
DISCUSSION PAPER SERIES

 

DP13383
  (v. 3)

TAYLOR RULES AND FORWARD
GUIDANCE: A RULE IS NOT A PATH

Lilia Maliar and John B. Taylor

MONETARY ECONOMICS AND FLUCTUATIONS



ISSN 0265-8003

TAYLOR RULES AND FORWARD GUIDANCE: A
RULE IS NOT A PATH

Lilia Maliar and John B. Taylor

Discussion Paper DP13383
  First Published 10 December 2018

  This Revision 14 July 2020

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Monetary Economics and Fluctuations

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Lilia Maliar and John B. Taylor



TAYLOR RULES AND FORWARD GUIDANCE: A
RULE IS NOT A PATH

 

Abstract

We study the impact of forward guidance--non-systematic announcements about future policy
rates -- in a stylized new Keynesian model. Using novel closed-form solutions, we show that the
impact of forward guidance depends critically on the systematic monetary policy rule, ranging from
non-existing to unrealistically large, the so-called forward guidance puzzle. We demonstrate that
the puzzle occurs only under relatively passive -- empirically implausible and socially suboptimal --
policy rules, while more active empirically-relevant Taylor rules lead to sensible implications. Our
analysis encompasses the case of a fixed interest-rate path, which characterizes effective lower-
bound (ELB) periods. We conclude that it is not ELB per se that produces backward explosion but
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1 Introduction

Forward guidance (FG) refers to central banks� announcements regarding future federal fund rates. A
possibility of using FG as a policy instrument was suggested in a pioneering work of Eggerstson and
Woodford (2003) who argued that future commitments can lead to an increase in current output. During
the Great Recession and its aftermath, FG was widely used by central banks as an unconventional monetary
policy tool when nominal interest rates were constrained at their e¤ective lower bounds (ELB). For example,
in August 2011, the Fed signalled an intention to maintain nominal interest rates at zero at least until
the middle of 2013. Numerous papers study the impact of forward guidance on the economy, including
Werning (2015), Cochrane (2017a), Del Negro et al. (2015), Carlstrom et al. (2015), and McKay et al.
(2016). In particular, this literature documented the so-called forward guidance puzzle �a counterintuitive
implication of the new Keynesian model that the central bank�s announcements about future interest rates
have an immediate and unrealistically large impact on the economy. The e¤ectiveness of forward guidance
as a policy tool still remains a subject of debate.

In the paper, we contribute to this debate by characterizing the impact of forward guidance announce-
ments in a stylized new Keynesian model. Using novel closed-form solutions, we show that the e¤ectiveness
of guidance on the economy depends critically on how active the monetary policy. Speci�cally, if a mon-
etary authority uses a su¢ ciently active Taylor-style rule which facilitates the economy stabilization, the
e¤ect of distant shocks on the economy is negligible. However, if the monetary authority uses a relatively
passive rule, we obtain a backward explosion, leading to the FG puzzle. The puzzle is accentuated if the
monetary authority follows a pre-speci�ed interest rate path �an extremely passive policy which contem-
plates no reaction to the ongoing economic conditions. Werning (2015) and Cochrane (2017a) pointed out
that the policy of choosing the interest rate path directly is a coherent way of modeling monetary policy
at the ELB where active Taylor-style rules are infeasible.

We delineate the parameter space into four regions characterized by di¤erent characteristic roots (or
eigenvalues). The key determinants of the constructed regions are the coe¢ cients of the Taylor rule �
the responsiveness of the interest rate to output, in�ation, and expected in�ation. We show that the
characteristic roots capture the properties of the model�s dynamics better than the underlying model
parameters. Speci�cally, the economy is backward stable as long as both roots are unstable (either real
or complex), however, it explodes backward if one of the two roots becomes stable. Our theorems give a
simple recipe for testing the e¤ectiveness of FG: the size of the smallest root is a single su¢ cient statistics
to determine whether or not the model generates a FG puzzle.

As an illustration, consider the Taylor rule that contains just a feedback to in�ation.1 First, if the
in�ation coe¢ cient in the Taylor rule is smaller than one, the monetary policy is relatively irresponsive to
shocks, leading to a stable root. In the limit, this case includes a zero in�ation coe¢ cient that corresponds to
the policy of choosing the interest-rate path directly. Werning (2015) and Cochrane (2017a) demonstrates
that such policy leads to a multiplicity of equilibrium and a pronounced backward explosion. Our theorem
shows that these implications are not limited to the policy of the interest-rate path but that they are a
generic property of the model in which the monetary policy rule is not su¢ ciently responsive to insure the
equilibrium uniqueness and stabilization.

Second, when the in�ation coe¢ cient in the Taylor rule approaches one, the smallest root also ap-
proaches one, which makes the equilibrium unique. A version of this special but conceptually important
case is studied in McKay et al. (2016), and it also leads to a FG puzzle, although less pronounced. Our
theorem implies that in such a borderline case, the Taylor rule is still insu¢ ciently active to ensure economy
stabilization, so that the backward explosion persists as well.

Finally, by increasing the in�ation coe¢ cient beyond one, we arrive to the original Taylor (1993) rule
in which the Taylor Principle that the response to in�ation is greater than one holds. Our theorem shows
that the smallest root is now unstable; this eliminates backward explosion, and the FG puzzle disappears.

1More general Taylor rules, considered in this paper, include a feedback to in�ation, expected in�ation and the output gap,
and the responsiveness of monetary policy depends on all the feedback coe¢ cients.
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The Taylor principle provides a su¢ cient economy stabilization and leads to a unique equilibrium with
sensible predictions: (i) the e¤ect of FG is small if policy announcements refer to a distant future; (ii)
such e¤ect decreases with the horizon of a policy announcement (i.e., the further away in the future is
anticipated interest-rate shock, the smaller is the e¤ect of this shock on today�s economy); (iii) the e¤ect
of FG on output depends on speci�c timing and nature of the policy announcement, in particular, FG can
have a detrimental e¤ect on output, at least during some periods, or it can lead to cyclical �uctuations of
a decreasing amplitude.

Our �ndings are robust. We show that similar regularities hold under more general Taylor rules that
include a feedback to in�ation, expected in�ation and the output gap. Also, our numerical analysis shows
that they continue to hold in a fully non-linear version of the studied new Keynesian model with uncertainty,
as well as in a version of the model augmented to include capital. Finally, our �ndings are robust to the
solution methods used, speci�cally, both Fair and Taylor�s (1983) extended path method and Maliar et
al.�s (2020) extended function path method lead to similar results.

The previous FG literature o¤ers a variety of ways of resolving the FG puzzle. In particular, Del
Negro et al. (2015) constructed a perpetual-youth version of Smets and Wouters (2007) model in which
the presence of cohorts results in heavier discounting of the future; McKay et al. (2016) introduced
idiosyncratic household risk and borrowing constraints; Husted et al. (2017) modi�ed their model to
allow for policy uncertainty; Kaplan et al (2017) introduced heterogeneous agents; Gabaix (2017) assumed
that agents are not fully rational and do not have perfect foresight of the future; Campbell et al. (2019)
introduced imperfect communication that limits the Fed�s ability to a¤ect expectations at long horizons;
etc.2

Unlike the above literature, we do not attempt to modify the baseline new Keynesian model to resolve
the FG puzzle. Instead, we argue that the FG puzzle is a consequence of excessively passive monetary
policies. In particular, in the example of Del Negro et al. (2015), the FG puzzle occurs because prices are
�xed. In turn, McKay et al. (2016) assume that the monetary authority sets the nominal interest rate to
completely accommodate the anticipated in�ation. A pre-speci�ed interest rate path studied in Werning
(2015) and Cochrane (2017a) is an even more extreme policy in which the monetary authority commits not
to react to changes in economic conditions no matter how the economy evolves. In the absence of active
stabilization policy, future shocks are propagated backward without discounting or even ampli�ed.

Nevertheless, such excessively passive policies are suboptimal because they do not stabilize in�ation,
while the optimal policy implies a zero in�ation target. In�ation stabilization is also the key prescription
of the Taylor rule used by actual central banks and it is in line with the optimal monetary policy.3 With
active stabilization, the agents will discount the impact of future shocks by anticipating future stabilization
policies and this is precisely what prevents the backward explosion from happening. We conclude that it
is not the ELB or the new Keynesian model per se that produced the FG puzzle but the assumption of
unrealistically passive policy rules.

The rest of the paper is as follows: In Section 2, we derive closed-form solutions in the stylized new
Keynesian model. In Section 3, we analyze the policy of choosing a pre-speci�ed interest rate path. In
Section 4, we study the FG puzzle in the economy with a unit root. In Section 5, we show that empirically
relevant Taylor rules do not lead to backward explosion. In Section 5, we discuss the e¤ectiveness of FG
as a policy tool. Finally, in Section 6, we conclude.

2 Stylized new Keynesian model

In this section, we formulate a standard three-equation linear new Keynesian model, express it as a second-
order di¤erence equation, derive a closed-form solution and characterize some of its properties.

2Other papers that study the e¤ectiveness of FG include Levin et al.(2010), Werning (2012), Den Haan (2013), Carlstrom
et al. (2015), Chung (2015), Bundick and Smith (2016), Keen et al. (2016), Galí (2017), Walsh (2017), Hagedorn et al. (2018).

3Woodford (2001) shows that the optimal Ramsey rule closely resembles the empirically relevant Taylor rule with both
in�ation and output gap and with standard calibration of its coe¢ cients.
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2.1 The model

We consider the standard linearized new Keynesian model that consists of, respectively, an IS equation
and Phillips curve, expressed in deviations from the steady state

xt = Et [xt+1]� � (it � int � Et [�t+1]) ; (1)

�t = �Et [�t+1] + � (xt + gt) ; (2)

where xt is an output gap; �t is in�ation; it is a nominal interest rate; int is a natural rate of interest; gt
is a disturbance; � is a slope of the Phillips curve; � is an intertemporal elasticity of substitution.4 The
Phillips-curve shifter gt can be interpreted as a direct marginal cost increase due to, for example, capital
destruction, technical regress, government spending (up to a scaling factor)

For the third equation, we assume that the nominal interest rate it is determined by a stylized Taylor
rule

it = i
�
t + ���t + �E�Et [�t+1] + �yxt + "t; (3)

where fi�t g is a desired interest rate path; �� � 0, �E� � 0 and �y � 0 are constant coe¢ cients; and "t
is a disturbance that may include both anticipated and unanticipated shocks. The rule studied in Taylor
(1993) corresponds to �� = 1:5, �y = 0:5, �E� = 0 and i

�
t = 1.

5

2.2 Characteristic roots

We next derive key regions to the parameters and eigenvalues of this system. It will be convenient to
re-write the model (1)�(3) as a second-order di¤erence equation. We substitute it from (3) into (1), use
(2) to express xt and xt+1 and substitute them into (1) to obtain

Et [�t+2] + bEt [�t+1] + c�t = �zt; (4)

where b � �1� 1
� � ��y �

��(1��E�)
� ; c � (1+��y)

� + ����
� ; zt includes all exogenous variables, gt, i�t , "t, i

n
t ,

zt �
�

�

�
gt+1 � gt

�
1 + ��y

�
+ � (i�t + "t � int )

�
: (5)

Let us �rst construct a solution for the economy with perfect foresight by eliminating the expectation
operator in (4) and later, we will show how to generalize the solution to the case of uncertainty; see
Appendix B. Below, we establish some properties a homogenous equation �t+2 + b�t+1 + c�t = 0 that
corresponds to (4).

Theorem 1. The roots m1;2 =
�b�

p
b2�4c
2 to characteristic equation m2 + bm+ c = 0 satisfy

Types of roots

Case Type of solution
unstable/
stable

distinct/
repeated

real/
complex

Restrictions on roots

i) indeterminate 1 unstable, 1 stable distinct real
either jm1j > 1, jm2j < 1
or jm1j < 1, jm2j > 1

ii) unique 2 unstable distinct real jm1j � 1, jm2j � 1

iii) unique 2 unstable repeated real
m1 = m2 = m
with jmj > 1

iv) unique 2 unstable distinct complex
m1;2 = �� ��

with r �
p
�2 + �2 > 1

4 In Appendix D, we describe a fully nonlinear model whose linearized version corresponds to the model (1), (2) under some
further restrictions. In particular, the slope of the Phillips curve is � = (1���)(1��)

�
(1 + #), where � is a discount factor; � is

a share of not reoptimizing �rms; # is a parameter of the utility function u (Ct; Lt) =
C
1�1=�
t �1
1�1=� � L1+#t �1

1+#
; and � ! 1.

