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1 Introduction

1.1 Overview

Groups of individuals, in aggregate, can behave quite differently from the individuals them-

selves. For example, the classic Sonnenschein-Mantel-Debreu Theorem (Sonnenschein, 1973;

Mantel, 1974; Debreu, 1974) illustrated that even if individuals’ demand functions each sat-

isfy standard conditions, some of the most vital of those conditions—e.g., the weak axiom

of revealed preference—are lost when those demands are aggregated.

This can be problematic, a model that admits arbitrary aggregate behavior is hard to

work with. Thus, it is common to assume well-behaved aggregate behavior, implicitly pre-

suming agents in the underlying economy satisfy certain restrictions for the model to be

consistent. In particular, the literature has often assumed the existence of a well-behaved

representative agent, one whose choices or preferences reflect those aggregated across soci-

ety. The notion itself can be traced back to Edgeworth (1881) and Marshall (1890).1 Since

the publication of the Lucas Critique (1976), micro-founding economic models has become

pervasive and the use of a representative agent as a modeling tool has become standard

practice.

The existence of one sort of representative agent was theoretically founded in the mid-

twentieth century by Gorman (1953, 1961). Gorman showed that in order to have a represen-

tative Marshallian demand function for an economy, such that the representative demand at

the aggregate income level is equal to the sum of individual demands, agents’ indirect utility

functions have to take a restrictive form, termed the “Gorman Form,” and have identical

dependence on income.

Specifically, let D(p, y) denote a Marshallian demand as a function of a vector of prices

p and an income level y. Gorman’s (1953) results imply that in order for there to exist a

representative D such that

D(p,
∑
i

yi) =
∑
i

Di(p, yi)

for all vectors of individual income levels yi, it must be that the agents have linear and

identical Engel curves, up to a parallel shift. As Gorman (1961) showed later, this imposes

strong restrictions on the preferences in society—essentially requiring that they either be

quasi-linear in income, or identical (up to a normalization) and homothetic.

Although Gorman’s results are discouraging, most of the settings that researchers have

analyzed with representative agents are not modeled through Marshallian demand functions

nor do they require that a representation hold for all distributions of income. Most models

involve decisions that are far more constrained. For instance, representative agents have been

used to analyze how agents make consumption and savings decisions in the face of returns

to savings that are impacted by various policies (e.g., Lucas, 1978), how agents choose their

1Edgeworth (1881) referred to a “representative particular,” while Marshall (1890) referred to a “repre-

sentative firm.”
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labor supply in the face of a tax schedule (e.g., Chamley, 1986), and how agents select public

goods (e.g., Rogoff, 1990). Even though these decision problems involve maximizing a utility

function with respect to some resource constraints, none of them fit into the Gorman setting.

Instead of presuming a common demand function, researchers assume there is a single

agent in the economy and specify that agent’s preferences. This allows a derivation of

the agent’s behavior in reaction to various influences and policies, as well as the analysis of

inefficiencies and welfare. Ultimately, models often specify an agent with some characteristics

a, who has a utility function of the form V (x, a), where x can correspond to one dimension

of consumption, a consumption stream, etc. The agent’s choice of x can then be subject to

various feasibility constraints. If, for example, a captures the agent’s income and x stands

for a bundle of goods, this formalization can be translated back into the Gorman form. But

if, instead, a captures the level of risk aversion, or discounting, or a political ideology, this

specification no longer fits the Gorman framework.

Although researchers are generally careful not to claim that a representative-agent for-

mulation is a valid substitute for the analysis of a heterogeneous population, that hope is

implicit. Such results are clearly of limited interest if there does not exist any population in

which individual agents’ preferences are represented by V (x, ai), with heterogeneous char-

acteristics ai, such that there exists some agent with preferences represented by V (x, a), for

some characteristics a, who could proxy for the population.

