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1 Introduction

The idea that the production of goods and services relies on a complex web of transactions between

a wide range of suppliers and customers has a long tradition in economics. As far back as the 1940s,

in his study of the structure of the American economy, Wassily Leontief observed that “layman and

professional economist alike, practical planner and the subjects of his regulative activities, all are

equally aware of the existence of some kind of interconnection between even the remotest parts of

a national economy” (Leontief, 1941, p. 3). In this “networked” view of the production process,

disturbances at certain firms or industries may spillover to other parts of the economy over input-

linkages, possibly transforming isolated microeconomic shocks into macroeconomic fluctuations.

Indeed, Leontief further argued that “the presence of these invisible but nevertheless very real ties can

be observed whenever expanded automobile sales in New York City increase the demand for groceries

in Detroit, [...] when the sudden shutdown of the Pennsylvania coal mines paralyzes the textile mills in

New England, and it reasserts itself with relentless regularity in alternative ups and downs of business

cycles.”1

In this article, we review the recent theoretical and empirical literature that revisits the role

of production networks in propagating shocks and transforming microeconomic shocks into

macroeconomic fluctuations. Though its motivation is classical, the modern literature on production

networks relies on two fairly recent developments.

First, by drawing on tools from a diverse body of knowledge, the burgeoning field of network

analysis has developed a conceptual framework and an extensive set of tools to effectively encode and

measure interconnections between the units of analysis comprising a network. As we shall see below,

when coupled with the language of general equilibrium theory, these serve as useful tools for assessing

how shocks propagate throughout the economy, how different sectors comove over the business cycle,

or how aggregate fluctuations can be traced out to localized, micro-disturbances.

Second, and keeping in tandem with developments elsewhere in economics, the availability of

novel datasets on the granular nature of production has paved the way for a wide range of empirical

and quantitative analyses, seeking to answer classical questions such as the origins of aggregate

fluctuations. Indeed, almost eighty years after Leontief’s pioneering study of the structure of the

American economy, modern input-output tables detail the complex patterns of input linkages across

hundreds of industries. Delving deeper into the micro, it is now possible to identify the supplier-

customer relations of millions of firms throughout the economy.

We provide a broad overview of the growing literature that leverages the above developments, with

a particular focus on macroeconomic implications. While not a comprehensive survey, the article

1It is worth noting that the emphasis on production networks goes well beyond the input-output literature originating in
Leontief’s work and arches back to classical economics. By the mid 20th century, the development of general equilibrium
theory also stressed such interdependencies. Indeed, von Neumann’s (1945) A Model of General Economic Equilibrium
provided “a solution of a typical economic system” with the property that “goods are produced not only from ‘natural factors
of production’ but in the first place from each other.” Such emphasis was also shared by the literature on multi-sector models
of optimal growth. In particular, in an important precursor to the modern literature on production networks, Benhabib
and Nishimura (1979) showed that standard growth models featuring intersectoral linkages can exhibit optimal limit cycle
trajectories, even in the absence of exogenous shocks. Given these antecedents, it is perhaps not surprising that the seminal
contribution of Long and Plosser (1983) to modern business cycle theory — which we take as a starting point to our analysis
— relied on a multi-sector general equilibrium foundation.
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aims to offer a user guide to some of the recent theoretical and empirical work in the area. We begin,

in Section 2, by presenting a benchmark model of production networks that will serve as the basis for

the main theoretical results in this article. We use this framework to demonstrate the role of input-

output linkages as a shock propagation channel throughout the economy. In Section 3, we focus

our attention on the role of input-output linkages as a mechanism for translating microeconomic

shocks into aggregate fluctuations. These results provide sharp conditions for whether and when

macroeconomic fluctuations can have their origins in idiosyncratic shocks to individual firms or

disaggregated industries. In Section 4, we review the growing literature that explores the role of

production networks empirically and quantitatively at the firm- and industry-levels. We conclude

in Section 5 by discussing a number of open questions and promising avenues for future research.

2 A Model of Production Networks

We start by presenting a baseline model of production networks, which will serve as a useful starting

point for analysis. The model is a static variant of the multi-sector general equilibrium model of Long

and Plosser (1983), which is also analyzed by Acemoglu et al. (2012). We discuss various modifications

and generalizations of this model in the subsequent sections.

2.1 Baseline Model

Consider a static economy consisting of n competitive industries denoted by {1, 2, . . . n}, each

producing a distinct product. Each product can be either consumed by the households or used as

an intermediate input for production of other goods. Firms in each industry employ Cobb-Douglas

production technologies with constant returns to scale to transform intermediate inputs and labor

into final products. In particular, the output of industry i is given by

yi = ziζil
αi

i

n∏
j=1

x
aij

ij , (1)

where li is the amount of labor hired by firms in industry i, xij is the quantity of good j used for

production of good i, αi > 0 denotes the share of labor in industry i’s production technology, zi is

a Hicks-neutral productivity shock, and ζi is some normalization constant whose value only depends

on model parameters.2

The exponents aij ≥ 0 in Equation (1) formalize the idea that firms in an industry may need to

rely on the goods produced by other industries as intermediate inputs for production. In particular, a

larger aij means that good j is a more important input for the production of good i, whereas aij = 0

means that good j is not a necessary input for i’s production. Note that, in general, aij 6= aji, as

industry i’s reliance on industry j as an input-supplier may be different from j’s dependence on i.

Furthermore, it may also be the case that aii > 0, as good imay itself be used as an intermediate input

for production by firms in industry i. Finally, note that the assumption that all technologies exhibit

constant returns to scale implies that αi +
∑n

j=1 aij = 1 for all i.

2In what follows, we set the value of this constant to ζi = α−αi
i

∏n
j=1 a

−aij
ij . This choice has no bearing on the results, as

the sole purpose of this constant is to simplify the analytical expressions.
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In addition to the firms described above, the economy is populated by a representative household,

who supplies one unit of labor inelastically and has logarithmic preferences over the n goods given by

u(c1, . . . , cn) =

n∑
i=1

βi log(ci/βi), (2)

where ci is the amount of good i consumed. The constants βi ≥ 0 measure various goods’ shares in

the household’s utility function, normalized such that
∑n

i=1βi = 1.

Equations (1) and (2) thus fully specify the environment. The competitive equilibrium of this

economy is defined in the usual way: it consists of a collection of prices and quantities such that (i) the

representative household maximizes her utility; (ii) the representative firm in each sector maximizes

its profits while taking the prices and the wage as given; and (iii) all markets clear.

Before characterizing the equilibrium, it is useful to define a few key concepts that will play a

central role in our subsequent analysis. First, note that we can summarize the input-output linkages

between various industries with a matrix A = [aij ], which with some abuse of terminology, we refer

to as the economy’s input-output matrix.3 Thus, coupled with the vector of productivity shocks

(z1, . . . , zn), the input-output matrix A serves as a sufficient statistic for the production side of the

economy. Note that the assumption that αi > 0 for all i implies thatA is an element-wise nonnegative

matrix with row sums that are strictly less than 1. This in turn guarantees that the spectral radius

of A — defined as the largest absolute value of its eigenvalues — is strictly less than 1 (Berman and

Plemmons, 1979, p. 37).

The input-output linkages between various industries can alternatively be represented by a

weighted directed graph on n vertices. Each vertex in this graph — which we refer to as the economy’s

production network — corresponds to an industry, with a directed edge with weight aij > 0 present

from vertex j to vertex i if industry j is an input-supplier of industry i. While the production network

representation of the economy is equivalent to the representation using the input-output matrix,4

it can provide a conceptually simpler framework for summarizing (and visualizing) input-output

linkages.

Finally, we define an industry’s Domar weight as that industry’s sales as a fraction of GDP. More

specifically, the Domar weight of industry i is defined as

λi =
piyi

GDP
, (3)

where pi is the price of good i and yi is industry i’s output. These weights will play a key role in the

analysis in Section 3.

We now proceed to determining the equilibrium prices and quantities. First, note that firms in

industry i choose their demand for labor and intermediate goods in order to maximize profits, πi =

piyi − wli −
∑n

j=1 pjxij , while taking all prices (p1, . . . , pn) and the wage w as given. Thus, the first-

order conditions corresponding to firms in industry i are given by xij = aijpiyi/pj and li = αipiyi/w.

3More generally, the input-output matrix Ω = [ωij ] of an economy is defined in terms of input expenditures as a fraction
of sales, that is, ωij = pjxij/piyi. However, in the special case that all technologies and preferences are Cobb-Douglas, ωij
coincides with the exponent aij in Equation (1).

4In fact, in graph theory terminology, the input-output matrix A is nothing but the (weighted) adjacency matrix of the
economy’s production network.
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Plugging these expressions into firm i’s production function in Equation (1) and taking logarithms

imply that

log(pi/w) =

n∑
j=1

aij log(pj/w)− εi,

where εi = log zi is the (log) productivity shock to firms in industry i. Since the above relationship

has to hold for all industries i, it provides a system of equations to solve for all relative prices in terms

of productivity shocks. More specifically, rewriting this system of equations in matrix form implies

that p̂ = Ap̂ − ε, where A is the economy’s input-output matrix and p̂ = (log(p1/w), . . . , log(pn/w))′

and ε = (ε1, . . . , εn)′ denote the vectors of log relative prices and productivity shocks, respectively.

Consequently, the equilibrium vector of (log) relative prices is given by

p̂ = −(I −A)−1ε (4)

in terms of industry-level shocks and the economy’s production network.

Before proceeding any further, it is useful to comment on some of the key properties of matrix

L = (I −A)−1 in Equation (4), commonly known as the economy’s Leontief inverse. First, the fact that

the input-output matrix A is nonnegative with a spectral radius that is strictly less than 1 means that

I − A is a non-singular M-matrix, which in turn guarantees that the Leontief inverse L = (I − A)−1

always exists and is element-wise nonnegative.5 Second, the observation that the spectral radius of A

is strictly less than 1 also implies that the Leontief inverse can be expressed as the infinite sum of the

powers of the input-output matrix A (Stewart, 1998, p. 55), i.e.,

L = (I −A)−1 =

∞∑
k=0

Ak. (5)

This decomposition illustrates that the (i, j) element of the Leontief inverse measures the importance

of industry j as a direct and indirect input-supplier to industry i in the economy. To see this, note

that for any i 6= j, Equation (5) implies that `ij = aij +
∑n

r=1 airarj + . . . , with the first term in this

expression accounting for j’s role as a direct supplier to i, the second term accounting for j’s role as a

supplier to i’s suppliers, and so on. Interpreted in terms of the production network representation of

the economy, `ij accounts for all possible directed walks (of various lengths) that connect industry j

to industry i over the network.

