input data. The sentiment index is a leading indicator

of volume: Figure 4b plots the correlation between (detrended) volume at time t,

vt, and the sentiment index at time t + k, where k is measured in months. The

shaded area indicates a bootstrapped14 95% confidence interval. The correlation

between the two peaks at more than 90% for k around −10 months. Figure 7,

in the appendix, leads to the same conclusion using full-sample, as opposed to

real-time, information to compute both Bt and the detrended volume measure.

We next compare our measure with various indicators that have been proposed

as measures of financial stress at the macro level. (We do so with the obvious

caveat that such indicators might be elevated for reasons other than the presence

of a bubble.) For example, one expects that the probability of a crash should

be higher during a bubble episode; if not, the episode is perhaps not actually a

bubble.15

We consider a measure of the probability of a crash derived by Martin (2017,

Result 2) that can be computed in terms of option prices:

P (Rt+1 < α) = α

[
put′t(αPt)−

putt(αPt)

αPt

]
(30)

where put′t(K) is the first derivative of put price as a function of strike, evaluated

at K. This represents the probability of a market decline, as perceived by a log

investor who holds the market. The probability of a crash (30) is high when out-

of-the-money put prices are highly convex, as a function of strike, at strikes at

and below αPt. By contrast, the measure of volatility (24) that is relevant for our

sentiment indicator is a function of option prices across the full range of strikes of

out-of-the-money puts and calls.

Figure 4c plots the crash probability over time. The probability of a crash was

14Each k defines an original sample of size Nk. We draw 10,000 bootstrap samples of size Nk

by sampling from the original sample with replacement, and compute the correlation coefficient
in each case; then use the 2.5 and 97.5 percentiles to define the edges of the confidence interval.
We use the same procedure in all the correlation plots shown in Figures 4, 5 and 7b.

15Greenwood, Shleifer and You (2018) document, at the industry level, that sharp increases
in stock prices do indeed signal a heightened probability of a crash.
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Figure 4: The sentiment indicator, volume and crash probability. Shaded areas
in the right-hand panels indicate bootstrapped 95% confidence intervals.
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elevated during the late 1990s, consistent with standard intuition about bubbles.

But it was also high in the aftermath of the subprime crisis, an episode that we

would certainly not identify as bubbly. Figure 4d plots the correlation between

the two series at different leads and lags. The sentiment measure is a leading

indicator of the crash probability at horizons of about two years. The correlation

flips sign for positive values of k, indicating that there is a tendency (albeit fairly

weak) for the sentiment indicator to be high following periods in which the crash

probability is low.

The panels of Figure 5 paint a similar picture using three other measures of

financial conditions: the excess bond premium (EBP) of Gilchrist and Zakraǰsek

(2012), and the National Financial Conditions Index (NFCI) and Adjusted Na-

tional Financial Conditions Index (ANFCI) generated on a weekly basis by the

Federal Reserve Bank of Chicago (converted to monthly data by taking the last

week’s observation in each calendar month).

5 Conclusion

We have presented a lower bound on the expected dividend growth implicit in

market prices. The bound, which exploits information in interest rates, index

option prices, and the market valuation ratio, was extraordinarily high during

the late 1990s, reflecting dividend growth expectations that in our view were

unreasonably optimistic. We therefore interpret it as a sentiment indicator that

helps to reveal irrational beliefs about fundamentals, and show that it is a leading

indicator of volume and of various other measures of stress in the financial system.

In simple terms, we characterize the late 1990s as a bubble because valuation

ratios were high and short-run expected returns—as revealed by interest rates

and our LVIX measure of implied volatility—were also high. Both aspects are

important. We would not view high valuation ratios at a time of low expected

returns, or low valuation ratios at a time of high expected returns, as indicative

of a bubble (on the contrary, the latter scenario occurs in the aftermath of the

market crash in 2008).

