
 

DISCUSSION PAPER SERIES

 

DP13403 

ORGANIZATIONAL EQUILIBRIUM WITH
CAPITAL

José-Víctor Ríos-Rull, Marco Bassetto and Zhen Huo

MACROECONOMICS AND GROWTH,
MONETARY ECONOMICS AND
FLUCTUATIONS AND PUBLIC

ECONOMICS



ISSN 0265-8003

ORGANIZATIONAL EQUILIBRIUM WITH CAPITAL
José-Víctor Ríos-Rull, Marco Bassetto and Zhen Huo

Discussion Paper DP13403
  Published 19 December 2018
  Submitted 12 December 2018

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

  

This Discussion Paper is issued under the auspices of the Centre’s research programme in 
MACROECONOMICS AND GROWTH, MONETARY ECONOMICS AND FLUCTUATIONS
AND PUBLIC ECONOMICS. Any opinions expressed here are those of the author(s) and not
those of the Centre for Economic Policy Research. Research disseminated by CEPR may include
views on policy, but the Centre itself takes no institutional policy positions.

  The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

  These Discussion Papers often represent preliminary or incomplete work, circulated to
encourage discussion and comment. Citation and use of such a paper should take account of its
provisional character.

  

Copyright: José-Víctor Ríos-Rull, Marco Bassetto and Zhen Huo



ORGANIZATIONAL EQUILIBRIUM WITH CAPITAL
 

Abstract

This paper proposes a new equilibrium concept - organizational equilibrium - for models with state
variables that have a time-inconsistency problem. The key elements of this equilibrium concept
are: (1) agents are allowed to ignore the history and restart the equilibrium; (2) agents can wait for
future agents to start the equilibrium. We apply this equilibrium concept to a quasi-geometric
discounting growth model and to a problem of optimal dynamic fiscal policy. We find that the
allocation gradually transits from that implied by its Markov perfect equilibrium towards that
implied by the solution under commitment, but stopping short of the Ramsey outcome. The feature
that the time inconsistency problem is resolved slowly over time rationalizes the notion that good
will is valuable but has to be built gradually.
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1 Introduction

In this paper we pose an equilibrium concept especially suited for the study of policy settings in
macroeconomics, where the time-inconsistency problem is pervasive and the environment has state
variables. Our concept builds upon renegotiation proofness, but adapts it to the challenge of dealing
with a dynamic, rather than repeated game. We obtain allocations that are Pareto superior to those
of Markov equilibria, but are not supported by trigger-strategy reversion to dominated outcomes.

We argue that equilibria should satisfy three conditions in environments with a sequence of decision
makers that see themselves in a similar spot – a form of stationarity even if there are state variables.
The first such condition is that any outcome should have the property that no decision maker would
rather become an earlier member of the decision-making sequence. This no-restarting condition limits
the use of trigger strategies as a future punishment. A second condition prevents free riding at the
start of the process: no agent can do better by sitting out the system (playing Markov) and waiting
for future agents to start on a given equilibrium path. This no-delay condition prevents jumping to
desirable allocations fast. We interpret the implications of this condition as the need for institutions
to slowly earn good will, like earning a reputation for good behavior without need of unobserved
types or triggers. Finally, the third condition imposes optimality within the class of allocations that
satisfy the previous two requirements. An outcome path that satisfies these three conditions is an
organizational equilibrium.

Our notion of equilibrium is closely related to Reconsideration Proofness in Kocherlakota (1996) and
to the equilibrium concept for overlapping-generations economies in Prescott and Rios-Rull (2005),
but it allows us to extend the analysis to economies with state variables.1 The extension that we
introduce is defined for environments that display a weak separability property: preferences can be
decomposed between a set of actions that we label “re-scaled actions" and the state of the economy.2

Separability allows us to compare actions and outcomes across periods in which state variables are
different. We can then impose the three conditions above as a way of selecting among subgame
perfect equilibria. We show that no restarting is the natural adaptation of Kocherlakota’s symmetry
requirement: factoring out the effect of the state variable, the utility that an agent receives from
her actions and those of her successors is independent of the past history of play. In contrast, our
no-delay condition is related to Prescott and Rios-Rull (2005), although the form it takes here is

1Kocherlakota defines a “state” in his work, but this state only depends on the expectation about current and future
actions and is thus purely forward looking. In our case, we define a state as arising from past actions (including possibly
past actions of nature, if randomness is present). This is in line with the literature on optimal control and dynamic
programming. The role of expectations about current and future actions arises in hybrid environments where some
elements of competitive-equilibrium behavior coexist with strategic interactions; we tackle this in Section 5.

2The same type of separability property is also explored in Halac and Yared (2014) and Halac and Yared (2017),
but they focus on different SPE refinements where agents’ type is private information.
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slightly different. In their overlapping-generations economy, there is an implicit form of no-delay
motivated by the presence of an initial elderly cohort which is assumed to have played their best
one-shot response before the start of the game. Here, we argue that explicitly imposing no-delay
becomes a desirable refinement because it ensures that the coordination that gives rise to the initial
equilibrium is not as generous as to tempt the first player to sit it out, play her best one-shot action,
and count on the same coordinating mechanism to arise in the future. This is particularly appealing
in many situations where state variables are present. Without state variables all symmetric equilibria
that achieve the same payoff for the initial player continue to do so for all future players as well, so
that there is no reason to choose one over another, but this is no longer the case when a state is
present and the way agents coordinate among symmetric outcomes matters.

Under mild conditions, we prove the existence of an organizational equilibrium. Furthermore, we
prove that the organizational equilibrium can be constructed in a recursive way, which greatly simpli-
fies the computation and helps to characterize its properties. The equilibrium converges to a steady
state, which is the one preferred by an agent if she could commit future agents to take the same
action as she does. From this steady state, the entire transition path then can be solved recursively.
Crucially, due to the no-delay condition, agents’ actions cannot jump to the steady state immedi-
ately, but they converge gradually. On the technical side, while the approach in Abreu, Pearce, and
Stacchetti (1986, 1990) cannot be adopted to construct the set of continuation values to compute
either organizational equilibria or reconsideration-proof equilibria, our method exploits some similar
ideas in its quest for a recursive representation, which we think may have independent value.

We solve for an organizational equilibrium in two benchmark environments. First, we analyze the
well studied growth model with quasi-geometric discounting, which is one of the simplest time-
inconsistency problems (just due to the nature of preferences). Less simply, but perhaps more
interestingly, we solve for the choice of a government that is financed via capital income taxes (other
tax instruments can be characterized in essentially similar ways), an environment subject to time
inconsistency previously studied by Klein, Krusell, and Ríos-Rull (2008), among others. In both
environments, the equilibrium allocation is much better (Pareto dominates) than that of the Markov
perfect equilibrium. The economy slowly moves towards a high/saving or low taxation behavior, that
is, the model slowly overcomes the time consistency problem. We interpret this to be a notion of
slowly building reputation, without any need for unobservable types. Here what we call reputation
is the result of having displayed in the past a form of patience beyond that implied by the behavior
in the Markov perfect equilibrium. We think that this type of behavior helps us understand the
value that modern institutions such as governments or central banks pose in showing that they
have concerns over the long run, and hence do not take actions such as large capital levies or fast
inflationary policies that may have been predicted by models where the present is taken to be the
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initial period.

Our paper is related to various literatures. It studies macroeconomic environments with time-
inconsistency features typically characterized in terms of their Markov equilibria (e.g., Cohen and
Michel (1988), Currie and Levine (1993), Krusell and Ríos-Rull (1996), Klein and Ríos-Rull (2003),
Klein, Quadrini, and Ríos-Rull (2005), Bassetto and Sargent (2006), Klein, Krusell, and Ríos-Rull
(2008), Bassetto (2008), Krusell, Kuruscu, and Smith (2010)). It also addresses the type of environ-
ments previously studied by posing trigger strategies (Chari and Kehoe (1990), Phelan and Stacchetti
(2001)). It is clearly related to the class of models that study versions of the quasi-geometric dis-
counting growth model (Strotz (1956), Phelps and Pollak (1968), Laibson (1997), Krusell and Smith
(2003), Bernheim, Ray, and Yeltekin (2015), Chatterjee and Eyigungor (2016), Cao and Werning
(2018), among others). Finally, we build on the literature on refinements of subgame perfect equi-
librium, particularly in relation to renegotiation proofness (Farrell and Maskin (1989), Kocherlakota
(1996), Asheim (1997), Ales and Sleet (2014)).

Two other papers are of special relevance. Like us, Nozawa (2018) extends the notion of a reconsideration-
proof equilibrium to economies with state variables. However, his extension imposes too strict re-
quirements and leads to nonexistence of an equilibrium in many applications. By relying on weak
separability, our approach allows us to define “state-free” notions of the economic environment and
to establish existence. Brendon and Ellison (2018) analyze optimal policy in the Ramsey tradition,
but they restrict the planner to choosing policies that satisfy a recursive Pareto criterion: this cri-
terion disallows sequences that benefit policymakers in the early periods but are dominated for all
policymakers from a given time onward. Like them, we also reject policies that allow early decision
makers to dictate future paths that lead to early benefits purely at the expense of future decision
makers. Rather than developing an optimality criterion, we propose a solution concept aimed at
positive analysis, where implicit cooperation across policymakers at different times builds over time.
Because of this different motivation, our “no-restarting condition” is imposed on a period-by-period
basis. The presence of state variables causes problems in their environment as well, and our approach
based on weak separability could be fruitfully applied there too.3

We start by posing the issues with time-inconsistent preferences in the context of the well understood
quasi-geometric discounting growth model with log utility and full depreciation in Section 2. We
define organizational equilibrium for separable economies in Section 3, where we also describe the con-
nections to game theory. Section 4 describes a class of such economies and we then suggest a strategy
to study non-separable economies by using suitably approximating separable economies. We study
the implications of organizational equilibrium for public policy in environments with time-consistency

3Our approach encompasses the more specific cases introduced by Brendon and Ellison in their latest version to
account for state variables.
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problems in Section 5, adapting our concept to hybrid settings of competitive and strategic behavior.
Section 6 concludes.

2 Organizational Equilibrium in a Quasi-geometric Discounting Growth Model

To provide intuition, we explore the concept of organizational equilibrium in a single-agent decision
problem with time-inconsistent preferences, the canonical growth model with quasi-geometric dis-
counting, log utility and full depreciation. This allows us to abstract from considerations relating
to the competitive equilibrium emerging from the interaction of many agents, which we analyze in
Section 5.

Assume that the production function is
f(kt) = kαt ,

and the household period utility function is

u(ct) = log ct.

The law of motion for the state is
kt+1 = f(kt)− ct.

The lifetime utility for the agent at period t is given by

Ψt = u(ct) + δ

∞∑
τ=1

βτu (ct+τ ) .

It is easy to see that the household will disagree with itself in the next period if δ 6= 1. For reasons
that will be apparent later, we describe the behavior of the household in terms of its saving rates
(note that the feasibility of any given saving rate is independent of the level of capital).

2.1 Traditional Notions of Equilibrium in the Quasi-geometric Discounting Economy

Before we discuss the notion of organizational equilibrium, we first characterize the Ramsey outcome
(Section 2.1.1) and the differentiable Markov equilibrium (the Markov equilibrium that is the limit
of finite economies) (Section 2.1.2).
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2.1.1 Ramsey Outcome in the Quasi-geometric Discounting Economy

Suppose that the agent can commit to a particular sequence of saving rates {sτ}∞τ=0 at time 0, then
the problem of the agent at time 0 is

max
{st}∞t=0

u(c0) + δ

∞∑
t=1

βt u (ct) ,

subject to

kt+1 = stk
α
t ,

ct = (1− st)kαt ,

k0 given.

This problem can be broken into two components: choosing s0 and choosing {st}∞t=1. Given s0, the
maximization with respect to future saving rates is a standard recursive problem whose solution has
a closed form that is given by the following value function:

Ω(k) =
1

1− β

[
log(1− αβ) +

αβ

1− αβ
log(αβ)

]
+

α

1− αβ
log k.

This value function is associated with an optimal saving rate, which is constant at st = sR = αβ.
The Ramsey problem reduces to

max
s0

u[(1− s0)kα0 ] + δβΩ(s0k
α
0 ),

and optimal choice of initial saving rate s0 is

s0 =
αδβ

1− αβ + δαβ
.

The initial agent discounts the future more heavily than her future selves, so she is willing to apply
a lower saving rate than those in the future, s0 < αβ. In summary, the sequence of saving rates is

st =


αδβ

1−αβ+δαβ , t = 0,

αβ, t > 0.
(1)

The long run capital stock in the Ramsey problem is kR = (αβ)
1

1−α .4

4This level of capital is not strictly a steady state, since the Ramsey allocation starting from this level of capital
will reduce the level of capital before asymptotically returning to it.
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2.1.2 Markov Equilibrium in the Quasi-geometric Discounting Economy

We focus on the Markov equilibrium that is continuously differentiable, that is, it satisfies the gen-
eralized Euler equation (GEE). Let g(k) denote the policy function for tomorrow’s capital k′, the
GEE is

uc(f(k)− g(k)) = β uc

(
f [g(k)]− g[g(k)]

)[
δfk[g(k)] + (1− δ) gk[g(k)]

]
,

which yields

g(k) =
αδβ

1− αβ + δαβ
kα.

This Markov equilibrium displays a constant saving rate

sM =
αδβ

1− αβ + δαβ
. (2)

Note that the saving rate in the Markov equilibrium is the same as the first period’s saving rate in

the Ramsey outcome. The Markov equilibrium has a steady state kM =
(

αδβ
1−αβ+δαβ

) 1
1−α

< kR.

To characterize agents’ payoff, it is useful to introduce the following auxiliary object. If an agent
starts with capital k and the saving rate for herself and all future selves is a constant s, her lifetime
utility is given by

α(1− αβ + δαβ)

1− αβ
log k +

1− β + δβ

1− β
log(1− s) +

δαβ

(1− αβ)(1− β)
log s. (3)

Define the second part related to the saving rate as

H(s) ≡ 1− β + δβ

1− β
log(1− s) +

δαβ

(1− αβ)(1− β)
log s. (4)

Note that H(s) is not monotonic in s, and it achieves its maximum at the Ramsey long-run solution
sR only when δ = 1, since the solution sR disregards the concern for the short run implied by δ < 1.
Using equation (4), the payoff in the Markov equilibrium for an agent with capital k can be written
as

ΦM (k) =
α(1− αβ + δαβ)

1− αβ
log k +H(sM ). (5)

2.2 Organizational Equilibrium in the Quasi-geometric Discounting Economy

Before we start describing the notion of organizational equilibrium, we establish an important prop-
erty of this economy, that preferences of agents over the inherited capital stock and any sequence of

7



savings rates display separability, that is, that the utility can be written as a function of the initial
capital and of an aggregate that depends only on the sequence of savings rates (Section 2.2.1). Then
we define an organizational equilibrium in terms of savings rates, and we construct it, therefore
establishing existence in Section 2.2.2.