5Our analysis abstracts from the issues of commitment, discretion and time inconsistency. These issues are studied, for
example, in Walsh (2017).
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Cases i)�iv) arise under the following restrictions on the Taylor rule�s parameter �E�:
i) �E� < �

1
E� and �E� > �

4
E�;

ii) �1E� � �E� < �2E� and �3E� � �E� < �4E�;
iii) �E� = �

2
E� and �E� = �

3
E�;

iv) �2E� < �E� < �
3
E�.

Here, �1E� = 1����
(1��)�y

� , �2E� = �
1
E�+

1
��

�p
1 + ����+ ��y �

p
�
�2, �3E� = �1E�+ 1

��

�p
1 + ����+ ��y +

p
�
�2,

�4E� = �
1
E� +

2
��

�
1 + ��y + ���� + �

�
.

Proof. See Appendix A. �

Thus, if the roots are real and distinct, there are two possibilities: either one root is stable and the other
root is unstable (case i) or both roots are unstable (case ii). If the roots are either real and repeated (case
iii) or complex (case iv), they are always unstable. Thus, it is never the case that both roots are stable in
the considered area of the parameter space.

We have further results for the economy in which the rule (3) contains only actual but not future
in�ation.

Corollary 1. Assume �E� = 0. Then, cases i)�iv) speci�ed in Theorem 1 arise under the following
restrictions on the Taylor rule�s parameter ��:
i) �� < �

1
�;

ii) �1� � �� < �2�;
iii) �� = �

2
�;

iv) �� > �
2
�.

Here, �1� = 1�
(1��)�y

� and �2� = �
1
� +

�
4��

�
1� 1

� � ��y �
��
�

�2
.

Proof. See Appendix A. �

In other words, when the response of the monetary authority to in�ation �� < �1� is weak, we have one
stable and one unstable root; when the response to in�ation becomes stronger, both roots become unstable
�1� � �� < �2�; when the response to in�ation reaches the threshold level �2�, the roots become repeated
and unstable and �nally; when �� > �

2
�, the roots are complex and unstable.

Woodford (2001) calculated the boundary �1� of Theorem 1. Cochrane (2011) derived stability con-
ditions under several Taylor rules with leads and lags, including it = ���t, it = �E�Et [�t+1], and
it = ���t + �yxt (see his Appendix B, Section E). Our Theorem 1 and its corollary provide sharper
results by establishing boundaries that separate di¤erent types of roots, namely, distinct real roots, re-
peated real roots and complex roots. These results are a useful step in constructing closed-form solutions
since di¤erent types of roots lead to di¤erent types of solutions.

2.3 Closed-form solutions

We now show closed-form solutions to the model (1)�(3) under four possible cases of characteristic roots
established in Theorem 1.

Theorem 2. A solution for in�ation �t in the new Keynesian model (4) for cases i)-iv) in Theorem 1 is
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given by the sum of a general and particular solutions,

Solution for �t
Case Restriction on roots General solution Particular solution

i) jm1j � 1, jm2j< 1 C1m
t
1+C2m

t
2

1
m1�m2

Et

hP1
s=tm

t�1�s
1 zs+

Pt�1
s=�1m

t�1�s
2 zs

i
ii) jm1j � 1, jm2j � 1 C1m

t
1+C2m

t
2

1
m1�m2

Et
�P1

s=tm
t�1�s
1 zs�

P1
s=tm

t�1�s
2 zs

�
iii)

m1= m2= m
jmj> 1 (C1+C2t)m

t 1
mEt

�
(t� 1)

P1
s=tm

t�1�szs�
P1
s=t sm

t�1�szs
�

iv)

m1;2= �� ��
r �
p
�2+�2> 1

� � arctan
�
�
�

� C1r
t cos (�t)+C2r

t sin (�t) 1
�Et

�P1
s=t r

t�1�s sin (� (t� 1� s)) zs
�

Furthermore, in case i), there are multiple forward stable solution characterized by C1 = 0 and arbitrary
C2; and in cases ii)�iv), there is a unique forward stable solution characterized by C1 = 0 and C2 = 0.

Proof. The solution to (4) is given by the sum of a general solution to homogeneous equation �t+2 +
b�t+1 + c�t = 0 and a particular solution satisfying the non-homogeneous equation (4). Homogeneous
second-order di¤erence equations with constant coe¢ cients are well studied in the �eld of di¤erential
equations; the solutions to such equations contain integration constants C1 and C2. In contrast, there is
no general approach that can deliver particular solutions to the studied non-homogenous equations. One
possible approach is a version of the "trial and error" method that parameterizes a particular solution by a
linear combination of two terms in the solution to the homogeneous equations and identi�es the coe¢ cients
in the combination to satisfy the given non-homogeneous equation �this is the approach we used in the
paper.6 The fact that the constructed particular solutions satisfy the non-homogeneous equation can be
veri�ed directly, by substituting them into (4).

Concerning forward stability, note that the particular solutions in Theorem 2 are forward stable (non-
explosive) by construction. To be speci�c, if a root mi is unstable, i.e., mi > 1, we use a particular solution
that is forward looking

P1
s=t m

t�1�s
i zs, while if it is stable, i.e., mi < 1, we use the one that is backward

looking �
Pt�1
s=�1m

t�1�s
i zs. To make the entire solution stable, the solution to the homogeneous equation

must also be forward stable. In cases ii)-iv), this requires us to set the integration constants at C1 = 0
and C2 = 0. However, in case i), stability is consistent with any integration constant C2 on the stable root
m2. Therefore, the stable solution is unique in cases ii)-iv), and there is a multiplicity of forward stable
solutions in case i). �

Closed-form solutions to the cases ii)-iv) are new to the literature (to the best of our knowledge). Case i)
generalizes a closed-form solution that was previously derived in Cochrane (2017a, 2017b) for a version of
the model in which all the coe¢ cients in Taylor rule are set at zero because the monetary authority follows
a pre-speci�ed interest-rate path. Theorem 2 shows that such solution also applies to the economies in
which Taylor rules are insu¢ ciently active. Finally, Maliar (2018) constructs parallel solutions i)-iv) for
the continuous-time version of the model (1)�(3).

In the remaining paper, we use the constructed closed-form solutions to study the e¤ectiveness of FG.
We focus on conventional equilibria that do not explode in the future �forward stable equilibria. We model
FG as an exogenous future policy shock, unrelated to the systematic reaction of the monetary authority
to in�ation and the output gap and anticipated by agents (but not necessarily announced). In periods
other than those a¤ected by FG, the monetary policy is given by a �exible Taylor rule which is left free
to react to endogenous variables. For the sake of presentational convenience, we focus on a single FG

6To construct the particular solutions in the cases i) and ii), we can also use the approach of Cochrane (2017a) of decom-
posing the second-order di¤erence equation into two �rst-order di¤erence equations, however, this approach does not directly
apply to cases iii) and iv).
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shock, although our closed form solutions apply to arbitrary sequence of shocks: Theorem 2 shows that
the impacts of contemporaneous and future shocks are aggregated with the weights that depend on the
values of the characteristic roots.

Our Theorems 1 and 2 delineate the parameter space into four regions characterized by four di¤erent
types of the characteristic roots (or eigenvalues). The coe¢ cients of the Taylor rule �the responsiveness of
the interest rate to output, in�ation, and expected in�ation� are the key determinants of the distinguished
regions. Our results provide a simple way to see weather or not a given parameterization leads to the
FG puzzle, namely, it is su¢ cient to check to which region it belongs. Speci�cally, the region (i) has a
stable root and such root produces a backward explosion and FG puzzle; and the regions (ii), (iii) and
(iv) have two unstable roots (either real or complex) which ensures backward stability so the FG puzzle is
not observed. An exception is the borderline case of a unit root between the regions (i) and (ii) in which
a weaker form of the FG puzzle is observed. We next analyze the constructed parameter regions in more
details.

3 Choosing the interest-rate path: indeterminacy and FG puzzle

In this section, we analyze the region i) in which is the model that has one stable (less-than-one) and
one unstable (large-than-one) root, and as a result, has multiple forward stable solutions. A limiting case
of this region is the Taylor rule (3) in which all the coe¢ cients are equal to zero, i.e., �� = 0, �y = 0,
�E� = 0. In terms of our model, this case corresponds to the analysis of Werning (2015) and Cochrane
(2017a) who consider a model with two equations (the IS and Phillips curves) and two unknowns fxt; �tg,
and who assume that monetary authority does not follow any rule but chooses the sequence of interest rates
fi0; i1; :::g directly. These papers argue that the policy of the pre-speci�ed interest-rate path approximates
well the monetary policy in the post �nancial crisis period, characterized by nominal interest rates being
at the ELB, �rst, due to the binding ELB and then, due to FG policy.

An important question is how the agents perceive the announced interest rate path. Cochrane (2017a)
argues that a given interest rate path de�nes the Taylor rule implicitly in the sense that given fxt; �t; itg,
the agents can infer the implied coe¢ cients ��, �E� and �y in (3). In our case, rational agents must infer
that these coe¢ cients are all zeros, implying that the Taylor rule is completely passive. That is, no matter
what shock occurs in the future, the monetary authority commits to do nothing to o¤set the shock and
and maintains the interest-rate path. (If the monetary authority reacts to a shock, the inference of agents
about zero feedback coe¢ cients would be incorrect).

By Theorem 2, case i), a closed-form solution for jm1j � 1 and jm2j < 1 takes the form

�t = C2m
t
2 +

1

m1 �m2
Et

" 1X
s=t

mt�1�s
1 zs +

t�1X
s=0

mt�1�s
2 zs

#
; (6)

where C2 is an arbitrary constant. In particular, for a single anticipated FG shock at T , we have "t = 0 for
t 6= T , and "T = ", so that zt = 0 for t 6= T , and zT = ��"

� . Substituting the latter result into the solution
(6), we get the following impulse-response to the FG shock:

t � T , �t = C2mt
2 +

��"

� (m1 �m2)
mt�1�T
1 ; (7)

t > T , �t = C2mt
2 +

��"

� (m1 �m2)
mt�1�T
2 . (8)

That is, the economy is driven by a forward-looking component
P1
s=tm

t�1�s
1 zs before the shock occurs and

it is driven by a backward-looking component
Pt�1
s=�1m

t�1�s
2 zs afterwords. Since stability is consistent

with any C2, we can choose it in an arbitrary manner.
Equations (7), (8) illustrate the impact of the forward guidance on the economy with one stable and

one unstable root on which much of the FG literature related to the ELB scenario focuses. Such solutions
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converge forward and diverge backward. The further are the policy announcements in the future, the
larger are their e¤ects on the today�s economy. This result is the classic forward guidance puzzle �an
observation that in a stylized new Keynesian model with ELB, output and in�ation react excessively and
unrealistically to central bank�s announcements about future interest rates changes. We can also see that
the quantitative expression of the FG puzzle is a smooth function of m2.

As an illustration, we plot the impulse responses (7), (8) for T = 30 in Figure 1. To produce this and
all subsequent solutions, we parameterize the model by � = 0:11, � = 1 and � = 0:99, which produces
eigenvalues of m1 = 1:4052 and m2 = 0:7188.7 We display two stable equilibria: in one of them, we chose
C2 = 0, and in the other, we chose C2 such that initial in�ation is zero, i.e., �0 = 0.
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Figure 1. Multiple equilibria under �E� = 0, �� = 0, �y = 0: equlibria with C2 = 0 (top
panels) and with �0 = 0 (bottom panels)

Figure 1 shows that the e¤ect of FG on the economy depends critically on the equilibrium selection (i.e.,
on the integration constant C2), ranging from extremely large (equilibrium with C2 = 0) to practically non
existent (equilibrium with �0 = 0). Similarly, the e¤ect on in�ation is dramatic in the former case, and it
is very mild in the latter case. Thus, the upper panel of the �gure is a classical FG puzzle response. In
the lower panel, the monetary authority manages to coordinate on equilibrium which involves no backward
explosion.

In the context of a model with a �xed interest rate path, the FG literature argues that some equilibrium
choices make more sense than others. To see the point, suppose there is a transitory IS disturbance that
lasts from period 0 to T (e.g., the real interest rate happens to be negative in this interval of time).
Werning (2012) selected an equilibrium with �T+1 = 0, arguing that people will expect it because of the
forward-looking optimality. This choice of in�ation implies a speci�c value of C2 and �0 6= 0. The resulting
solution generically explodes backwards and therefore, implies the FG puzzle. Similar equilibrium selection
is implemented in Carlstrom et al. (2015) by solving the model backward starting from a given terminal
conditions. Their models also generate a backward explosion and the FG puzzle.8 In contrast, Cochrane
(2017a) proposed to resolve the FG puzzle by setting C2 in the way that ensures �0 = 0. To justify this
equilibrium, he noted that �0 < 0 represents an unexpected de�ation that induces an increase in the value
of government debt which requires �scal tightening to pay o¤. Absent such �scal policy, we have �0 = 0,
which, as argued above, resolves the puzzle.