Thus, we ask whether there exists at least one possible set of weights λi—e.g., representing

the relative fractions of different groups in the population—such that if the population has

a fraction λi of agents with preference parameter ai, then there exists some representative

agent with preference parameter a for whom the utility of the average outcome is a proxy

for the average utility. For private goods, this restriction takes the form:

V (
∑

λixi, a) =
∑
i

λiV (xi, ai), (1)

while for common consumption, or public goods, this restriction takes the form:

V (x, a) =
∑
i

λiV (x, ai).

For instance, this formulation is required when looking for a policy that maximizes so-

ciety’s utilitarian welfare (as in, e.g., Chamley, 1986). We show that the classes of utility

functions that admit a representative agent, for either private or public goods, are extremely

restrictive.

The following example illustrates the difficulty with this representative-agent construct.

Example (CRRA Utility Functions): Consider a population of n agents with CRRA

(isoelastic) utility functions. Each agent i is identified by a CRRA parameter ai ∈ (0, 1) and

gets a utility from a commonlshared reward x given by

V (x; ai) =
x1−ai − 1

1− ai
.
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A representative agent would have utility proportional to some convex combination of the

population. Namely, for a profile of coefficients of relative risk aversion a ≡ (a1, ..., an), up

to an affine transformation, her utility of the common reward x would be given by:

U(x, a) =
∑
i

λiV (x; ai) =
∑
i

λi
x1−ai − 1

1− ai
,

for some positive weights λi.

Straightforward calculations show that, whenever the ai’s are not all identical, the re-

sulting coefficient of relative risk aversion,

−xU
′′(x, a)

U ′(x, a)
=

∑
i λiaix

−ai∑
i λix

−ai
,

changes with x.

This means that the representative agent cannot be characterized by a utility function

V (x, a) that satisfies the same property (constant relative risk aversion) satisfied by the

utility functions of all members of the population she represents.

If we move to a setting with private allocations, the problem becomes even starker. In

this case, the weighted sum of agents’ utilities is∑
i

λiV (xi; ai) =
∑
i

λi
x1−ai
i − 1

1− ai
.

This cannot be represented by any function of
∑

i λixi when the xi’s differ, unless all the

ai’s are 0—so all agents have to be risk neutral and evaluating a linear function.

Our main results below prove that this example’s conclusions are typical. We fully char-

acterize the classes of preferences for which representative agents exist. When consumption

is common, we show that only parameterized classes of utility functions that are separable in

agents’ utility parameters admit representative agents. The assumption that consumption

is common applies to environments corresponding to members of a household sharing con-

sumption and savings, or a community—a neighborhood, a state, or a country—benefiting

from a common public good, etc. When consumption is private, corresponding to settings

of consumer behavior, and encompassing the original examples offered by Lucas (1978), the

existence of a representative agent turns out to be even more demanding. In this case, we

show that only utility functions that are linear in consumption and additively separable in

parameters admit representative agents.

The literature using representative agents almost never uses linear utility functions, nor

utility functions that are additively separable in agents’ preference parameters. Our results

then suggest that commonly used classes of utility functions (logarithmic, weighting mean

and variance, prospect theoretic, etc., in addition to exponentially-discounted utilities and

CRRA or CARA utilities as described above) cannot be aggregated to generate a represen-

tative agent who is characterized by preferences from the same class.
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1.2 Related Literature

We are certainly not the first to point out issues with the use of representative agents. Beyond

Gorman’s contributions, the notion has endured scrutiny practically since its inception, and

actively since the beginning of the twentieth century, see Robbins (1928) and surveys in

Kirman (1992) and Hartley (1996).

Nonetheless, as mentioned, the Lucas Critique (1976) brought new life to micro-founding

economic models using the representative-agent construct. Representative-agent models have

been used to explain observed aggregate fluctuations of an economy in classical business cycle

theories (e.g., Kydland and Prescott, 1982; King, Plosser, and Rebelo, 1988), to design tax

systems (e.g., see Chamley, 1986; Judd, 1985; and literature that followed), to estimate

tax rates on factor incomes and consumption (e.g., Mendoza, Razin, and Tesar, 1994), to

assess moral hazard and adverse selection constraints in insurance markets (see Prescott and

Townsend, 1984 and literature that followed), etc.