Returning to equilibrium characterization, recall that the firms’ first-order conditions imply

that the quantity demanded by industry i from industry j is given by xij = aijpiyi/pj , while the

representative household’s logarithmic utility implies that she demands cj = βjw/pj units of good

j. Plugging these expressions into the market-clearing condition for good j, which is given by

yj = cj +
∑n

i=1 xij , implies that pjyj = βjw +
∑n

i=1 aijpiyi. Dividing both sides of this equation by w

and noting that the value added in this economy is equal to the household’s labor income, we obtain

λj = βj +

n∑
i=1

aijλi,

5A square matrix Q is called an M-matrix if there exist a nonnegative square matrix B and a constant r ≥ ρ(B) such that
Q = rI − B, where ρ(B) is the spectral radius of B. If r > ρ(B), then Q is a non-singular M-matrix. Plemmons (1977,
Theorem 2) shows that the inverse of any non-singular M-matrix is element-wise nonnegative.
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where λi is the Domar weight of industry i defined in Equation (3). Rewriting the above equation in

matrix form and solving for the vector of Domar weights implies that λ = (I −A′)−1β, or equivalently,

λi = piyi/GDP =
∑n

j=1 βj`ji. Furthermore, recall from Equation (4) that log(pi/GDP) = −
∑n

j=1 `ijεj ,

thus leading to the following result:

Theorem 1. The log output of industry i is given by

log(yi) =

n∑
j=1

`ijεj + δi, (6)

where δi is some constant that is independent of the shocks.

The above theorem has a few important implications. First, the mere fact that the output of

industry imay depend on the shocks to industries j 6= i indicates that the input-output linkages in the

economy can function as a mechanism for the propagation of shocks from one industry to another.

Second, it shows that the resulting propagation patterns are captured by the economy’s Leontief

inverse L (and not its input-output matrix A). This means that the input-output linkages can result in

both direct and indirect propagation of the shocks over the production network. Third, the fact that

the impact of a shock to industry j on i’s output is captured by `ij means that productivity shocks in

this model propagate “downstream” from one industry to its customers, its customers’ customers, and

so on.6 To see this, recall from the expansion in Equation (5) that `ij is a measure of the importance of

industry j as (direct and indirect) input-supplier to industry i.7

The intuition underlying Theorem 1 is fairly straightforward. Suppose that industry j is hit

by a negative shock that reduces its production and hence increases the price of good j. Such a

price increase adversely impacts all the industries that rely on good j as an intermediate input for

production, thus creating a direct impact on j’s customer industries. But this initial impact will in turn

result in further propagation over the production network: the prices of goods produced by industries

affected in the first round of propagation will rise, creating an indirect negative effect on their own

customer industries, and so on. The overall effect of these direct and indirect downstream propagation

of the initial shock is summarized by the corresponding element of the economy’s Leontief inverse.

But why is it that productivity shocks in this model only propagate from an industry to its (direct

and indirect) customers but not its suppliers? The absence of such “upstream” propagation is a

consequence of three specific features of the model: (i) Cobb-Douglas preferences and technologies,

(ii) a single factor of production (in this case labor), and (iii) constant returns to scale. The latter

two features together guarantee that productivity shocks do not impact upstream prices (relative

to the wage): the price of good i is equal to industry i’s marginal cost, which only depends on the

productivities of i and its upstream industries. On the other hand, as we already showed, in a Cobb-

Douglas economy, the Domar weight of all industries are invariant to the shocks (λi = piyi/GDP =∑n
j=1 βj`ji). Hence, the absence of upstream effects on (relative) prices translates into the absence of

upstream effects on quantities.

6As we show in the subsequent sections, demand-side shocks exhibit significantly different propagation patterns.
7Note that when the production network exhibits cycles (say, in an economy with roundabout production), an industry

can be simultaneously upstream and downstream to another industry. What we mean by downstream propagation is that
shocks transmit from one industry to another in the direction of the flow of goods and services.
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We now turn to determining the production network’s macroeconomic implications. Recall from

Equation (4) that the log relative price of good i is given by log(pi/w) = −
∑n

j=1 `ijεj . Multiplying both

sides by βi and summing over all industries i leads to log(GDP) =
∑n

i,j=1 βi`ijεj +
∑n

i=1 βi log pi. On

the other hand, choosing the consumption good bundle, whose price is given by Pc =
∏n
i=1 p

βi

i , as the

numeraire implies that
∑n

i=1 βi log pi = 0. We therefore have the following result:

Theorem 2. The economy’s (log) real value added is given by

log(GDP) =

n∑
i=1

λiεi, (7)

where

λi =
piyi

GDP
=

n∑
j=1

βj`ji (8)

and `ji is the (j, i) element of the economy’s Leontief inverse L = (I −A)−1.

The significance of the above result is twofold. First, Equation (7) illustrates that (log) aggregate

output is a linear combination of industry-level productivity shocks, with coefficients given by the

industries’ Domar weights. Thus, the Domar weight of industry i is a sufficient statistic for how shocks

to that industry impact aggregate output. As we will discuss in Section 2.3.2, some variant of this

relationship, which is commonly known as “Hulten’s Theorem,” holds much more generally (Hulten,

1978; Gabaix, 2011).

Second, Theorem 2 establishes that with Cobb-Douglas preferences and technologies, the Domar

weights take a particularly simple form: the Domar weight of each industry depends only on the

preference shares and the corresponding column of the economy’s Leontief inverse. This means that,

while λi is a sufficient statistic for how shocks to industry i impact log(GDP), the value of λi itself

depends the economy’s production network. In particular, as Equation (8) illustrates, all else equal,

an increase in `ji will increase industry i’s Domar weight and hence intensify the impact of shocks to i

on aggregate output. The intuition underlying this result parallels that of Theorem 1: the downstream

propagation of shocks from an industry to its direct and indirect customers means that, all else equal,

shocks to industries that are more important input-suppliers to the rest of the economy have a more

pronounced effect on macroeconomic aggregates.

2.2 Demand-Side Shocks

We next show that demand-side shocks lead to propagation patterns that are substantially different

from those of supply-side productivity shocks studied so far.

To incorporate demand-side shocks into the model, we follow Acemoglu, Akcigit, and Kerr (2016)

and modify our benchmark model by assuming that the government purchases an exogenously given

quantity gi of good i. This modification implies that good i’s market-clearing condition is given by yi =

ci + gi +
∑n

j=1 xji. Thus, changes in government spending on various goods correspond to demand-

side shocks that affect industries differentially. To simplify the derivations, we abstract away from

supply-side shocks by assuming that zi = 1 for all i.
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Solving for the economy’s competitive equilibrium is straightforward. Plug industry i’s first-order

conditions — given by xij = aijpiyi/pj and li = αipiyi/pj — into Equation (1) and solve the resulting

system of equations, which implies that pi = w for all i. This means that, unlike productivity shocks,

demand-side shocks do no impact relative prices. On the other hand, the representative household’s

budget constraint is given by
∑n

i=1 pici = w−T , where T =
∑n

i=1 pigi is the total amount of government

spending, financed by lump sum taxes on the household. Therefore, the market-clearing condition for

good i reduces to yi = βi(1 −
∑n

j=1 gj) + gi +
∑n

j=1 ajiyj . Rewriting the resulting system of equations

in matrix form, we obtain y = (1 − g′1)β + g + A′y, where g = (g1, . . . , gn)′ is the vector of quantities

demanded by the government and 1 is a vector with all entries equal to 1. Solving this system of

equations leads to the following result:

Theorem 3. The output of industry i is given by

yi =

n∑
j=1

`jigj +

(
1−

n∑
k=1

gk

) n∑
j=1

`jiβj

 , (9)

where L = (I −A)−1 is the economy’s Leontief inverse matrix.

Contrasting Theorems 1 and 3 illustrates the stark difference in how supply- and demand-side

shocks propagate: whereas the impact of a productivity shock to industry j on the output of industry

i is captured by `ij , the impact of a demand shock to j on i is captured via `ji. This means that, unlike

supply-side shocks that propagate downstream, demand-side shocks propagate upstream from one

industry to its direct and indirect suppliers.8 The intuition underlying this propagation pattern is as

follows: a positive demand shock to industry j increases j’s demands for inputs, which is in effect a

positive demand shock to j’s suppliers. A similar logic implies that the original demand shock would

propagate further upstream.

We conclude this discussion by noting that the baseline model we focused on thus far is special

along multiple dimensions: it is a perfectly competitive economy with a single factor of production

and Cobb-Douglas technologies and preferences. In the remainder of this section, we briefly discuss

the implications of relaxing some of these assumptions.

2.3 More General Production Technologies

We start by illustrating how relaxing the assumption that all production technologies are Cobb-

Douglas alters shocks’ propagation patterns as well as their aggregate implications.

2.3.1 Propagation Patterns

One of the consequences of assuming Cobb-Douglas production technologies is that an industry’s

expenditure on various inputs as a fraction of its sales is invariant to the realization of the shocks. In

particular, for any pair of industries i and j, the ratio ωij = pjxij/piyi is equal to the exponent aij in

8Note that in addition to the upstream propagation channel highlighted above, the expression in Equation (9) also
includes a term (1 −

∑n
k=1 gk)(

∑n
k=1 `jiβj) that corresponds to a resource constraint effect: an increase in government

spending requires higher taxes on the household, and hence, fewer resources for private consumption.
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Equation (1), which is an exogenously given parameter of the model. Such an invariance, however, no

longer holds for more general production technologies. This in turn can lead to richer propagation

patterns over input-output linkages.

These effects are explored by Carvalho et al. (2016), who focus on a generalization of the baseline

model by replacing the production functions in Equation (1) by a nested CES structure. Since

a closed-form characterization is in general not possible, they use a first-order approximation to

show that when the elasticities of substitution between various intermediate inputs or between the

intermediates and primary factors of production are different from 1, a negative productivity shock

to industry i impacts the output of other industries via two distinct channels. First, the resulting

increase in good i’s price adversely impacts all industries that rely on good i as an intermediate

input for production, thus leading to a downstream propagation of the shock to i’s direct and

indirect customers. This “output effect” thus leads to propagation patterns that mirror those in a

Cobb-Douglas economy. Second, productivity shocks to industry i may also result in reallocation

of resources across different industries depending on the elasticities of substitution across various

inputs. For instance, the increase in the price of good i in response to a negative shock to i results

in an increase (respectively, decrease) in demand by i’s customers for input j 6= i if goods i and j are

gross substitutes (respectively, complements) in these customers’ production technologies. Hence,

in contrast to the Cobb-Douglas economy, the impact of a productivity shock to industry i may not

remain confined to i’s downstream industries.