7The value of � = 0:11 corresponds to a fraction of non-reoptimizing �rms � = 0:83 and a utility-function parameter
# = 2:09; see our footnote 8 for the formula of �.

8 In the medium-scale DSGE models of Christiano et al. (2005) and Smets and Wouters (2007), Carlstrom et al. (2015)
use the same equilibrium selection approach and �nds diverse e¤ects of FG � from none to very large � depending on the
number of FG periods and on the presence of in�ation indexation. These e¤ects seem to follow a very complex, sometimes
"nonsensical" structure.
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The novelty of our formal analysis is that it puts the experiments in the previous literature as particular
examples of the region i). It shows that the large di¤erences between multiple equilibria discovered by
Werning (2012) and Cochrane (2017a) are not limited to the policy of the pre-speci�ed interest rate path
but are a generic property of the new Keynesian model in which the monetary policy is not su¢ ciently
responsive to insure the equilibrium uniqueness. Our Theorem 2 implies that any Taylor rule within the
region i) is characterized by one stable and one unstable root and has qualitatively similar predictions to
the model with a �xed interest rate path.

4 Accommodating in�ation: equilibrium uniqueness and FG puzzle

When the degree of responsiveness of the Taylor rule increases, we arrive to region ii), speci�cally, we attain
the turning point when the smallest root m2 reaches a unit size and the equilibrium becomes unique. It is
shown in McKay et al. (2016) that this boundary case also leads to a FG puzzle, although the e¤ect of the
future shocks on the economy is less strong. The Taylor rule they consider is it = int + Et [�t+1] + "t (this
is a speci�c case of our general Taylor rule (3) under �E� & 1, �� = 0 and �y = 0). The characteristic
roots are m1 =

1
� and m2 & 1. As is pointed out by McKay et al. (2016), the considered rule is inactive,

speci�cally, they write �To build intuition, we have assumed that there is no endogenous feedback from
changes in output and in�ation back onto real interest rates". Therefore, this Taylor rule corresponds to
the case of a �xed real interest-rate path. In a sense, this case similar to the previously studied case of
�xed nominal interest rate in Section 3.

To characterize this case with our closed-form solution, let us assume that all shocks are zero, except
of the shock at T which is equal to zT = ��"

� . By Theorem 2, for t � T , the solution is given by

�t =
1

1=� � 1

" 1X
s=t

�
1

�

�t�s�1
zs �

1X
s=t

zs

#
=

��"

1� �
�
�T�t+1 � 1

�
, (9)

and �t = 0 for t > T . From the Phillips curve (1), we have xt = 1
� (�t � ��t+1) = ��" for t � T and

xt = 0 for t > T . This means that, a shock that will happen in any remote period T has the same e¤ect
on current output xt as the one that happens at present. The impact of future shocks on in�ation is even
more dramatic: the further away the shock is in the future, the larger is its e¤ect on today�s in�ation, as
(9) shows. Note however that the in�ation dynamics is not explosive backward but converges to a limit
lim
t!�1

�t = � �
1�� zT = �

��"
1�� .

Figure 2 illustrates the FG puzzle graphically. The �gure plots the output gap, in�ation and nominal
interest rate in response to a one-percent negative shock to the nominal interest rate that happens in the
30th quarter, T = 30.
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Figure 2. Taylor rule with expected in�ation, �E� & 1.

The output gap goes up immediately by one percent in response to a distant future shock. The in�ation
goes up by about three percent, and then gradually decreases and reaches the steady state level in period
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30. A promised future �scal stimuli and capital destruction will have the same magical e¤ect. This is
because a positive monetary policy shock acts similarly to a disturbance to government spending.

Why are the future shocks so powerful? As was pointed out by Del Negro et al. (2012, 2015) and
McKay et al. (2016), this happens because the e¤ect of future shocks on output is not discounted. To
see the point, let us apply forward recursion to the IS curve (1) by imposing a forward stability condition
lim
s!1

xt+s = 0 (a steady-state value) and let us assume again the monetary policy rule it = int +Et [�t+1]+"t.

We get

xt = ��
1X
s=t

(is � ins � Es [�s+1]) = ��
1X
s=t

"s: (10)

(In the case of a single T -period shock, (10) leads to the same expression as our closed-form solution
xt = ��"). In formula (10), there is no discounting and all shocks a¤ects the output in the same manner.
The discounting is absent because the monetary authority commits to fully accommodate the in�ationary
expectations. It does so by increasing the nominal rate to maintain the target real rate. In the absence
of stabilization, such increase propagates backward. Notice, however, that the impact of future shocks on
the economy is less dramatic than the one in the economy with pre-speci�ed interest rate path in Figure
1. This is because the Taylor rule with a unit coe¢ cient in Figure 2 implies certain degree of stabilization
while the pre-speci�ed interest-rate path is completely irresponsive and implies no stabilization at all.

An interesting question is: How di¤erent would the results be if the monetary rule (3) would depend
on actual rather than expected in�ation, i.e., �E� = 0, �� = 1 and �y = 0 leading to it = int + �t + "t
which is another case with a unit root, namely, m1 =

1+��
� > 1 and m2 & 1? A closed form solution for

in�ation is given by (9)

�t =
��"

1� � + ��

"�
�

1 + ��

�T�t+1
� 1
#
, (11)

where the last expression corresponds to the case of a single shock zT = ��"
� . From the Phillips curve,

the corresponding solution for output is xt = ��"
1��+��

�
1� � + ��k

1+��

�
�

1+��

�T�t�
. If the shock is distant,

i.e., T � t, so that
�

�
1+�k

�T�t
� 0, the future shock increases output initially to x0 � ��"

1��+�� (1� �) �

�0:08�" and continues to raise it till it reaches xT = ��"
1��+��

�
1� � + ���

1+��

�
� 0:9�" at T (assuming

� = 0:11, � = 1 and � = 0:99). This case is illustrated in Figure 3.
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Figure 3. Taylor rule with actual in�ation, �� = 1.

Thus, we observe a weaker version of the FG puzzle than the one analyzed in McKay et al. (2016).
The initial response of in�ation to anticipated interest rate shock is large but the initial response of output
is modest (it is just 8 percent of what we had in the example of McKay et al. (2016)). As the economy
advances and approaches the period 30, the impact of the shock on output gradually increases to reach
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90 percent of the one in McKay et al. (2016). The e¤ect of FG is even less strong on Figure 3 than on
previous Figures 1 and 2 because the Taylor rule with actual in�ation implies larger unstable root m1 and
hence, a higher degree of stabilization.

5 Active Taylor rules: equilibrium uniqueness and backward stability

When we increase the responsiveness of the Taylor rule even further, both characteristic roots become
unstable (either real or complex). This is true everywhere in the regions ii), iii) and iv) with an exception
of the unit root borderline case of region ii) discussed in Section 4. We now have both a unique equilibrium
and backward stability, i.e., the e¤ect of future policy announcements implodes backward to zero, and
the FG puzzle is not observed. The condition that �� > 1 is referred to as the Taylor Principle. Recent
Monetary Policy Reports of the Fed focus on this case: "Policy rules can incorporate key principles of
good monetary policy. One key principle is ... . A third key principle is that, to stabilize in�ation, the
policy rate should be adjusted by more than one-for-one in response to persistent increases or decreases
in in�ation." (see the reports from July 7, 2017, February 23, 2018, July 17, 2018). In fact, we will show
that backward stability is obtained not only when the in�ation or expected in�ation coe¢ cients increase
but also when the Taylor rule includes the output gap stabilization.

Taylor rule with the output gap and anticipated in�ation. Let us consider the rule (3) with
anticipated in�ation �E� > 0 and the output gap �y > 0. Substituting the Taylor rule (3) into the IS curve
(1), we obtain xt = 1

1+��y

�
Etxt+1 � �

�
�E� � 1

�
Et�t+1 � �"t

�
. By making recursive substitution and by

imposing lim
s!1

xt+s = 0, we get

xt = �
�
�E� � 1

� e�� 1X
s=t

e�s�tEs�s+1 � e�� 1X
s=t

e�s�t"s; (12)

where e� � 1
1+��y

is an e¤ective discount factor. Since �y > 0, the e¤ect of future shocks on today�s output

is discounted at the rate e� < 1, unlike under the FG puzzle (10). In particular, in the benchmark case

�E� & 1, we obtain xt = �e��P1
s=t
e�s�t"s, which is identical to the FG-puzzle formula (10) (up to the

multiplicative term) except that now we have discounting. Thus, we proved that it is su¢ cient to introduce
the output stabilization to eliminate the backward explosion and the FG puzzle.

Why the introduction of more active Taylor rules leads to discounting of future shocks? This is because
the agents know that if the shocks occur in the future, the monetary authority will intervene to stabilize
the economy, reverting back to the steady state. Thus, when evaluating the e¤ect of the future shocks
on today�s economy, the agents discount the shocks by the expected interventions of monetary authority.
Recall that it was not the case with a �xed interest rate path and the policy of accommodating in�ation.

Taylor rule with the output gap and actual in�ation. Alternatively, we can consider the Taylor
rule with actual in�ation �� > 0 and the output gap �y > 0. Substituting the t-period Taylor rule (3)

into (1) and imposing (2), we get xt =
�

�+��+���y
xt+1 � ��

�+��+���y

�
���t � �t

� + "t

�
. Again, by using a

forward recursive substitution of the future output gaps and by imposing lim
s!1

xt+s = 0, we obtain

xt = �
�
�� �

1

�

�
��

1X
s=t

�
s�t
�s � ��

1X
s=t

�
s�t
"s; (13)

where � � �
�+��+���y

< 1 is an e¤ective discount factor. Like in the previous case, we have � < 1, so

that the e¤ect of the shock "s on today�s output is discounted at the rate �. Furthermore, in a special
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case �� =
1
� , we obtain xt = ���

P1
s=t �

s�t
"s, which is again identical to the FG-puzzle formula (10)

except for the presence of discounting (and the multiplicative term �). Interestingly, discounting does not
disappear even if �y = 0 since we have � =

�
�+�� < 1 (as long as � > 0). However, a larger output gap in

the Taylor rule (3) makes discounting stronger.

A comparison of the Taylor rules with anticipated and actual in�ation. In Figure 4, we compare
the results under two Taylor rules (3) that both contain an identical output gap coe¢ cient �y = 0:5 but
one rule contains just expected in�ation �E� = 2 (see a red line), while the other contains just actual
in�ation �� = 2 (see a blue line). These are the conventional values used in the related literature, see, e.g.,
Taylor (1993), and Coibion et al. (2012). We used the constructed closed form solutions, to generate the
series for the output gap, in�ation and the interest rate for these two cases.
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Figure 4. Taylor rules with the output gap �y = 0:5: a comparison of anticipated in�ation ,
�E� = 2, and actual in�ation, �� = 2.

In the �gure, the two Taylor rule�s parameterizations lead to similar qualitative behavior of the model�s
variables. This similarity can be understood by realizing that our decompositions (12) and (13) imply
virtually identical formulas for xt except of the e¤ective discount factor. The FG puzzle is not observed:
the e¤ect of a distant shock on today�s variables is negligible, i.e., in�ation and output are backward stable.
Thus, the plausible Taylor rules insure both backward stability and equilibrium uniqueness.

Finally, it turns out that for our calibration, the considered parameterization of the Taylor rule is close
to the borderline that separates the case of unstable real roots of regions ii) and that of the complex roots
of region iv). In particular, �E� = 2 or �� = 2 shown in Figure 3 lead to complex roots and belong to
region iv) and, while �E� = 1:5 or �� = 1:5 lead to real roots of region ii). Qualitatively, dynamics in
both cases look very similar; we show the case of the real roots in Figure D1 of Appendix D. The latter
parameterization is distinguished in Taylor (1993) as the most plausible one.

The speed of convergence and the FG puzzle As Theorem 2 implies, all solutions constructed
under two unstable roots in the regions ii)-iv) are backward stable. However, this result is asymptotic. In
applications, it is also important to know how rapidly a solution converges backward. In particular, if con-
vergence is very slow, the e¤ect of distant shocks can be still unrealistically large, which is observationally
equivalent to the FG puzzle.