Although much of this literature mentions the assumption of population homogeneity, the

fragility of some of its conclusions to heterogeneity have been inspected only fairly recently

and in particular contexts, see e.g. An, Chang, and Kim (2009), Constantinides (1982),

Gollier (2001), Kaplan, Moll, and Violante (2018), Mazzocco (2004), Mongin (1998), and

Golman (2011). Our contribution is in highlighting a basic and general principle that drives

all such observations.

As discussed, there is also a literature characterizing conditions under which aggregate

demand, or aggregate behavior, features similar properties to underlying demands (for ref-

erences, see Chiappori and Ekelend, 1999). In contrast, we focus on whether any modeler

who assumes some properties of a representative agent’s preferences must be making errors

when presuming these preferences reflect preferences of a heterogeneous population satisfy-

ing similar properties. This question is not answered by the demand-based literature, and

yet it covers many, if not most, of the settings in which representative agents are used.

Our insights are in the spirit of Jackson and Yariv (2015) and several papers cited there,

which showed that there is no utilitarian aggregation of exponentially-discounted prefer-

ences that satisfies time consistency.2 We show that such impossibilities are a pervasive

phenomenon—applying to many preference formulations and general sources of heterogeneity—

and can be argued directly.

Our results also provide insight into observed differences between individual and group

decision making. It is well-documented in the experimental and empirical literature that

groups exhibit different behavioral patterns than individuals in various environments, rang-

ing from choices between risky alternatives (chronicled since Wallach, Kogan, and Bem,

1962), to choices of timing (see Ibanez, Czermak, and Sutter, 2009; Schaner, 2015; and ref-

erences therein), allocation decisions (Cason and Mui, 1997; Ambrus, Greiner, and Pathak,

2015), etc. Our conclusions are in line with these observations when groups behave according

to some convex combination of their members’ preferences. Indeed, experimental evidence

2See also Apesteguia and Ballester (2016), who consider related stochastic models of choice.
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suggests that group members place substantial weight on utilitarian motives (e.g., Charness

and Rabin, 2002; Jackson and Yariv, 2014). We show that if individual behavior is inconsis-

tent with linear utilities, there is no reason to expect groups to echo choices of well-behaved

individuals.

2 Representative Agents with Private Allocations

We first consider the case in which individuals each have their own allocation and the rep-

resentative agent evaluates the aggregate/average allocation. For example, the allocation

could stand for consumption, investment, and/or savings levels. Agents may exhibit hetero-

geneity in their discount factors, risk aversion parameters, or other preference parameters,

as well as their endowments of human capital, wealth, and so on.

Formally, n ≥ 2 agents evaluate allocations, generically denoted by x that come from

some set Dx, which is a closed and convex subset of R`
+ for some `. Also, we assume that

there exists some x ∈ Dx for which x is positive in all dimensions and 0 ≤ y ≤ x implies

that y ∈ Dx.
3

The heterogeneity of agents’ preferences is captured by an index a ∈ Da, where Da is

some index set. Depending on the application, the parameter a would represent an agent’s

risk aversion parameter, discount factor, endowment of human capital or wealth, etc.

Utility functions are functions V : Dx × Da → R that are continuous in the allocation

(the first variable).4

We say that there exists a representative agent with private allocations if there exists

some (λ1, ..., λn) ∈ [0, 1)n, where
n∑
i=1

λi = 1,5 such that for some (a1, . . . , an) ∈ Dn
a , there

exists ā ∈ Da for which for all (x1, . . . , xn) ∈ Dn
x :6

n∑
i=1

λiV (xi; ai) = V (
n∑
i=1

λixi; ā).