These results are further extended by Baqaee and Farhi (2018a) to a general class of economies

with heterogenous agents, arbitrary nested CES production structures, and multiple (and potentially

industry-specific) factors of production. For the purposes of this article, we find it instructive to

focus on a special case with a single factor of production (labor) and a single CES nest to clarify

the two propagation channels highlighted in the previous paragraph. In particular, suppose that the

production technology of firms in industry i is given by

yi = ziζil
αi

i

 n∑
j=1

a
1/σi

ij x
1−1/σi

ij

(1−αi)σi/(σi−1)

, (10)

where αi +
∑n

j=1 aij = 1, σi denotes the elasticity of substitution between the various inputs, and the

normalization constant ζi = α−αi

i (1− αi)−(1−αi)σi/(σi−1). This economy reduces to the baseline model

with Cobb-Douglas technologies in Equation (1) when σi → 1 for all i. As we show in Appendix A, log-

linearization of equilibrium conditions implies that the effect of a shock to industry j on the output of

industry i, up to a first-order approximation, is given by

d log yi
d log zj

∣∣∣∣
log z=0

= `ij +
1

λi

n∑
k=1

(σk − 1)λk

(
n∑
r=1

akr`ri`rj −
1

1− αk
( n∑
r=1

akr`ri
)( n∑

r=1

akr`rj
))

. (11)

As before, λi denotes industry i’s Domar weight of andL = (I−A)−1 is the economy’s Leontief inverse,

where A = [aij ].

The first term on the right-hand side of Equation (11) is in line with the expression in Equation

(6) and captures the downstream output effect that is also present in a Cobb-Douglas economy.
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The second term captures the reallocation effect: in response to a negative shock to industry j, all

industries k that are downstream to j may readjust their demand for all other inputs. Crucially, the

impact of such readjustments by any given k on the output of industry i depends on (i) the size of

industry k as captured by its Domar weight λk, (ii) the elasticity of substitution σk in k’s production

function, and (iii) the extent to which the supply chains that connect i and j to k coincide with one

another.

To clarify the workings of the reallocation channel and its relationship to Equation (11), it is

instructive to focus on a simple environment. Consider an industry k with σk > 1 that is downstream

to both i and j, each of which supply k via a single production chain. This means that the constellation

of these industries in the production network can take one of the following two forms: either i and j

supply industry k via production chains that pass through the same supplier of k, as depicted in Figure

1(a); or the production chains supplied by i and j reach industry k via two distinct suppliers of k, as

depicted in Figure 1(b).

k

s s̃

i j

(a)

k

s s̃

i j

(b)

Figure 1. Two simple production networks where each vertex corresponds to an industry, with a directed edge
present from one vertex to another if the former is an input-supplier to the latter. Industry k is downstream to
industries i and j in either case. In panel (a) the input paths from i and j to k overlap; in panel (b) they do not.

It is not hard to verify that, for the economy depicted in Figure 1(a), the term in braces on the

right-hand side of Equation (11) is equal to

n∑
r=1

akr`ri`rj −
1

1− αk
( n∑
r=1

akr`ri
)( n∑

r=1

akr`rj
)

= aks`si`sj

(
1− aks

1− αk

)
,

where s is the supplier of k that is downstream to both i and j. This expression is strictly positive as

long as industry s is not the sole supplier of k (i.e., aks < 1− αk). Hence, a negative productivity shock

to industry j results in a decrease in i’s output. This is, of course, fairly intuitive: the fact that σk > 1

implies that, in response to a negative shock to j, industry k substitutes away from the production

chain supplied by j, in the process also reducing the demand for industry i’s output.

The propagation patterns induced by the substitution channel are different in the economy

depicted in Figure 1(b). Once again, a negative shock to j would force industry k to substitute away

from the production chain that is supplied by j whenever σk > 1. But, unlike the previous case, such a

substitution results in an increase in i’s output precisely because the production chains supplied by i

and j do not overlap with one another. Indeed, the term in braces on the right-hand side of Equation

9



(11) is given by

n∑
r=1

akr`ri`rj −
1

1− αk
( n∑
r=1

akr`ri
)( n∑

r=1

akr`rj
)

=
−1

1− αk
(aks`si)(aks̃`s̃j),

which is strictly negative, as expected.

These simple examples illustrate that when inputs are gross substitutes, more overlap in the

production chains that originate from i and j translates a negative productivity shock to j into

a reduction in i’s output, while such overlaps have the opposite effect when inputs are gross

complements.

2.3.2 Aggregate Effects and Hulten’s Theorem

Recall from Theorem 2 that, with Cobb-Douglas preferences and technologies, an industry’s Domar

weight is a sufficient statistic for how TFP shocks to that industry impact GDP. We now show that

a variant of this relationship holds much more generally: in any efficient economy, the impact on

output of a TFP shock to industry i is equal to i’s Domar weight up to a first-order approximation. More

specifically, if zi denotes the TFP shock to industry i, then irrespective of household’s preferences and

firms’ production technologies,

d log(GDP)

d log(zi)
= λi, (12)

where λi = piyi/GDP is the Domar weight of industry i.

The simplicity of the relationship in Equation (12), which has come to be known as Hulten’s

theorem, makes it a useful tool in empirical studies of microeconomic origins of aggregate

fluctuations. For instance, as we will discuss in subsequent sections, Gabaix (2011) uses the empirical

distribution of firm-level Domar weights to measure the extent to which firm-level shocks can explain

GDP volatility, while Carvalho and Gabaix (2013) rely on Hulten’s theorem to investigate whether

changes in the economy’s microeconomic composition can account for the “great moderation” and

its unraveling in major world economies.

Despite its simplicity, Hulten’s theorem may appear surprising at first sight: how is it that in

the presence of input-output linkages an industry’s role in shaping aggregate outcomes is entirely

reflected by its size, irrespective of its position in the production network?9

To derive and illustrate the intuition behind Equation (12), we follow papers such as Gabaix (2011)

and Baqaee and Farhi (2018c) and extend the baseline model in Section 2 by allowing for general

production functions, preferences, and factor markets. More specifically, consider a static economy

consisting of n competitive industries, each producing a distinct product using intermediate inputs

and m different primary factors of production. Firms in industry i employ constant returns to scale

production technologies given by

yi = zifi(xi1, . . . , xin, li1, . . . lim),

9The apparent discrepancy between one’s intuition and Hulten’s theorem is probably best captured in a speech by
Summers (2013): “There would be a set of economists who would sit around explaining that electricity was only 4% of the
economy, and so if you lost 80% of electricity, you couldn’t possibly have lost more than 3% of the economy.” However, “we
would understand that [...] when there wasn’t any electricity, there wasn’t really going to be much economy.”
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where zi is the Hicks-neutral productivity shock to industry i and xij and lik are the quantities of good

j and the k-th primary factor used by firms in industry i, respectively. The economy is also populated

by a representative household with preferences u(c1, . . . , cn), which we assume to be homogenous of

degree 1. This representative household is endowed with hk units of the k-th primary factor, which she

supplies inelastically to the market. As before, we focus on the economy’s competitive equilibrium, in

which (i) all firms maximize their profits, taking the factor and intermediate good prices as given; (ii)

the representative household maximizes her utility; and (iii) all good and factor markets clear.

By the first welfare theorem, the competitive equilibrium of this economy is efficient. This means

that one can determine the equilibrium allocation by solving the social planner’s problem:

W = max
ci,lik,xij

u(c1, . . . , cn)

s.t. ci +

n∑
j=1

xji = zifi(xi1, . . . , xin, li1, . . . , lim) i = 1, . . . , n

∑
i=1

lik = hk k = 1, . . . ,m.

The constraints in the above problem correspond to the resource constraints for good i and the k-

th primary factor of production, respectively. The first-order condition of optimality requires that

du/dci = ηi, where ηi is the Lagrange multiplier corresponding to good i’s resource constraint.

Furthermore, applying the envelope theorem to the planner’s problem implies that dW/dzi =

ηifi(xi1, . . . , xin, li1, . . . , lim) = ηiyi/zi. Consequently,

d log(W )

d log(zi)
=
ηiyi
W

. (13)

On the other hand, the household’s optimization problem in the decentralized representation of the

equilibrium is given by

W = max
ci

u(c1, . . . , cn)

s.t.

n∑
i=1

pici =

m∑
k=1

wkhk,

where wk is the price of the k-th primary factor of production. First-order conditions imply that

du/dci = φpi, where φ is the Lagrange multiplier corresponding to the household’s budget constraint.

Contrasting this with the corresponding first-order condition from the planner’s problem implies that

ηi = φpi. Furthermore, multiplying both sides of the household’s first-order condition by ci, summing

over all i, and applying Euler’s homogenous function theorem to the utility function u implies that

W = φ
∑n

i=1 pici. Replacing for ηi and W in Equation (13) then establishes Hulten’s theorem in

Equation (12).

The above derivations illustrate that equilibrium efficiency and the envelope theorem lie at the

heart of Hulten’s theorem. In general, a positive productivity shock to industry i impacts aggregate

output via two channels. First, it results in an outward shift in the economy’s production possibility

frontier. Second, it may result in the reallocation of resources across the various industries in the

11



economy. However, when the original allocation is efficient, any aggregate effect due to the resource

reallocation channel is second order (by the envelope theorem) and hence can be ignored in a first-

order approximation. This observation also implies that Hulten’s theorem may not hold in inefficient

economies. Indeed, Equation (12) is violated in production network models of Jones (2013), Bigio and

La’O (2017), and Liu (2018), all of which exhibit some form of distortions or wedges.

We also remark that while Hulten’s theorem establishes that Domar weights are sufficient statistics

for how industry-level shocks impact aggregate output, these weights are endogenous objects that

are determined in equilibrium. In fact, as Theorem 2 illustrates, even in the very simple economy

of Section 2.1 with Cobb-Douglas preferences and technologies, Domar weights depend on the

economy’s production network (via its Leontief inverse) and the household’s preferences.

Finally, it is important to bear in mind that Hulten’s theorem maintains that Domar weights

are sufficient statistics for microeconomic shocks’ aggregate impact only up to a first order. This

means that while Equation (12) can be a reasonable approximation when either the shocks are small

or the economy does not exhibit significant nonlinearities, it may be a fairly poor approximation

more generally.10 Baqaee and Farhi (2018c) explore the role of such nonlinearities by extending

Hulten’s theorem to include the second-order effects of microeconomic shocks on aggregate output.11

Focusing on a general economy with a nested CES structure, they illustrate that these second-order

terms depend on the economy’s production network, the elasticities of substitution at various CES

nests, and the degree to which factors can be reallocated across industries. The presence of these

nonlinearities (which include, but are not restricted to, the second-order effects) are at the core

of the apparent disparity between Hulten’s theorem and one’s intuition regarding network linkages

mentioned earlier: while Hulten’s theorem is a statement about the shocks’ first-order effects, the

economy’s production network can manifest itself via significant nonlinear effects captured by the

higher-order terms.