2.2.1 Separability

Consider a sequence of savings rates {st}∞t=0 and an initial capital stock k0. The implied sequence of
capital stocks, {kt}∞t=0, has the property that kt = kα

t

0 Πt−1
j=0s

αt−j−1

j . Accordingly, the lifetime utility
for the agent with capital k0 is

U(k0, s0, s1, . . .)

= log(1− s0)kα + δ

∞∑
j=1

βj log[(1− sj)kαj ]

=
α(1− αβ + δαβ)

1− αβ
log k0 + log(1− s0) +

δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βk
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
.

The same logic follows for the date-t agent, which means that her lifetime utility, or total payoff, is
the sum of a term that depends on the period t capital and a term that depends only on saving rates
of periods t and after. We write it compactly as

U(kt, st, st+1, . . .)︸ ︷︷ ︸
total payoff

=
α(1− αβ + δαβ)

1− αβ
log kt︸ ︷︷ ︸

capital payoff

+V (st, st+1, . . .)︸ ︷︷ ︸
action payoff

. (6)

We also write more compactly the total payoff into the term that depends on the state and the term
that depends on the subsequent actions

v(k, V ) :=
α(1− αβ + δαβ)

1− αβ
log k + V,

where

V (s0, s1, . . .) := log(1− s0) +
δαβ

1− αβ
log(s0) + δ

∞∑
j=1

βk
(

log(1− sj) +
αβ

1− αβ
log(sj)

)
. (7)

In this economy, the preferences as of time t are separable in the level of capital kt and the sequence
of current and future saving rates. The fact that the terms in k0 and V are additive implies a strong
form of separability. For our purposes, only a weak form of separability is required, as we will see in
Section 3.
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2.2.2 Discussion of Organizational Equilibrium

We now look at the features that the organizational equilibrium should have. We exploit separability
to specify how to run comparisons across agents with differing initial conditions: specifically, we
impose that agents factor out the component of utility arising from initial capital, and evaluate
proposals based on the sequence of saving rates alone, looking at the subutility V . On this subutility,
we impose the requirements that no agent would prefer being a previous member of the sequence
and that no agent would have an incentive to wait for a proposal to be implemented starting from
the next period. The definition proceeds in two steps. First, we define organizationally admissible
sequences, by restricting attention to those sequences that satisfy the no-restarting and no-delay
conditions. Then, we pick optimally among these sequences to attain an organizational equilibrium.
Formally,

Definition 1. A sequence of saving rates {sτ}∞τ=0 is organizationally admissible if

1. No restarting: V (st, st+1, st+2, . . .) is (weakly) increasing in t.

2. No delay: The first agent has no incentive to delay the proposal, that is,

V (s0, s1, s2, . . .) ≥ max
s
V (s, s0, s1, s2, . . .). (8)

Definition 2. An organizational equilibrium is an organizationally admissible sequence {sτ}∞τ=0

(satisfying conditions 1 and 2 of Definition 1) that is furthermore optimal, that is, it also satisfies:

3. Optimality: There does not exist any other organizationally admissible sequence {s̃τ}∞τ=0, such
that

V (s̃0, s̃1, s̃2, . . .) > V (s0, s1, s2, . . .).

Here, we use a heuristic approach to illustrate the key insight of organizational equilibrium while we
construct it. A more formal proof can be found in the Appendix and Section 3. We proceed in three
steps to show the role played by each of the conditions in Definitions 1 and 2.

Condition 1: No restarting The first requirement is that no agent would prefer to become a
previous member of the sequence: as an example, the decision maker in period zero is prevented
from choosing a sequence that yields a higher value V for himself than for subsequent generations,
as would happen in the Ramsey outcome.
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Condition 3: Optimality We ignore Condition 2 for a moment, and we will return to it later. One
implication of optimality is that the action payoff has to be some constant, i.e., V (st, st+1, . . .) = V .
Otherwise, there exists some j > 0 such that V (s0, s1, . . .) < V (sj , sj+1, . . .), and the initial agent
would attain a higher utility from sj rather than s0. This constant action payoff condition leads to
a first-order difference equation between two consecutive saving rates

(1− β)V =
δαβ

1− αβ
log st + log(1− st)− β(1− δ) log(1− st+1). (9)

In Figure 1, the dashed curves correspond to the difference equations with different V . Note that for
each V , there is a continuum of sequences {st} that satisfy equation (9), indexed by their starting
points of the difference equation. Particularly, recall that the action payoff in the Markov equilibrium
is V = H(sM ). Therefore, a continuum of sequences will yield the same action payoff as the Markov
equilibrium. The Markov equilibrium features a constant saving rate (the intercept of the lower blue
curve with 45 degree line), while other sequences involve transition dynamics.

Among different action payoffs V , the initial agent should choose the highest value. In this quasi-
geometric discounting economy, increasing V is corresponding to shifting the curve upwards in Fig-
ure 1. The highest curve that can be chosen is the one that is tangent with the 45 degree line (the red
curve), and we denote its associated action payoff as V ∗.5 This tangent point s∗ is a fixed point of the
difference equation, which turns out to be the level of saving rate that maximizes the function H(s).
That is, s∗ achieves the highest steady-state action payoff, and it is easy to verify that sM < s∗ < sR

when δ < 1.

Condition 2: No-Delay So far, we have not taken Condition 2 into account. This condition is a
further restriction on admissible sequences, and one might wonder whether imposing it may lower the
maximum attainable value to one that is below V ∗. We show here that this is not the case, and that
instead the no-delay condition only acts as a constraint on the initial saving rate. Given a value V ∗,
the difference equation (9) permits a continuum of sequences of saving rates, indexed by the initial
condition. From the perspective of the agent who makes the proposal, all of these sequences of saving
rates yield the same payoff; however, they yield different payoffs from the perspective of future agents.
As an example, consider the following two proposals: the first one is st = s∗ for all t, and the second
one starts from s0 = sM and subsequently follows a sequence dictated by the difference equation
(9). Both of these sequences imply the same action payoff V (s0, s1, . . .) = V (s∗, s∗, . . .) = V ∗ for the

5While the difference equation 9 admits solutions for values higher than V ∗, the difference equation was derived
under the assumption that the infinite sum in 7 converges. Sequences of saving rates that satisfy (9) for values V > V ∗

converge to 1 at a rate that makes this infinite sum diverge to −∞ instead: households would never want such a
sequence.
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Figure 1: Proposal Function q∗(s)

agent who makes the proposal, as a higher saving rate s∗ today is rewarded with higher saving rates
s∗ in the future. One potential solution would be for agents to coordinate on the Pareto preferred
s∗. However, under this criterion, it would logically follow that future agents would always have an
incentive to disregard the past and coordinate on Pareto-preferred outcomes; in this case, the current
agent would have an incentive to delay, play s = sM , and count on next period’s agent to start the
constant s∗ sequence. We require instead that s0 is such that V (sM , s0, s1, . . .) ≤ V ∗, so that the
initial agent would not gain from waiting for the sequence to start in the next period. To guarantee
the no-delay condition is satisfied, the sequence of saving rates has to start with a low enough point
to prevent the initial agent from sitting out. This condition excludes the possibility of jumping to
the steady-state saving rate immediately, and a gradual transition has to take place.

The following proposition summarizes previous arguments and provides the analytical solution.

Proposition 1. There exist organizational equilibria. In any such equilibrium, the evolution of the
saving rate is given recursively by the proposal function q∗

st = q∗(st−1) = 1− exp

{
−(1− β)V ∗ + δαβ

1−αβ log st−1 + log(1− st−1)
β(1− δ)

}
, (10)
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where the fixed-point saving rate s∗ = q∗(s∗) and the maximum utility V ∗ are given by

s∗ =
δαβ

(1− β + δβ)(1− αβ) + δαβ
and (11)

V ∗ =
1− β + δβ

1− β
log(1− s∗) +

αδβ

(1− β)(1− αβ)
log s∗. (12)

Equilibria differ by their initial saving rate, which belongs to the interval

s0 ∈
[
s, q∗

(
sM
)]
, (13)

where s = min
{
s : δαβ

1−αβ log s+ log(1− s) = (1− β)V ∗ + β(1− δ) log(1− s∗)
}
.

Proof. See Appendix A.

While there are many organizational equilibria, all of which give the same utility to the first gener-
ation, the equilibrium in which

s0 = q∗
(
sM
)

yields the highest total utility for the subsequent generation by delivering the most capital. We
select this one because it is the natural outcome if there is an arbitrarily small amount of altruism
involved.

In the organizational equilibrium, time inconsistency is gradually overcome through time: at least
from period 2 on, the saving rate exceeds that of the Markov equilibrium, and a virtuous cycle is
started, with a monotonic increase which converges to s∗. Initial saving is limited by the temptation
to let the next generation start the virtuous cycle. This temptation diminishes in subsequent periods,
since restarting the virtuous cycle from scratch implies giving up on the accumulated effect of previous
increases in st. Note that s∗ is below the long-term savings rate of the Ramsey outcome, no matter
how close to 1 δ is (as long as it is strictly less than 1): while the equilibrium path converges to the
Ramsey outcome as δ → 1, it never coincides with it, and the folk theorem does not apply. The
saving rate s∗ is the preferred constant saving rate of the agents, weighing their current patience
with their future impatience. This is illustrated in Figure 1.
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2.3 Comparison with Other Equilibria

We now compare the properties of the organizational equilibrium of the sequence of capital and the
lifetime utilities with those in the Ramsey outcome and the Markov equilibrium.6

We first turn to the transition paths of different equilibria. We assume that the initial capital
stock is the steady state capital stock in the Markov equilibrium, i.e., k0 = kM . Figure 2 displays
the transition paths for the saving rate st and capital kt. In the Markov equilibrium, the capital
stock remains unchanged at the steady-state level that we assumed as a starting point. The Ramsey
outcome features the same saving rate as the Markov equilibrium in the first period, so that the capital
stock remains the same at the beginning of the second period. From the second period onwards,
the saving rate increases to sR permanently. The sequence of saving rates in the organizational
equilibrium is induced by the proposal function st+1 = q∗(st). Particularly, the saving rate in the
first period is s0 = q∗

(
sM
)
> sM , and the capital is initially higher than in the Ramsey allocation.

Over time, the saving rates increase gradually and converge to s∗ < sR. Asymptotically, capital in
the organizational equilibrium settles between the Ramsey outcome and the Markov equilibrium.

Figure 2: Transition Path I: Allocation

Now we turn to the welfare comparison. Given a particular sequence of saving rates {sτ}∞τ=0, based
6For the numerical computation, we use the following parameter values: α = 0.4, β = 0.96, and δ = 0.9.
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on the analysis in the last section, the lifetime utility for generation t can be written as

Ut(kt, {sτ}∞τ=t)︸ ︷︷ ︸
total payoff

=
α(1− αβ + δαβ)

1− αβ
log kt + Vt︸︷︷︸

action payoff

.

The total payoff Ut and the action payoff Vt are depicted in Figure 3. The total payoff in the Markov
equilibrium is the lowest during the entire transition, which is the result of both the lowest capital
stock and action payoff.

Figure 3: Transition Path II: Payoff

The comparison between the Ramsey outcome and the organizational equilibrium is more subtle. In
the first period, the total payoff in the Ramsey outcome is higher than that in the organizational
equilibrium: this has to happen by definition, since the Ramsey outcome maximizes the total payoff
from the perspective of period 0. In the following period, the comparison reverses, and the total
payoff in the organizational equilibrium is actually higher than the Ramsey outcome. This happens
both because the initial generation accumulates additional capital, and because the organizational
equilibrium does not impose as high a saving rate, allowing for some indulgence for the short-run
impatience that arises in the second period. Our notion of organizational equilibrium treats initial
capital as a bygone, factoring it out of the payoff that is relevant in computing the equilibrium itself;
however, it captures the notion that the initial agent is not privileged compared to future decision
makers and cannot impose on them sacrifices that she has not undertaken. For this reason, when we
focus on Vt, an organizational equilibrium redistributes from the initial agent to all future decision
makers. When comparing the total payoff, after period 0, early decision makers benefit both from
a higher capital level and a higher action payoff, while eventually capital falls below the Ramsey
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Figure 4: Comparison of Stationary Allocations

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

outcome and late generations lose from this.

In terms of the steady-state capital level, Figure 4 shows how it changes with δ.7 The capital stock
in the organizational equilibrium (kO), the Markov equilibrium (kM ), and the Ramsey outcome (kR)
are related by the following simple ratios:

kO

kR
=

(
1

1
δ − β(1− αβ + α)

(
1
δ − 1

)) 1
1−α

and
kM

kO
=

(
1− β(1− δ)(1− αβ)

1− αβ + δαβ

) 1
1−α

.

In the Ramsey outcome, the stationary allocation is independent of δ, and we normalize it to 1. As
can be seen from the Figure, as δ decreases, the capital stock in the Markov equilibrium decreases
faster than that in the organizational equilibrium.

3 Organizational Equilibrium: A General Definition

We proceed now to define organizational equilibrium in a more general manner. The spirit of orga-
nizational equilibrium is that the solution concept should not treat the current decision maker more
favorably than future ones. This notion requires some form of stationarity.

Consider a generic environment of sequential decision makers (typically those that have a time-
7We retain α = 0.4 and β = 0.96.
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consistency problem) where there is a physical state variable k ∈ K. Specifically, given the current
level of k, the agent making a decision will choose an action a from a set A. The state evolves
according to kt+1 = F (kt, at). Preferences for an agent making decisions in period t are given by
U(kt, at, at+1, at+2, . . .). The first assumption is that functions U and F are independent of calendar
time, which allows meaningful welfare comparisons across decision makers.

In the absence of a state variable, the economy looks the same starting at any time t, and “not treating
more favorably” the current decision maker readily translates to not offering higher utility to her
than to other decision makers. However, when a state variable is present, imposing the same utility
becomes an unnatural restriction: as an example, as capital evolves, the sequences of consumption
that can be supported by the given capital change. We follow here an alternative approach by
restricting the environments that we study to those in which the utility is weakly separable between
the state and the sequence of actions, such that the preference ordering over sequences is independent
of the initial state. It is then natural to require that the equilibrium choice of actions be independent
of the state. Formally, our assumption is the following:

Assumption 1. 1. At any point in time t, the set of feasible actions A is independent of the state
kt;

2. U is weakly separable in k and in {as}∞s=0, i.e., there exist functions v : K × R → R and
V : A∞ → R such that

U(k, a0, a1, a2, . . .) ≡ v(k, V (a0, a1, a2, . . .)). (14)

and such that v is strictly increasing in its second argument.