3The necessary assumption for our results amounts to Dx containing an open ball. By translating the

domain and adding points of closure (given continuous utility functions), one gets inclusion of the origin and

closure.
4Using techniques from Corollary 3 of Rado and Baker (1987), one can extend a key lemma in our proof

to hold for Lebesgue measurable functions, but the proof is more transparent with continuous functions, a

standard assumption.

5The proofs of Theorems 1 and 2 below can be extended to the case in which the

n∑
i=1

λi is not required

to be one, provided that Dx is unbounded above. It is then then still required that λi > 0 for at least two

agents (which is implied above since λi < 1 for all i and the sum is 1). Otherwise, the setting boils down to

one with a single agent and representation is trivial.
6We have not placed any restrictions on how V depends on a, and so this allows V (· : ā) to be any

function that is continuous in x.
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When utility functions are concave, a Pareto optimal allocation is a solution to the maxi-

mization
n∑
i=1

λiV (xi; ai) for some weights. The utilitarian social-welfare function corresponds

to the special case in which each coefficient λi, i = 1, ..., n, is the fraction of the population

characterized by preference parameter ai and allocation xi per person.

One could also contemplate welfare that is assessed with a set of weights that do not

coincide with the respective fractions of “types” in the population. One can show that such

an assumption requires utilities to be independent of the allocation altogether. We maintain

the definition above since it corresponds to most applications of representative agents in

the literature, and since it provides for more “conservative” conclusions as it places weaker

restrictions on preferences.

The existence of a representative agent is a type of convexity requirement on the space

of utility functions. Indeed, consider the special case in which the xi’s are all equal. The

existence of a representative agent requires that a convex combination of individuals’ utility

functions is in the same class to which those individual utility functions belong.

In our formulation, ā is the representative agent’s preference parameter. The representa-

tive agent’s utility function is often assumed to take the form bec−āx, (c + bx)ā/ā, ā log(x),

etc.7 This setting fits a classic example from Lucas (1978), who considers individuals making

consumption versus savings decisions each period.

The following is the characterization of utility functions that admit a representative agent

when allocations are private.

Theorem 1 There exists a representative agent ā in the case of private allocations, relative

to some λ ∈ [0, 1)n and some (a1, . . . , an) ∈ Dn
a , if and only if V (x; a) = c · x + h(a) for all

x ∈ Dx and a ∈ {ai | λi > 0}∪{ā}, where c ∈ R` and h : Da → R satisfies h(ā) =
∑

i λih(ai).

The structure characterized by Theorem 1 requires linearity in the allocation x and

additive separability in the type parameter a. It is clearly not satisfied by utility functions

that are commonly used in economic modeling—strictly concave utility functions, CRRA or

CARA utility functions,or exponentially-discounted utilities do not satisfy the restriction.

In such cases, assuming a representative agent whose utility is taken from the same class

of heterogeneous individuals’ preferences would generate inaccurate estimates of aggregate

behavior and welfare.

If we additionally require the representative-agent restriction hold for all preference pro-

files, the structural implications of Theorem 1 apply to all preference parameters. Specifi-

cally, if we assume that Da = [0, 1] and that V (x; a) is continuous in a, the existence of a

representative agent is tantamount to V (x; a) = c · x+ h(a) for all (x, a) ∈ Dx ×Da, where

c ∈ R` and h : Da → R is a continuous function.

7In these formulations, b and c are taken as constants. For instance, the form bec−āx with b = 1 and

c = 0 would correspond to a representative agent with a CARA utility function and the form (c + bx)ā/ā

with c = 0 and b = 1 would correspond to a representative agent with a CRRA utility function.
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Detailed proofs appear in Section 5 and rely on analysis of Pexider’s equation (see, e.g.,

Azcél, 1966). Intuitively, if a representative agent exists, a marginal change in the private

allocation xi of any agent i has a proportional effect on the allocation the representative agent

considers, where the proportional factor corresponds to the individual’s weight in society.

The only way to get marginal utility calculations line up for all agents is to have linearity in

x.