2.4 Frictions and Market Imperfections

As already emphasized, propagation of productivity shocks in the perfectly competitive models of

Sections 2.1 and 2.3.1 occurs via two channels. First, a negative shock to industry i results in an

increase in the price of good i, thus increasing the production cost of industries that use i as an

input for production. Second, the increase in i’s price may also induce the customer industries to

readjust their demand for other intermediate inputs. These observations imply that departures from

the assumption of perfect competition that either (i) distort the input usage of customer industries or

(ii) modify prices’ responsiveness to the shocks can reshape propagation patterns over the network.

The simplest departure from the assumption of perfect competition is the introduction of

exogenous wedges — say, in the form of markups — between firms’ marginal revenue and marginal

10Put differently, Equation (12) is obtained under the assumption that the shocks’ impact on the Domar weights themselves
is negligible. In general, however, the sales share of an industry may respond significantly to shocks. This observation also
illustrates why Hulten’s theorem holds globally (i.e., regardless of the size of the shocks) in the baseline model of Section 2.1
(Equation (7)): in the special case that all preferences and technologies are Cobb-Douglas, Domar weights are independent
of the realization of productivity shocks, which implies that Hulten’s first-order approximation is exact.

11Relatedly, Acemoglu, Ozdaglar, and Tahbaz-Salehi (2016) study the micro and macro implications of non-linearities in a
reduced-form model of network interactions.
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costs that distort their input and output choices away from efficient levels. This is the approach

adopted by Jones (2013), Bigio and La’O (2017), and Fadinger et al. (2018), who investigate how the

production network interacts with productivities and markups in the determination of aggregate

outcomes in the Cobb-Douglas economy of Section 2.1.12 They find that the extent of resource

misallocation and the resulting reductions in the economy’s allocative efficiency and aggregate TFP

depend on the distribution of wedges across the economy’s production network. One consequence of

focusing on a Cobb-Douglas economy with exogenous wedges, however, is that propagation patterns

in the distorted and undistorted economies coincide. More precisely, if µk denotes the markup

charged by industry k to all its customers, then

d

dµk

(
d log(yi)

d log(zj)

)
= 0

for all i, j, and k; i.e., the impact of a shock to industry j on i’s log output is invariant to the level of

markups in the economy.

The interaction between distortions and productivities are investigated by Caliendo et al. (2018b),

who consider a model of the world economy with CES technologies, and Baqaee and Farhi (2018a,b),

who provide first-order approximations to the impact of productivity shocks in a fairly general class of

economies while maintaining the wedges as exogenously given model primitives. Baqaee and Farhi

(2018b) illustrate that productivity shocks’ first-order impact can be decomposed into two separate

terms: (i) a term that accounts for the shocks’ “pure” technology effect and (ii) an additional term

that accounts for changes in the economy’s allocative efficiency. In addition, they show that, away

from the Cobb-Douglas benchmark, the presence of distortions can change the productivity shocks’

propagation patterns due to changes in the economy’s allocative efficiency.

In a related study, Liu (2018) characterizes how market imperfections in the form of deadweight

losses in input usage can result in misallocation of productive resources across sectors, thereby

creating room for welfare-improving interventions in the form of industrial policies observed in some

developing countries. He demonstrates that, in the presence of input-output linkages, targeting the

most distorted industries may be suboptimal, as market imperfections may accumulate in a non-

trivial manner over the production network.13

While simple, reduced-form exogenous wedges or markups are not adequate for capturing how

specific market imperfections shape propagation dynamics. Such an analysis requires a micro-

founded model for the interaction between shocks and wedges. Grassi (2017) takes a first step in

this direction by considering a model of production networks with oligopolistic market structures.

In such an environment, firm-level productivity shocks affect not only prices but also markups via

changes in the firms’ competitiveness vis-à-vis other firms in the same industry. This means that the

responsiveness of prices to shocks is no longer invariant to the realization of shocks, thus impacting

the extent of downstream propagation. Furthermore, changes in market concentration impact

12A related set of papers, such as Luo (2016), Altinoglu (2018), and Reischer (2018), studies how trade credit relationships
shape the propagation of financial shocks over production networks.

13In the same spirit, King, Tarbush, and Teytelboym (2018) study optimal carbon tax policies in a multi-sector economy
with input-output linkages and show that the most effective carbon tax policy targets industries based not only on their
individual emission levels, but also on their position in the production network.
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industries’ demand for intermediate inputs, thus inducing an upstream propagation channel that

would be absent in a model with exogenous markups. In the same spirit, Baqaee (2018) endogenizes

the mass of firms active in each industry in the context of an economy with imperfect competition and

external economies of scale due to firm entry and exit. He shows that exits in an industry can change

the profitability of firms in other industries and hence trigger endogenous adjustments in the mass of

active firms. This creates an amplification channel in the form of upstream and downstream cascades

of exits.

2.5 Endogenous Production Networks

Our discussion up to this point was based on the assumption that while input-output linkages can

function as a shock propagation mechanism, the structure of the production network itself is invariant

to the shocks. In reality, however, firms systematically respond to changes in economic conditions

by altering their trading partners. For instance, they may source new inputs to take advantage

of technological innovations or may enter into relationships with new customers in response to a

customer’s exit. Such endogenous changes in the production network can, in turn, significantly alter

the economy’s response to exogenous disturbances.

To accommodate the production network’s response to shocks, a small but growing literature

focuses on developing a joint theory of production and endogenous network formation. Developing

such a theory, however, faces a central challenge. The complexity inherent to direct and indirect

network effects coupled with the combinatorial nature of graphs means that the relevant state

space for firm-level decision making can become prohibitively large, even in fairly small economies

consisting of a handful of firms.

A first set of papers sidestep this challenge by proposing statistical models of network formation.

Atalay et al. (2011) develop a model in which links between firms are created through a variant of

the preferential attachment model, while Carvalho and Voigtländer (2015) propose an industry-level

network formation model based on the friendship model of Jackson and Rogers (2007), according to

which existing input-output linkages are used to search for new inputs for production. Using industry-

level data, and consistent with the model’s central mechanism, they find that producers are more likely

to adopt inputs that are already in use by their current (direct or indirect) upstream suppliers.

While statistical models like the ones mentioned above are able to match some of the key attributes

of real-world production networks, by their nature, they abstract from firms’ link formation incentives.

These incentives are explicitly incorporated by Oberfield (2018) into a dynamic model of network

formation in which producers optimally choose one input from a randomly evolving set of suppliers.

He finds that such endogenous choice results in the emergence of star suppliers that sell their goods to

many other firms for intermediate use. Oberfield overcomes the “curse of dimensionality” discussed

earlier by (i) considering an economy consisting of a continuum of firms and (ii) restricting attention

to single-input production technologies. These assumptions simplify the analysis by guaranteeing

that each individual firm’s decision has no impact on aggregate variables and that equilibrium

production networks that exhibit cycles are of measure zero.14

14Lim (2018) adopts a similar approach by considering an economy consisting of a continuum of firms, but in contrast
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Acemoglu and Azar (2018) consider an alternative model in which firms in each one of n

industries decide which subset of the other n − 1 industries to use as input-suppliers, with each

input combination leading to a different constant returns to scale production technology. The key

assumption in the model is that markets are “contestable” in the sense that a large number of firms

have access to the same menu of technologies. This assumption ensures that, when choosing its

input combination, each firm can take the production network and all prices as given, thus bypassing

complex strategic considerations of how its choice may reverberate through the network. In such an

environment, aside from its standard effect of reducing all downstream prices (relative to the wagew),

a positive technology shock to an industry alters the incentives of firms in downstream industries to

adopt a wider set of inputs.

A related propagation mechanism is explored by Taschereau-Dumouchel (2018), who develops

a firm-level model of network formation in which firms exit if they cannot meet fixed costs of

production. Such extensive margin adjustments create strong complementarities between firms’

operating decisions: a negative shock that results in a firm’s exit reduces the profitability of its

suppliers and customers, thus creating the potential for a cascade of shutdowns that changes the

shape of the production network.15 The resulting propagation mechanism implies that periods of

low economic activity feature a less clustered production network, a prediction that is consistent with

the data.16

3 The Network Origins of Aggregate Fluctuations

The discussion in the previous section illustrates that the economy’s production network can

function as a mechanism for propagating shocks from one firm or industry to the rest of the

economy. But can such a propagation mechanism translate idiosyncratic microeconomic shocks

into significant fluctuations at the aggregate level? The answer to this question can shed light on

whether macroeconomic fluctuations can have their origins in idiosyncratic shocks to individual firms

or disaggregated industries.

Going as far back as Lucas (1977), the possibility that significant fluctuations in aggregate

economic variables may originate from microeconomic shocks was downplayed by the literature. This

dismissal was based on a “diversification argument,” which maintained that in an economy consisting

of n industries hit by independent shocks, the standard deviation of aggregate fluctuations would be

roughly proportional to 1/
√
n, a negligible effect at high levels of disaggregation (corresponding to

large values of n). This argument, however, ignores the possibility that shocks may propagate from

one firm or industry to another over input-output linkages: with such a propagation mechanism at

to Oberfield (2018), he allows for multi-input firms that are subject to relationship-specific cost shocks. The trade-off of
these costs against the benefits of maintaining supplier-customer relationships generates extensive margin adjustments in
firm-to-firm trade. Also see Boehm and Oberfield (2018).

15The firm-level nature of the model, alongside the binary decision faced by the firms, makes the model analytically and
computationally intractable. However, Taschereau-Dumouchel (2018) illustrates that under certain conditions, the social
planner’s problem can be solved efficiently.

16A related set of papers, such as Antràs and Chor (2013), Chaney (2014), Antràs, Fort, and Tintelnot (2017), and Tintelnot
et al. (2018) studies firms’ sourcing decisions in the international trade context. See Chaney (2016), Johnson (2018), and
Bernard and Moxnes (2018) for a general overview of network models in international trade.
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work, sectoral outputs would be correlated and hence may not wash out upon aggregation, even when

the shocks themselves are independent.

In this section, we follow Acemoglu et al. (2012) and use Theorems 1 and 2 to revisit Lucas’s

argument and characterize the conditions under which input-output linkages in the economy can

indeed generate sizable aggregate fluctuations from purely idiosyncratic shocks. We do so in two

steps. We first use Equation (7) to relate the economy’s aggregate volatility to the distribution of

sectoral Domar weights in the economy. We then rely on Equation (8) to provide a characterization of

“network-originated” macro fluctuations in terms of the economy’s production network structure.

3.1 Micro Shocks and Macro Fluctuations

To illustrate the key ideas in the most transparent manner, we impose the following regularity

assumptions on the baseline model from Section 2.1. First, we assume that log productivity shocks

εi = log(zi) are independent and identically distributed with mean zero and finite standard deviation

σ, thus ensuring that the economy is only subject to industry-level idiosyncratic shocks. Second, we

suppose that the share of labor is the same across all industries, i.e., αi = α for all i.