Our measure does not point to an unreasonable level of market sentiment in

recent years, as it interprets high valuation ratios as being justified by the low level
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Figure 5: The relationship between Bt and various measures of financial stabil-
ity. Shaded areas in the right-hand panels indicate bootstrapped 95% confidence
intervals.
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of interest rates and implied volatility. A skeptic might respond that the low level

of implied volatility is in itself indicative of unreasonable complacency. This is,

in principle, a possibility. In the terminology of Shiller (2000), we are measuring

“bubble expectations” rather than “confidence.” Valuation ratios, interest rates

and volatility could be internally consistent in our sense—so that our measure

would not signal that anything is amiss—while also being mispriced. Our approach

should be viewed as a test of the internal coherence of valuation ratios, interest

rates, and option prices, rather than as a panacea.

It might seem strange that we rely on asset prices to provide a rational lower

bound on expected log returns (via Result 4) while simultaneously arguing that

the market itself was mispriced during part of our sample period. To sharpen the

point, consider the special case discussed in Section 2.1. Our volatility measure

LVIX then directly measures the expected excess log return perceived by a ra-

tional log investor who chooses to hold the market. Yet we simultaneously claim

that there was a bubble in the late 1990s. These positions may appear to be

inconsistent—why would a rational investor hold an overvalued stock market?—

but they are not. As shown by the Campbell–Shiller loglinearized identity (3)

and by our variant (10), one can simultaneously have high short-run expected log

returns Etrt+1, high valuation ratios pdt, and make rational forecasts of fundamen-

tals
∑∞

i=0 ρ
i Et gt+1+i, so long as future expected returns

∑
i>0 ρ

i Et rt+1+i are low.

And, critically, the log investor does not care about expected returns in future: he

or she is myopic, so can be induced to hold the market by high short-run returns

Et rt+1 whatever his or her beliefs about subsequent expected returns.

That said, for the investor’s expected log returns to be consistent with ratio-

nally expected log dividend growth during the bubble period, he or she must—

given inequality (28)—have believed that the historical forecasting relationship

between dividend yield and Et (rt+1 − gt+1) had broken down. This is equivalent

(by (18) or (20)) to believing that dividend yields had ceased to mean-revert in

the AR(1) manner suggested by prior history. This strikes us as a reasonable

viewpoint for a rational investor living through a bubble. It is consistent with

the findings of Brunnermeier and Nagel (2004), who argued that in the late 1990s

sophisticated investors such as hedge funds positioned themselves to exploit high

short-run returns despite being skeptical about longer run returns, and with the
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view of the world colorfully articulated by former Citigroup chief executive Chuck

Prince in a July, 2007, interview with the Financial Times : “When the music

stops, in terms of liquidity, things will be complicated. But as long as the music

is playing, you’ve got to get up and dance. We’re still dancing.”
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A Regression tables

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.142 [0.054] 5.064 [1.507] 12.98%

0.032 [0.052] 1.694 [1.371] 2.04%

−0.174 [0.051] 3.370 [1.502] 16.31%

0.549 [0.187] 0.150 [0.053] 9.11%

0.321 [0.156] 0.067 [0.045] 2.59%

0.229 [0.163] 0.082 [0.046] 7.84%

Table 2: Predictive regressions for S&P 500, annual data, cash reinvestment,
1926–2017.

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.060 [0.032] 4.847 [1.957] 6.05%

−0.000 [0.021] 3.133 [1.157] 4.57%

−0.060 [0.032] 1.714 [2.080] 1.31%

0.307 [0.128] 0.068 [0.030] 4.39%

0.262 [0.079] 0.050 [0.019] 4.29%

0.045 [0.123] 0.018 [0.029] 0.53%

Table 3: Predictive regressions for S&P 500, semi-annual data, cash reinvestment,
1947–2017.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.059 [0.037] 4.711 [2.228] 6.30%

0.001 [0.021] 3.044 [1.131] 4.47%

−0.060 [0.042] 1.667 [2.616] 0.82%

0.301 [0.142] 0.067 [0.033] 4.41%

0.272 [0.079] 0.053 [0.019] 4.63%

0.029 [0.154] 0.014 [0.036] 0.21%

Table 4: Predictive regressions for S&P 500, semi-annual data, market reinvest-
ment, 1926–2017.