3 Representative Agents with Common Alternatives

The case of private allocations applies to most of the work built upon representative agents

in macroeconomics and finance. We now expand the analysis to admit alternatives that are

jointly evaluated. For example, in household decision making, expenditures and savings are

often common across household members. Furthermore, common consumption is central to

many models of political economy and public finance. In these models, agents make decisions

over the level of some public good. As we now show, the existence of a representative agent

in such environments is still very restrictive, but entails a different sort of separability.

We maintain the same basic structure of preference heterogeneity as above. For all that

follows, we add the conditions that Da is [0, 1], that utility functions V (x; a) are continuous

in a, and that there exists at least one x∗ ∈ Dx for which V (x∗; a) is strictly monotone

(increasing or decreasing) in a.8

The restriction that V (x∗; a) is monotone in a for some x∗ ∈ Dx is weak and satisfied

for many classes of commonly used utility functions. For instance, exponential discounting,

CRRA, and CARA satisfy the condition. Although we maintain this condition for presenta-

tion simplicity and since it allows for most cases covered in the literature, we note that the

proofs imply that this condition can, in fact, be weakened to a requirement that V (x∗; a)

be piece-wise monotonic for some x∗ ∈ Dx, which is satisfied for practically all preference

specifications appearing in the literature.9

We say that there exists a representative agent with common alternatives if there exists

some (λ1, ..., λn) ∈ [0, 1)n, where
n∑
i=1

λi = 1, such that for any (a1, ..., an) ∈ Dn
a , there exists

ā ∈ [0, 1] for which:
n∑
i=1

λiV (x; ai) = V (x; ā)

8The assumption that V (x; a) is continuous in a simplifies our proof presentation, but is not necessary.

The continuity of V (x∗; a) in a is implied by montonicity combined with the existence of a representative

agent, and is all that is required for our main result.
9Without some such assumption, one admits the possibility that all preferences are type-independent,

in which case there is no meaningful heterogeneity in the population. In such cases, a representative agent

exists trivially. This requirement is not needed in the case of private allocations since there agents can differ

in their consumption. That potential variation imposes a stronger requirement on a representative agent,

even with identical preferences.
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for all x.

In the case of common alternatives, a definition that requires our restriction to hold for

only one preference-parameter profile (a1, ..., an) could be trivially satisfied in a mechanical

fashion. For instance, for f(x), g(x) such that f(x) > g(x) for all x, defining V (x; a) = f(x)

for low values of a, V (x; a) = g(x) for high values of a, and V (x; a) = 1
2
f(x) + 1

2
g(x) for

intermediate values of a would suffice for the existence of a representative agent, but appears

rather unnatural. This is why we require the restriction to hold for all preference parameters.

Theorem 2 characterizes the class of utility functions that admit a representative agent.

Theorem 2 There exists a representative agent with common alternatives if and only if

V (x; a) = h(a)f(x)+g(x) for all (x, a) ∈ Dx×Da, for some continuous functions h(a), f(x),

and g(x) such that h(·) is monotone, and f(x∗) 6= 0.

Although the restrictions implied by the existence of a representative agent for common

alternatives are weaker than those for private allocations, they are still sufficiently strong as to

rule out nearly all commonly assumed utility functions. From the examples mentioned so far,

exponential discounting, CARA and CRRA utility functions with risk-aversion parameters

do not satisfy the restrictions of Theorem 2, nor do concave loss functions with bliss points

serving as parameters—e.g., single-peaked preferences.

One contrast between the common-alternative and private-allocation cases pertains to

the class of concave utility functions. Certainly, a mixture of concave functions is concave.

Thus, when considering the full class of concave functions, with common consumption, a

representative agent does exist, and is characterized by the convex combination of agents’

utility functions, though that function may look quite different from the functions that are

being aggregated. This does not violate the theorem since there is no representation of the

class of all concave functions that satisfies the monotonicity requirement.