Equation (7) implies that the aggregate volatility that is due to idiosyncratic microeconomic shocks

is given by

σagg = stdev(log(GDP)) = σ‖λ‖, (14)

where ‖λ‖ = (
∑n

i=1 λ
2
i )

1/2 denotes the second (uncentered) moment of Domar weights. Since Domar

weights sum up to
∑n

i=1 λi =
∑n

i,j=1 βj`ji = 1/α, we can rewrite the above equation as

σagg =
σ/α√
n

√
1 + n2α2var(λ1, . . . , λn). (15)

This relationship has two immediate implications. First, it implies that when all Domar weights are

identical, σagg is proportional to 1/
√
n, consistent with the diversification argument. Second, the fact

that in general σagg depends on the variance of Domar weights indicates that the argument put forth

by Lucas may break down if sectoral Domar weights exhibit significant heterogeneity. In particular,

Equation (15) illustrates that, all else equal, more dispersion in Domar weights results in higher levels

of aggregate volatility emerging from purely idiosyncratic shocks.

These observations are at the heart of what Gabaix (2011, 2016) refers to as the granularity

hypothesis: in the presence of significant heterogeneity at the micro level, the incompressible “grains”

of economic activity (comprised of firms or disaggregated industries) can matter for the behavior of

macroeconomic aggregates. This is driven by the fact that such heterogeneity reduces the extent to

which various shocks cancel each other out at the aggregate level. Importantly, Gabaix (2011) also

shows that when the distribution of Domar weights is sufficiently heavy-tailed, aggregate volatility

can be significantly larger than Lucas’s 1/
√
n benchmark, even at high levels of disaggregation. For

example, suppose that Domar weights have a Pareto distribution with exponent γ ≥ 1, in the sense

that the fraction of industries with Domar weights greater than any given λ is proportional to λ−γ ,

with a smaller γ corresponding to more heterogeneity in Domar weights. One can show that when
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γ ∈ (1, 2), then ‖λ‖ in Equation (14) is proportional to n1/γ−1 as n → ∞.17 Thus, a sufficiently skewed

distribution of Domar weights can result in significantly higher levels of aggregate volatility relative to

the 1/
√
n benchmark.

3.2 Network-Originated Macroeconomic Fluctuations

We now turn to our main question of interest, namely, whether the economy’s production network

can translate idiosyncratic shocks into sizable macroeconomic fluctuations.

We first note that while Equation (15) readily establishes that the extent of micro-originated GDP

fluctuations is tightly linked to the heterogeneity in Domar weights, these weights are endogenous

objects that are determined in equilibrium. We thus use Equation (8) to obtain a characterization

in terms of the economy’s structural parameters. Furthermore, to isolate the role of input-output

linkages, we normalize the preference shares such that βi = 1/n for all i. Such a normalization

ensures that any heterogeneity in Domar weights only reflects differences in the roles of different

industries in the economy’s production network. In particular, λi = vi/n, where vi =
∑n

j=1 `ji is

the i-th column sum of the economy’s Leontief inverse and measures the importance of industry i as

a direct or indirect input-supplier to all sectors in the economy.

We can now use Equations (8) and (15) to relate the volatility of log output of this economy to its

production network:

σagg =
σ√
n

√
α−2 + var(v1, . . . , vn). (16)

Equation (16) recovers the key insight of Acemoglu et al. (2012): sufficient heterogeneity in various

industries’ roles as input-suppliers can lead to significantly higher levels of aggregate volatility

compared to the 1/
√
n rate predicted by the diversification argument. For example, if the vi’s have

a Pareto distribution with exponent γ ∈ (1, 2), then σagg will be proportional to n1/γ−1 as n → ∞.

The intuition underlying this result is tightly linked to the nature of the propagation mechanism as

captured by Theorems 1 and 2. Microeconomic shocks wash out at the aggregate level if they impact

the aggregate output roughly symmetrically. But when industries are highly asymmetric in their roles

as input-suppliers, shocks to industries that are more important suppliers propagate more widely and

hence do not wash out with the rest of the shocks upon aggregation.

To further clarify how input-output linkages may shape aggregate volatility, it is instructive to

consider the graph-theoretic interpretations of vector v = (v1, . . . , vn) and Equation (16). By its

definition, the Leontief inverse satisfies L = I + LA. Consequently, vi =
∑n

j=1 `ji can be expressed in

a recursive form as

vi = 1 +

n∑
j=1

ajivj .

This representation indicates that vi coincides with the so-called Bonacich centrality of vertex i in

the graph that represent’s the economy’s production network (Bonacich, 1987): an industry i is more

17If γ > 2, then ‖λ‖ scales as 1/
√
n as n → ∞, whereas in the knife-edge case of γ = 2, it scales as

√
log(n)/n. See the

proofs of Proposition 2 of Gabaix (2011) and Corollary 1 of Acemoglu et al. (2017) for detailed derivations.
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(a) (b) (c)

Figure 2. Production networks corresponding to three economies with non-trivial input-output linkages. Each
vertex corresponds to an industry, with a directed edge present from one vertex to another if the former is an
input-supplier to the latter.

“central” in the production network if it is a more important input-supplier to other central industries.

Thus, according to this interpretation, Equation (16) establishes that microeconomic shocks can

generate sizable aggregate fluctuations when the economy’s production network consists of industries

with widely disparate centralities. Figure 2(a) provides an example of one such economy (albeit an

extreme one), in which a single industry serves as the sole input-supplier to all other industries. As

such, microeconomic shocks to this central industry propagate widely throughout the economy and

hence do not wash out with the rest of the shocks. In fact, it is easy to verify that, among all economies

with the same labor share α, the star network in Figure 2(a) exhibits the maximal dispersion in

industrial centralities, var(v1, . . . , vn). The economies depicted in Figures 2(b) and 2(c) are at the other

end of the spectrum, with all industries taking symmetric roles as input-suppliers in the economy.

Note that, despite the fact that micro shocks do propagate over these networks, the fact that they

propagate symmetrically means that they will cancel each other out, leading to minimal aggregate

effects. In fact, by Equation (16), the volatility of aggregate fluctuations driven by idiosyncratic shocks

in these economies is proportional to 1/
√
n.18

3.3 Comovements

Our discussion thus far shows that sufficient heterogeneity in Domar weights can translate

microeconomic shocks to highly disaggregated industries into macroeconomic fluctuations.

Importantly, this is the case regardless of whether such heterogeneity is driven by asymmetry in

the economy’s production network (as in Section 3.2) or is due to other reasons (for example, as a

result of heterogeneity in preference shares (β1, . . . , βn)). By now, however, it should be clear that

even when the source of heterogeneity in Domar weights may not matter for aggregate fluctuations,

economies that exhibit higher levels of “network heterogeneity” exhibit higher levels of comovement:

propagation of shocks over the economy’s production network increases the likelihood that more

industries move in tandem over the business cycle.

18Whether input-output linkages can turn microeconomic shocks into sizable aggregate fluctuations was debated by
Horvath (1998, 2000) and Dupor (1999) back in the 1990’s, with the former arguing in favor, while the latter providing
analytical results for a broad class of economies with fairly dense production networks — such as Figure 2(b) — in which
micro shocks wash out at a fairly rapid rate upon aggregation. Our discussion above and Equation (16) illustrate that Dupor’s
results were driven by his focus on economies in which all industries have identical centralities (despite the presence of
non-trivial input-output linkages).
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To formalize this statement, we consider the benchmark model from Section 2.1 under the

restriction that the economy’s input-output matrix is a symmetric circulant matrix with diagonals that

are greater than 1/n.19 While somewhat restrictive, the focus on this subclass of economies provides

us with enough structure to present the key ideas in the most transparent manner. We maintain the

assumption that microeconomic shocks (ε1, . . . , εn) are independent and identically distributed with

mean zero and standard deviation σ.

Given two economies in this class with input-output matrices A and Ã and identical Domar

weights (λi = λ̃i for all i) and labor shares (αi = α̃i = α for all i), we say the latter economy is more

interconnected than the former if ãij = γaij+(1−γ)(1− α)/n for all pairs of industries i and j and some

γ ∈ [0, 1]. Under this definition, the intensity of input-output linkages between any two industries in

the more interconnected economy is more evenly distributed, with a small value of γ corresponding

to an economy that is more similar to the complete network in Figure 2(b).20 We have the following

novel result, the proof of which is provided in Appendix A.

Theorem 4. Consider a pair of economies with identical Domar weights and suppose that the latter is

more interconnected than the former. Then,

(a) the average pairwise correlation of (log) outputs is higher in the more interconnected economy;

(b) the industries in the less interconnected economy are more volatile.

Statement (a) of the above result thus formalizes our earlier claim regarding the importance of

input-output linkages in creating comovement across different industries: given two economies with

identical Domar weights, the one with higher levels of interconnectivity leads to higher average

pairwise correlations, despite the fact that the two economies are indistinguishable at the aggregate

level. Statement (b) then establishes that this increase in comovement is coupled with a reduction in

sectoral volatilities. This is a consequence of the fact that, in a more interconnected economy with a

more even distribution of input-output linkages, each industry is more diversified with respect to the

upstream risk emanating from its suppliers, its suppliers’ suppliers, and so on.

Taken together, the two parts of Theorem 4 illustrate a key distinction between the nature of

economic fluctuations in (i) an economy with high levels of network heterogeneity and (ii) an

economy with an identical Domar weight distribution but with low levels of network heterogeneity.

Aggregate fluctuations in the latter economy are, for the most part, driven by fluctuations in sectors

with high Domar weights. In contrast, sizable aggregate fluctuations that arise from the interplay of

microeconomic shocks and the production network exhibit significant comovement across a wide

range of sectors within the economy.

3.4 Macroeconomic Tail Risks

Our focus in the previous subsections was on how input-output linkages can shape (i) the economy’s

aggregate volatility and (ii) the comovement between various industries as measured by their
19A matrix is said to be circulant if each row is a single-element rotation of the previous row.
20While related, this notion of interconnectivity is distinct from the one defined in Acemoglu et al. (2017). The

transformation ãij = γaij + (1 − γ)(1− α)/n coincides with the concept of γ-convex combination of two networks in
Acemoglu et al. (2015).
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variance-covariance matrix. The economy’s production network, however, has implications for the

distribution of sectoral and aggregate outputs, well beyond their second moments.