In particular, the original de�nition of the FG puzzle was coined in quantitative rather than asymptotic
sense in the work of Del Negro et al. (2012, 2015). They conduct a policy experiment that consists in
Fed announcement to maintain the rates �xed at 0:25 for a given number of periods before following the
historical Taylor rule. Del Negro et al. (2015) highlights an excessive power of FG in the context of
FRB NY DSGE model. As is shown in their Figure 4, the model predicts that as a result of a policy
announcement, real GDP growth increases to 3.5% in 2012 and 4.9% in 2013, while in�ation jumps to
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1.8% and 1.9%, respectively. These excessively large responses of output and in�ation to a small shock is
precisely what Del Negro et al. (2015) call the FG puzzle.9

To illustrate the importance of the speed of backward convergence, in Figure 5, we show the solution
under two Taylor rules: one rule reacts to actual in�ation �� = 3 and the other rule reacts to the expected
in�ation �E� = 3. (In Figures D2 and D3 of Appendix D, we provide further illustration of these solutions).
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Figure 5. The e¤ect of variations in the terminal condition under the Taylor rules with �� = 3 and
�E� = 3.

In both models, the roots are in the complex region iv), so by Theorem 2, they are backward stable. While
the model with actual in�ation in the �gure shows a rapid backward convergence pattern, the model with
expected in�ation appears to have a cycling non-convergent pattern. In the latter model, the root is close
to unity: as a result, the �uctuations decay so slowly that they appear to be nonvanishing. For the right
panel in Figure 5, we can conclude that there is a FG puzzle in the sense of the de�nition of Del Negro et
al. (2015).

Generality of our results We assess the generality of our �ndings. In the main text, we focus on
the deterministic case in which the sequence of shocks fzt; zt+1; :::g is known at t. Since the agents have
perfect foresight, we omit the expectation operator in Theorems 1 and 2. In Appendix B, we show that our
deterministic solutions can be generalized to the case of uncertainty, including temporary and permanent
shocks, anticipated and unanticipated shocks, as well as various mixtures of deterministic trends and
stochastic shocks. Another method that allows to deal with uncertainty is the method of undetermined
coe¢ cients proposed by Taylor (1986) but that method does not specify how to construct a solution to
the deterministic model like those we obtain in Theorem 2; see Appendix B for a comparison of the two
methods.

Also, in the paper, we restrict attention to monetary-policy anticipated shocks, however, the conclu-
sions of our analysis carry over to other types of anticipated shocks, e.g., those to future technological
improvements. Our closed-form solutions imply that the impact of a technology shock would generate the
same sort of FG patterns as those discussed in Sections 3-5. That is, a technology shock, anticipated to
happen in the future, will immediately change output and in�ation today. Similar impacts will result from
changes in direct marginal costs (due to capital destruction, technical regress, government spending) or in
the natural rate of interest; the latter would allow us to study secular stagnation. Our results also imply
that there are many other combinations of the parameters �E�, �� and �y in the Taylor rule that lead to a
unit root and produce some versions of the FG puzzle. Our Theorems 1 and 2 make it possible to establish
all such parametererizations and to show the corresponding closed-form solution for each of them.

Finally, we use numerical simulation to explore the properties of equilibria under more general assump-
tions when closed-form solutions are infeasible. We show that the results we establish analytically are

9The FG puzzle is not a generic feature of medium-scale NK models. Campbell et al. (2016) �nd that their medium-scale
new Keynesian model estimated with US data di¤ers from that in Del Negro et al. (2015) in several dimensions, and it
produces realistic responses for empirically plausible interest-rate pegs.

13



robust to the modi�cations. In particular, they hold under more general Taylor rules that include lagged
interest rate, in addition to in�ation and output gap. Also, they hold in a non-linear version of the studied
new Keynesian model, as well as in the version of such model augmented to include capital. In addition,
our �ndings are robust to the solution methods used, speci�cally, we �nd that both Fair and Taylor�s
(1983) extended path method and Maliar et al.�s (2020) extended function path method lead to similar
results. These additional results are elaborated in Appendices D and E.

6 The power of the open-mouth policy

There are two main de�nitions of FG in the literature. For example, Bean (2013), then deputy governor
of the Bank of England, states that FG �is intended primarily to clarify our reaction function,� which
is to give a description of how the policy interest rate will react to economic variables, or a monetary
policy rule. According to that de�nition, FG is simply an announcement that monetary policy follows a
policy rule now and in the future. This type of FG reduces uncertainty, helping the agents to plan their
economic actions more e¢ cient. Alternatively, Reifschneider and Williams (2000), and Woodford (2013)
de�ne FG as an announced deviation from the policy rule; they consider such a deviation in the context of
the ELB with the goal to produce a positive stimulating e¤ect on the economy. We are interested in the
e¤ectiveness of FG in the latter sense, i.e., we aim to analyze whether or not FG can be used as a policy
instrument for producing a positive impact on the economy. Our analysis had shown that the answer to
the question depends on how active the monetary policy is in those periods that are not a¤ected by the
FG announcement. The cases of active and passive monetary policies are discussed below in more details.

FG with active monetary policy. While FG became popular at the time of binding ELB during and
after the Great Recession, it was used before that time by the Fed and other central banks. In particular,
there is evidence that the Fed was using FG in 2003-2004 before the ELB actually happened; see Carlson
et al. (2008) and Plosser (2013) as well as in the non-ELB periods; see Gürkaynak et al. (2005) and
Campbell et al. (2012). Furthermore, there is also an interest among central bankers in using FG in the
future. Speci�cally, out of 55 heads of central banks, surveyed in Blinder et al. (2016), none said that FG
should be discontinued after the crisis; 59% and 12.8% think that it is a potential instrument in the same
and modi�ed form, respectively.

There is also a voice calling for FG in normal times among policymakers. Bernanke (2017) argues that
FG can be useful before the next recession hits, by noting that "... when ZLB looms, rate cuts should
be aggressive ... Forward guidance, of the Odyssean variety, would come next ... . Relative to earlier
experience, I would expect a much earlier adoption of state-contingent, quantitative commitments to hold
rates low." The former Fed�s chair, Yellen (2018) has a similar opinion by arguing that " the FOMC should
seriously consider pursuing a lower-for-longer or makeup strategy for setting short rates when the zero
lower bound binds and should articulate its intention to do so before the next zero lower bound episode".
Mester (2014) views FG as a device that in normal time "conveys to the public how policy is likely to
respond to changes in economic conditions"; Coeuré (2018) also supports the usefulness of FG "beyond
the timing to lift-o¤", etc.

Our analysis helps understand whether or not FG is a potentially useful monetary policy tool when the
ELB does not bind. It shows that if the central bank following an active Taylor rule can undo the e¤ect of
the FG commitments, including the backward explosive e¤ects characteristic for the FG puzzle. But then
why would the central bank announce a FG shock in the �rst place just to undo it with its future actions?
Thus, our analysis does not provide a basis for using FG for stimulating the economy in normal times.

FG with passive monetary policy. Let us consider the power of FG combined with passive systematic
monetary rules. Passive policies do not provide stabilization that is su¢ cient to "undo" the e¤ect of future
shocks. In particular, the FG puzzle shows policy announcements that can have huge positive e¤ects on
the economy. So, why cannot the monetary authority take advantage of the open-mouth policy by using
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passive monetary rules that lead to backward explosion, in particular, the policy of the pre-speci�ed interest
rate path?

One possible reason for doubting the e¤ectiveness of FG is pointed out by Cochrane (2017a) who argues
that in the presence of multiple equilibria, the agents can coordinate on a speci�c equilibrium in which
the FG puzzle is absent. However, there are also passive policy rule with a unit root that lead to unique
equilibrium and still imply large stimulating FG e¤ects, for example, the rule studied in McKay et al.
(2016). Maybe policymakers can use these rules for stimulating the economy.

In fact, nothing in our analysis prevents the monetary authority from using these rules. However, there
is a question whether the model parameterized by such rules represents a meaningful representation of
reality. One of the fundamental principals of monetary theory is that the central bank aims to maximize
social welfare. A coherent way to model the central bank�s problem is to construct a Ramsey solution.
The socially optimal in�ation implied by the Ramsey problem is zero, so the Ramsey policy involves an
active in�ation stabilization. Woodford (2001) shows that the Taylor rules provide a good approximation
to the Ramsey policy rule.10 But this is true not for all Taylor rules but only for those that satisfy the
Taylor principle and insure the active in�ation stabilization.

However, the Taylor rule can di¤er dramatically from the Ramsey rule under some parameterizations.
For example, the rule it = int + Et [�t+1] + "t studied in McKay et al. (2016) implies that the monetary
authority will set the nominal interest rate to fully accommodate the in�ation expectations. Let�s say, if the
people expect 300 percent in�ation, the monetary authority will do nothing but set 302 percent nominal
interest rate to guarantee the real interest rate of 2 percent. A policy of the pre-speci�ed interest rate path
is even more extreme: the monetary authority commits to stick to the announced path no matter how
devastating the shock is. Such policies contrast sharply with the Ramsey optimal prescription of in�ation
stabilization and may lack credibility. The agent knows that if necessary, the monetary authority will
revert the FG commitments or it can use other tools to "undo" the e¤ects of such commitments if that
become welfare reducing, so passive policies have limited credibility.

If the central bank does not maximize the social welfare but does something else, the model in the paper
predicts a variety of empirically implausible outcomes, including the FG puzzle. The fact that suboptimal
policy rule lead to counterintuitive and counterfactual implications is not entirely surprising: one would
expect equally puzzling implications from the models in which consumers do not maximize utilities or �rms
do not maximize pro�ts. It is not clear if the predictions of such models are meaningful. A reasonable
approach for the monetary authority would be to aim at attaining an optimal outcome by implementing
a Taylor-style rule that approximates Ramsey policy. Such an approach does not lead to the FG puzzle,
as our theorems show. If active Taylor-style rules are not available, e.g., because of binding ELB, the
monetary authority is likely to �nd other systematic policy rules that approximate the Ramsey solution,
possibly by involving the �scal policy and other instruments. Such systematic policy rules are unlikely to
leave much room for the FG announcements.

7 Conclusion

In the paper, we accomplished four main goals: First, we explain what produces the FG puzzle. We show
that even though the FG puzzle is related to the ELB, it is not the ELB or new Keynesian model per se
that produce the explosive backward behavior, but the imposed passivity of the monetary policy rule, not
only in the periods where the ELB is binding, but also in the periods where the shadow rate would be
normally above the ELB.

Second, we show how to e¤ectively characterize the FG puzzle. We demonstrate that a mechanism
behind the FG puzzle is the same in economies both with Taylor rules and a pre-speci�ed interest-rate
path: the smallest eigenvalue is a su¢ cient statistic for fully characterizing the model�s ingredients that
generate the backward explosion. The theorems we establish make it possible to see up-front whether or

10The analysis of Woodford (2001) requires some additional assumptions; see Woodford (2003) for a discussion and gener-
alizations.
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not a speci�c parameterization of the new Keynesian model leads to the FG puzzle under both ELB and
no-ELB scenarios.

Third, we o¤er a resolution to the FG puzzle. We propose to restrict attention to policy rules that
approximate the Ramsey solution. The key principle of the optimal monetary policy is the economy
stabilization. Whether the Taylor rules accomplish this goal or not depends on how such rules are parame-
terized. The parameterizations that satisfy the Taylor Principle and provide su¢ cient stabilization do not
lead to the FG puzzle. In turn, excessively passive Taylor rules that generate the FG puzzle contradict the
key stabilization principle of the optimal monetary policy; they are unlikely to represent what the actual
monetary authorities have in mind. It is not surprising that in the absence of stabilization, the economy
explodes. Thus, to resolve the FG puzzle, we need to modify the way we model the policies rules!

Finally, we help inform central bank decisions related to the FG puzzle. We demonstrate that the
central bank that follows a su¢ ciently active Taylor rule will undo the e¤ect of future shocks, which
eliminates the backward-explosion characteristic of the FG puzzle. But then why would the central bank
announce a shock in the �rst place just to undo it with its future actions? Our results suggest FG has
a limited usefulness as a stimulating tool if the systematic monetary policy rules are su¢ ciently active,
especially in normal times when ELB does not bind.

References

[1] Bean, C. (2014). Global aspects of unconventional monetary policies. In: Global Dimensions of Un-
conventional Monetary Policy, Proceedings of the Jackson Hole Conference, Federal Reserve Bank of
Kansas City, pp. 355 - 363.

[2] Bernanke, B. (2017). Monetary policy in a new era. Brookings Institution. Manuscript.

[3] Bundick, B. and L. Smith (2016). The dynamic e¤ects of forward guidance shocks. Manuscript.

[4] Campbell, J., C. Evans, J. Fisher and F. Justiniano (2012). Macroeconomic e¤ects of Federal Reserve
forward guidance. Brookings Papers on Economic Activity, Spring, 1-54.