4 Strongly Representative Agents

We now consider a more demanding notion of representative agents. Under this variant, the

representative agent’s preference parameter ā is the weighted average of individual agents’

preference parameters. For instance, suppose an empiricist observes individual preference

parameters with noise and erroneously assumes the population is homogenous. A natural

estimate for the preference parameter corresponding to that population, as well as its le-

gitimate representative agent under the homogeneity assumption, would be the observed

parameters’ average. For examples relating to discount-factor estimations, see the survey

by Frederick, Loewenstein, and O’Donoghue (2002). With a large population of individuals,

the estimated average parameter may not be biased. However, as we now show, welfare

assessments based on the estimated utility function may be inaccurate. In fact, the classes
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of utility functions admitting such strongly representative agents are even more restrictive

than those identified above and are linear in the preference parameter.

As before, we start with the case of private allocations, maintaining our assumptions that

Da = [0, 1], V (x; a) is continuous in a, and that V (x∗; a) is strictly monotone in a for at least

one x∗ ∈ Dx.

There exists a strongly representative agent with private allocations if there exists some

(λ1, ..., λn) ∈ [0, 1)n, where
n∑
i=1

λi = 1, such that for all (a1, . . . , an) ∈ Dn
a and (x1, . . . , xn) ∈

Dn
x :

n∑
i=1

λiV (xi; ai) = V

(
n∑
i=1

λixi;
n∑
i=1

λiai

)
. (2)

Proposition 1 There exists a strongly representative agent when allocations are private if

and only if there exist constants b1, b2, and c ∈ R` such that V (x; a) = c · x+ b1a+ b2 for all

(x, a) ∈ Dx ×Da.

Analogously, with common alternatives, there exists a strongly representative agent with

common alternatives if there exists some (λ1, ..., λn) ∈ [0, 1)n, where
n∑
i=1

λi = 1, such that

for any a1, ..., an ∈ Dn
a and x ∈ Dx:

n∑
i=1

λiV (x; ai) = V

(
x;

n∑
i=1

λiai

)
. (3)

Proposition 2 There exists a strongly representative agent when alternatives are common

if and only if there exist continuous functions f(x), g(x) such that V (x; a) = af(x) + g(x)

for all (x, a) ∈ Dx ×Da.

5 Proofs

We begin with some lemmas that provide the key structure behind the proofs. The lem-

mas provide a variation on the analysis of Pexider’s equation. The proofs use techniques

developed in Azcél (1966, 1969), Eichhorn (1978), and Diewert (2011).

Lemma 1 Let f(x) be a continuous function on [0, t]. Suppose that, for some λ ∈ (0, 1),

f(λx+ (1− λ)y) = f(λx) + f((1− λ)y) for all x, y ∈ [0, t]

then f(x) = cx for all x ∈ [0, t], where c is a scalar.
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Proof of Lemma 1: Let t′ = min{λ, 1− λ}t.
We first show that for any positive integer k and any z ∈ [0, t′], f(z) = kf(z/k).

Let x = z
λk

and y = (k−1)z
(1−λ)k

. Note that, since z ≤ t′ then by construction, x, y ∈ [0, t].

Then, f(z) = f
(
z
k

)
+ f

(
(k−1)z
k

)
. For k = 1 this establishes the claim. For k ≥ 2, writing

(k−1)z
k

= λ z
λk

+ (1− λ) (k−2)z
(1−λ)k

, it follows that

f(z) = f
(z
k

)
+ f

(z
k

)
+ f

(
(k − 1)z

k

)
= 2f

(z
k

)
+ f

(
(k − 2)z

k

)
.

Continuing recursively establishes that f(z) = kf(z/k) for all z ∈ [0, t′] and for all positive

integers k.