These implications are the focus of Acemoglu et al. (2017), who show that the economy’s

production network may fundamentally reshape the distribution of output by increasing the

likelihood of large economic downturns from infinitesimal to substantial. Such an analysis requires

a notion for measuring “macroeconomic tail risks.” A natural candidate is to measure macro tail

risks in terms of systematic departures in the frequency of large contraction in aggregate output from

what would prevail under a normal distribution with an identical variance. The central result is that

an economy with a non-trivial production network that is subject to thin-tailed shocks may exhibit

deep recessions as frequently as economies that are subject to heavy-tailed shocks. Importantly,

whereas the second moment of the distribution of Domar weights (i.e., ‖λ‖ in Equation (14)) is a

sufficient statistic for the extent of micro-originated volatility, the extent of macroeconomic tail risks is

determined by a statistic that also depends on the largest Domar weight in the economy. This disparity

implies that the role of production networks in generating macroeconomic tail risks is distinct from

their role in generating high levels of aggregate volatility. Hence, macroeconomic tail risks may vary

significantly even across economies that exhibit otherwise identical behavior for moderate deviations.

4 Empirical and Quantitative Studies

In the previous sections, we used a simple model and a few of its variants to present the theoretical

foundations for the role of production networks in macroeconomics. In this section, we provide a

brief guide to the literature that explores these themes empirically and quantitatively.

4.1 Properties of Production Networks

We start with an overview of some of the well-documented stylized facts concerning firm- and

industry-level production networks.

Perhaps the most widely used industry-level data is the Input-Output Accounts Data compiled by

the Bureau of Economic Analysis (BEA). This database contains the most disaggregated sectoral data

available worldwide, providing a detailed breakdown of the U.S. economy into hundreds of industries.

As documented by Carvalho (2010, 2014) and Acemoglu et al. (2012), among others, the BEA data

indicate that the U.S. industry-level production network exhibits a few notable properties. First, the

industry-level network is highly sparsely connected, in the sense that narrowly-defined specialized

industries supply inputs to only about 11 other industries on average. Second, it is dominated by

a small number of hubs: general purpose industries that supply a wide range of industries in the

economy. This is reflected in a highly skewed distribution of (weighted) outdegrees, which is well-

approximated by a Pareto distribution. Third, the production network exhibits what has come to

be known as the “small-world” property, where though most industry-pairs are not directly linked

by an input-supply relation, they are indirectly linked by hub-like sectors, resulting in a network

with short average path length distance and a small diameter. Finally, the production network

exhibits a highly skewed distribution of sectoral (Bonacich) centralities, also well-approximated by
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a Patero distribution with diverging second moments. As reviewed in Section 3.2, this last property

indicates that, in the data, heterogeneity in centrality is extensive enough to lead to a breakdown of

the diversification argument, implying the possibility that micro shocks generate sizable aggregate

fluctuations. As we shall see below, this possibility is indeed confirmed by a host of quantitative

studies.

Industry-level input-output data is also available for many other countries, albeit at considerably

coarser levels. The STAN database (containing benchmarked input-output data for 47 industries

across 37 OECD countries) and the Global Trade Analysis database (with better coverage of low-

income countries at a slightly higher level of aggregation) allow for cross-country comparative studies

of production networks. Using these data, McNerney et al. (2013), Blöchl et al. (2011), and Fadinger

et al. (2018) document that, consistent with the patterns in the U.S., the distributions of sectoral

outdegrees and centralities are highly heterogeneous in a wide range of countries. In addition, Blöchl

et al. (2011) document that different groups of countries cluster around different central industries,

while Fadinger et al. (2018) find that central industries in richer countries are relatively less productive.

The recent availability of large scale firm-level transactions data has made analyses at a more

granular level possible. One of the most extensive of such datasets originates from a large (private)

credit reporting agency in Japan, named Tokyo Shoko Research (TSR), which in the course of issuing

credit scores for firms, obtains the identity of firms’ customers and suppliers. This yields information

on the buyer-supplier relations of close to a million firms, virtually covering the universe of Japanese

firms with more than 5 employees. Another important source of firm-level transactions data is value-

added tax (VAT) records from countries where such tax is levied and where tax authorities require

the reporting of transactions between any two VAT-liable entities. The best studied of such datasets

are based on VAT records from Belgium, containing the universe of all domestic supplier-customer

relations at the firm level. Relative to the Japanese data mentioned above, this data is richer as it also

contains the transaction amounts associated with each of the firm-to-firm links. Carvalho et al. (2016)

and Bernard et al. (forthcoming) report some stylized facts emerging from the Japanese data, while

Bernard et al. (2018) do the same for Belgium. While based on two different countries, these studies

suggest a number of salient characteristics of firm-level production networks. First, as in the case of

industries, firm-level networks exhibit extensive heterogeneity in the role of firms as input-suppliers,

with outdegree distributions that are close to Pareto. Second, and this time in contrast to industry-

level networks, the indegree distributions are also very skewed, indicating the presence of firms that

rely on a large number of suppliers. Third, larger firms in terms of sales or employees also tend to have

larger numbers of buyers and suppliers. Finally, geographical distance is an important determinant in

firm-to-firm link formation, with most linkages occurring between firms that are geographically close.

Unfortunately, the structure of the U.S. firm-level production network has received less attention

as data is more scant. The most widely used U.S. dataset on buyer-supplier relations comes from

the Compustat database, which is based on the financial accounting regulations that require publicly-

listed firms to disclose the identity of any customer representing more that 10% of their reported sales.

Clearly, this induces a double selection bias: the data only contains linkages for publicly-traded firms

and typically correspond to small firms supplying to relatively larger customers. Nonetheless, the data
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can still provide valuable information about the nature of production at a granular level. For instance,

Atalay et al. (2011) are able to document that, as in Japan and Belgium, the indegree distribution of the

network of publicly-listed firms in the U.S. is also highly skewed.21

4.2 Propagation Patterns

We next review some of the empirical evidence on the propagation of shocks at the industry and firm

levels.

4.2.1 Industry-Level Evidence

Acemoglu, Akcigit, and Kerr (2016) provide a first pass at testing the propagation mechanism implied

by the baseline model in Section 2.1 at the industry level. Their starting point is the expression in

Equation (6) for the equilibrium output of each industry as a function of the economy’s production

network and microeconomic productivity shocks. Taking first differences, this expression implies that

∆ log(yi) = ∆εi +

n∑
j=1

(`ij − I{j=i})∆εj ,

where I denotes the indicator function. The above expression decomposes the output growth of

industry i into an “own effect” (the result of i’s own productivity shock, ∆εi) and a “network effect”

due to the propagation of shocks from other industries. They operationalize this decomposition by

constructing the Leontief inverse using the input-output tables compiled by the BEA and sourcing

detailed sectoral output data from the NBER-CES manufacturing industry database. As a proxy

for productivity shocks, they use lagged realizations of sector-level TFP growth so as to minimize

concerns regarding contemporaneous joint determination of output and TFP. Combining input-

output data with this candidate measure for shocks yields the main regressor of interest, defined as

Downstreami,t−1 =
∑n

j=1(`ij − I{j=i})∆TFPj,t−1. This is a weighted average of shocks hitting i’s direct

and indirect suppliers, using the entries of the Leontief inverse as weights, as instructed by the model.

The labelling of this regressor reflects our discussion in Section 2.1 that in a Cobb-Douglas economy

productivity shocks should only propagate downstream. This in turn implies that the corresponding

upstream measure, Upstreami,t−1 =
∑n

j=1(`ji − I{j=i})∆TFPj,t−1, should have no effect on i’s output

dynamics. The following regression can thus be used to test the propagation patterns implied by the

baseline model:

∆ log(yit) = δt + ψ∆ log(yit−1) + βownOwnit−1 + βdDownstreamit−1 + βuUpstreamit−1 + εit,

where Owni,t−1 = ∆TFPi,t−1 captures industry i’s own direct productivity shock. This specification

additionally allows for the presence of lagged dependent variables and year fixed effects to deal with

possibly correlated error structures, either across time or in the cross-section.

21In addition to the Compustat database, Capital IQ, FactSet Revere, and Bloomberg also provide firm-level supply chain
data for the U.S. (and a number of other countries) with an emphasis on publicly-traded firms. Finally, as Atalay, Hortaçsu,
and Syverson (2014) have shown, another promising avenue for U.S. data is to combine the micro survey data from the
Commodity Flow Survey with the U.S. manufacturing census in order to obtain information on plant-to-plant shipments of
goods.
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Consistent with the theory, Acemoglu, Akcigit, and Kerr (2016) find that the downstream network

effect of productivity shocks is economically and statistically significant: a one standard deviation

increase in TFP growth is associated with a downstream effect of about 6% on output growth.

By comparison, the upstream effect of productivity shocks is much smaller economically and its

statistical significance is not robust to alternative output measures. These findings are in broad

accordance with the predictions of Theorem 1 for the baseline Cobb-Douglas economy.

This simple empirical framework is flexible enough to also test the propagation patterns of

demand shocks. Recall from Theorem 3 that, in the baseline Cobb-Douglas economy, demand-

side shocks to a given industry should only propagate upstream to its direct and indirect suppliers.

Acemoglu, Akcigit, and Kerr (2016) use changes in federal government spending to construct one such

shock: they interact an industry’s (initial) share of sales to the federal government with aggregate

growth of federal spending. As in the previous exercise, the regressors of interest are obtained

by lagging the shocks and constructing weighted averages of the shocks across direct and indirect

suppliers (for upstream effects) and customers (for downstream effects), with weights given by the

corresponding elements of the Leontief inverse. Consistent with the models’ predictions, these results

indicate significant upstream — rather than downstream — network effects following a demand

shock.

We conclude by noting that while the above exercise is indicative of propagation patterns that are

broadly consistent with the predictions of Theorems 1 and 3, one should be careful in interpreting

these estimates as causal. Even though the use of lagged predetermined shocks seeks to minimize

endogeneity concerns, these shocks — and in particular, TFP growth — may be endogenous to

decisions in the recent past that affect current realizations of the left- and right-hand side variables

in the regression equations.

4.2.2 Firm-Level Evidence

A different strand of literature uses more granular data across a host of different countries to document

the propagation of shocks at the firm level. These studies serve two important purposes. First,

while industry-level evidence for the propagation of shocks indicates that production networks can

have empirically relevant implications, ultimately, any actual propagation happens at the level of

firms. Therefore, firm-level studies can provide more direct evidence for the nature of the underlying

propagation mechanisms. Second, the possibility of identifying arguably exogenous shocks at the

firm level (such as localized natural disasters), coupled with the more extensive variation in exposure

to such shocks, means that one can overcome the endogeneity concerns that may arise at more

aggregated levels.