[5] Campbell, J., J. Fisher, A. Justiniano and L. Melosi, (2016). Forward guidance and macroeconomic
outcomes since the �nancial crisis. Working Paper, Federal Reserve Bank of Chicago 7.

[6] Campbell, J., F. Ferroni, J. Fisher, and L. Melosi (2019). The limits of forward guidance. Journal of
Monetary Economics, 108, 118-134.

[7] Carlson, M., G. Eggertsson, and E. Mertens (2008). Federal Reserve experiences with very low interest
rates: lessons learned. Manuscript.

[8] Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal of Monetary Eco-
nomics, 12, 383�398.

[9] Carlstrom, C. T., Fuerst, T. S. and Paustian, M. (2015). In�ation and output in New Keynesian
models with a transient interest rate peg. Journal of Monetary Economics, 76, 230�243.

[10] Chung, H. (2015). The e¤ects of forward guidance in three macro models. Feds notes.

[11] Cochrane, J. (2011). Determinacy and identi�cation with Taylor rules. Journal of Political Economy
119 (3), 565-615.

[12] Cochrane, J. (2017a). The new-Keynesian liquidity trap. Journal of Monetary Economics 92(C), 47-63.

[13] Cochrane, J. (2017b). Michelson-Morley, Fisher, and Occam: the radical implications of stable quiet
in�ation at the zero bound. Manuscript.

16



[14] Coeuré, B. (2018). Forward guidance and policy normalisation. Speech from 17 September 2018.

[15] Coibion, O., Y. Gorodnichenko, and J. Wieland (2012). The optimal in�ation rate in new Keynesian
models: should central banks raise their in�ation targets in light of the zero lower bound. Review of
Economic Studies 79, 1371-1406.

[16] Christiano, L., M. Eichenbaum, and C. Evans (2005). Nominal rigidities and the dynamic e¤ects of a
shock to monetary policy. Journal of Political Economy, 113 (1), 1�45.

[17] Del Negro, M., F. Schorfheide, F. Smets, and R.Wouters (2007). On the �t of new Keynesian models.
Journal of Business & Economic Statistics, 25 (2), 123�143.

[18] Del Negro, M., M. Giannoni, and C. Patterson (2012, 2015). The forward guidance puzzle. Working
Paper, Federal Reserve Bank of New York.

[19] Den Haan, W. (2013). Introduction. In Forward Guidance, Perspectives from Central Bankers, Scholars
and Market Participants. Eds.: Den Haan W. Centre for Economic Policy Research, 1�21.

[20] Eggerstsson, G. B. and M. Woodford (2003). The zero bound on interest rates and optimal monetary
policy. Brookings Papers on Economic Activity, 2003(1), 139�211.

[21] Fair, R. and J. Taylor (1983). Solution and maximum likelihood estimation of dynamic nonlinear
rational expectations models. Econometrica 51, 1169-1185.

[22] Gabaix, X. (2017). A behavioral new Keynesian model. Manuscript.

[23] Galí, J. (2008), Monetary Policy, In�ation and the Business Cycles: An Introduction to the New
Keynesian Framework. Princeton University Press, Princeton, New Jersey.

[24] Galí, G. (2017). Forward guidance and the exchange rate. Manuscript.

[25] Gürkaynak, R., B. Sack, and E. Swanson (2005). Do actions speak louder than words? The response
of asset prices to monetary policy actions and statements. International Journal of Central Banking
1 (1), 55-93.

[26] Hagedorn, M., J. Luo, I. Manovskii, and K. Mitman (2018). Forward guidance. NBER Working Paper
24521.

[27] Husted, L., J. Rogers and B. Sun (2017). Monetary policy uncertainty. International Finance Discus-
sion Papers, Board of Governors of the Federal Reserve System, 1215.

[28] Kaplan, G., B. Moll, and G. Violante (2016). A note on unconventional monetary policy in HANK.
Working Paper, Princeton University.

[29] Keen, B., A. Richter, and N. Throckmorton (2016). Forward guidance and the state of the economy.
Manuscript.

[30] Levin, A., D. López-Salido, E. Nelson and T. Yun (2010). Limitations on the e¤ectiveness of forward
guidance at the zero lower bound, Federal Reserve Board.

[31] Maliar. L., (2018). Continuous time versus discrete time in the new Keynesian model: closed-form
solutions and implications for liquidity trap. CEPR Working Paper 13384.

[32] Maliar, L., S. Maliar, J. Taylor, and I. Tsener (2020). A tractable framework for analyzing a class of
nonstationary Markov models. Quantitative Economics, forthcoming.

[33] McKay, A., E. Nakamura, and J. Steinsson (2016). The power of forward guidance revisited. American
Economic Review, 106(10), 3133�58.

17



[34] McKay, A., E. Nakamura, and J. Steinsson (2016). The discounted Euler equation: a note. Economica
, 1-12.

[35] Mester, L. (2014). Forward guidance in extraordinary times, in normal times, and betwixt the two.
Federal Reserve Bank of Cleveland.

[36] Monetary Policy Report. (2018). Board of Governors of the Federal Reserve System, February 23,
2018.

[37] Plosser, C. (2013). Forward guidance. Federal Reserve Bank of Philadelphia. Manuscript.

[38] Reischneider, D. and J. Williams (2000). Three lessons for monetary policy in a low in�ation era.
Journal of Money, Credit and Banking, 32, 936-966.

[39] Smets, F. and R. Wouters (2007). Shocks and frictions in US business cycles: A Bayesian DSGE
approach. American Economic Review, 97 (3), 586�606.

[40] Taylor, J. B. (1986). New econometric approaches to stabilization policy in stochastic models of
macroeconomic �uctuations. In: Handbook of Econometrics, Volume III, Eds.: Z. Griliches and M.
D. Intriligator. Elsevier Science Publishers, Chapter 34, pp. 1998-2055.

[41] Taylor, J. B. (1993). Discretion versus policy rules in practice. Carnegie-Rochester Conference Series
on Public Policy, 39, 195�214.

[42] Walsh, C. (2017). Simple sustainable forward guidance at the ELB. Manuscript.

[43] Werning, I. (2012). Managing a liquidity trap: monetary and �scal policy. Manuscript, MIT.

[44] Werning, I. (2015). Incomplete markets and aggregate demand. Working Paper, MIT.

[45] Woodford, M. (2001). The Taylor rule and optimal monetary policy. The American Economic Review
91 (2), Papers and Proceedings of the Hundred Thirteen Annual Meeting of the American Economic
Association, 232-237.

[46] Woodford, M. (2003). Interest and Prices. Princeton University Press, Princeton.

[47] Woodford, M. (2010). Optimal monetary stabilization policy. In: Handbook of Monetary Economics,
Volume 3, Eds.: B. Friedman and M. Woodford. Elsevier Science Publishers, Chapter 14, pp. 723-828.

[48] Woodford, M. (2013). Methods of Policy Accommodation at the Interest Rate Lower Bound. In: The
Changing Policy Landscape, Federal Reserve Bank of Kansas City, pp.185-288.

[49] Yellen, J. (2018). Comments on monetary policy at the e¤ective lower bound. Brookings.

18



Appendix A. Proofs of Theorem 1 and Corollary 1

In this section, we prove Theorem 1 and its Corollary 1 that establish the regions for the parameters
�� � 0, �E� � 0 and �y � 0 corresponding to di¤erent types of characteristic roots in the model (1), (2)
and (3).

Proof to Theorem 1. The roots to the characteristic equation m2 + bm+ c�t = 0 are given by

m1 =
�b+

p
b2 � 4c
2

; (14)

m2 =
�b�

p
b2 � 4c
2

; (15)

where b � �1� 1
� � ��y �

��(1��E�)
� , and c � (1+��y)

� + ����
� . It is useful to note that c > 1.

We start by showing statement ii) of Theorem 1.
Two unstable real roots. To have jm1j � 1, jm2j � 1, we must have one of the following cases:

a)

�
m1 � �1
m2 � 1

�
; b)

�
m1 � 1
m2 � �1

�
; c)

�
m1 � 1
m2 � 1

�
; d)

�
m1 � �1
m2 � �1

�
:

Let us �rst rule out Cases a) and b) by showing that there are no parameters values that satisfy both
restrictions.

Case a) By construction, we have m2 < m1, so this case is impossible.

Case b) Since m1 � 1, we have
p
b2 � 4c � 2 + b.

Since m2 � �1, we have �
p
b2 � 4c � �2 + b which is equivalent

p
b2 � 4c � 2� b.

i) If b � 0, then
p
b2 � 4c � 2 + b implies

p
b2 � 4c � 2 � b, so we only need to insure the former

inequality:
b2 � 4c � (2 + b)2 ) �4c � 4 + 4b, impossible since c > 0.

ii) If b < 0, then
p
b2 � 4c > 2� b implies

p
b2 � 4c > 2+ b, so again, we only need to insure the former

inequality:
b2 � 4c > (2� b)2 ) �4c > 4� 4b, impossible since c > 0.

By combining i) and ii), we conclude that the case b) is impossible.

Case c) Since m2 � 1 implies m1 � 1, we only need to insure m2 � 1, i.e., �b�
p
b2�4c
2 � 1. This implies

�
p
b2 � 4c � 2 + b: (16)

Since the root is real, we must have b2 � 4c � 0. This implies two possibilities: if b > 0, we must have
b > 2

p
c and if b < 0, we must have �b > 2

p
c. However, the former possibility violates (16), so we are left

with b � �2
p
c, which leads to boundary value �2E�:�

� 1
�
�
�
1 + ��y

�
� �� (1� �E�)

�

�
� �2

s�
1 + ��y

�
�

+
����
�

�E� � 1 +
1

��

�
1 +

�
1 + ��y

�
� � 2

q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 +

�
1 + ��y

�
� + �� +

(1� �)�y
�

� 2
q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 + ���� + ��y + � � 2

q�
1 + ��y + ����

�
�

�
� �2E�: (17)
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Furthermore, we re-write (16) as p
b2 � 4c � �2� b;�p

b2 � 4c
�2

� (�2� b)2 ;
�4c � 4 + 4b:

The latter inequality implies c+ 1 � �b, which leads to the boundary value �1E�:

1 +

�
1 + ��y

�
�

+
����
�

� 1 + 1

�
+ ��y +

�� (1� �E�)
�

�1E� � 1� �� +
��y
�

�
1� 1

�

�
� �E�:

Finally, we consider Case d). The analysis of this case is similar to Case c). Since m1 � �1 implies
m2 � �1, we only need to insure m1 � �1, i.e., �b+

p
b2�4c
2 � �1. This impliesp

b2 � 4c � �2 + b: (18)

Since the root is real, we must have b2 � 4c � 0. This implies two possibilities: if b > 0, we must have
b > 2

p
c and if b < 0, we must have �b > 2

p
c. However, the latter possibility violates (18), so we are left

with b � 2
p
c, which leads to the boundary value �3E�:�

� 1
�
�
�
1 + ��y

�
� �� (1� �E�)

�

�
� 2

s�
1 + ��y

�
�

+
����
�

�E� � 1 +
1

��

�
1 +

�
1 + ��y

�
� + 2

q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 +

�
1 + ��y

�
� + �� +

(1� �)�y
�

+ 2
q�
1 + ��y + ����

�
�

�
�E� � 1� �� �

(1� �)�y
�

+
1

��

�
1 + ���� + ��y + � + 2

q�
1 + ��y + ����

�
�

�
� �3E�: (19)

Furthermore, we re-write (18) as �p
b2 � 4c

�2
� (�2 + b)2

�4c � 4� 4b:

This implies c+ 1 � b, which leads to the boundary value �4E�:�
1 + ��y

�
�

+
����
�

+ 1 � �1� 1

�
� ��y �

�� (1� �E�)
�

�E� �
�
1 + ��y

�
+ ���� + � + � + 1 + ���y + ��

��

�E� � 1� �� �
(1� �)�y

�

+

�
1 + ��y

�
+ ���� + � + � + 1 + ���y + ��

��
� 1 + �� +

(1� �)�y
�

�E� � 1� �� �
(1� �)�y

�
+
2
�
1 + ��y + ���� + �

�
��

� �4E�:
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We next show statement iii) of Theorem 1.
Two repeated real roots. To have repeated real roots, it must be that b2�4c = 0. There are two possible

solutions b = 2
p
c and b = �2

p
c. By using the results (17) and (19) obtained for Cases c) and d) of the

statement ii), we obtain that the corresponding parameterizations are �E� = �
2
E� and �E� = �

3
E�.

To see that the resulting root m = � b
2 is unstable, notice that b = 2

p
c and b = �2

p
c imply m = �

p
c

and m =
p
c, respectively. Since c > 1, we conclude that jmj > 1.