Next, we show this implies that f(x) = cx for all x ∈ [0, t′]. Let c = f(t′)
t′
. For any

x = m
n
t′, where m and n are integers such that m < n, we have x

m
= t′

n
and, from above,

f(x) = m
n
f(t′) = cx. From continuity, f(x) = cx for all x ∈ [0, t′].10

Now, suppose min{λ, 1− λ} = λ so that λz ∈ [0, t′] for all z ∈ [0, t]. Then:

f(z) = f(λz) + f((1− λ)z) = cλz + f((1− λ)z) =

= cλz + f(λ(1− λ)z) + f((1− λ)2z) = c(λz + λ(1− λ))z + f((1− λ)2z) =

= czλ
∞∑
i=0

(1− λ)i + lim
n→∞

f((1− λ)nz) = cz + lim
n→∞

f((1− λ)nz).

Since f(0) = 0 (as f(0) = kf(0)) and f is continuous, f(z) = cz for all z ∈ [0, t]. Similar

arguments follow for min{λ, 1− λ} = 1− λ.

Lemma 2 Let f(x) be a continuous function on Dx such that there exists some λ ∈ (0, 1)

for which

f(λx+ (1− λ)y) = f(λx) + f((1− λ)y) for all x, y ∈ Dx.

Then there exists c ∈ <` such that f(x) = c · x for all x ∈ Dx.

Proof of Lemma 2: First, note that f(0) = 0, since λ × 0 + (1 − λ) × 0 = 0 and so

f(0) = f(0) + f(0) = 2f(0).

Next, note that, by assumption, there exists x ∈ Dx that is positive in all dimensions

such that 0 ≤ y ≤ x implies y ∈ Dx. Let D′ = {y : 0 ≤ y ≤ x}. Let D′j be the subset of D′

such that y ∈ D′j implies yk = 0 for all k 6= j.

Applying Lemma 1 to each D′j implies that for each dimension j, there exists cj for which

f(y) = cjyj whenever y ∈ D′j.
Next, let d = min{λ, 1− λ} and D′′ = {y : 0 ≤ y

d
≤ x}. For y ∈ D′′, abuse notation and

write yj to denote the vector that is the projection of y onto its j-th dimension, and y−j to be

10Note that were Dx unbounded, e.g. Dx = [0,∞), the proof would be completed here.

10



y−yj. Then, for any y ∈ D′′, by the definition ofD′′, it follows that (1−λ)yj+(1−λ)
y−j

1−λ ∈ D
′.

Therefore,

f(y) = f

(
λyj + (1− λ)yj + (1− λ)

y−j
1− λ

)
= λcjyj + f

(
(1− λ)yj + (1− λ)

y−j
1− λ

)
.

Repeating the argument for the second term, we get f(y) = cjyj + f(y−j). Then, iterating

on the remaining dimensions,

f(y) = c · y.

for any y ∈ D′′.
Next, let d′ = max{λ, 1− λ} and consider any z ∈ Dx such that d′z ∈ D′′. Then,

f(z) = f(λz) + f((1− λ)z) = λc · z + (1− λ)c · z = c · z.

For any z ∈ Dx, there exists some t for which d′tz ∈ D′′, and so by iterating on the above

argument, the result follows.

Lemma 3 Let f1(x), f2(x), and f3(x) be continuous functions on Dx. If, for some λ ∈ (0, 1),

f1(λx+ (1− λ)y) = λf2(x) + (1− λ)f3(y) for all x, y ∈ Dx,

then there exist constants a, b ∈ R and c ∈ R` such that

f1(x) = c · x+ λa+ (1− λ)b

f2(x) = c · x+ a,

f3(x) = c · x+ b.

Proof of Lemma 3: Let x = 0. Then

f1((1− λ)y) = λf2(0) + (1− λ)f3(y) for all y ∈ Dx.

Define a ≡ f2(0). Then,

f3(y) =
1

1− λ
[f1((1− λ)y)− λa] .

Similarly, if we define b ≡ f3(0), we get:

f2(x) =
1

λ
[f1(λx)− (1− λ)b] .

Plugging into the assumed equality, we have:

f1(λx+ (1− λ)y) = λf2(x) + (1− λ)f3(y) =

= f1(λx) + f1((1− λ)y)− λa− (1− λ)b.