Sometimes the original problem does not satisfy Assumption 1, but it is possible to re-scale actions in
such a way that it does.8 As an example, the original specification of the saving problem with quasi-
geometric discounting does not satisfy Assumption 1 if we define the action to be consumption: the
feasible set of consumption levels depends on initial capital.9 Formally, suppose that the set of feasible
actions at any capital level k is Ã(k) ⊆ Ã and that preferences are given by Ũ(kt, ãt, ãt+1, ãt+2, . . .).
Our construction still applies as long as it is possible to find a set of actions A and a function γ such
that ã = γ(a, k) and that Assumption 1 holds for A, where

U(k, at, at+1, at+2, . . .) ≡ Ũ(k, ãt, ãt+1, ãt+2, . . .),

8Notice also that any one-to-one transformation of a will preserve weak separability, so the action space is only
defined up to such transformations. As an example, for the case analyzed in Section 2, any monotone transformation
of the saving rate would be an equally valid action, yielding the same equilibrium outcomes.

9Note that weak separability automatically fails if certain actions are only feasible for some levels of capital, since,
holding actions fixed, the left-hand side of (14) would then be well defined for some values of k and not for others.
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and where for t ≥ 0, ãt is computed recursively as

ãt = γ(at, kt),

kt+1 = F (kt, ãt).
(15)

With Assumption 1, Definitions 1 and 2 extend directly to the general case, simply by replacing the
sequence of saving rates {st}∞t=0 with a generic sequence of actions {at}∞t=0.

3.1 Game-Theoretic Foundations and Relation to Other Equilibrium Notions

In this section, we discuss the connection between an organizational equilibrium and related notions
of equilibria in games. Our notion is most closely related to Kocherlakota’s (1996) reconsideration-
proof equilibrium. While the two notions are very similar, two main differences emerge, which we
will discuss in turn:

• By exploiting weak separability, an organizational equilibrium extends the notion of reconsid-
eration proofness to dynamic games, rather than purely repeated games;

• In an environment without state variables, all reconsideration-proof equilibria have the same
value for all players. This is no longer the case for organizational equilibria. Our no-delay
condition exploits this to select a subset of the reconsideration-proof equilibria. As we explain
below, this selection is in line with the original motivation of renegotiation (and reconsideration)
proofness, but it imposes it in a limited way that still allows for existence of an equilibrium.

The general setup that we introduced in this section represents a game, with an infinity of players
indexed by the time at which they act (0,1,...), each of whom has preferences given by (14). At each
time t, the history of play is given by ht := (a0, a1, ...at−1), with h0 := ∅. A strategy σt for player
t is a mapping from the set of time-t histories, Ht, to the set of actions A. A strategy profile is a
sequence of strategies, one for each player: σ := (σ0, σ1, ...). As usual, it is also convenient to define
a continuation strategy after history ht, σ|ht , represented by the restriction of (σt, σt+1, ...) to the
histories following ht. So far, we have defined an organizational equilibrium only by its equilibrium
path. The simplest way to fully specify the game strategy that supports it as a subgame-perfect
equilibrium is to use the no-delaying condition (8) and set σ|ht = σ whenever

at−1 6= σt−1(h
t−1), (16)

where ht = (ht−1, at−1). According to this strategy, the equilibrium of the game prescribes restarting
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from the equilibrium path of period 0 whenever a deviation occurs. This is not the only possibility;
as an example, the function q∗ defined in (10) can be used in the quasi-geometric saving problem
to recursively generate an alternative strategy (not just an equilibrium path) that supports the
organizational equilibrium as a subgame-perfect equilibrium.

When there are no state variables, the game presented here is encompassed by those considered in
Kocherlakota (1996).10 Kocherlakota analyzes a purely forward-looking environment, in which the
payoff accruing to the player in period t only depends on the actions (or the expectations about
the actions) of players in period t onwards. In this environment, he defines a subgame-perfect
equilibrium to be symmetric if its continuation value is independent of the past history of play.
A reconsideration-proof equilibrium is then an equilibrium that achieves the highest payoffs within
symmetric equilibria.

In the presence of a state variable, an organizational equilibrium assumes that players coordinate
on strategies that only depend on the history of play ht and not on the physical state. In this
case, an organizational equilibrium imposes symmetry only in that the payoff of the subutility V

is independent of the history of play, but the payoff of each time-t player is still different across
histories which lead to different levels of the state. Intuitively, a different state implies a different
set of possible utility levels going forward, so we should expect it to affect payoffs in the subgames
going forward. However, this dependence of utility from the state takes a simple form under weak
separability, and there is a natural mapping across histories with different levels of capital: the same
sequences of actions are possible under any level of capital, and the preferences of player t over the
sequences from date t on are also represented by the subutility V , independent of kt. For this reason,
imposing reconsideration proofness on preferences represented by V alone is appealing.

Our construct cannot of course completely get around the presence of a physical state, and it is for
this reason that the no-delay condition has some bite. In a reconsideration-proof equilibrium, where
the state is not present, at any time t both the current and future players’ equilibrium payoffs are
independent of the past history of play. This is no longer true in an organizational equilibrium when
the state matters: while the current player receives the same equilibrium payoff for all histories that
share the same state, future players do not.

We illustrated this point concretely in the example of Section 2. At each point t, the equilibrium
10Kocherlakota defines a “state” in his work, but this state only depends on the expectation about current and

future actions, which makes it really not a state. In our case, we define a state as arising from past actions (including
possibly past actions of nature, if randomness is present). This is in line with the literature on optimal control and
dynamic programming. Our analysis can be extended to situations in which expectations about current and future
actions affect the current set of actions and payoffs, as it happens in hybrid environments where some elements of
competitive-equilibrium behavior coexist with strategic interactions. We explore this in Section 5.
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payoff for player t depends on the past history of play only through kt and not through the entire
past history of actions; moreover, the equilibrium is such that player t is indifferent between all
saving rates in

[
q∗
(

αδβ
1−αβ+αδβ

)
, s∗
]
. However, future players would strictly prefer the equilibrium

path that would unfold if player t chose s∗, which would lead to s∗ being played for ever. If we
appealed to (strong) Pareto optimality to select among equilibria, then s∗ would be selected. But this
equilibrium is suspect for the same logic that leads us to discard the trigger strategies that support
the best subgame-perfect equilibrium for player t. Specifically, if player t anticipates that, as of t+1,
players will coordinate on the Pareto-optimal equilbrium and will thus play s∗ independently of past
history, she has an incentive to play the best one-shot saving rate instead. Our no-delay condition
imposes that, whatever coordination mechanism selects the equilibrium to be played from period 0,
no player at any time could be better off by deviating and counting on other players to use the same
coordination mechanism to restart the game. Formally, given an equilibrium strategy profile σ, we
require

V (σt(h
t), at+1,σ|ht , at+2,σ|ht , ...) ≥ V (ãt, σ0, a1,σ, a2,σ, ...) ∀ãt ∈ A, ht,

where we used the following short-hand notation:

at+1,σ|ht := σt+1(h
t, σ(ht)), at+s,σ|ht := σt+s(h

t, at+1,σ|ht , ..., at+s−1,σ|ht ),

a1,σ := σ1(σ0), as,σ := σs(σ0, a1,σ, ...as−1,σ).

While this is not our reason for imposing it, the no-delay condition has a side benefit for computing
organizational equilibria: it implies that the equilibrium path is self-enforcing in the sense of Abreu
(1986), that is, restarting the path in response to any deviation from equilibrium play is a sufficient
deterrent. The equilibrium can then be described by a single path, without having to always specify
the entire strategy required to support it.

It’s useful to compare organizational equilibrium to two alternative notions of equilibrium for dynamic
games that are inspired by similar concerns about what constitutes a “credible punishment" in
subgame-perfect equilibria.

An extension of reconsideration proofness to environments with state variables was already proposed
by Nozawa (2018). Nozawa requires weakly reconsideration-proof equilibria to be such that the
equilibria of all subgames share the same payoff function Ψ(k), which depends on the state; in
the absence of the state, this reduces to Kocherlakota’s (1996) symmetry requirement. A strong
reconsideration-proof equilibrium is then an equilibrium in which Ψ(k) is undominated by any other
equilibrium point by point. This is often too strong a requirement, and hence existence may fail.11

11As an example, no reconsideration-proof equilibrium would exist in the example of Section 2.
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An alternative approach is revision proofness, which was introduced by Asheim (1997) and made
explicit as a game in Ales and Sleet (2014). In their papers, a larger class of credible punishments is
allowable. Specifically, under reconsideration proofness, if Σ is the set of equilibrium strategies of the
game, each player at any time t is allowed to coordinate current and future play to her favorite element
of Σ. Under revision proofness, player t’s coordination power is limited because she is required to
propose deviations from the equilibrium path of play that benefit all future players. The resulting
equilibrium set is much larger. For the case of quasi-geometric discounting with linear preferences,
Ales and Sleet (2014) show that all subgame-perfect paths better than the Markov equilibrium are
revision proof. In environments with state variables, a limitation of revision proofness is that it is
unclear how a future player could “block” a revision proposal when she would inherit a different state
under the revision proposal and would thus not be able to continue with the original strategy.

Our notion of organizational equilibrium retains the unilateral aspect of deviations from reconsid-
eration proofness, but it relies on weak separability to define and impose symmetry across different
levels of capital. The role of Pareto optimality enters in a limited way in motivating the no-delay
condition and potentially through a final selection of a Pareto optimal path among those that satisfy
symmetry and no-delay.

3.2 Existence

To prove existence of an organizational equilibrium and to link with reconsideration-proof equilib-
rium, we proceed in two steps. First, we rely on Kocherlakota (1996) to prove the existence of a
reconsideration-proof equilibrium for the game with payoff function V (.). We then show that there
exits a path such that the threat of restarting from the period-0 path after a deviation is a sufficient
deterrent, no matter which deviation a player is considering.

The following assumption mirrors Kocherlakota’s:

Assumption 2. 1. A is a convex compact subset of a locally convex topological linear space with
topology ρx.

2. V is quasiconcave over A∞.

3. V is continuous over A∞ with respect to the product topology ρ∞x .

Under Assumption 2, Proposition 4 in Kocherlakota (1996) proves that a reconsideration-proof equi-
librium exists for the game whose period-t payoff is V (at, at+1, at+2, ...). This equilibrium achieves
the maximal utility within symmetric equilibria.
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To make sure the no-delay condition can be satisfied, we further assume that the value function V
is separable between its first and subsequent arguments.

Assumption 3. V is in turn weakly separable in a0 and {as}∞s=1, i.e., there exist functions Ṽ :

A×R→ R and V̂ : A∞ → R such that, for all sequences (a0, a1, a2, . . .) ∈ A∞,

V (a0, a1, a2, ...) = Ṽ (a0, V̂ (a1, a2, . . .)), (17)

with Ṽ strictly increasing in its second argument.

The following proposition establishes the existence of organizational equilibrium and shows that an
organizational equilibrium is reconsideration proof in the absence of state variables.

Proposition 2. Under Assumptions 2 and 3, consider a game where time-t preferences over the
sequence of future actions are given by

V (at, at+1, at+2, . . .). (18)

1. There exists an organizational equilibrium.

2. If a path (a0, a1, . . .) is an organizational equilibrium, then it is the outcome of a reconsideration-
proof equilibrium in a game without state variables in which preferences are given by (18).

Proof. See Appendix B

3.3 Recursive Structure

We conclude this section by studying the case in which the function V̂ in equation (17) admits
a recursive structure, as is the case in the example of Section 2 and in many other applications
of economic interest. This structure in turn provides a useful way to compute and characterize
organizational equilibria.

Assumption 4. There exists a function W : A × R → R, increasing in the second argument, such
that, given any sequence {at}∞t=0 ∈ A∞,

V̂ (a0, a1, a2, . . .) ≡W
(
a0, V̂ (a1, a2, . . .)

)
, (19)

Proposition 3. Under Assumptions 2, 3, and 4, there exists an organizational equilibrium {at}∞t=0

which is recursive in the value V̂ (at, at+1, at+2, . . .): that is, there exists a function g : R → A×R
such that (at, vt+1) = g(vt), and vt = V̂ (at, at+1, at+2, . . .) for all t = 0, 1, ....
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Proof. See Appendix C.

Proposition 3 uses values as a state variable in ways similar to Abreu, Pearce, and Stacchetti (1986,
1990). However, as the proof shows, constructing the set of possible values is considerably more
involved than in the case of Abreu, Pearce, and Stacchetti; hence, while the proposition greatly
simplifies the task of constructing organizational equilibria, it still leaves a challenging task. The
following proposition is useful both as a characterization of the properties of an organizational equi-
librium, and as an avenue for finding equilibria efficiently.

Proposition 4. Under Assumptions 2, 3, and 4, the value of V̂ (at, at+1, at+2, . . .) is increasing over
time for any organizational equilibrium, and it converges to the value associated with the steady
state that maximizes V (a, a, a, ...). Furthermore, if V̂ is a strictly quasiconcave function and the
steady state that maximizes V (a, a, a, ...) is not a Markov equilibrium, then the initial value of
V̂ (a0, a1, a2, . . .) is strictly below the steady state: convergence is not immediate.

Proof. See Appendix C

Proposition 4 shows that the procedure we used to compute organizational equilibria in Section 2.2
applies more generally. Specifically, we first compute a steady state that maximizes V (a, a, a, ...):
this is the steady state that would be chosen by the decision maker at time 0 if she could commit
future players to take the same action. This maximization yields a value V ∗, which must remain
constant along the path, i.e., V (at, at+1, at+2, ...) = V ∗. We then construct a path that leads to this
steady state, using the no-delay condition to inform us of the starting point. The last part of the
proof shows that convergence to the steady state takes time, unless we are in a special case in which
the steady state can be supported in a Markov equilibrium with no intertemporal incentives.

4 Approximated Equilibrium

In this section, we first introduce a class of weakly separable economies with quasi-geometric dis-
counting preferences. This class includes the example discussed in Section 2 as a special case, and it
also includes some other interesting models explored in the literature. We then proceed to provide
an approximation algorithm for models that are not weakly separable.
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4.1 A Class of Weakly Separable Economies

Consider the following class of economies. The state variable is k and the action is a. The preference
is specified as

Ψt = u(kt, at) + δ

∞∑
τ=1

βτ u (kt+τ , at+τ ) .