We now show statement iv) of Theorem 1.
Complex roots. For complex roots, we must have b2 � 4c < 0; which implies �2

p
c < b < 2

p
c. Again,

based on the results (17) and (19) obtained for Cases c) and d) of the statement ii), we obtain that the
corresponding parameter range is �2E� < �E� < �3E�. To see that the complex root m1;2 = � � �� is

unstable, we compute r �
p
�2 + �2 =

r��b
2

�2
+
�p

4c�b2
2

�2
=
p
c > 1.

We �nally show statement i) of Theorem 1.
One stable and one unstable real roots. To analyze this case, we actually show that there are no

parameter values for which we have two stable roots, i.e., jm1j < 1 and jm2j < 1. Indeed, the existence of
two stable roots implies that �1 < m1 < 1 and �1 < m2 < 1, i.e.,

�1 <
�b+

p
b2 � 4c
2

< 1;

�1 <
�b�

p
b2 � 4c
2

< 1:

If �1 < �b�
p
b2�4c
2 , then we have �1 < �b+

p
b2�4c
2 and if �b+

p
b2�4c
2 < 1, then we have �b�

p
b2�4c
2 < 1. So,

we must check only the following two conditions:

�1 < �b�
p
b2 � 4c
2

;

�b+
p
b2 � 4c
2

< 1:

These conditions can be, respectively, re-written asp
b2 � 4c < 2� b; (20)p
b2 � 4c < 2 + b: (21)

Since the roots are real, we have b2 > 4c which means that either b >
p
4c or b < �

p
4c. Since c > 1, these

last two inequalities imply that either b > 2 or b < �2. But then the restrictions (20) and (21) cannot be
satis�ed simultaneously: if b > 2, the right side of (20) is negative and if b < �2, the right side of (21) is
negative. Since the roots are real and we discarded the possibility of two stable roots, we conclude that we
must have one stable and one unstable root, except of those cases when two roots are unstable and when
the roots are complex, i.e., everywhere except of the range �1E� � �E� � �4E�. This completes the proof of
the statement i) of Theorem 1. �

Proof to Corollary 1. The roots to the characteristic equationm2+bm+c�t = 0 are again given by (14)

and (15), where under the assumption �E� = 0, we have b � �1� 1
� � ��y �

��
� , and c �

(1+��y)
� + ����

� .
It is useful to note that b < 0 and c > 1.

We start by showing statement ii) of Corollary 1.
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Two unstable real roots. To have jm1j � 1, jm2j � 1, we must have one of the following cases:

a)

�
m1 � �1
m2 � 1

�
; b)

�
m1 � 1
m2 � �1

�
; c)

�
m1 � 1
m2 � 1

�
; d)

�
m1 � �1
m2 � �1

�
:

Cases a) and b) The results of Theorem 1 apply here as well, so we conclude that these two cases are
impossible.

Case c) Since m2 � 1 implies m1 � 1, we only need to insure m2 � 1, i.e., �b�
p
b2�4c
2 � 1. Like in Case

c) of Theorem 1, this implies that b � �2
p
c and results in the corresponding boundary value �2�:�

� 1
�
�
�
1 + ��y

�
� ��
�

�
� �2

s�
1 + ��y

�
�

+
����
�

1

�
+
�
1 + ��y

�
+
��

�
� 2

s�
1 + ��y

�
�

+
����
�

�� � 1�
(1� �)�y

�
+

�

4��

�
1� 1

�
� ��y �

��

�

�2
� �2�: (22)

The boundary value �1� follows by (16). Like in Case 3 of Theorem 1, we have c + 1 � �b and
consequently, we obtain

1 +

�
1 + ��y

�
�

+
����
�

� 1 + 1

�
+ ��y +

��

�

�1� � 1�
(1� �)�y

�
� ��. (23)

Finally, we consider Case d). Following the reasoning of the corresponding case of Theorem 1, we
conjecture that we must have b � 2

p
c. But this is not possible since by de�nition, we have b < 0 and

c > 1. Thus, unlike Theorem 1, here we do not have boundary values analogous to �3E� and �
4
E�.

We next show statement iii) of Corollary 1.
Two repeated real roots. To have repeated real roots, it must be that b2 � 4c = 0. There are two

possible solutions b = 2
p
c and b = �2

p
c. But in the present case, we have b < 0, only the latter root is

possible. Using the results (22) obtained for Case c) of the statement ii), we obtain that the corresponding
parameterization is �� = �2�. Again, to see that the resulting root m = � b

2 is unstable, notice that
b = �2

p
c imply m =

p
c, respectively. Since c > 1, we conclude that jmj > 1.

We now by show statement iv) of Corollary 1.
Complex roots. For complex roots, we must have b2 � 4c < 0, which implies �2

p
c < b < 2

p
c. The

argument of Case d) of the present proof rules out the possibility of b � 2
p
c so that the second inequality

always holds. Therefore, the roots are complex whenever �2
p
c < b, which together with the result (22)

obtained for Case c) of the statement ii) leads us to �� > �2�. Like in Theorem 1, the complex root

m1;2 = �� �� is unstable since r �
p
�2 + �2 =

r��b
2

�2
+
�p

4c�b2
2

�2
=
p
c > 1.

We �nally show statement i) of Theorem 1.
One stable and one unstable real roots. The arguments of Theorem 1 apply to this case as well as, so

that we conclude that there are no parameter values for which we have two stable roots, i.e., jm1j < 1 and
jm2j < 1. Since the roots are real and we discarded the possibility of two stable roots, we conclude that
we must have one stable and one unstable root, except when two roots are unstable and when the roots
are complex which yields the range �� < �

1
� and completes the proof of the statement. �
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Appendix B. Method of undetermined coe¢ cients for linear stochastic
models

In the economy with stochastic shocks, we should construct conditional expectations for future shocks.
Our closed-form solutions provide a convenient way of modeling a variety of uncertainty scenarios, in-
cluding temporary and permanent shocks, anticipated and unanticipated shocks, as well as mixtures of
deterministic trends and stochastic shocks. Since the characteristic roots in closed-form solutions of The-
orem 2 are non-random, the expectation operator can be brought inside the summations, for example,
Et
�P1

s=tm
t�1�s
1 zs

�
=
P1
s=tm

t�1�s
1 Et [zs], so that e¤ectively, we need to compute Et [zs] for s � t.

As an illustration, let us assume that zt follows a �rst-order autoregressive process zt+1 = �zt + "t+1,
in which case, we have Et [zs] = �s�tzt for s � t. Furthermore, let us assume that the roots are complex,
i.e., case iv). Then, the complex-root solution in Theorem 2 can be re-written as

�t = C1r
t cos (�t) + C2r

t sin (�t) +
zt
��

" 1X
s=t

�
r

�

�t�1�s
sin (� (t� 1� s))

#
: (24)

To simulate stochastic time-series solution, we draw a sequence of shocks for zt, �nd �t from (24) and
compute xt from (2). Similar formulas are easy to show for the remaining cases; in those cases, the roots
mi can be adjusted to � by mi

� and the term
zt
� can be taken out of the summation. Examples of time-series

solutions to the stochastic versions of the model are shown in Appendices D and E.
To ensure stationarity in the stochastic case, we need to impose the same restrictions on the homoge-

neous solutions as those necessary for forward stability in the deterministic case. In particular, we obtain
a unique stationary solution in cases ii)�iv) by setting C1 = 0 and C2 = 0, and there is a multiplicity of
stationary solutions in case i) since any C2 is consistent with stationarity.

Closed-form solutions to new Keynesian models with uncertainty are studied in Taylor (1986) by using a
method of undetermined coe¢ cients �an analytical technique that reduces a stochastic di¤erence equation
to the deterministic one. In contrast, our present analysis proceeds in the opposite direction: we �rst
constructed a solution to the deterministic model, and we then generalized it to the stochastic case. Below,
we show that both approaches lead to the same stochastic solution under a general linear process for shock
zt. Taylor�s (1986) method does not specify how to construct a solution to the deterministic model like
those we obtain in Theorem 2, which is our main contribution. Finally, Cochrane (2017b) constructs
related solutions for the stochastic version of the model in which one root is stable and the other root us
unstable, which corresponds to our case i).

We assume that zt follows a general linear process with a representation

zs =
1X
j=0

#j"s�j ; (25)

where #j is a sequence of parameters, and "t is a serially uncorrelated random variable with zero mean.
The process (25) includes important types of policy shocks as special cases, in particular, it allows us to
distinguish between temporary and permanent shocks, as well as anticipated and unanticipated shocks; see
Taylor (1986) for a discussion. We �rst construct a closed-form solution of our Theorem 2 under (25), and
we next show that the method of undetermined coe¢ cients of Taylor (1986) leads to the same solution.
We omit the homogeneous solution because it is the same in the deterministic and stochastic models, and
we concentrate on particular solutions.

Closed-form solutions of Theorem 2. As an example, consider the closed-form solution (??) of
Theorem 2 for the model with complex roots, which under assumption (25) becomes

�t =
1

�
Et

24 1X
s=t

ht�1�s

1X
j=0

�j"s�j

35 ;
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where ht�1�s � rt�1�s sin (� (t� 1� s)) is compact notation. The latter expression can be written as

�t =
1

�
Et

24h�1 1X
j=0

�j"t�j + h0

1X
j=1

�j"t+1�j + h1

1X
j=0

�j"t+2�j + :::

35 :
Since Et ["t+��j ] = 0 for any � � 0, we can compute expectation with the following sequence of steps:

�t =
1

�

24h�1 1X
j=0

�j"t�j + h0

1X
j=1

�j"t+1�j + h1

1X
j=2

�j"t+2�j + :::

35
=
1

�

24h�1 1X
j=0

�j"t�j + h0

1X
j=0

�j+1"t�j + h1

1X
j=0

�j+2"t�j + :::

35
=
1

�

1X
j=0

"t�j [h�1�j + h0�j+1 + h1�j+2 + :::] =
1

�

1X
j=0

"t�j

1X
s=j

hj�1�s�s: (26)

Method of undetermined coe¢ cients. The method of undetermined coe¢ cients described in Taylor
(1986) requires us to guess that a solution for �t has the same kind of representation as (25), speci�cally,

�t =
1X
j=0

"t�j
j ; (27)

where 
j is a sequence of unknown coe¢ cients. By taking into account that Et [
0"t+1] = 0, we obtain
Et [�t+1] =

P1
j=1 
j"t�j+1 and Et+1 [�t+2] =

P1
j=2 
j"t�j+2. Therefore, we can re-write (4) as

1X
j=2


j"t�j+2 + b
1X
j=1


j"t�j+1 + c
1X
j=0


j"t�j = �
1X
j=0

#j"t�j : (28)

Equating the coe¢ cients on both sides of the equality (28) gives us a set of restrictions


j+2 + b
j+1 + c
j = �#j ; j = 0; 1; ::: (29)

This is a deterministic di¤erence equation with a forcing variable #j . It has the same structure as a
stochastic di¤erence equation and it is identical up to notation to the deterministic version of the equation
(4) studied in the main text. Therefore, the coe¢ cients of the stochastic equation (29) can be described by
closed-form solutions of Theorem 2, again up to notation. For example, Theorem 2, case iv) implies that

the sequence of the coe¢ cients (29) in the model with complex roots is given by 
j =
1
�

hP1
s=j hj�1�s#s

i
,

which together with (27) implies the same solution for �t as (26). The equivalence for the remaining cases
i)-iii) can be shown similarly.
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Appendix C. Supplementary results for Section 3

In this section, we present some supplementary results for Section 3.

C1. Taylor rule with actual in�ation and output gap: the case of the real roots

In Section 3.3, we compare the solution under two Taylor rules (3) with output gap: one contains the actual
in�ation and the other contains the expected in�ation. In the former case, the model is parameterized
by �y = 0:5 and �E� = 2, and in the latter case, it is parameterized by �y = 0:5 and �� = 2. These
parameterizations lead to complex roots, which correspond to case iv) of Theorems 1-3.

Interestingly, a relatively small change in parameterization produces a switch to the real roots, which
is the case ii) or iii) of Theorems 1, 2 and Corollary 1. As an example, we show the solutions for slightly
di¤erent parameterizations, namely, �y = 0:5 and �E� = 1:5 and �y = 0:5 and �� = 1:5.
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Figure C1. Taylor rule with output gap �y = 0:5 and expected in�ation �E� = 1:5 vesus actual
in�ation �� = 1:5.

Qualitatively, the solutions shown in Figure C1 are very similar to those reported in Figure 3 in the
main text. Quantitatively, the di¤erence in in�ation between the two solutions is somewhat larger under
�E� = 1:5 and �� = 1:5 than under �E� = 2 and �� = 2 reported in the main text.