Define f(x) ≡ f1(x)− λa− (1− λ)b. Then, from the last equality we have

f(λx+ (1− λ)y) = f(λx) + f((1− λ)y).

Lemma 2 then implies that f(x) = c · x and the result follows.

11



5.1 Proofs Pertaining to Private Allocations

Proof of Theorem 1: Suppose that for some λ1, ..., λn ∈ [0, 1) for which
n∑
i=1

λi = 1, and

some (a1, . . . , an) ∈ Dn
a , there exists ā ∈ Da such that for all (x1, . . . , xn) ∈ Dn

x :

n∑
i=1

λiV (xi; ai) = V (
n∑
i=1

λixi; ā).

There must exist some i for which 0 < λi < 1. Let xi = x, xj = y for all j 6= i. It follows

that

V (λix+ (1− λi)y; ā) = λiV (x; ai) + (1− λi)
∑
j 6=i

V (y; aj),

for any x ∈ Dx and y ∈ Dx and the characterization of V follows from Lemma 3. In

particular, the first application of the lemma uses f1(x) = V (x; ā), f2(x) = V (x; ai), and

f3(x) =
∑

j 6=i V (·; aj) and thus

V (x; ā) = c · x+ h(ā),

V (x; ai) = c · x+ h(ai),∑
j 6=i V (·; aj) = c · x+ bi,

where h(ā) = λih(ai) + (1− λ1)bi. Iterating to apply the lemma to any j for which λj > 0,

one similarly gets that h(ā) = λjh(aj) + (1−λj)bj. These iterations imply that for any j for

which λj > 0,

V (x; aj) = c · x+ h(aj)

and ∑
i 6=j

V (x; ai) = c · x+ bj.

Thus, combining these, it follows that bj =
∑

i 6=j:λi>0 λih(ai). Therefore,

h(ā) =
∑
i:λi>0

λih(ai) =
∑
i

λih(ai),

as claimed and any extension of h(·) to Da would do. The converse follows directly.

Proof of Proposition 1: The proof follows combining the implications of the functional

forms from Theorem 1 together with Proposition 2, as both representations hold by either

simply fixing any profile of ais, or working with all agents having the same allocation.

12



5.2 Proofs Pertaining to Common Alternatives

We start with the proof of Proposition 2, which is useful for proving Theorem 2.

Proof of Proposition 2: We show that (3) implies that there exist continuous functions

f(x), g(x) such that V (x; a) = af(x) + g(x) for all x, a, as the converse is straightforward.

Let a1 = r, a2 = a3 = ... = an = s, and x1 = x2 = ... = xn = x. Then, the existence of a

strongly representative agent, for some λi ∈ (0, 1), implies that:

V (x;λir + (1− λi)s) = λiV (x; r) + (1− λi)V (x; s)

and Lemma 3 (now applied on the a dimension), together with the continuity of V in a,

imply the result.

Proof of Theorem 2: Let

h(a) ≡ V (x∗; a).

Notice that h(·) is monotone in a and, therefore, from continuity, ImhDa = D̃h,a is a compact

set and h−1 : D̃h,a → Da is continuous and monotone as well. Now let

G(x; a) = V (x;h−1(a)).

By our assumption on V , for some λ1, ..., λn ≥ 0,
n∑
i=1

λi = 1, and for any a1, ..., an ∈ Dn
a ,

there exists ā such that for all x,

n∑
i=1

λiG(x; ai) = G(x; ā),

and:
n∑
i=1

λiG(x∗; ai) =
n∑
i=1

λiai = G(x∗; ā) = ā.

Therefore, G satisfies the assumptions of Proposition 2, so that there exist continuous

functions f(x), g(x) such that

G(x; a) = af(x) + g(x),

which, in turn, implies that

V (x; a) = h(a)f(x) + g(x).

The converse is immediate.

13
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