Suppose that the period utility function takes the form of

u(kt, at) = ω10 + ω11h(k) + ω12m(a),

and the state evolves according to

h(kt+1) = ω20 + ω21h(kt) + ω22g(at),

for some monotonic functions h, g, and m, and some constant matrix ω. In Section 2, the economy
is corresponding to h(k) = log(k), g(a) = log(a) and m(a) = log(1− a). It is easy to verify that this
class of economies are weakly separable. Given a sequence of actions {aτ}∞τ=0 and the initial state
k0, the sequence of state variables follows

h(kt) = ω20
1− ωt21
1− ω21

+ ωt21h(k0) + ω22

t−1∑
τ=0

ωt−1−τ21 g(aτ ),

and the lifetime utility is given by

U(k0, {aτ}∞τ=0) =
1− β + δβ

1− β
ω10 +

ω11(1− βω21 + δβω21)

1− βω21
h(k0)

+ ω12m(a0) +
ω11ω22δβ

1− βω21
g(a0) + δ

∞∑
j=1

βj
(
ω12m(aj) +

βω11ω22

1− βω21
g(aj)

)
.

We now turn to describing two examples that belong to this weakly separable class. Both of them
are widely used in the literature.

Linear production function and CRRA utility function This example can be interpreted as
a growth model with a linear production or a consumption-saving problem with a constant interest
rate. Without the loss of generality, the resource constraint can be written as c+ k′ = θk. Assume
the period utility function takes the following CRRA form u(c) = c1−σ

1−σ , and the lifetime utility for
an agent in period t is

Ψt = u(ct) + δ
∞∑
τ=1

βτu (ct+τ ) .
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We use the saving rate as the re-scaled action, and show that Assumption 1 is satisfied. Given an
initial capital level k0 and a sequence of saving rates {sτ}∞τ=0, the implied sequence of capital is
simply kt = Πt−1

τ=0sτθ
tk. The lifetime utility can be rewritten as

U(k0, {sτ}∞τ=0) =
(θk0)

1−σ

1− σ

{
(1− s0)1−σ + δβ(s0(1− s1)θ)1−σ + δβ2(s0s1(1− s2)θ2)1−σ + . . .

}
≡ (θk0)

1−σ

1− σ
V ({sτ}∞τ=0),

which is weakly separable. Therefore, we can apply our organizational equilibrium concept in this
environment.

Leisure choice Consider now the case where agents also choose the amount of labor to supply.
The production function now includes labor as input f(kt, `t) = kαt `

1−α
t , and the resource constraint

is ct + kt+1 = f(kt, `t). Assume the period utility function is u(ct, `t) = log ct + (1−`t)1−γ
1−γ , and the

lifetime utility for the agent at period t is given by

Ψt = u(ct, `t) + δ

∞∑
τ=1

βτu (ct+τ , `t+τ ) .

We choose saving rate s ∈ [0, 1] and labor ` ∈ [0, 1] as the re-scaled action. With initial capital
k0 = k, a saving rate sequence {sτ}∞τ=0, and a labor sequence {`τ}∞τ=0, it will imply the sequence of
capital as kt = kα

t

0 Πt−1
j=0s

αt−1−j
j `

(1−α)αt−1−j

j . The total payoff is

U(k0, s0, s1, . . . , `0, `1, . . .)

=
α(1− αβ + δαβ)

1− αβ
log k0 + log(1− s0) +

δαβ

1− αβ
log s0 + δ

∞∑
j=1

βj
(

log(1− sj) +
αβ

1− αβ
log sj

)

+
(1− `0)1−γ

1− γ
+
δα(1− α)β

1− αβ
log `0 + δ

∞∑
j=1

βj
(

(1− `j)1−γ

1− γ
+
α(1− α)β

1− αβ
log `j

)
.

The weakly separable requirement is satisfied by both the saving rates and the leisure choices, and
we can apply our equilibrium concept to each choice separately.

4.2 Approximation with Weakly Separable Economies

The assumption of weakly separable utility is restrictive and is often not satisfied. In this section,
we propose a strategy to study organizational equilibrium for economies where this assumption is
not satisfied. Our approach is to look at an economy that is weakly separable and very similar in
a particular metric to the original one and then study organizational equilibrium in this alternative
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economy. This strategy has a strong tradition in macroeconomics where little (if anything) is known
about recursive equilibrium in distorted economies that do not have a particular functional form.
Consequently, the equilibrium is computed for a similar economy in a certain sense (see Kubler and
Schmedders (2005) and Kubler (2007) for related discussions).

Consider a quasi-geometric discounting economy with state variable k and action a. Suppose pref-
erences are

Ψt = u(kt, at) + δ
∞∑
τ=1

βτu (kt+τ , at+τ ) ,

and that the state variable evolves according to

kt+1 = F (kt, at).

In general, Ψt may not be separable between k and the sequence of actions {at+τ}∞τ=0. Instead,
we consider the log-linearized version of the original problem around a particular point (k, a). This
approximated economy is

Ψ̂t = û(kt, at) + δ

∞∑
τ=1

βτ û (kt+τ , at+τ ) ,

such that

û(k, a) = u
(
k, a
)

+ kuk
(
k, a
)

(log(k)− log(k)) + aua
(
k, a
)

(log(a)− log(a))

log(k′) = log
(
k
)

+ Fk
(
k, a
)

(log(k)− log(k)) +
aFa

(
k, a
)

k
(log(a)− log(a)).

This approximated economy belongs to the class of separable economies discussed in Section 4.1,
and therefore it is weakly separable. Unlike in a standard log-linearization exercise, the steady
state of this economy under the organizational equilibrium depends on the choice of (k, a). Denote
the converging point of the transition path {aτ}∞τ=0 in the organizational equilibrium as a∗. It is
natural to require selecting (k, a) such that a = a∗ and k = F (k, a). We then rely on the result
in Proposition 4 that, for the separable approximating economy, the steady state a∗ must be the
optimal choice for an agent constrained to choose a constant sequence of actions, which leads to the
following condition characterizing ā:

(1− β(1− δ))
(
1− βFk

(
k, a
))
ua
(
k, a
)

+ δβuk
(
k, a
)
Fa
(
k, a
)

= 0. (20)

Once (k, a) are fixed according to equation (20), the entire transition path can be derived in a way
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similar to Section 2.2:

at+1 = exp

 log(at) + δβuk(k,a)Fa(k,a)

ua(k,a)(1−βFk(k,a))
log(at)− (1− β(1− δ)) log(a)

β(1− δ)

 . (21)

The detailed derivation can be found in Appendix D. We will also utilize this approximated economy
in the quantitative taxation problem in the next section.

5 Organizational Equilibrium and Public Policy

In this Section, we put the notion of organizational equilibrium to work for the cases that we find
most interesting, those of the determination of government policies when the Ramsey solution is time
inconsistent.

To look at these environments, we extend the framework in Section 3 to accommodate a government
(a large player) that behaves strategically and representative households who behave competitively.12

Given the current level of k ∈ K, the government chooses an action a from a set A, and the consumers
choose an action s from the set s(k) ⊆ S. The state evolves according to k′ = F (k, a, s). Let the
preferences for the government in period t be given by Ψ(kt, at, st, at+1, st+1, at+2, st+2, . . .).13

Assumption 5. Given a sequence of government actions a := {at}∞t=0, there exists a unique com-
petitive equilibrium s(a) := {st(a)}∞t=0, where the sequence s(a) is independent of the state k0.

Assumption 5 plays two roles. First, the uniqueness allows us to define government preferences
directly over the sequence of government actions, taking as given that households will play the
associated competitive equilibrium. Second, the fact that s is independent of the initial state extends
the weak separability requirement that is at the heart of our method. We can then define the
government’s preferences over sequences of actions as

U(k, at, at+1, at+2, . . .) := Ψ(k, at, st(a), at+1, st+1(a), at+2, st+2(a), . . .), (22)

where for t ≥ 0, kt is computed recursively as

kt+1(k) = F (kt(k), xt, st(a)). (23)

12The setup here uses ideas from Stokey (1991).
13As in Section 3, sometimes it may be necessary to transform the original government action so that it is feasible

independently of the choices of the private sector and the current level of the physical state, and so that the desired
separability property of preferences emerges. A similar re-scaling may be needed for the household choices.
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These preferences now take the same form as in the one-agent case, so once again we impose Assump-
tions 1 and 3, and we define an organizational equilibrium as in Definition 1. While the definition
of an organizational equilibrium is the same in terms of sequences of actions, its connection to sym-
metric subgame-perfect equilibria of an underlying game is slightly different, due to the presence of
competitive households that act in anticipation of the government’s future actions. In Appendix E,
we adapt the analysis of Section 3 to this new environment and we provide an explicit game that
describes the strategic interaction between the government and the households over time.14

In Section 3, an organizational equilibrium represents a refinement of a subgame perfect equilibrium
based on specific beliefs that the single player at each stage entertains about future play. In the richer
environment considered here, coordination of beliefs involves both the government and a continuum
of private players. It is natural for this coordination to take the form of institutions and laws, which
is why we call ours an “organizational equilibrium.” Nonetheless, it is important to contrast this
role of institutions as purely coordinating expectations from an alternative, in which they represent
forms of commitment. As in Prescott and Rios-Rull (2005), we take the view here that laws can be
freely changed ex post and that government agencies can be reformed, so that they do not represent
effective forms of commitment, and show how cooperation across different players over time can still
be sustained, even when the self-interest of future players rules out the usual grim-trigger strategies.

5.1 A Simple Taxation Example

To illustrate the general definition of an organizational equilibrium in a hybrid competitive-strategic
environment, we revisit Klein, Krusell, and Ríos-Rull (2008), replacing their Markov equilibrium
with our notion of organizational equilibrium. In this problem, the government sets a tax instrument,
which, depending on the case, is a flat tax on capital income, labor income, or total income. The
proceeds are used to produce a public good, and the government is constrained to a balanced budget.
In this subsection, we first consider a special case with inelastic labor supply and full depreciation,
where a closed-form solution is possible. In the next section, we then explore the quantitative version,
as in Klein, Krusell, and Ríos-Rull (2008).

The production function is given by

yt = f(kt, `t) = kαt `
1−α
t ,

where labor is inelastically supplied (`t = 1) and capital is subject to full depreciation, so that the
14In the application that we will describe shortly, we assume that the government is a first mover within each

period, so that households react contemporaneously to a government deviation. The definition could be adapted to
environments where the opposite timing prevails, as in Ortigueira (2006).
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resource constraint is
ct + gt + kt+1 = f(kt, `t). (24)

gt is the government provision of the public good. Preferences are

∞∑
t=0

βt [log ct + γ log gt].

We derive the analytical expressions for the case in which the government instrument is a tax on
capital income. The same method can be applied when the tax is levied on labor income, or on total
income. The consumers’ budget constraint is

ct + kt+1 = (1− τt)rtkt + wt.

We take the tax rate to be the government’s action. Its domain is [0, 1] and is thus independent of
initial capital. To avoid dealing with the complications of infinitely negative utility, we constrain the
government to choices in [ε, 1− ε], where ε > 0 can be chosen arbitrarily small so that the bounds are
never hit in the equilibrium we consider. Given a sequence of tax rates {τt}∞t=0, we first characterize
a competitive equilibrium in terms of sequences of consumption, capital, and factor prices, and then
summarize it by a sequence of saving rates st ∈ [0, 1], which is our notion of the private sector’s
actions.

Given a sequence of tax rates {τt}∞t=0 and an initial level of capital k0, a sequence {ct, gt, kt+1, wt, rt}∞t=0

is a competitive equilibrium if and only if the following conditions are satisfied:

• Factor prices are equal to their marginal productivity, i.e.,

rt = fk(kt),

wt = f(kt)− rtkt.

• The household’s intertemporal decision is optimal, which requires the Euler condition to hold

u′(ct) = βu′(ct+1)(1− τt+1)rt+1,

along with the transversality condition

lim
t→∞

βtu′(ct)kt+1 = 0.
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• The government budget is balanced, i.e.,

gt = τtrtkt.

• And the resource constraint (24) holds.

Substituting factor prices, the resource constraint, and the budget constraint into the Euler equation
and summarizing private-sector actions by the saving rate st := kt+1/f(kt, `t) (which also is in [0, 1]

independently of initial capital), a competitive equilibrium is described by the difference equation

st
1− st − ατt

=
αβ(1− τt+1)

1− st+1 − ατt+1
, (25)

along with the transversality condition

lim
t→∞

βt
st

1− ατt − st
= 0. (26)

Lemma 1. Assumption 5 is satisfied for this economy. Specifically, given a sequence {τt}∞t=0 ∈
[ε, 1− ε]∞, there exists a unique competitive equilibrium.

Proof. See Appendix F.

Suppose the sequence of tax rates is {τj}∞j=0, the sequence of saving rates is {sτ}∞τ=0, and the initial
capital is k0. Then capital evolves according to the following sequence:

kt = kα
t

0 Πt−1
j=0s

αt−1−j
j ,

and the current government’s total payoff is

U(k0, s0, s1, . . . , τ0, τ1, . . .) =
γ

1− β
logα+

α(1 + γ)

1− αβ
log k0

+
∞∑
j=0

βj
{

log(1− ατj − sj) + γ log τj +
αβ(1 + γ)

1− αβ
log sj

}
.

Clearly, the separability condition is satisfied in this environment.

In an organizational equilibrium, the action payoff should be equalized for governments in different

periods, i.e.,
∑∞

j=0 β
j

{
log(1−ατt+j−st+j)+γ log τt+j+ αβ(1+γ)

1−αβ log st+j

}
should equal to a constant
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for different t. Utilizing the recursive structure, the following lemma provides a system of first-order
equations that links the current and future tax rates.

Lemma 2. In an organizational equilibrium, given the current tax and saving rates τ and s, the
future tax and saving rates τ ′ and s′ need to satisfy the following system of equations for some
constant V

(1− β)V = log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s, (27)

(1− β)V = log(1− ατ ′ − s′) + γ log τ ′ +
αβ(1 + γ)

1− αβ
log s′, (28)

s

(1− s− ατ)
=

αβ(1− τ ′)
1− s′ − ατ ′

. (29)

Proof. See Appendix F.

Intuitively, equation (27) and (28) make sure that the action payoffs for the current and future
government are the same. Equation (29) corresponds to the Euler equation in the private sector.
Given τ , there could be two different saving rates s that satisfy equation (27). To proceed, define
g
(
τ ;V

)
as

g
(
τ ;V

)
= min

{
s ∈ (0, 1)

∣∣∣∣ log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s = (1− β)V

}
, (30)

which selects the smaller saving rate that delivers the action payoff V . The system (27) to (29) is
too complicated to allow an analytical solution, and we have verified numerically that there does
not exist a solution to the system if the larger saving rate in equation (27) is selected. Therefore, in
terms of equation (28), only g(τ ′;V ) can be chosen as well. Otherwise, there will be no solution in
the next period.

Similar to Section 2.2, the organizational equilibrium can be characterized by an optimal proposal
function that governs the transition and a starting point that implements the no-delay condition.