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.048 [0.038] 2.687 [1.009] 8.44%

−0.031 [0.052] 3.880 [1.232] 10.32%

−0.017 [0.043] −1.193 [1.158] 1.83%

0.365 [0.116] 0.094 [0.034] 8.58%

0.565 [0.148] 0.136 [0.045] 10.48%

−0.200 [0.133] −0.042 [0.039] 1.85%

Table 5: Predictive regressions for NYSEVW, annual data, 1947–2016.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.033 [0.041] 2.329 [1.087] 7.05%

−0.013 [0.050] 3.455 [1.172] 9.84%

−0.020 [0.045] −1.126 [1.236] 1.85%

0.315 [0.125] 0.078 [0.036] 7.07%

0.509 [0.140] 0.117 [0.042] 10.15%

−0.194 [0.136] −0.039 [0.040] 2.01%

Table 6: Predictive regressions for S&P 500, annual data, market reinvestment,
1947–2017.

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.077 [0.043] 3.196 [1.162] 9.51%

−0.027 [0.051] 3.129 [1.243] 5.09%

−0.050 [0.038] 0.067 [0.946] 0.00%

0.391 [0.135] 0.104 [0.039] 7.75%

0.444 [0.158] 0.106 [0.047] 4.46%

−0.052 [0.117] −0.002 [0.035] 0.00%

Table 7: Predictive regressions for NYSEVW, annual data, 1926–2016.
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RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.066 [0.042] 2.972 [1.135] 8.55%

−0.011 [0.049] 2.798 [1.153] 4.84%

−0.055 [0.040] 0.174 [1.010] 0.04%

0.352 [0.132] 0.091 [0.038] 6.67%

0.402 [0.144] 0.092 [0.043] 4.34%

−0.050 [0.121] −0.001 [0.036] 0.00%

Table 8: Predictive regressions for S&P 500, annual data, market reinvestment,
1926–2017.

RHSt

yt

dpt

LHSt+1

rt+1 − gt+1

rt+1

−gt+1

rt+1 − gt+1

rt+1

−gt+1

â0 s.e. â1 s.e. R2

−0.140 [0.042] 4.453 [0.980] 12.64%

0.046 [0.039] 0.928 [0.881] 0.77%

−0.186 [0.031] 3.525 [0.778] 22.83%

0.495 [0.127] 0.138 [0.038] 8.59%

0.209 [0.110] 0.038 [0.033] 0.92%

0.286 [0.095] 0.100 [0.028] 12.97%

Table 9: Predictive regressions for S&P 500, annual data, Goyal’s data, 1871–2017.

Horizon α̂ s.e. β̂ s.e. R2

3m 0.009 [0.018] 1.381 [3.629] 0.54%

6m −0.004 [0.021] 3.128 [1.514] 3.67%

9m −0.002 [0.041] 2.948 [1.439] 3.70%

12m 0.006 [0.063] 2.493 [1.613] 2.86%

Table 10: Coefficient estimates for regression (27), 96:01–17:12.
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B AR(1) vs. linear regression

Recall the linear approximation (19):

rt+1 − gt+1 =
1

1− ρ
yt −

ρ

1− ρ
yt+1.

If yt follows an AR(1) with autocorrelation φ, then this reduces to

Et (rt+1 − gt+1) =
ρ(φ− 1)

1− ρ
y︸ ︷︷ ︸

α

+
1− ρφ
1− ρ︸ ︷︷ ︸
β

yt. (31)

In the body of the paper, we estimate the predictive relationship between

rt+1−gt+1 and the predictor variable yt (and dpt) via linear regression. Under our

AR(1) assumption, we could also estimate the constant term and the coefficient

on yt directly, as in (31), by estimating ρ and the autocorrelation φ. Table 11

shows that both approaches give similar results.

Method α β R2

OLS −0.067 3.415 7.73%

AR(1) −0.079 3.807 7.63%

Table 11: Comparison of AR(1) parametrization and linear regression. Annual
price and dividend data, 1947–2017, from CRSP (cash reinvestment), as in Table 1.
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C Figures using full-sample information
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Figure 6: Sentiment indicators calculated using full-sample information to esti-
mate the relationship between yt (or dpt) and rt+1 − gt+1.
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(a) Sentiment indicator and detrended vol-
ume.
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(b) Correlation between Bt+k and de-
trended volume at time t.

Figure 7: Sentiment indicator vs. detrended log volume (using the full sample
to construct each series). The shaded area in the right-hand panel indicates the
bootstrapped 95% confidence interval.
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