C2. Active Taylor rule with expected in�ation

To study the robustness of the FG puzzle, let us consider a more general Taylor rule (3) with expected
in�ation such that �E� > 1; for example, in Figure C.2, we illustrate the case �E� = 3; �� = 0 and �y = 0.
Here, we are in case iv) of Theorems 2 with unstable complex roots. In response to the shock in period
30, the model�s variables start �uctuating from period 0 and on, up to period 30.
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Figure C.2. Taylor rule with expected in�ation, �E� = 3.
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There is a gradual decay but it is very slow, since we are close to unit root jrj � 1:005 under our bench-
mark calibration. While this oscillating case is discomforting, we draw attention that it is produced by
a meaningful positive (although too strong) response of the interest rate to expected in�ation; we cannot
rule it out as a less appealing case of negative Taylor-rule coe¢ cients, also leading to oscillations.

C3. Active Taylor rule with actual in�ation

In Figure C3, we show the solution under the Taylor rule (3) with �E� = 0; �� = 3 and �y = 0.
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Figure C3. Taylor rule with actual in�ation, �� = 3.

We still observe oscillations that result from the complex roots but now the decay of all variables is much
faster than in Figure C2.
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Appendix D. The basic nonlinear new Keynesian model

In this section, we describe the basic new Keynesian model that leads to the three-equation model (1), (2)
and (3) studied in the main text. Also, we present some robustness results.

D1. The model

Households. The representative household solves

max
fCt;Lt;Btgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� "C1��t � 1

1� � � exp
�
�L;t

� L1+#t � 1
1 + #

#
(30)

s.t. PtCt +
Bt

exp
�
�B;t

�
Rt
+ Tt = Bt�1 +WtLt +�t; (31)

where
�
B0; �u;0; �L;0; �B;0

�
is given; Ct, Lt, and Bt are consumption, labor and nominal bond holdings,

respectively; Pt, Wt and Rt are the commodity price, nominal wage and (gross) nominal interest rate,
respectively; �u;t and �L;t are exogenous preference shocks to the overall momentary utility and disutility
of labor, respectively; �B;t is an exogenous premium in the return to bonds; Tt is lump-sum taxes; �t is
the pro�t of intermediate-good �rms; � 2 (0; 1) is the discount factor; � > 0 and # > 0 are the utility-
function parameters. The shocks follow standard AR(1) processes with means zero and constant standard
deviations.

Final-good �rms. Perfectly competitive �nal-good �rms produce �nal goods using intermediate goods.
A �nal-good �rm buys Yt (i) of an intermediate good i 2 [0; 1] at price Pt (i) and sells Yt of the �nal good
at price Pt in a perfectly competitive market. The pro�t-maximization problem is

max
Yt(i)

PtYt �
Z 1

0
Pt (i)Yt (i) di (32)

s.t. Yt =
�Z 1

0
Yt (i)

"�1
" di

� "
"�1

; (33)

where (33) is a Dixit-Stiglitz aggregator function with " � 1.

Intermediate-good �rms. Monopolistic intermediate-good �rms produce intermediate goods using la-
bor and are subject to sticky prices. The �rm i produces the intermediate good i. To choose labor in each
period t, the �rm i minimizes the nominal total cost, TC (net of government subsidy v),

min
Lt(i)

TC (Yt (i)) = (1� v)WtLt (i) (34)

s.t. Yt (i) = exp
�
�a;t
�
Lt (i) ; (35)

�a;t+1 = �a�a;t + �a;t+1; �a;t+1 � N
�
0; �2a

�
; (36)

where Lt (i) is the labor input; exp
�
�a;t
�
is the productivity level such that �a;t follows the standard AR(1)

process. The �rms are subject to Calvo-type price setting: a fraction 1�� of the �rms sets prices optimally,
Pt (i) = ePt, for i 2 [0; 1], and the fraction � is not allowed to change the price and maintains the same
price as in the previous period, Pt (i) = Pt�1 (i), for i 2 [0; 1]. A reoptimizing �rm i 2 [0; 1] maximizes the
current value of pro�t over the time when ePt remains e¤ective,

maxePt
1X
j=0

�j�jEt

n
�t+j

h ePtYt+j (i)� Pt+jmct+jYt+j (i)io (37)

s.t. Yt (i) = Yt

�
Pt (i)

Pt

��"
; (38)
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where (38) is the demand for an intermediate good i (follows from the �rst-order condition of (32), (33));
�t+j is the Lagrange multiplier on the household�s budget constraint (31); mct+j is the real marginal cost
of output at time t+ j (which is identical across the �rms).

Government. Government �nances a stochastic stream of public consumption by levying lump-sum
taxes and by issuing nominal debt. The government budget constraint is

Tt +
Bt

exp
�
�B;t

�
Rt
= Pt

GYt

exp
�
�G;t

� +Bt�1 + vWtLt; (39)

whereG is the steady-state share of government spending in output; vWtLt is the subsidy to the intermediate-
good �rms; �G;t is a government-spending shock, that follows the standard AR(1) process.

Monetary authority. The monetary authority follows a Taylor rule

Rt � R�
�
Rt�1
R�

�� "�Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t

�
; (40)

where Rt is the gross nominal interest rate at t; R� is the steady state level of nominal interest rate; �tar is
the target in�ation; YN;t is the natural level of output; and �R;t is a monetary shock following the standard
AR(1) process.

Natural level of output. The natural level of output YN;t is the level of output in an otherwise identical
economy but without distortions. It is a solution to the following planner�s problem

max
fCt;Ltgt=0;:::;1

E0

1X
t=0

�t exp
�
�u;t
� "C1��t � 1

1� � � exp
�
�L;t

� L1+#t � 1
1 + #

#
(41)

s.t. Ct = exp
�
�a;t
�
Lt �Gt; (42)

where Gt � GYt
exp(�G;t)

is given, and �u;t+1, �L;t+1, �a;t+1, and �G;t follow the same processes as in the

non-optimal economy. The FOCs of the problem (41), (42) imply that YN;t depends only on exogenous
shocks (see equation (51) below).

Equilibrium conditions. We summarize the equilibrium conditions below:

St =
exp

�
�u;t + �L;t

�
exp

�
�a;t
� L#t Yt + ��Et

�
�"t+1St+1

	
; (43)

Ft = exp
�
�u;t
�
C��t Yt + ��Et

�
�"�1t+1Ft+1

	
; (44)

C��t =
� exp

�
�B;t

�
Rt

exp
�
�u;t
� Et

"
C��t+1 exp

�
�u;t+1

�
�t+1

#
; (45)

St
Ft

=

�
1� ��"�1t

1� �

� 1
1�"

; (46)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (47)
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Yt = exp
�
�a;t
�
Lt�t; (48)

Ct =

 
1� G

exp
�
�G;t

�!Yt; (49)

Rt = R�

�
Rt�1
R�

�� "�Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t

�
; (50)

and YN;t is given by

YN;t =

2664 exp
�
�a;t
�(�+#)(1��)�

1� G
exp(�G;t)

��
exp

�
�L;t

�
3775

1
#+�

: (51)

Here, the variables St and Ft are introduced for a compact representation of the pro�t-maximization
condition of the intermediate-good �rm and are de�ned recursively; �t+1 � Pt+1

Pt
is the gross in�ation rate

between t and t+1; �t is a measure of price dispersion across �rms (also referred to as e¢ ciency distortion).
To get condition (43), we impose "

"�1 (1� v) = 1, which ensures that the model admits a deterministic
steady state (this assumption is commonly used in the related literature; see, e.g., Christiano et al. 2005).
An interior equilibrium is described by 8 equilibrium conditions (43)�(50), and 6 processes for exogenous
shocks. The system of equations must be solved with respect to 8 unknowns fCt; Yt; Lt; �t;�t; Rt; St; Ftg.
There are 2 endogenous and 6 exogenous state variables, f�t�1; Rt�1g, and

�
�u;t; �L;t; �B;t; �a;t; �R;t; �G;t

	
,

respectively.

Linearized equilibrium conditions. Below, we provide linearized versions of the equilibrium condi-
tions (43)�(51):

St � S� = L#�Y�(�u;t + �L;t � �a;t)� #L#�1� (L� L�)Y�
+L#� (Yt � Y�) + ��S�"�"�1� Et(�t+1 � ��) + ��"�"�1� �"�Et (St+1 � S�) ;

Ft � F� = �u;tC
��
� Y� + (��)C���1� Y�(Ct � C�) + C��� (Yt � Y�)

+��("� 1)�"�2� F�Et (�t+1 � ��) + ��"�"�1� Et(Ft+1 � F�);

��C���1� (Ct � C�) = �R�
C���
��

(�B;t � �u;t) + �
C���
��

(Rt �R�)

+�R�(��)
C���1�
��

Et(Ct+1 � C�)� �R�
C���
�2�

Et(�t+1 � ��)

+�R�(��)
C���
��

��u�u;t;

1

F�
(St � S�) +

S�
F 2�
(Ft � F�) =

=

�
1� ��"�1�
(1� �)

� 1
1�"�1 �

1� ��
"�2
� (�t � ��);

�t ��� =

"
(1� �)

�
1� ��"�1�

�
1� �

# "
"�1

+ �
�"�
��2�

�
1� ��"�1�
1� �

� "
"�1�1

"��"�2�

�� "
��
�"�1� (�t � ��) + �

�"�
�2�

(�t�1 ���) ;
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Yt � Y� = �a;tL��� + (Lt � L�)�� + (�t ���)L�;

Ct � C� =
1�G
Y�

�G;t + (1�G)(Yt � Y�);

Rt �R� = R��R;t + �(Rt�1 �R�) + (1� �)��
R�
��
(�t � ��) +

(1� �)�E�
R�
��
Et(�t+1 � ��) + (1� �)�y

R�
Y�
(Yt � Y�)

YN;t � YN� =
1

#+ �
(1�G)

��
#+�

�1
�
1 + #

1�G

��
�a;t

+�(1�G)���1�G;t + �L;t(1�G)��:

Under the assumptions of no government spendings, no shocks, and no endogenous natural level of output,
the above nine linearized equilibrium conditions can be reduced to three equations (1)�(3) used in the main
text; see, e.g., Galí (2008).

Calibration procedure. We assume � = 1 and # = 2:09 in the utility function (30); � = 0:82 in the
Taylor rule (50); " = 4:45 in the production function of the �nal-good �rm (33); � = 0:83 (the fraction of
the intermediate-good �rms a¤ected by price stickiness); G = 0:23 in the government budget constraint
(39). We set the discount factor at � = 0:99. To parameterize the Taylor rule (50), we use the steady-state
interest rate R� = ��

� , and the target in�ation, �� = 1 (a zero net in�ation target). In a stochastic version
of the model, we calibrate the parameters in the processes for shocks as follows: In the AR(1) processes for
shocks, we assume the autocorrelation coe¢ cients, �u = 0:92, �G = 0:95, �L = 0:25, �a = 0:95, �B = 0:22,
�R = 0:15, and the standard deviations of shocks �u = 0:054%, �G = 0:038%, �L = 0:018%, �a = 0:045%,
�B = 0:023% and �R = 0:028% (these values come from Del Negro et al., 2007, and from Smets and
Wouters, 2007).

In the three-equation model, we use similar parameter values, namely, the slope of the Phillips curve
� = (1���)(1��)

� (1 + #) is computed under the same values of the parameters �, �, #; the coe¢ cient of
relative risk aversion is � = 1.

Solution procedure. In Section 6, we solve linear and nonlinear versions of the model by using extended
path (EP) method by Fair and Taylor (1983). The model starts in the steady state, in particular, we assume
R� =

��
� . In the initial period, the monetary authority announces that at t = 30, the nominal interest rate

will go down by 1%. We then construct the path for the model�s variables to satisfy the model�s equations.
We solve the model for 50 periods, and we extend the path to 150 periods.