Proposition 5. The sequence of tax rates in the organizational equilibrium can be obtained recur-
sively by the proposal function q∗(τ), which satisfies

g(τ ;V ∗)

1− g(τ ;V ∗)− ατ
=

αβ(1− q∗(τ))

1− g(q∗(τ);V ∗)− αq∗(τ)
, (31)
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where V ∗ is defined as

(1− β)V ∗ = max
τ

log(1− ατ − αβ(1− τ)) + γ log τ +
αβ(1 + γ)

1− αβ
log(αβ(1− τ)). (32)

The initial tax rate τ0 is such that Φ(τ0) ≤ V ∗, where Φ(τ0) is given by

Φ(τ0) = max
τ−1

log(1− ατ−1 − s−1) + γ log τ−1 +
αβ(1 + γ)

1− αβ
log s−1 + βV ∗ (33)

s.t.
s−1

1− s−1 − ατ−1
=

αβ(1− τ0)
1− g(τ0;V ∗)− ατ0

. (34)

Proof. See Appendix F.

Here too it is useful to compare organizational equilibrium, Markov equilibrium, and Ramsey out-
come. Define the following object, which is the action payoff within a period for a given tax rate τ
and saving rate s:

H(s, τ) ≡ log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s.

In the Markov equilibrium, the problem of the current government can be written as

max
τ
H(s, τ), s.t.

s

(1− s− ατ)
=

αβ(1− τ ′)
1− s′ − ατ ′

.

The current government takes future τ ′ and s′ as given when choosing τ .15 It follows that the tax
rate in the Markov equilibrium is a constant τM = γ(1−αβ)

α(1+γ) .
16 A high tax rate is chosen because the

government fails to take into account the effects of the current tax rate on past saving choices.

In the steady state of the Ramsey outcome, the allocation is characterized by

Hs =
1

α
Hτ , and s = αβ(1− τ).

This allocation does not maximizeH(s, τ), but it is optimal from the initial government’s perspective.
The effect of a high tax rate on past saving decisions is internalized and a low tax rate is set in the
long run.

15In general, in a Markov equilibrium the government would consider τ ′ and s′ as given functions of k′. For the
specific application at hand, weak separability implies that the Markov equilibrium features constant functions, so the
government is taking as given the future levels of τ ′ and s′ directly.

16The same result is obtained in Klein, Krusell, and Ríos-Rull (2008), where the Markov equilibrium is obtained by
taking the limit of the solution to a finite-horizon problem.
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In the organizational equilibrium, the steady-state tax rate maximizes the steady-state action payoff

max
τ
H(s, τ) s.t. s = αβ(1− τ).

Unlike the Markov equilibrium, the intertemporal distortion is internalized. This is why the outcome
in the organizational equilibrium is better than that in the Markov equilibrium. However, the
allocation does not necessarily favor the initial agent and has to strike a balance across governments
in different periods, which prevents it being the same as the Ramsey outcome.

Figure 5: Proposal Function q∗(τ)

As a numerical example, we set β = 0.9, α = 0.36, and γ = 0.5, and the proposal function is plotted
in Figure 5. Let τM denotes the tax rate in the Markov equilibrium and τR denotes the steady-state
tax rate in the Ramsey outcome. As expected, the initial tax rate τ0 is lower than τM , but it is
higher than τR. The proposal function implies a gradual transition of the tax rate from τ0 to the
steady state τ∗, which is close to that in the Ramsey outcome.

Figure 6 displays the corresponding transition paths for the tax rates and allocation in the three
economies. The initial capital is chosen to be the steady state capital level in the Markov economy. In
the Ramsey outcome, the government initially sets the tax rate as high as in the Markov equilibrium
and rapidly adjusts it to the steady state value τR. As a result, private consumption drops initially,
since households anticipate a lower tax rate in the future. At the same time, the capital stock
accumulates to its steady-state high level. The path of government spending is non-monotonic, since
the output and tax rate move in opposite directions. In the organizational equilibrium, the tax
rate starts lower than the Markov tax rate and converges to τ∗. The transition of the tax rate is
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slower than in the Ramsey outcome, to make sure that the government’s action payoff is equalized
across periods. Because of the lower tax rate, the capital stock is higher than that in the Markov
equilibrium.

Figure 6: Transition Path

In equilibrium, the government in each period obtains the same constant action payoff V ∗. However,
the no-delay condition prevents a constant tax rate, and the sequence of tax rates approaches its
stationary level τ∗ only gradually. If the initial tax rate τ0 is known, then the entire transition path
can be computed recursively via the proposal function q∗(τ). The condition that Φ(τ0) ≤ V ∗ then
guarantees that the initial government has no incentive to wait for the next government to make
the equilibrium proposal. While the government in period 0 is indifferent, the period-1 government
strictly prefers the lowest τ0 compatible with Φ(τ0) ≤ V ∗; as in Section 2.2, we use this as a selection
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criterion and start from a value τ0 such that Φ(τ0) = V ∗.

5.2 A Quantitative Taxation Model

In this section, we revisit the quantitative taxation problem in Klein, Krusell, and Ríos-Rull (2008).
We extend the previous section to allow elastic labor supply, partial depreciation, and three types of
taxation. Preferences are

∞∑
t=0

βt [γc log ct + γ` log(1− `t) + γg log gt],

where `t stands for labor. The budget constraint for the household is

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

rt

)
rtkt,

where it is investment, τ `t is labor income tax, τkt is capital income tax, and τt is total income tax. The
last term on the right-hand of the budget constraint allows for the possibility of capital depreciation
deduction. In Klein, Krusell, and Ríos-Rull (2008), the capital evolves according to

kt+1 = (1− δ)kt + it.

However, this specification does not allow the government’s lifetime utility to be separable between
capital and the sequence of tax rates. Instead, we specify the law of motion of capital to be17

log kt+1 = log k + (1− δ) log kt + δ log it.

This can be viewed as a log-linear approximation of the original law of motion, and it fits into
the class of separable economies discussed in Section 4.1. This modification makes the economy
weakly separable, and therefore we can apply the definition of organizational equilibrium to this
approximated economy.

We set the parameters to be α = 0.36, β = 0.96, δ = 0.08, γg = 0.09, γc = 0.27, and γ` = 0.64.
We choose γg such that the steady state government spending to GDP ratio is 18% in the Pareto
efficient allocation, and γ` such that the household works 32% of its available time. The rest of the
parameters are standard in the literature. The properties of the transition path are very similar to
what we have shown in the previous section, and in this subsection we focus on their steady-state
properties.

17For the same reason, we approximate the depreciation allowance to δrtkt/r̄ rather than δkt. See Appendix F.
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Table 1: Steady State Comparison

Aggregate
statistics

Labor income tax Capital income tax Total income tax

Pareto Ramsey Markov Organization Pareto Ramsey Markov Organization Pareto Ramsey Markov Organization

y 1.000 0.790 0.794 0.792 y 1.000 0.685 0.570 0.660 y 1.000 0.764 0.769 0.767

k/y 2.959 2.959 2.959 2.959 k/y 2.959 1.972 1.360 1.824 k/y 2.959 2.676 2.698 2.687

c/y 0.583 0.583 0.600 0.591 c/y 0.583 0.722 0.697 0.716 c/y 0.583 0.601 0.612 0.606

g/y 0.180 0.180 0.164 0.172 g/y 0.180 0.120 0.195 0.138 g/y 0.180 0.185 0.173 0.179

c/g 3.240 3.240 3.662 3.435 c/g 3.240 6.018 3.580 5.188 c/g 3.240 3.240 3.542 3.379

` 0.320 0.253 0.254 0.253 ` 0.320 0.275 0.282 0.277 ` 0.320 0.259 0.259 0.259

τ 0.281 0.256 0.269 τ 0.594 0.774 0.645 τ 0.236 0.220 0.228

Table 1 shows the steady-state comparison among the Pareto allocation, the Ramsey outcome, the
Markov equilibrium, and the organizational equilibrium. The results regarding the Ramsey out-
come and the Markov equilibrium are very similar to those obtained in Klein, Krusell, and Ríos-Rull
(2008). Across the three different tax instruments, a common feature is that the tax rates and the al-
location in the organizational equilibrium always stay between the Ramsey outcome and the Markov
equilibrium. This feature reinforces the analysis in Section 2.2 and Section 5.1: an organizational
equilibrium tempers the temptation from time inconsistency that makes Markov equilibria particu-
larly undesirable, but at the same time it does not support the same level of long-run cooperation
as in a Ramsey outcome. Among the three tax instruments, capital income taxation is the most
distortionary. In the Markov equilibrium with capital-income taxes, the steady-state output level is
only 57% of its Pareto efficient level, while an organizational equilibrium attains 66% of the Pareto
optimal steady-state allocation and achieves a value only slightly below the Ramsey outcome. We
interpret this result as a large improvement over the Markov equilibrium. For the cases of a labor
income tax or a total income tax, the difference between the Ramsey outcome and the Markov equi-
librium is much smaller. Since the organizational equilibrium stays in between the two benchmarks,
we only conclude that it brings the allocation closer to the Ramsey outcome.

6 Conclusion

Rome was not built in a day. Likewise, many institutions that underpin solid policy evolved slowly.
Sargent (2017), and Hall and Sargent (2014; 2015; 2018) describe the way the United States acquired
a reputation for honoring its debt over time. The current environment of low inflation emerged after
the tumultuous ’70s, during which governments gradually learned how to manage monetary policy
without resorting to the anchor of a commodity standard. Social security started as a narrow and
limited program and only later grew in size and scope.

In this paper, we provided an equilibrium concept that is well suited to analyzing such situations.
The equilibrium eschews abrupt transitions and is not (or at least not necessarily) supported by
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grim triggers, but rather cooperation for the common long-term good evolves slowly and would
potentially also erode slowly. While the constraints that we impose on equilibrium strategies appear
very restrictive, what is most interesting to us is that in our computed examples, they still permit
very good outcomes, bringing substantial improvement to the dismal predictions of Markov equilibria.
At the same time, the notion of organizational equilibrium allows for clear-cut comparative statics
exercises and does not suffer from the pervasive multiplicity of subgame-perfect equilibria, which is
implied by the folk theorem. Because of this, it is more readily amenable to empirical analysis.
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Appendix

A Proof of Proposition 1

Proof. Suppose the initial agent with capital k0 = k proposes a sequence of saving rates {sτ}∞τ=0, which yields
a sequence of capital {kτ}∞τ=0. Consider a subsequence of the proposed saving rates from time t on, {sτ}∞τ=t.
This is the sequence of saving rates that will be used by the agent with capital kt. The lifetime utility for the
agent with capital kt is

Ut(kt, {sτ}∞τ=t) =
α(1− αβ + δαβ)

1− αβ
log kt + Vt,

where

Vt = log(1− st) +
δαβ

1− αβ
log(st) + δ

∞∑
j=1

βk
(

log(1− st+j) +
αβ

1− αβ
log(st+j)

)
. (35)

The link between Vt and Vt+1 is given by

Vt − βVt+1 =
δαβ

1− αβ
log st + log(1− st)− β(1− δ) log(1− st+1). (36)

We will proceed by guessing and verifying. We first ignore condition 2 in the definition of organizationally
admissible sequence, which will imply that a proposal has to be that Vt = V . This is because Vt has to be
weakly increasing, and the proposer can be better off by copying future agents’ saving rate sequence if Vt > V0

for some t. Later on, we will verify that condition 2 can be satisfied by a particular selection of a saving rate
sequence.

The constant action payoff restriction, Vt = V , simplifies equation (36) to

(1− β)V =
δαβ

1− αβ
log st + log(1− st)− β(1− δ) log(1− st+1). (37)

Equation (37) has two implications. First, it establishes a recursive relationship for saving rates between two
consecutive agents. Second, it provides us a way to select the saving rate sequence that yields the highest
utility.

Denote by s = q(s−;V ) as the proposal function that specifies the current generation’s saving rate as a function
of the last generation’s saving rate, solving equation (37):

q(s−;V ) = 1− exp

{
−(1− β)V + δαβ

1−αβ log s− + log(1− s−)

β(1− δ)

}
. (38)

If the initial agent wants to make a proposal, it will choose the highest V possible. Given a particular V , the
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fixed point of the function q(s−;V ) solves

(1− β)V =
δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s). (39)

Also note that
δαβ

1− αβ
log s+ log(1− s)− β(1− δ) log(1− s) ∈ (−∞, V ∗],

where V ∗ is given by

s∗ =
δαβ

(1− β + δβ)(1− αβ) + δαβ
, (40)

V ∗ =
1− β + δβ

1− β
log(1− s∗) +

αδβ

(1− β)(1− αβ)
log s∗. (41)

If the initial agent chooses V > V ∗, then there is no fixed point for q(s−;V ). Meanwhile, q(s−;V ) > s− when
V > V ∗, and s will converge to 1 at a rate that will make the sum in equation (35) diverge to −∞, which
cannot be optimal. Therefore, the optimal choice is V ∗. The optimal proposal function associated with V ∗ is
q∗(s−) = q(s−;V ∗).

If we ignore condition 2, there are many valid proposals that the initial agent could make; as an example, a
constant saving rate s∗ would be one of them. However, this constant saving rate sequence {s∗} will violate
condition 2. If the initial agent waits for the next generation to propose this constant saving rate sequence,
then the initial agent can choose the Markov saving rate αδβ

1−αβ+αδβ , which yields a higher utility. This will be
the case for all proposals in which

s0 ∈
(
q∗
(

αδβ

1− αβ + αδβ

)
, s∗
]
.

Furthermore, simple but tedious algebra shows that ds/ds− = 1 and d2s/d(s−)2 > 0 at s = s∗ when V = V ∗.
s∗ is thus a semi-stable steady state: it is stable from the left, but unstable from the right. Proposals in which
s0 > s∗ would lead the difference equation to converge to 1, which is ruled out by the same argument that we
used to establish that values above V ∗ are unattainable.

Equation (38) attains a minimum when s− is at the Markov saving rate and is strictly decreasing below this
value, converging to 1 as s− converges to 0. Hence, there exists a value s such that q∗(s) > s∗ for s < s:
this is a lower value on the initial saving rate, since once again the sequence would otherwise yield arbitrarily
negative utility. This s also satisfies q∗(s) = s∗ and is given by

s = min

{
s :

δαβ

1− αβ
log s+ log(1− s) = (1− β)V ∗ + β(1− δ) log(1− s∗)

}

The set of organizational equilibria is given by the set of sequences that satisfy (11), (12), and (38) and that
have

s0 ∈
[
s, q∗

(
αδβ

1− αβ + αδβ

)]
.
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B Proof of Proposition 2.