Barrot and Sauvagnat (2016) investigate the propagation of firm-specific shocks by combining

data on the timing and location of major natural disasters (in the form of blizzards, earthquakes,

floods, and hurricanes) in the U.S. with information on the physical headquarters’ location and

supplier-customer linkages of publicly-listed firms from Compustat. Given the limitations of the

observable production network in the Compustat database, Barrot and Sauvagnat (2016) focus on

“local” propagation patterns from a firm to its immediate suppliers and customers by regressing
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changes in quarterly sales of firms on a dummy variable capturing whether the firm’s direct suppliers

were located in a county hit by a natural disaster in a recent quarter. They document that exposures

to the natural disaster results in a 2 to 3 percentage point drop in sales growth of the disrupted firm’s

direct customers. Importantly, this drop is particularly pronounced when the disrupted supplier is

producing hard-to-substitute relation-specific inputs, in which case the shock further propagates to

other (non-affected) suppliers of the customer firm. This evidence suggests that, while the Cobb-

Douglas model may serve as a good approximation at the industry-level, it may break down at the

more micro-level, where easily substitutable inputs coexist with relation-specific inputs that are more

difficult to substitute (at least in the short run).

A similar pattern is documented by Boehm et al. (forthcoming), who use U.S. Census Bureau

micro data to study firm-level cross-country transmission of supply chain disruptions caused by the

Great East Japan Earthquake of 2011. Combining reduced-form evidence with structural estimates

of production elasticities, they find that the U.S. affiliates of Japanese multinationals experienced a

roughly one-for-one decline in output in response to declines in imports. This finding indicates that

the short-run elasticity of substitution between imported and domestic inputs is close to zero.

While the above studies provide credible evidence for the propagation of shocks from a firm to

its direct suppliers and customers, a shock’s impact on the aggregate economy also depends on the

extent to which it eventually propagates to more distant, only indirectly-connected, firms. Testing this

hypothesis, however, requires large-scale and detailed information on firm-to-firm linkages across

the economy. This is the approach taken by Carvalho et al. (2016), who use the TSR data to trace the

disruption caused by the 2011 earthquake and tsunami throughout the Japanese production network.

Consistent with the results surveyed above, they find a significant post-earthquake impact on the

sales growth rates of firms with direct suppliers in the disaster areas. In addition, they also find that

the disruption (i) propagated further downstream to the disaster area firms’ indirect customers and

(ii) resulted in significant upstream propagation to the direct and indirect suppliers of earthquake-

hit firms. The evidence on indirect propagation effects, coupled with the “small world” nature of

the production network, suggests that localized disturbances like the earthquake can have non-

trivial aggregate consequences: while the individual, firm-level impact of the disruption may not

be very large — particularly when considering indirectly-exposed firms — its aggregate effect can be

significantly higher whenever a large fraction of firms in the economy is only two or three input-links

away from disrupted firms.

Understanding whether and how shocks propagate in production networks is currently the subject

of a fast-expanding literature that combines novel production network data with a host of different

shocks, thus going beyond the early interest in productivity disturbances. Demir, Javorcik, Michalsk,

and Örs (2018) study the propagation and amplification of financial shocks by liquidity-constrained

firms. Combining extensive VAT firm-to-firm transaction data from Turkey with an unexpected policy

change levying a tax on trade credit financing by Turkish importers (which effectively made it more

costly to finance input purchases from abroad), they find that liquidity-constrained importers exposed

to the shock transmitted it to their downstream customers. Further afield, Carvalho and Draca

(2018) use detailed military procurement data by the U.S. government and Compustat data on supply
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chain linkages for publicly-listed firms to document that an increase in demand expands innovation

efforts not only by final demand producers, but also their upstream suppliers through recursive

market size effects. Noting that expansionary monetary policy shocks — by acting as final demand

shocks — should propagate upstream through the production network, Ozdagli and Weber (2017)

investigate the role of such network effects as a possible transmission mechanism of monetary policy

shocks. Finally, Auer et al. (forthcoming) show that linkages across country-sector pairs contribute

systematically to (producer price) inflation comovement across countries.22

4.3 Comovements and Aggregate Fluctuations

We next briefly survey the literature aimed at quantifying the role of production networks in

generating comovement and aggregate fluctuations.

A reduced-form approach to account for industrial comovement is to appeal to a small number

of common factors driving (correlated) output dynamics in many industries. Such an approach

entails estimating a so-called approximate factor model on a panel of sectoral output growth rates,

∆ log yt, in the form of ∆ log yt = ΛFt + ut, where Ft is a low-dimensional vector of latent factors, Λ

is a matrix of factor loadings of appropriate size, and ut is a vector of industry-specific disturbances,

assumed to satisfy weak cross-sectional dependence. The typical finding is that, from a reduced-form

standpoint, a small number of common factors account for most comovement in data. However,

recall from our discussion in Section 3.3 and Theorem 4 that production networks can induce

significant comovement from purely idiosyncratic industry-specific shocks. Thus, what could appear

to the econometrician as “common shocks” may instead be the result of endogenous comovement

generated by the equilibrium interactions between various industries in a production network.

Properly accounting for such a possibility calls for a structural approach that takes the input-output

linkages explicitly into account.

Foerster, Sarte, and Watson (2011) adopt one such structural approach to decompose the dynamics

of disaggregated U.S. industrial production indices into components arising from aggregate and

industry-specific shocks. They use a dynamic variant of the baseline Cobb-Douglas economy in

Section 2.1, featuring capital accumulation, capital goods’ linkages across industries, and more

general preferences. By inverting the model-implied mapping from disturbances to observables in

order to recover the underlying structural shocks, they find that idiosyncratic productivity shocks

alone account for 50% of aggregate industrial production fluctuations between 1984 and 2007. Thus,

while statistical models may perceive industrial comovement as being led almost solely by common

macro shocks, a non-trivial fraction of aggregate fluctuations can instead be traced to idiosyncratic

shocks propagating across the production network.23

While important, these conclusions rely on the assumption that the structural model coincides

with the true data generating process and, as a result, on the particular propagation mechanics

22A smaller literature in finance investigates the asset pricing implications of production networks. Some recent examples
include Herskovic et al. (2017), Herskovic (2018), and Gofman, Segal, and Wu (2018).

23For comparison, Foerster et al. (2011) show that adopting the reduced-form approach of approximate factor models
would lead one to conclude that two factors account for 87% of variability in aggregate industrial production between 1984
and 2007.
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imparted by Cobb-Douglas technologies. Yet, as we discussed earlier, empirical micro studies

of propagation patterns suggest important departures from the Cobb-Douglas benchmark, thus

questioning the robustness of the quantitative inferences above. Atalay (2017) tackles this problem by

showing how to extend the Foerster et al. (2011) methodology to an economy with CES technologies

and preferences. To calibrate his model, Atalay (2017) uses annual input-output tables constructed by

the BEA to estimate elasticities of substitution in industries’ production functions, obtaining a value of

at most 0.2 for the elasticity of substitution between intermediate inputs. The strong complementarity

among inputs suggested by these estimates imply stronger propagation and hence more pronounced

aggregate effects originating from microeconomic shocks compared to the Cobb-Douglas benchmark.

Indeed, under his benchmark parameter estimates, Atalay (2017) concludes that 83% of the variation

in aggregate output growth are attributable to idiosyncratic industry-level shocks.

The estimates by Foerster et al. (2011) and Atalay (2017) are also in broad accordance with the

earlier attempts of Horvath (2000) and Carvalho (2010) at quantifying the macroeconomic importance

of idiosyncratic shocks by directly calibrating large-scale multi-sector models under the assumption

of uncorrelated disturbances. Both studies concluded that the interplay of idiosyncratic shocks

with input-output linkages can account for about two thirds of aggregate fluctuations.24 Exploiting

a different variance decomposition methodology, di Giovanni, Levchenko, and Méjean (2014) find

similarly sized effects for the contribution of linkages to aggregate volatility. Taken together, this body

of works suggests that the economy’s production network is a major driver of comovements and GDP

fluctuations.

Much like the empirical literature on propagation patterns surveyed earlier, there is an active

interest in expanding the range of quantitative insights derived from taking production networks

explicitly into account. Baqaee and Farhi (2018c) quantify the effects of CES-induced nonlinearities

in production networks and show that such nonlinearities (i) amplify the effects of negative sectoral

shocks while mitigating positive shocks; (ii) generate significant negative skewness and excess kurtosis

in aggregate output dynamics even when the underlying structural shocks are symmetric and thin

tailed; and (iii) can lead to significant welfare costs of business cycles, ranging from 0.2% to 1.3%,

an order of magnitude larger than standard estimates in the literature. Bigio and La’O (2017) apply

their model of production networks featuring Cobb-Douglas technologies and exogenous wedges to

measure the impact of sectoral financial distortions during the Great Recession. They conclude that

the production network amplified industry-level financial shocks from 1.7 to 2.4 times more than

an equivalent economy with no linkages. Grassi (2017) instead calibrates a model of interlinked

oligopolistic market structures and finds that aggregate volatility arising from independent firm-level

shocks accounts for 34% of what is observed in the data.25 Relatedly, Magerman et al. (2017) and

Kikkawa et al. (2018) exploit extensive Belgium VAT data on firm-to-firm trade to calibrate detailed

models of firm-level production networks. They conclude, respectively, that firm-level idiosyncratic

shocks account for 57% of aggregate volatility and that firm-to-firm prodution networks entail a

substantial amount of double marginalization, increasing by about 50% the welfare gains of reducing

24See also the related contributions of Shea (2002) and Conley and Dupor (2003) for earlier studies documenting aspects
of sectoral comovements.

25See also the related firm-level calibration exercises of Gabaix (2011) and Carvalho and Grassi (forthcoming).
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firm markups relative to a simpler roundabout economy featuring no network. In the same vein,

Baqaee and Farhi (2018b) find that eliminating markup distortions entirely in an environment with

production networks and CES production functions would raise aggregate TFP by 20%. Further

afield, Caliendo et al. (2018a) consider the interplay between production networks and the spatial

structure of production. Their findings indicate that elasticities of TFP and GDP to regional and

sectoral productivity changes vary significantly depending on the sectors and regions affected. Finally,

Tintelnot et al. (2018) consider a quantitative model where domestic production networks coexist

with international trade and where domestic firm-to-firm linkages can be endogenously rewired in

response to international trade shocks. They find that allowing for the endogenous formation of the

network in the model attenuates the costs of large negative trade shocks while amplifying the gains

from trade following large positive ones.26

5 Concluding Remarks

In this article, we provided a brief overview of the growing theoretical and empirical literature on the

role of production networks in shaping economic outcomes. We relied on a simple benchmark model

and several of its variants to illustrate how production networks can (i) function as a mechanism for

the propagation of shocks throughout the economy and (ii) translate microeconomic shocks into

sizable fluctuations in macroeconomic aggregates. We also surveyed the literature that tests these

mechanisms empirically and quantifies their implications. We conclude by discussing several open

questions and promising avenues for future research.