Robustness of our �ndings

Up to now, we have studied a linearized version of the basic new Keynesian model that admits closed-
form solutions. More general versions of the model do not admit closed-form solutions, so we resort to
numerical analysis. The model with FG is non-stationary, the optimal decision rules change from one
period to another, driven by anticipatory e¤ects, and the conventional numerical methods that construct
time-invariant value and policy functions are not applicable. We use two methods that are designed to
solve such models: an extended path method of Fair and Taylor (1983) and an extended function path
method of Maliar, Maliar, Taylor and Tsener (2020). In both methods, we impose (forward) stability: for
the former method, we assume that in the terminal period, the economy arrives in the steady state, while
for the latter method, we assume that the economy asymptotically converges to stationary. Thus, all the
equilibria in our simulations are forward stable equilibria by construction. We �rst ask whether or not
our �ndings are robust to the introduction of nonlinearity; we then introduce uncertainty in the nonlinear
model by assuming six exogenous shocks; and we �nally augment the nonlinear model to include capital.
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7.0.1 Nonlinearity

In this section, we consider a nonlinear version of the basic new Keynesian model. The di¤erence between
global and local determinacy might show up in the behavior of the real economy in times of extreme
in�ation (not just in ZLB). Speci�cally, we consider a nonlinear new Keynesian model analyzed in Maliar
and Maliar (2015). The economy is populated by households, �nal-good �rms, intermediate-good �rms,
monetary authority and government. In particular, the monetary authority follows a Taylor rule

Rt � R�
�
Rt�1
R�

�� "�Et�t+1
�tar

��E� � �t
�tar

��� � Yt
YN;t

��y#1��
exp

�
�R;t

�
; (52)

where Rt is the gross nominal interest rate at t; R� is the steady state level of nominal interest rate; �tar is
the target in�ation; YN;t is the natural level of output; and �R;t is a monetary shock following the standard
�rst-order autoregressive process. In addition to the three variables in our baseline linearized model of
Section 2, the nonlinear model has consumption, labor, price dispersion and the supplementary variables
S and F following from the pro�t maximizing conditions of monopolistic �rms; see Appendix A for the
model�s description, the list of the �rst-order, the calibration and solution procedures, as well as a list of
linearized equations. 11

As an example, in Figure D1, we compare the e¤ect of FG on linear and nonlinear solutions under the
Taylor rule (52) parameterized by �E� = 0, �� = 1=� and �y = 0 (we assume � = 0). The anticipated
shock here (as well as in the rest of Section 5) happens at T = 20.
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Figure D1. A comparison of linear and nonlinear solutions under �E� = 0, �� = 1=� and �y = 0.

We can see some qualitative di¤erences between the linear and nonlinear solutions. For example, in the
initial period, the nonlinear model predicts that output goes down, while the linear model predicts that it
goes up. However, quantitatively, these di¤erences are not very signi�cant.

We explore a number of other parameterizations and obtain similar results. For example, for the Taylor
rule with the output gap (�y = 0:5) and persistence in the interest rate (� = 0:82), the di¤erence between
the linearized and nonlinear solutions is minimal, independently of whether the rule is parameterized by
11The linearized version of the model does not correspond exactly to the three-equation model studied before, e.g., the

former includes government spendings and the endogenous natural level of output, the presence of which does not lead to the
three-equation model; see Appendix A.
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expected in�ation or actual in�ation . Moreover, similar to the linearized model (see Figure 3), we �nd
that the nonlinear solutions are practically indistinguishable in two cases of �E� = 3 and �� = 0 and
�� = 3 and �E� = 0.

7.0.2 Multiple sources of uncertainty

We next study how the introduction of more general sources of uncertainty a¤ects the model�s predictions
about the e¤ectiveness of FG. As described in Appendix A, we introduce six di¤erent shocks into the
nonlinear model. As an example, in Figure D2, we introduce uncertainty in the nonlinear model which
exhibited the FG puzzle, i.e., we parameterize the Taylor rule (52) by �E� & 1, �� = 0; �y = 0 and � = 0).
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Figure D2. Forward guidance in the nonlinear stochastic model �E� & 1, �� = 0 and

�y = 0.

The time series in Figure D2 look very similar to the FG puzzle dynamics in the corresponding deterministic
model of Section 3.1. The output and in�ation jump up in the initial period.

We also analyze the model with the Taylor rule that includes actual in�ation �E� = 0, �� & 1, �y = 0
and � = 0 (not reported). The e¤ect of the FG in the model with uncertainty is very similar to the one in
the deterministic version of the model analyzed in Appendix C; see Figure C1. In our experiments, those
parameterizations of the Taylor rule that led to backward stable solutions in the deterministic model also
result in backward stable solutions in the model with uncertainty. Overall, we conclude that the introduc-
tion of uncertainty does not signi�cantly a¤ect the predictions of the model about the FG e¤ectiveness.
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Appendix E. New Keynesian model with capital

In this section, we extend the basic new Keynesian model described in Appendix A to include capital and
provide additional sensitivity experiments.

E1. The model

We formulate the new Keynesian model with capital.

Households. A household j solves:

maxE0

1X
t=0

�t exp
�
�u;t
� "Ct (j)1�� � 1

1� � � exp
�
�L;t

� Lt (j)1+' � 1
1 + '

#

s.t. PtCt (j) + Pt exp
�
�I;t
�
It (j) +

Bt (j)

exp
�
�B;t

�
Rt
+ Tt (j) = (53)

Bt�1 (j) +R
k
tKt�1 (j) +WtLt (j) + �t (j)

Kt (j) = (1� �)Kt�1 (j) + It (j)
where � 2 (0; 1) is the discount factor; � and ' are the utility-function parameters; � 2 (0; 1] is the
depreciation rate of capital.

�u;t and �L;t are exogenous preference shocks: the former scales the overall momentary utility and the
latter a¤ects the marginal disutility of labor; Ct (j), Lt (j), It (j), Kt�1 (j) and Bt (j) are consumption,
labor, investment, capital stock and nominal bonds holdings, respectively; Pt, Wt, Rkt and Rt are the
commodity price, nominal wage, (gross) nominal interest rate on capital and (gross) nominal interest rate
on bonds, respectively; �B;t is an exogenous premium in the return to bonds (might re�ect ine¢ ciency
in the �nancial sector, e.g., a risk premium required by households to hold a one-period bond); �I;t is an
exogenous capital-embodied technology shock; Tt (j) is lump-sum taxes; �t (j) is the pro�t of intermediate-
good producers. The exogenous shocks follow the following exogenous stochastic processes:

�u;t = �
u�u;t�1 + "u;t; "u;t � N

�
0; �2u

�
�L;t = �

L�L;t�1 + "L;t; "L;t � N
�
0; �2L

�
�B;t = �

B�B;t�1 + "B;t; "B;t � N
�
0; �2B

�
�I;t = �

I�I;t�1 + "I;t; "I;t � N
�
0; �2I

�
Final-good producers. They are the same as in the model without capital.

Intermediate-good producers. Technology of a producer i is

Yt (i) = exp
�
�a;t
�
Kt�1 (i)

� Lt (i)
1��

where Lt (i) is labor; Kt�1 (i) is capital; exp
�
�a;t
�
is the productivity level that follows the exogenous

stochastic process
�a;t = �

a�a;t�1 + "a;t; "a;t � N
�
0; �2a

�
Total cost (net of government subsidy vt) in nominal terms:

min
Kt�1(i);Lt(i)

TC (Yt (i)) =
n
(1� vt)

�
RktKt�1 (i) +WtLt (i)

�o
(54)

s.t. Yt (i) = exp
�
�a;t
�
Kt�1 (i)

� Lt (i)
1�� (55)

where Wt is the nominal wage rate.
A reoptimizing �rm solves the same problem as in the model without capital.
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Monetary authority. The monetary authority follows the same Taylor rule (40) as in the model without
capital.

Natural level of output. The natural output level YN;t can be determined from

maxE0

1X
t=0

�t exp
�
�u;t
� "(Ct)1�� � 1

1� � � exp
�
�L;t

� (Lt)1+' � 1
1 + '

#

s.t. C�t + exp
�
�I;t
�
[Kt � (1� �)Kt�1] = exp

�
�a;t
�
(Kt�1)

� (Lt)
1�� �Gt (56)

with Gt =
�
1� 1

exp(�G;t)

�
YN;t.

Summary of equilibrium conditions.

St =
exp

�
�u;t + �L;t

�
exp

�
�a;t
� C��t Yt

rkt
�

�
Kt�1
Lt

�1��
+ ��Et

�
�"t+1St+1

	
; (57)

Ft = exp
�
�u;t
�
C��t Yt + ��Et

�
�"�1t+1Ft+1

	
; (58)

St
Ft
=

�
1� ��"�1t

1� �

� 1
1�"

; (59)

�t =

"
(1� �)

�
1� ��"�1t

1� �

� "
"�1

+ �
�"t
�t�1

#�1
; (60)

exp
�
�u;t
�
C��t = � exp

�
�B;t

�
RtEt

(
exp

�
�u;t+1

�
C��t+1

�t+1

)
; (61)

exp
�
�u;t + �I;t

�
C��t = �Et

n
exp

�
�u;t+1

�
C��t+1

h
exp

�
�I;t+1

�
(1� �) + rkt+1

io
; (62)

rkt =
�

1� � exp
�
�L;t

�
L1+'t C�t K

�1
t�1; (63)

Yt = exp
�
�a;t
�
K�
t�1L

1��
t �t; (64)

Ct + exp
�
�I;t
�
[Kt � (1� �)Kt�1] =

 
1� G

exp
�
�G;t

�!Yt; (65)

where rkt is the marginal productivity of capital. There are 10 equations and 10 unknowns (Ct, Lt, Kt,
Yt, �t, �t, Rt, rkt , St, Ft). There are 7 exogenous shocks (�a;t, �u;t, �L;t, �B;t, �R;t, �G;t, �I;t+1) and 3
endogenous state variables (Kt�1;�t�1; Rt�1).

E2. Numerical results

We �nally study how the introduction of capital into the basic new Keynesian model a¤ects the model�s
implications about the e¤ectiveness of FG; see Appendix E for a description of such a model. In Figure
E1, we show the non-linear solution under the Taylor rule (52) parameterized by either expected in�ation
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�E� = 2, �� = 0 or actual in�ation �E� = 0, �� = 2 and the remaining coe¢ cients are set at �y = 0:5 and
� = 0:82.
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Figure E1. Model with capital: Taylor rules with expected in�ation �E� = 2,
versus actual in�ation �� = 2 under �y = 0:5 and � = 0:82.

With capital and the lagged nominal interest rate in the Taylor rule, the model has now two additional
endogenous state variables. In this model, output responds not only to labor-input but also to capital-input
changes. These di¤erences do not a¤ect qualitative implications of the model about the FG e¤ectiveness:
the series in Figure E.1 are backward stable and qualitatively similar to those in the baseline three equation
model in Figure 4.

We perform a number of sensitivity experiments by varying the parameters in the Taylor rule (52). In
our �rst sensitivity experiment, we assume the Taylor rule (40) has just actual in�ation �� & 1. Recall that
in the model without capital, this parameterization led to a version of the FG puzzle when just in�ation
reacts immediately, while the output gap increases gradually; see e.g., Figures D1 in Appendix D.
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Figure E2. Model with capital: Taylor rule with actual in�ation, �� = 1,
�E� = 0, �y = 0.

We observe some qualitative di¤erences between the dynamics of the models with and without capital.
As we can see from Figure E2, there are immediate e¤ects of FG on both output and in�ation, while
consumption goes up slowly. Hence, we observe a stronger version of the FG puzzle than in the model
without capital under this speci�c parameterization.

However, when �� in (40) increases, the FG puzzle disappears as it does in the model without capital.
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In Figure E3, we show the model with capital in which �� = 3.
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Figure E3. Model with capital: Taylor rule with actual in�ation, �� = 3,
�E� = 0, �y = 0.

This case is qualitatively similar to the one reported for the baseline linear model in Figure D.2.
Finally, in Figure E4, we consider the FG puzzle scenario, i.e., we assume Taylor rule (40) with just

expected in�ation �E� & 1.
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Figure E4. Model with capital: Taylor rule with expected in�ation, �E� = 1.

Unlike in the case of �� = 1, FG is not very e¤ective under �E� = 1. As we can see from Figure E4,
labor jumps up immediately in the �rst period and then it goes down in the second period, in spite of
the smooth behavior of capital. The behavior of output here drastically di¤ers from the one in the model
without capital, namely, output jumps in the �rst period but goes back to the original level in the second
period and remains there until the shock happens. Therefore, in terms of output, FG has no long-term
e¤ect but only a brief initial e¤ect. It is surprising that consumption does not mimic output but behaves
as in the basic model without capital, i.e., it jumps immediately and stays high until the shock happens.
Hence, the consumption pattern looks resembles the FG puzzle in the baseline model. Thus, some version
of the FG puzzle is observed in this case as well.

In sum, we do observe some qualitative di¤erences between the model with capital and the basic
linearized model in the main text (e.g., compare Figures E1-E4 for the model with capital with Figures
1-4 for the basic linear model). However, our most important �nding remains unchanged: the Taylor rule
with a weak response to in�ation, e.g., �E� & 1 or �� & 1, produces backward explosive dynamics with
some version of the FG puzzle, while a more responsive monetary policy (for example, with larger values
of �� or with the inclusion of the output gap �y) eliminates the puzzle.
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