Proof. We first show that there exits a reconsideration-proof equilibrium that satisfies Condition 2 in Defini-
tion 1. Let (aE0 , a

E
1 , . . .) be the outcome of a reconsideration-proof equilibrium for the game whose period-t

payoff is V (at, at+1, at+2, ...), and let V ∗ be its associated value. This means that, for any period t and any
actions a ∈ A, there exists a continuation sequence (aĒt+1, a

Ē
t+2, . . .), which is also a reconsideration-proof

equilibrium and is such that

V (aEt , a
E
t+1, a

E
t+2, . . .) ≥ V (a, aĒt+1, a

Ē
t+2, . . .). (42)

We then have
V (a, aĒt+1, a

Ē
t+2, . . .) = Ṽ (a, V̂ (aĒt+1, a

Ē
t+2, . . .)).

Acknowledging that the sequence (aĒt+1, a
Ē
t+2, . . .) is potentially a function of the deviation a (as well as of

time t, which we can hold fixed), define

V := inf
a∈A

V̂ (aĒt+1, a
Ē
t+2, . . .). (43)

By the compactness of A, Tychonoff’s theorem, and continuity of V̂ , we can find a sequence of actions
(a∗0, a

∗
1, ...) that attains the infimum in equation (43) above. Exploiting Assumption 3, this sequence ensures

subgame perfection and satisfies the no-delay condition:

V (a∗0, a
∗
1, a
∗
2, . . .) ≥ V (a, a∗0, a

∗
1, . . .).

This path attains a value V ∗.

Now we show that (a∗0, a
∗
1, ...) is also an organizational equilibrium. Consider the set of sequences {aτ}∞τ=0

that satisfy the condition that lifetime utility is weakly increasing (Condition 1 in Definition 1). Any sequence
{aτ}∞τ=0 that attains the maximum of V (a0, a1, . . .) within this set has to be such that V (at, at+1, . . .) = V for
any t. If not, then there exists t such that V (at, at+1, . . .) < V (at+1, at+2, . . .). The initial proposer can copy
the sequence starting from agent in period t + 1 by proposing {âτ}∞t=0, where âτ = aτ+t+1. Next, we argue
that, if V cannot be attained in a symmetric equilibrium, then {aτ}∞τ=0 cannot satisfy the no-delay condition.
Otherwise, the strategy of restarting from the beginning after any deviation will support {aτ}∞τ=0 as the
outcome of a symmetric equilibrium. Therefore, the value attained in an organizational equilibrium cannot
be larger than the largest value attained by a symmetric equilibrium, V ∗. We have shown that (a∗0, a

∗
1, ...)

attains the value V ∗ and it satisfies condition 2 in Definition 1 as well, which is therefore an organizational
equilibrium for the game without state variables. By weak separability (Assumption 1), this property carries
over to the original game with state variables, if there are any. Hence, playing (a∗0, a

∗
1, ....) is an organizational

equilibrium.
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Finally, let (a0, a1, . . .) be an organizational equilibrium. In the first part of the proof we established that, if
V ∗ is the value attained in a reconsideration-proof equilibrium, then the same value V ∗ also is attained by
the organizational equilibrium. In order to prove part 2 of the proposition, we thus need to simply display a
strategy that supports this path as a symmetric equilibrium. By the no-delay condition, one such strategy is
to restart the path of play from a0 after any deviation.

C Proof of Proposition 3.

To prove this we rely on a useful lemma, which introduces a convenient way of representing equilibria through
their values, similarly to Abreu, Pierce, and Stacchetti’s (1986; 1990) method.18

Lemma 3. Let V ∗ ∈ R and V̂ ⊂ R be a value and a set of continuation values that satisfy the following
properties:

1.
∀a ∈ A ∃v̂ ∈ V̂ : Ṽ (a, v̂) ≤ V ∗;

2.
∀v ∈ V̂ ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) = V ∗ ∧W (a, v̂) = v.

3. There exists no value V ∗∗ > V ∗ and set ˆ̂V that satisfies properties 1 and 2; furthermore, there is no set
V̂a ⊃ V̂ that satisfies properties 1 and 2 together with V ∗.

Then:

• Construct an arbitrary sequence of actions {a∗t }∞t=0 recursively as follows. In period 0, pick v̂∗0 ∈ V̂
and (a∗0, v̂

∗
1) ∈ A × V̂ such that Ṽ (a∗0, v̂

∗
1) = V ∗ and W (a∗0, v̂

∗
1) = v̂∗0 . In each subsequent period, pick

(a∗t , v̂
∗
t+1) ∈ A × V̂ such that Ṽ (a∗t , v̂

∗
t+1) = V ∗ and W (a∗t , v̂

∗
t+1) = v̂∗t . Constructing such a sequence is

possible by the definition of V ∗ and V̂. The sequence so constructed is the outcome of a reconsideration-
proof equilibrium;

• If {a∗t }∞t=0 is the equilibrium path of a reconsideration-proof equilibrium, Ṽ (a∗0, a
∗
1, ...) = V ∗ and V̂ (a∗t , a

∗
t+1, ...) ∈

V̂ for any t > 0.

Proof.

First, we prove that the recursively-constructed sequence {a∗t }∞t=0 satisfies

Ṽ (a∗t , V̂ (a∗t+1, a
∗
t+2, ...)) = V ∗ ∀t ≥ 0 (44)

18Note, however, that we cannot adopt their method to recursively compute the desired sets. Given V ∗, V̂ can be
computed recursively as in Abreu, Pierce, and Stacchetti. However, without further assumptions the set of values of
V ∗ for which V̂ is defined need not be convex, which makes finding its maximum difficult.
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and
V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...) ∈ V̂ ∀t ≥ 0. (45)

Note that, if v̂∗T = V̂ (a∗T , a
∗
T+1, a

∗
T+2, ...) for some period T , iterating backwards we find that v̂∗t = V̂ (a∗t , a

∗
t+1, a

∗
t+2, ...)

for all t < T , so that equations (44) and (45) hold.

Define
{at}∞t=0 ∈ arg min

{at}∞t=0

V̂ (a0, a1, ...)

and similarly let {āt}∞t=0 be a sequence that attains the maximum. Both exist by the compactness of A and
the continuity of V̂ (in the product topology).

Next, truncate the sequence {a∗t }∞t=0 at time S > T and replace the continuation with {at}∞t=0 or {āt}∞t=0. By
Assumption 4 and the monotonicity of W , we have

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , a
∗
S+1, a

∗
S+2, ...) ≤ V̂ (a∗T , a

∗
T+1, ..., a

∗
S , ā0, ā1, ...) (46)

and

V̂ (a∗T , a
∗
T+1, ..., a

∗
S , a0, a1, ...) = W (a∗T ,W (a∗T+1, ...W (a∗S ,W (a0,W (a1, ...)...))...)) ≤

W (a∗T ,W (a∗T+1, ...W (a∗S , v̂
∗
S)...)) = v̂∗T ≤

W (a∗T ,W (a∗T+1, ...W (a∗S ,W (ā0,W (ā1, ...)...))...)) = V̂ (a∗T , a
∗
T+1, ..., a

∗
S , ā0, ā1, ...).

(47)

Taking limits as S →∞ in equations (46) and (47) and exploiting the continuity of V̂ according to the product
topology, the left-most and right-most expressions in the inequalities converge to the same value, which then
implies that indeed v̂∗T = V̂ (a∗T+1, a

∗
T+2, a

∗
T+3, ...) and (44) and (45) hold.

To complete the proof of the first point, we need to show that there exists no symmetric subgame-perfect equi-
librium whose payoff is strictly greater than V ∗. By contradiction, suppose that there is such an equilibrium
with value V ∗∗ > V ∗. Let σ∗∗ be the strategy profile representing one such equilibrium. Define

V̂b := {v : v = V̂ (a∗∗t+1|ht , a∗∗t+2|ht , a∗∗t+3|ht , ...), ht ∈ At},

where {a∗∗s |ht}∞s=t+1 is the equilibrium path implied by the strategy profile σ∗∗ following a history ht. The
pair (V ∗∗, V̂b) satisfies property 1 in the lemma, since otherwise σ∗∗0 would not be optimal at time 0. It also
satisfies property 2 since σ∗∗ is symmetric and by the definition of V̂b. But then this implies that property 3
in the lemma does not hold for V ∗, establishing a contradiction.

In the previous point we proved that, given V ∗ and V̂, we can construct a reconsideration-proof equilibrium
of value V ∗. Since all reconsideration-proof equilibria must have the same value, it must be the case that
Ṽ (a∗0, a

∗
1, ...) = V ∗. Furthermore, repeating the steps of the previous point, we can prove that the value V ∗

and the set
V̂a := {v : v = V̂ (a∗t+1|ht , a∗t+2|ht , a∗t+3|ht , ...), ht ∈ At}

44



satisfy properties 1 and 2. By the definition of V̂, it follows that V̂a ⊆ V̂.

While not essential for the proof of Proposition 3, the following lemma is useful for computations:

Lemma 4. The set V̂ defined in Lemma 3 is convex.19

Proof. We first define the set V̂c by relaxing property 2 in Lemma 3 to be the following:

∀v ∈ V̂c ∃(a, v̂) ∈ A× V̂ : Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v. (48)

We will later prove that V̂c = V̂.

Simple case. First, if V̂c is a singleton, then it is necessarily convex and V̂c = V̂: by property 3 of Lemma 3,
V ∗ should be raised until Ṽ (a, v̂) = V ∗ at the single element v̂ ∈ V̂c, with no effect on property 2 and relaxing
the constraint in property 1.

From now on, we study the case in which V̂c contains at least two values.

Step 1. To prove that V̂c is convex, we prove that its convex hull, Co(V̂c), satisfies properties 1 and 2 as well
(and of course Co(V̂c) ⊃ V̂c unless V̂c is convex as well). Property 1 is immediate from the monotonicity of Ṽ .
Let v1, v2 ∈ V̂c, and let (a1, v̂1), (a2, v̂2) elements of A×V̂c be two pairs of actions and continuation values that
satisfy property 2 of Lemma 3. Consider their convex combination (αv1 +(1−α)v2, αv̂1 +(1−α)v̂2), α ∈ [0, 1].
Since Ṽ is continuous and quasiconcave and W is continuous, Ṽ (αv1 + (1− α)v2, αv̂1 + (1− α)v̂2) ≥ V ∗, and
W (αv1 + (1 − α)v2, αv̂1 + (1 − α)v̂2) takes all values in [v1, v2] as α varies between 0 and 1. Hence, all
intermediate values satisfy property 2 as well, which completes the proof that Co(V̂c) satisfies property 2.

Step 2. To prove that V̂c = V̂, proceed as follows. Define vc := min{V̂c} and v̄c := max{V̂c}.20 By definition,
we can find (a, v̂) and (ā, ¯̂v) such that

Ṽ (a, v̂) ≥ V ∗ ∧W (a, v̂) = v

and
Ṽ (ā, ¯̂v) ≥ V ∗ ∧W (ā, ¯̂v) = v̄.

Since A is convex, we can construct within it a line from a to ā by defining a(α) := αa+ (1− α)ā, α ∈ [0, 1].
By the quasiconcavity of Ṽ , we know

Ṽ (a(α), αv̂ + (1− α)¯̂v) ≥ V ∗.
19Lemma 3 defines a unique set, since the union of all sets satisfying properties 1 and 2 satisfies properties 1 and 2

as well.
20It is straightforward to prove that V̂c is closed, by the continuity of the functions defining it.
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By property 1 of Lemma 3, for each action a(α) and the monotonicity and continuity of Ṽ we have

Ṽ (a(α), v) ≤ V ∗.

Since V̂c is convex, we can find a (unique) value v̂(α) such that

Ṽ (a(α), v̂(α)) = V ∗.

Monotonicity and continuity of Ṽ imply that v̂(α) is a continuous function. It then follows that V̂ (a(α), v̂(α))

is a continuous function of α. As α ∈ [0, 1], this function must take all values between v and v̄, proving that
the property 2 of Lemma 3 is satisfied by V̂c and thus V̂c = V̂.

We are now ready to prove Proposition 3.

Proof. The second property of the value V ∗ and the set V̂ in Lemma 3 implies that we can construct a
function g : V̂ → R × V̂ with the property that Ṽ (g(v)) = V ∗ and W (g(v)) = v. Starting from any value
v0 ∈ V̂, we can construct recursively a path (at, vt+1) = g(vt). By Lemma 3, this is the equilibrium path of a
reconsideration-proof equilibrium. It will thus be an organizational equilibrium provided that

V (at, vt+1) ≥ max
a

Ṽ (a, v0) ∀t.

By the definition of V, this property is satisfied by its least element, v;21 hence, it will be satisfied provided
that the initial value v0 is sufficiently low.

We now proceed to prove Proposition 4.

Proof. Define a correspondence ζ : R×R⇒ R as follows:

v ∈ ζ(v′, v∗)⇐⇒ ∃a ∈ A :

Ṽ (a, v′) = v∗

W (a, v′) = v.
(49)

In words, given (v∗, v′), v belongs to the correspondence if there is an action a which, together with a
continuation value v′, yields utility v∗ when evaluated according to the decision maker’s preferences (Ṽ ) and
utility v when evaluated with her continuation utility function W .

We prove that there exists a value v∗ for which ζ is nonempty and admits a fixed point in continuation utilities
(v = v′). We do so by proving that a Markov equilibium (aM , vM ) exists, such that

v∗ = Ṽ (aM , vM ) = max
a

Ṽ (a, vM ) (50)

21By the monotonicity of Ṽ in its second argument and the property 1 of V, Ṽ (a, v) ≤ V ∗ for all a ∈ A.
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and
vM = W (aM , vM ). (51)

To prove the existence of a Markov equilibrium, we construct a correspondence â(.) from A into itself by
setting

â(a) = max
a0∈A

V̂ (a0, a, a, a, ...).

By the usual compactness and continuity properties, this correspondence is nonempty, compact-valued, and
upper hemicontinuous. Quasiconcavity of V̂ ensures that it is also convex-valued. Hence, the correspondence
has a fixed point by Kakutani’s theorem; let aM be one such fixed point. Given Assumption 4, letting
vM := V̂ (aM , aM , aM , ...), equations (50) and (51) are satisfied.

We thus know vM ∈ ζ(vM , Ṽ (aM , vM )). Once again, our assumptions about compactness and continuity
imply that the correspondence ζ is upper hemicontinuous. Let V ∗ be the maximal value for which ζ admits
a fixed point in continuation utilities. In the proofs below, it is useful to establish that

v ∈ ζ(v′, V ∗) =⇒ v ≤ v′. (52)

Suppose (52) is not satisfied. Let (a, v′) be such that V (a, v′) = V ∗ and W (a, v′) > v′. Holding the action
a fixed, continuity and monotonicity imply that higher values of v′ lead to higher values of V (a, v′) and
W (a, v′). As long as W (a, v′) > v′, we know that v′ < max{at}∞t=0

V̂ (a0, a1, ...) and can thus be raised further.
Eventually, we will attain a value vh > v′ for which W (a, vh) = vh (this has to happen, since W (a, v′) is
bounded by the maximum above). Let V h := V (a, vh) > V ∗. We just established that a fixed point of ζ(., V h)

exists, which contradicts the assumption that V ∗ is the highest value for which a fixed point can be found.