While supplier-customer relationships that give rise to a production network are formed at the

level of firms, most of the literature focuses on models that are better approximations to the nature

of these interactions at the industry level. In particular, aside from a few exceptions discussed in the

previous sections, the literature abstracts from important issues such as firm-specific relationships,

market power, endogenous formation of supplier-customer linkages, and the possibility of firm

failures. This is despite the fact that firm-level forces can have non-trivial implications for the micro

and macro dynamics of production networks. Developing models that take such firm-level forces

seriously can help capture the theoretical and empirical richness that are currently missing from the

literature.

Relatedly, while the literature has mostly focused on how production networks can alter our

understanding of the nature of business cycles, the implications for long-term growth have been left

largely unexplored. A few studies, such as Ciccone (2002), Jones (2011), and Acemoglu and Azar (2018),

have argued for the importance of input-linkages for industrialization and long-run growth.27 The

development of richer firm-level models of production networks coupled with the availability of ever

more detailed data can provide fruitful synergies with the resurgent literature on endogenous growth,

which incorporates extensive heterogeneity at the micro level.

Finally, another promising avenue for future research is to investigate the implications of input-

26Relatedly, di Giovanni, Levchenko, and Méjean (2018) conclude that the international trade linkages of French firms
account for one-third of the comovement between France and the rest of the world.

27Also see Levine (2012) and Bartelme and Gorodnichenko (2015).
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output linkages in environments featuring nominal rigidities. The contributions of Christiano (2016)

and Pasten, Schoenle, and Weber (2018) already suggest that accounting for the network structure

of production may result in quantitatively larger welfare costs of inflation, affect the slope of the

Phillips curve, and alter the real effects of monetary policy. This, in turn, may have implications for the

design of optimal monetary policy. Exploring the theoretical and quantitative relevance of production

networks for the conduct of monetary policy can be of first-order importance for policymakers.
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A Appendix

A.1 CES Production Technologies

In what follows, we derive the expression in Equation (11). Suppose that the production technology

of firms in industry i is given by Equation (10). The first-order conditions of firms in industry i are

therefore given by

li = αipiyi/w (A.1)

xij = (1− αi)aijpiyipj−σi

(
n∑
k=1

aikp
1−σi

k

)−1
, (A.2)

where we are using the fact that αi +
∑n

j=1 aij = 1 for all i. Plugging the above expressions back into

the production function of firms in industry i implies that

pizi = wαi

(
1

1− αi

n∑
k=1

aikp
1−σi

k

)(1−αi)/(1−σi)

.

Taking logarithms from both sides of the above equation leads to the following system of equations

log(pi/w) = −εi +
1− αi
σi − 1

log

(
1

1− αi

n∑
k=1

aik(pk/w)1−σi

)
.

We make two observations. First, the above system of equations immediately implies that when εi = 0

for all industries i, then all relative prices coincide with another, that is, pi = w for all i. Second,

differentiating both sides of the above equation with respect to εj and evaluating it at ε = 0 leads to

dp̂i/dεj = −I{i=j} +
∑n

k=1 aikdp̂k/εj , where recall that p̂i = log(pi/w) is the log relative price of good

i and I denotes the indicator function. Rewriting the previous equation in matrix form, we obtain

dp̂/dεj = −ej + Adp̂/dεj , where ej is the j-th unit vector. Consequently, dp̂/dεj = −(I − A)−1ej , which

in turn can be rewritten as

dp̂i
dεj

∣∣∣∣
ε=0

= −`ij . (A.3)

The above equation therefore illustrates how shocks to industry j change the relative prices of all other

industries up to a first-order approximation.

Next, recall that the market-clearing condition for good i is given by yi = ci+
∑n

j=1 xji. Multiplying

both sides by pi and dividing by GDP implies that

λi = βi +

n∑
k=1

ωkiλk,

where λi = piyi/GDP is the Domar weight of industry i and ωki = pixki/pkyk. Note that in deriving the

above equation, we are using the fact that the household’s first-order condition requires that pici =

βi GDP. Differentiating both sides of the above equation with respect to dεj implies that

dλi
dεj

=

n∑
k=1

ωki
dλk
dεj

+

n∑
k=1

λk
dωki
dεj

. (A.4)

34



On the other hand, Equation (A.2) implies that ωki = (1 − αk)akip
1−σk

i /
(∑n

r=1 akrp
1−σk
r

)
. Hence,

differentiating both sides of this expression, evaluating them at ε = 0, and plugging the resulting

expression back into the Equation (A.4) implies that

dλi
dεj

=

n∑
k=1

aki
dλk
dεj

+

n∑
k=1

(1− σk)akiλk

(
dp̂i
dεj
− 1

1− αk

n∑
r=1

akr
dp̂r
dεj

)
.

Hence, using Equation (A.3), we obtain

dλi
dεj
−

n∑
k=1

aki
dλk
dεj

=

n∑
k=1

(σk − 1)akiλk

(
`ij −

1

1− αk

n∑
r=1

akr`rj

)
.

Multiplying both sides of the above equation by `si, summing over all s, and noting that L = (I −A)−1

leads to

dλi
dεj

=

n∑
k=1

(σk − 1)λk

(
n∑
s=1

aks`si`sj −
1

1− αk

n∑
r=1

akr`rj

n∑
s=1

aks`ss

)
. (A.5)

On the other hand, the fact that λi = piyi/GDP implies that

d log yi
dεj

= −dp̂i
dεj

+
1

λi

dλi
dεj

= `ij +
1

λi

dλi
dεj

,

where the second equality is a consequence of Equation (A.3). Plugging for dλi/dεj from Equation

(A.5) into the above equation leads to Equation (11).

A.2 Proof of Theorem 4

Consider two economies with symmetric circulant input-output matrices A and Ã and suppose the

latter is more interconnected than the former, that is, there exists a γ ∈ [0, 1] such that

Ã = γA+ (1− γ)(1− α)J,

where J = (1/n)11′ is a matrix with all entries equal to 1/n. We first prove statement (b) of the

theorem by showing that the above transformation can only decrease the volatility of each industry,

i.e., var(log ỹi) ≤ var(log yi) for all i. We then use this result to establish statement (a).

Proof of part (b). Recall from Theorem 1 that the output of industry i satisfies log yi =
∑n

i=1 `ijεj .

Under our assumption that all microeconomic shocks are i.i.d. with a common variance σ2 < ∞, it is

immediate that var(log yi) = σ2
∑n

j=1 `
2
ij . Therefore, sectoral log outputs are more volatile in the less

interconnected economy (that is, var(log ỹi) ≤ var(log yi) for all i) if and only if
∑n

j=1
˜̀2
ij ≤

∑n
j=1 `

2
ij

for all i. On the other hand, the assumption that input-output matrices A and Ã are symmetric and

circulant implies that
∑n

j=1
˜̀2
ij = (1/n)

∑n
i,j=1

˜̀2
ij = (1/n) trace(L̃2). Hence, it is sufficient to show that

d

dγ
trace(L̃2)

∣∣∣
γ=1
≥ 0. (A.6)
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To this end, first note that, by definition, L̃ = (I − Ã)−1. Therefore, differentiating L̃2 with respect to γ

leads to

dL̃2/dγ = L̃2
(
2dÃ/dγ − Ã(dÃ/dγ)− (dÃ/dγ)Ã

)
L̃2

= L̃2(dÃ/dγ)L̃+ L̃(dÃ/dγ)L̃2.

On the other hand, dÃ/dγ = A− (1− α)J . Consequently,

dL̃2

dγ

∣∣∣
γ=1

= L2AL+ LAL2 − (1− α)(L2JL+ LJL2)

= 2(L3 − L2)− 2(1− α)α−3J,

where the second equality uses LA = AL = L− I and the fact that the row and column sums of L are

equal to 1/α, i.e., L1 = L′1 = (1/α)1. Hence,

d

dγ
trace(L̃2)

∣∣∣
γ=1

= 2 trace(L3)− 2 trace(L2)− 2(1− α)/α3.

Note that the trace of a matrix is equal to the sum of its eigenvalues. Furthermore, the fact that L =

(I − A)−1 implies that λk(L) = (1 − λk(A))−1, where λk(L) and λk(A) are the k-th largest eigenvalues

of L and A, respectively. Consequently,

d

dγ
trace(L̃2)

∣∣∣
γ=1

= 2

n∑
k=1

1

(1− λk(A))3
− 2

n∑
k=1

1

(1− λk(A))2
− 2(1− α)/α3 = 2

n∑
k=2

λk(A)

(1− λk(A))3
.

The second equality above is a consequence of the fact that the row sums of matrix A are all equal to

1 − α, and hence, by the Perron-Frobenius theorem, its largest eigenvalue is given by λ1(A) = 1 − α.

Multiplying and dividing the right-hand side of the above equation by n− 1 and using the fact that the

function g(z) = z/(1− z)3 is convex over the interval (−1, 1) implies that

d

dγ
trace(L̃2)

∣∣∣
γ=1
≥

2
∑n

k=2 λk(A)

(1− 1
n−1

∑n
k=2 λk(A))3

. (A.7)

Next, note that
∑n

k=2 λk(A) = trace(A)−λ1(A) = naii−(1−α) ≥ 0, where we are using the assumption

that aii ≥ 1/n for all i. This implies that the numerator of the fraction on the right-hand side of (A.7)

is nonnegative. Furthermore, the fact that λk(A) ≤ λ1(A) = 1− α guarantees that the denominator of

the fraction on the right-hand side of (A.7) is strictly positive. Taken together, these two observations

establish inequality (A.6).

Proof of part (a). We now use part (b) to establish part (a) of the theorem. Recall from the previous

part that the variance-covariance matrix of sectoral log outputs is given by σ2L̃′L̃. On the other hand,

the assumption that the input-output matrixA is symmetric and circulant guarantees that all row and

column sums of L̃ are equal to 1/α. Therefore,

n∑
i,j=1

cov(log ỹi, log ỹj) = 1′L̃′L̃1 = n/α2.
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Furthermore, the assumption that the economy’s input-output matrix is circulant implies that all

industries are equally volatile, that is, var(log ỹi) = var(log ỹ1) for all i. Hence,∑
i 6=j

cov(log ỹi, log ỹj) = n(1/α2 − var(log ỹ1)).

Hence, the average pairwise correlation between sectoral log outputs is given by

ρ̃ =
1

n(n− 1)

∑
i 6=j

corr(log ỹi, log ỹj) =
1

(n− 1) var(log ỹ1)
(1/α2 − var(log ỹ1)).

Identical derivations for the less interconnected economy with input-output matrix A imply that

ρ =
1

(n− 1) var(log y1)
(1/α2 − var(log y1)).

Comparing the right-hand sides of the above two equations completes the proof: by statement (b) of

the theorem, var(log y1) ≥ var(log ỹ1), which in turn implies that ρ ≤ ρ̃.
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