In our next step, we prove that there are no symmetric equilibria with value V ∗∗ > V ∗. By the definition of V ∗,
given any combination of an action and a continuation utility (a, v′), if Ṽ (a, v′) = V ∗∗ thenW (a, v′) < v′. This
implies that any equilibrium path with value V ∗∗ would feature a strictly increasing sequence of continuation
values; convergence is ruled out, because continuity and compactness would imply that the limiting point
would be a fixed point of ζ, which is inconsistent with V ∗∗ > V ∗. Since the set of possible continuation values
is bound by

max
{at}∞t=0

V̂ (a0, a1, . . .),

no such equilibrium path can exist.

We now prove that there exist symmetric equilibria with value V ∗, which then implies that any such equilibrium
is reconsideration proof. Let vSS be the maximal fixed point of ζ(., V ∗). For any continuation value v > vSS ,
a repetition of the arguments described above for V ∗∗ imply that no equilibrium path would be possible.22

We prove instead that there exists a convex set V = [v`, v
SS ] which, together with V ∗, satisfies the properties

22If along the equilibrium path, for some T ≥ 0, vT > vSS , then vt > vSS for all t > T . Since {vt} is bounded and
monotonically increasing, the limiting point will be a fixed point of ζ, which is incompatible with vSS being the largest
fixed point.

47



of Lemma 3, where
v` := min

v′≤vSS
min ζ(v′, V ∗). (53)

To do so, prove first that, for any action a ∈ A, Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗. By contradiction, suppose

that an action aL such that Ṽ (aL,min{at}∞t=0
V̂ (a0, a1, ...)) > V ∗ existed. We could then repeat the same steps

used to prove (52) and construct a steady state with value higher than V ∗.

Since Ṽ (a,min{at}∞t=0
V̂ (a0, a1, ...)) ≤ V ∗ ∀a ∈ A, we can define

v′min := min
(a,v′)

v′ := Ṽ (a, v′) = V ∗.

Since there exists an action aSS such that V (aSS , vSS) = V ∗, v′min ≤ vSS . Also, by equations (52) and (53),
v` ≤ v′min. Hence, Ṽ (a, v`) ≤ V ∗ ∀a ∈ A: Property 1 of Lemma 3 is satisfied by the value V ∗ and the
continuation set [v`, v

SS ]. To prove Property 2, let a` and v′` be such that W (a`, v
′
`) = v` and Ṽ (a`, v

′
`) = V ∗,

and λ ∈ [0, 1].23 As we just established, Ṽ (λa` + (1 − λ)aSS , v`) ≤ V ∗. By quasiconcavity, Ṽ (λa` + (1 −
λ)aSS , λv′` + (1 − λ)vSS) ≥ V ∗. Strict monotonicity implies that there exists a unique value vλ such that
Ṽ (λaSS + (1 − λ)a`, vλ) = V ∗, which must vary continuously with λ by the continuity of Ṽ . It follows that
W (λaSS + (1−λ)a`, vλ) is a continuous function of λ and it takes all values between v` and vSS , proving that
Property 2 of Lemma 3 holds. Finally, from equations (52) and (53), we know that any value v 6∈ [v`, v

SS ]

could only be attained by some action a with a continuation value v′ > vSS , which would lead to nonexistence
in subsequent periods. Hence, [v`, v

SS ] is the largest set that satisfies Properties 1 and 2 of Lemma 3 together
with the value V ∗, completing the proof that a reconsideration-proof equilibrium has value V ∗, and thus that
in turn the organizational equilibrium with the state variable is also associated with an action value V ∗.

Finally, suppose that V is strictly quasiconcave. Let aSS be the unique action that attains maxa V (a, a, a, ...).
If this steady state is not a Markov equilibrium, then aSS < maxa Ṽ (a, vSS). In this case, a sequence that
starts at aSS and stays constant violates the no-delay condition.

D Construction of an Equilibrium in an Approximating Economy when the Orig-
inal Economy Is Non-Separable

Compared with the class of economies specified in Section 4.1, the approximated equilibrium in Section 4.2
chooses particular functional forms for h(·), m(·), and g(·). Here, we derive the general result that also applies
to Section 4.2.

The problem can be written as

Ψt = u(kt, at) + δ

∞∑
τ=1

βτu (kt+τ , at+τ ) .

23We have v` ≤ v′` ≤ vSS by (52) and (53).
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such that

u(k, a) = ω10 + ω11h(k) + ω12m(a)

h(k′) = ω20 + ω21h(k) + ω22g(a).

In the approximated equilibrium, ω is a constant matrix chosen to match the level and first-order derivatives.

ω =

 u(k, a)− uk(k,a)

hk(k)
h(k)− ua(k,a)

ma(a) m(a) uk(k,a)

hk(k)

ua(k,a)
ma(a)

h(k)− Fk(k, a)h(k)− hk(k)Fa(k,a)
ga(a) g(a) Fk(k, a) hk(k)Fa(k,a)

ga(a) .


Given a sequence of re-scaled actions {aτ}∞τ=0 and that the initial state is k0, then the sequence of state
variables is

h(kt) = ω20
1− ωt21

1− ω21
+ ωt21h(k0) + ω22

t−1∑
τ=0

ωt−1−τ
21 g(aτ ).

The lifetime utility is given by

U(k0, {aτ}∞τ=0) =
1− β + δβ

1− β
ω10 +

ω11(1− βω21 + δβω21)

1− βω21
h(k0) + V ({aτ}∞τ=0),

where

V ({aτ}∞τ=0) = ω12m(a0) +
ω11ω22δβ

1− βω21
g(a0) + δ

∞∑
j=1

βj
(
ω12m(aj) +

βω11ω22

1− βω21
g(aj)

)
.

Let Vt ≡ V ({aτ}∞τ=t), then

Vt = ω12m(at) +
δβω11ω22

1− βω21
g(at) + βVt+1 − β(1− δ)ω12m(at+1).

In an organizational equilibrium, Vt = Vt+1 = V . In the steady state, at = at+1 = a∗, and it follows

(1− β)V = (1− β(1− δ))ω12m(a∗) +
δβω11ω22

1− βω21
g(a∗).

The steady-state action a∗ maximizes the steady-state action payoff V , which solves

(1− β(1− δ))ω12ma(a∗) +
δβω11ω22

1− βω21
ga(a∗) = 0.

We require the approximation to occur around this steady state, so a = a∗ and, using the definition of ω, it
follows that the stationary allocation has to satisfy

(1− β(1− δ))ua(k, a)(1− βFk(k, a)) + δβuk(k, a)Fa(k, a) = 0.

Note that this condition characterizes the stationary allocation and is independent of the choice of h(k),m(a), g(a).
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Along the transition, the proposal function at+1 = q∗(at) is given by

at+1 = m−1

{
ω12m(at) + δβω11ω22

1−βω21
g(at)− (1− β)V ∗

β(1− δ)ω12

}
.

The proposal function in Section 4.2 is obtained by applying the corresponding functional forms.

E Organizational Equilibrium in Policy Problems

In Section 3, there is one player for each period. Here, the policymaker is still represented by one player
for each period, but we also include a continuum of identical households that face a dynamic problem.24 In
this appendix, we describe explicitly the strategic interaction between the government and the households at
different points in time. Just as an organizational equilibrium in Section 3 is a refinement of subgame-perfect
equilibria, here an organizational equilibrium is a refinement of sequential equilibria. The game unfolds as
follows. In each period, the government in power takes an action a ∈ A first. Then, the households move
simultaneously. Each household takes an action s ∈ S. The aggregate state for next period evolves according
to k′ = F (k, a, s). A full description would require us to specify what happens when households take different
actions, so that, while they are identical ex ante, they may end up being different ex post. However, in most
of the applications that are of interest, the household optimization problem has a unique solution. Hence,
there can be no equilibrium in which identical households take different actions. Moreover, a deviation from
a single household has no effect on aggregates. We exploit these properties and specify the evolution of the
economy and preferences only after histories in which (almost) all households have taken the same action.
Starting from an arbitrary period t and state kt, household preferences are given by a function

Z(kt, {av, sv, s−v }∞v=t), (54)

where sv represents the action taken by the individual household, and s−v is the action taken by (almost) all
other households. We assume that S is a convex compact subset of a locally convex topological linear space
and that Z is jointly continuous in all of its arguments (in the product topology), strictly quasiconcave in the
own action sequence {sv}∞v=t, and weakly separable between the state and the remaining arguments. We also
assume that household preferences are time consistent. More precisely, we assume that, given an initial level
of the state kt and a sequence of other households’ actions {av, sv}∞v=t,

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t) =⇒ Z(F (kt, at, st), {av, sv, sv}∞v=t+1) =

max
{s̃v}∞v=t+1

Z(kt, {av, s̃v, sv}∞v=t+1).
(55)

Equation (55) states that, if it is optimal from period t to follow the same sequence of actions that all other
households are taking, then it is also optimal to follow that sequence in subsequent periods, as long as other
households also continue to do the same. Notice that we exploit the fact that each household has no effect

24The notion of an equilibrium can be readily extended to environments with finite types of households or to economies
with overlapping generations. Extending organizational equilibrium to economies with a continuum of types could be
done by interacting the analysis here with distributional notions of equilibrium as in Jovanovic and Rosenthal (1988).
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on the aggregates to leave the continuation preferences over several histories unspecified; this is convenient,
because it prevents us from having to explicitly introduce individual state variables. To be concrete, consider
the taxation game to which we apply this general definition; in that game, st is the individual saving rate.
Equation (55) is written from the perspective of a household that starts with the same level of kt as the
aggregate, which allows us not to draw a distinction between the two. If that household finds it optimal to
follow the same saving rate as all other households, then it will optimally choose to have the same level of
kt+1, and equation (55) ensures that the continuation plan will remain optimal from period t+ 1 onwards. If
instead the household chooses a different saving rate from others, then it would potentially enter period t+ 1

with a different level of the state from the aggregate; however, whenever this choice does not maximize (54),
we know this would not be an optimal individual choice without need to specify the entire continuation path;
moreover, the individual deviation does not affect aggregate incentives; hence, we do not need to keep track
of it for the purpose of computing other households’ best response either.

We define a competitive equilibrium from period t and a state kt as a sequence {av, sv}∞v=t, such that

Z(kt, {av, sv, sv}∞v=t) = max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t).

Proposition 6. Given any sequence of policy actions {av}∞v=t, a competitive equilibrium exists.

Proof. Fix kt and {av}∞v=t. Given our assumptions on S and Z, the best-response function

br({sv}∞v=0) := arg max
{s̃v}∞v=t

Z(kt, {av, s̃v, sv}∞v=t)

is well defined and continuous. By Brouwer’s theorem, it admits a fixed point, which is a competitive equilib-
rium.

Equation (55) ensures that the continuation of a competitive equilibrium is a competitive equilibrium itself.
Also, the separability assumption about Z implies that, if {av, sv}∞v=t is a competitive equilibrium from a state
kt, then it is also a competitive equilibrium from any other state k′t.

In what follows, we proceed by assuming that the competitive equilibrium is unique given a sequence of policy
actions, which can be verified in each specific application.25

At time t, government preferences are given by a function Ψg(kt, at, st, at+1, st+1, at+2, st+2, . . .). We assume
that this function is also weakly separable in kt and its other arguments. For each given sequence of government
actions {as}∞s=t, a unique competitive equilibrium exists. The resulting sequence of private sector actions is
given by a sequence {ss}∞s=t, which is independent of kt, since household preferences are also separable in kt.
We thus specify the government utility from its sequence of actions as that experienced in the competitive

25Non-uniqueness can be accommodated by assuming a selection rule on how households coordinate when multiple
equilibria are possible, as long as this rule has the properties that the continuation of a selected competitive equilibrium
is selected itself as a continuation competitive equilibrium and that the selection is continuous.
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equilibrium associated with those actions. With this specification, government preferences can be represented
as in equation (14), and an organizational equilibrium can be defined in the same way as in Section 2.
Existence of an organizational equilibrium is guaranteed by Proposition 2 when Assumptions 2 and 3 hold.
However, these assumptions are significantly more restrictive in tax applications. As is well known, optimal
tax problems frequently feature nonconvexities, in which case existence may have to be established in the
specific application, as we do in our examples. Moreover, anticipation effects from the competitive equilibrium
imply that Assumption 3 often does not hold either. It is worth noting that this assumption can be weakened.
Its central role in our proof of Proposition 2 is to establish that the continuation sequence (aĒt+1, a

Ē
t+2, . . .) in

equation (42) can be made independent of the current deviation a. In our tax example, we prove this result
by showing instead that the static best-response arg maxa V (a, a0, a1, a2, ...) is independent of the sequence
{at}∞t=0: hence, any continuation which deters deviation to this action will also be sufficient to deter deviation
to any other choice.

As we did for the simpler case of Section 3, we relate an organizational equilibrium to a strategic notion of
equilibrium. To do so, we need to keep track of histories of play. A symmetric history of play is a record of all
actions taken in the past; we distinguish between histories at which the government is called to play, which
are given by h0 := ∅ and

ht := (a0, s0, a1, s1, ..., at−1, st−1), t > 0,

and histories at which households are called to play, that take the form of hp,0 := a0 and

hp,t := (a0, s0, a1, s1, ..., at−1, st−1, at), t > 0.

Let H be the set of histories at which the government is called to play, and Hp the set of histories at which
households are called to play. For the reasons discussed above, we only keep track of histories in which almost
all households have taken the same action.

A strategy for the households is a mapping σp : Hp → S; likewise, a government strategy is a mapping
σ : H → A. A symmetric strategy profile is a pair (σp, σ), representing how all households and the government
will act following any symmetric history; it recursively induces a path of play {at, st}∞t=0.

A symmetric strategy profile (σp, σ) is a sequential equilibrium if the following is true:

• Given that the government will follow σ and other households will follow σp, the actions dictated by σp

are optimal for each household. After any history hp,t, each household takes as given the government
policy action at and the initial state kt, which is recursively determined by the history of past play.
Moreover, the strategy σp followed by other households and the government strategy σ determine the
future path of aggregate play, {sv, av+1}∞v=t. Household optimality requires that the sequence of actions
prescribed by σp is optimal along this path: equivalently stated, it requires the actions prescribed by
σp to be a competitive equilibrium from period t on, following any arbitrary (symmetric) history.

• Given that households will follow the strategy σp and that future governments will follow the strategy
σ, and given any past history ht, the current government choice σ(ht) is optimal.
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Proposition 7. Given any organizational equilibrium, there exists a sequential equilibrium whose outcome
coincides with the organizational equilibrium.

Proof. Let (a∗0, a
∗
1, a
∗
2, ...) be an organizational equilibrium, and let (s∗0, s

∗
1, ...) be the competitive-equilibrium

associated with it. We construct a strategy profile recursively as follows:

• σ(∅) = a∗0;

• For any t > 0 and any history ht = (a0, ..., at−1) such that as = a∗s ∀s = 0, ..., t− 1, σ(ht) = a∗t ;

• For any t > 0 and any history ht = (a0, ..., at−1) such that ∃s : as 6= a∗s, define T := max{s < t : as 6=
σ(a0, ...as−1)} and set σ(ht) = a∗t−1−T .

• For any history hpt = (a0, s0, a1, s1, ..., at−1, st−1, at) at which households are called to play, let {aes}∞s=t+1

be the sequence of government actions that follow from period t+1 if the government plays the continu-
ation of the strategy σ defined above following (a0, ..., at). Set σp(h

p
t ) to be the competitive equilibrium

that is associated with (at, a
e
t+1, a

e
t+2, ...), which exists and is unique by assumption.

By construction, the household strategy satisfies the second condition for a sequential equilibrium for any
history of play. For the government, following any history, the strategy prescribes to play the organizational
equilibrium sequence, either from its beginning or from some element a∗t , t > 0. Should the government
deviate from its strategy, the continuation strategy restarts the organizational equilibrium sequence from a∗0.
By the definition of an organizational equilibrium, continuing along the sequence is always weakly preferred
to playing the best one-shot deviation followed by a restart; hence, the government optimality condition is
satisfied and the strategy above describes a sequential equilibrium.

Proposition 8. Suppose that the government’s best response to a sequence of future unconditional policies by
future governments is independent of the specific future sequence. Then the organizational equilibrium features
a constant value over time, and there exists a symmetric sequential equilibrium in which the value for the
government at each stage is independent of the past.

Proof. The assumption in the proof is a weaker form of Assumption 3. It is sufficient to repeat the steps in
the proof of Proposition 2.

F Proofs and Computational Details for Section 5

F.1 Proof of Lemma 1

First consider the following social planner’s problem

max

∞∑
t=0

βt log ct,
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subject to the resource constraint
ct + kt+1 = kαt

t .

Note that αt in the production function can be time-varying in a deterministic fashion. The Euler condition
is

1

ct
= αt+1βk

αt+1−1
t+1

1

ct+1
.

Let µt denote the saving rate, i.e., kt+1 = µtk
αt
t , then the Euler condition above can be rewritten as

1

(1− µt)ztkαt
t

= αt+1βk
αt+1−1
t+1

1

(1− µt+1)k
αt+1

t+1

,

which can be further simplified to
µt

(1− µt)
= αt+1β

1

(1− µt+1)

The associated transversality condition is

lim
t→∞

βt
kt+1

ct
= lim
t→∞

βt
µt

(1− µt)
= 0.

By the standard concavity arguments, the planning problem has a unique solution and the Euler condition
and the transversality condition are necessary and sufficient for optimality. Hence, there must be a unique
sequence of saving rates that satisfies them.

Now consider the tax-distorted competitive equilibrium in Section 5. In the tax-distorted competitive equi-
librium, define ϕt as the after-tax saving rate, i.e., kt+1 = ϕt(1 − ατt)kαt , the Euler condition for households
is

1

ct
= αβkα−1

t+1

(1− τt+1)

ct+1

or
1

(1− ϕt)(1− ατt)kαt
= αβkα−1

t+1

(1− τt+1)

(1− ϕt+1)(1− ατt+1)kαt+1

,

which can be simplified to
ϕt

(1− ϕt)
= α

1− τt+1

1− ατt+1
β

1

(1− ϕt+1)
.

The transversality condition is

lim
t→∞

βt
kt+1

ct
= lim
t→∞

βt
ϕt

(1− ϕt)
= 0

The Euler and transversality conditions must hold in the competitive equilibrium of the original economy. By
defining αt = 1−τt+1

1−ατt+1
, there exists a unique sequence of saving rates that satisfies them in the social planner’s

problem. As a result, there exists a unique competitive equilibrium.
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F.2 Proof of Lemma 2

In an organizational equilibrium, the action payoff to government in different periods should be equalized.
Therefore, for some constant V ,

V =

∞∑
j=0

βj
{

log(1− ατt+j − st+j) + γ log τt+j +
αβ(1 + γ)

1− αβ
log st+j

}
= log(1− ατt − st) + γ log τt +

αβ(1 + γ)

1− αβ
log st

+ β

∞∑
j=0

βj
{

log(1− ατt+j+1 − st+j+1) + γ log τt+j+1 +
αβ(1 + γ)

1− αβ
log st+j+1

}
= log(1− ατt − st) + γ log τt +

αβ(1 + γ)

1− αβ
log st + βV .

It follows that for all t,

(1− β)V = log(1− ατt − st) + γ log τt +
αβ(1 + γ)

1− αβ
log st.

This leads to conditions (27) and (28). In addition, the Euler condition for consumers needs to be satisfied,
which leads to condition (29).

F.3 Proof of Proposition 5

Equation (31) simply rewrites condition (29) using the saving rate defined in equation (30). By Lemma 2, the
sequence of tax rates and saving rates derived from q∗(τ) and g(τ ;V ∗) satisfy the Euler equation and yield
a constant payoff to the government over time. If q∗(τ) does not have a fixed point, then the tax rate will
diverge to the upper or lower bound, which cannot be an equilibrium. If q∗(τ) has a fixed point, then V ∗ is
equal to the highest payoff in the steady state. Therefore, V ∗ solves

V ∗ = max
τ,s

log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s,

subject to
s = (1− τ)αβ.

Any action payoff higher than V ∗ cannot yield a fixed point for q∗(τ).

To derive the no-delay condition, suppose that the initial government takes as given that the future tax rate
sequence is {τ0, τ1, . . .} with associated saving rates {s0, s1, . . .}. Its one-shot best response satisfies

max
τ

log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s+ βV ,
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subject to
s

1− ατ − s
=

αβ(1− τ0)

1− ατ0 − s0
.

It follows that
s =

αβ(1− τ0)

1− s0 − ατ0 + αβ(1− τ0)
(1− ατ)

and the relevant maximization problem becomes

max
τ

1 + γ

1− αβ
log(1− ατ) + γ log τ +

1 + γ

1− αβ
αβ(1− τ0)

1− s0 − ατ0 + αβ(1− τ0)
+ βV .

The optimal choice of the tax rate is

τ = τM =
γ(1− αβ)

α(1 + γ)
,

which is independent of the future sequence.

The no-delay condition thus requires

1 + γ

1− αβ
log(1− ατM ) + γ log τM +

1 + γ

1− αβ
αβ(1− τ0)

1− s0 − ατ0 + αβ(1− τ0)
≤

1 + γ

1− αβ
log(1− ατ0) + γ log τ0 +

1 + γ

1− αβ
αβ(1− τ1)

1− s1 − ατ1 + αβ(1− τ1)
,

which provides an initial condition (in the form of an interval) for the system of difference equations (27)-(29).

F.4 Ramsey Outcome and Markov Equilibrium in the Taxation Problem

F.4.1 Simple Taxation Example

First consider the Markov equilibrium. We use a guess-and-verify approach. The guess is all future governments
will choose a constant tax rate τ ′ and future saving rate chosen by households is also a constant s′. The current
government then chooses its own tax rate taking τ ′ and s′ as given

max
τ

log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s+

∞∑
j=1

βj
{

log(1− ατ ′ − s′) + γ log τ ′ +
αβ(1 + γ)

1− αβ
log s′

}
,

subject to
s

(1− s− ατ)
=

αβ(1− τ ′)
1− s′ − ατ ′

.

Because τ ′ and s′ are taken as given, the problem can be simplified to

max
τ

log(1− ατ − s) + γ log τ +
αβ(1 + γ)

1− αβ
log s.
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By the Euler condition, we have

s =
αβ(1− τ ′)

1− s′ − ατ ′ + αβ(1− τ ′)
(1− ατ).

It turns out that the current government always chooses a constant tax rate τM that is independent of τ ′,

τM =
γ(1− αβ)

α(1 + γ)
,

which verifies our guess.

Now turn to the Ramsey problem, which can be written as

max
{st},{τt}

∞∑
t=0

βt log(1− ατt − st) + γ log τt +
αβ(1 + γ)

1− αβ
log st,

subject to
st−1

1− st−1 − ατt−1
=

αβ(1− τt)
1− st − ατt

, for t > 0.

Note that
log(1− ατt − st) + γ log τt +

αβ(1 + γ)

1− αβ
log st = H(st, τt).

Denote βtλt as the multiplier associated with the implementability constraint. The first-order conditions are

Hs(t) = λt
αβ(1− τt)

(1− st − ατt)2
− βλt+1

1− ατt
(1− st − ατt)2

,

Hτ (t) = λt
−αβ(1− st − α)

(1− st − ατt)2
+ βλt+1

αst
(1− st − ατt)2

.

The economy converges to a steady state in which λt = λt+1 and

Hs =
1

α
Hτ
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F.4.2 Quantitative Taxation Model

In this appendix, we describe the case in which there is no tax allowance for capital depreciation.26 Let st
denote the saving rate, i.e., kt+1 = stf(kt, `t). The allocation in the competitive equilibrium is

kt+1 = kk1−δ
t (styt)

δ,

gt = (α(τkt + τt) + (1− α)(τ `t + τt))yt,

ct = (1− st − α(τkt + τt)− (1− α)(τ `t + τt))yt,

where yt = f(kt, `t) is the total output. The household’s inter and intra Euler conditions satisfy

uc(t)

δ kt+1

it

=βuc(t+ 1)

{
(1− τt+1 − τkt+1)fk(kt+1, `t+1) +

1− δ
δ

it+1

kt+1

}
,

u`(t) =− uc(t)(1− τ `t − τt)f`(kt, `t),

which can be written as

st = δβ
1− st − α(τkt + τt)− (1− α)(τ `t + τt)

1− st+1 − α(τkt+1 + τt+1)− (1− α)(τ `t+1 + τt)

{
α(1− τkt+1 − τt+1) + st+1

1− δ
δ

}
,

γ`
`t

1− `t
= γc

(1− α)(1− τ `t − τt)
1− st − α(τkt + τt)− (1− α)(τ `t + τt)

.

Given an initial capital level k0 = k, a sequence of saving rates, and a sequence of labor supply choices, the
implied sequence of capital is

kt = k
(1−δ+αδ)t
0 Πt−1

j=0s
δ(1−δ+αδ)t−1−j

j `
(1−α)δ(1−δ+αδ)t−1−j

j k
1+(1−δ+αδ)+...+(1−δ+αδ)t−1

.

Given a sequence of tax rates, the action payoff for the government is

V (s, τ , τ k, τ `) = (γc + γg)

 αβµ2

1− (µ1 + αµ2)β

∞∑
j=0

βj log sj +
(1− α)(1− βµ1)

1− (µ1 + αµ2)β

∞∑
j=0

βj log `j


+

∞∑
j=0

βjγc log
(
1− sj − α(τkj + τj)− (1− α)(τ `j + τj)

)
+

∞∑
j=0

βjγ` log (1− `j) +

∞∑
j=0

βjγg log
(
α(τkj + τj) + (1− α)(τ `j + τj)

)
.

26When the allowance is present, the households’ budget constraint is

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

rt

)
rtkt.

However, this specification would break separability property. Instead, we approximate the depreciation allowance and
rewrite the budget constraint as

ct + it = wt`t + rtkt − (τ `t + τt)wt`t −
(
τkt + τt −

δ(τkt + τt)

r

)
rtkt,

where r is the steady state interest rate.
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Ramsey Outcome Let gt = µtf(kt, `t). The government budget constraint requires that

µt = α(τkt + τt) + (1− α)(τ `t + τt).

Depending on the tax instrument used for financing public spending, it is easy to define the required tax rate
as a function of µt. Denote T k(µ), T `(µ), and T (µ) as the capital income, labor income, and total income tax
rate to achieve the government spending to output ratio µ.

By the primal approach of the Ramsey problem, the government effectively chooses the sequence of saving
rates, labor supply, and government spending to output ratios to maximize the welfare of the initial government

max
{st},{`t},{µt}

∞∑
t=0

βt
(

γc + γg
1− (1− δ + αδ)β

(αβδ log st + (1− α)(1− β(1− δ)) log `t) + γc log (1− st − µt)

+ γ` log (1− `t) + γg log (µt)

)
,

subject to the corresponding implementability constraint

1

β

st
1− st − µt

=
δα
(
1− (T k(µt+1) + T (µt+1))χ

)
+ (1− δ)st+1

1− st+1 − µt+1
,

γ`
`t

1− `t
= γc

(1− α)(1− T `(µt)− T (µt))

1− st − µt
.

Markov Equilibrium In the Markov equilibrium, the current government takes future government’s policy
as given. In our setting, this will be taking future government policy as a constant independent of current
policy. Assume future tax rates are {τkf , τ `f , τf} and the current policy choice is {τk0 , τ `0 , τ0}. The current
government’s action payoff is

M(τk0 , τ
`
0 , τ0; τkf , τ

`
f , τf )

=(γc + γg)

{
αβµ2

1− (µ1 + αµ2)β

(
log s0 +

β

1− β
log sf

)
+

(1− α)(1− βµ1)

1− (µ1 + αµ2)β

(
log `0 +

β

1− β
log `f

)}
+ γc

{
log
(
1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

)
+

β

1− β
log
(
1− sf − α(τkf + τf )− (1− α)(τ `f + τf )

)}
+ γ`

{
log (1− `0) +

β

1− β
log (1− `f )

}
+ γg

{
log
(
α(τk0 + τ0) + (1− α)(τ `0 + τ0)

)
+

β

1− β
log
(
α(τkf + τf ) + (1− α)(τ `f + τf )

)}
.

The current government’s problem is

max
τk
0 ,τ

`
0 ,τ0

M(τk0 , τ
`
0 , τ0; τkf , τ

`
f , τf ),
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subject to the implementability constraints

s0 = δβ
1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

1− sf − α(τkf + τf )− (1− α)(τ `f + τf )

{
α(1− τkf − τf ) + sf

1− δ
δ

}
,

γ`
`0

1− `0
= γc

(1− α)(1− τ `0 − τ0)

1− s0 − α(τk0 + τ0)− (1− α)(τ `0 + τ0)

sf =
δαβ(1− τkf − τf )

1− β(1− δ)

γ`
`f

1− `f
= γc

(1− α)(1− τ `f − τf )

1− sf − α(τkf + τf )− (1− α)(τ `f + τf )
.

The Markov equilibrium is then the fixed point where future taxes and the current taxes are the same.
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