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Abstract

We provide an econometric framework for estimating a game of simultaneous entry and

pricing decisions while allowing for correlations between unobserved cost and demand shocks.

We use our framework to account for selection in the pricing stage. We estimate the model

using data from the US airline industry and find that not accounting for endogenous entry

leads to biased estimation of demand elasticities. We simulate a merger between American

and US Airways and find that product repositioning and post-merger outcomes depend on

how we model the characteristics of the merged firm as a function of the pre-merger firms’

characteristics.
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1 Introduction

We estimate a simultaneous, static, complete information game where economic agents make

both discrete and continuous choices. We study airlines that strategically decide whether

to enter into a market and the prices they charge if they enter. Our aim is to provide a

framework for combining both entry and pricing into one empirical model that allows us: i)

to account for selection of firms into serving a market and, more importantly, ii) to allow for

market structure to adjust as a response to counterfactuals, such as mergers.

Generally, firms self-select into markets that best match their observable and unobserv-

able characteristics. For example, high quality products command higher prices, and it is

natural to expect high quality firms to self-select into markets where there is a large frac-

tion of consumers who value high-quality products. Previous work has taken the market

structure of the industry, defined as the identity and number of its participants (be they

firms or, more generally, products or product characteristics) as exogenous when estimating

the parameters of the demand and supply relationships.1 That is, firms, or products, are

assumed to be randomly allocated into markets. This assumption has been necessary to

simplify the empirical analysis, but it is not always realistic.

Non-random allocation of firms across markets can lead to self-selection bias in the esti-

mation of the parameters of the demand and cost functions. Existing instrumental variables

methods that account for endogeneity of prices do not resolve this selection problem in

general.2 Potentially biased estimates of the demand and cost functions can then lead to

mis-measuring demand elasticities, and consequently market power. This is problematic be-

cause correctly measuring market power and welfare is crucial for the application of antitrust

policies and for a full understanding of the competitiveness of an industry. For example, if

the bias is such that we infer firms to have more market power than they actually have, the

antitrust authorities may block the merger of two firms that would improve total welfare,

possibly by reducing an excessive number of products in the market. Importantly, allowing

1See (Bresnahan, 1987; Berry, 1994; Berry, Levinsohn, and Pakes, 1995) and the large subsequent litera-
ture in IO that uses this methodology.

2This point was previously made by Olley and Pakes (1996) for the estimation of production functions.
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for entry (or product variety) to change as a response to a merger is important. For example,

when a firm (or product) exits due to consolidation from a merger, it is likely that other firm

may now find it profitable to enter (or to offer new products in the market). Our empirical

framework allows for such adjustments.

More generally, our model can also be viewed as a multi-agent version of the classic selec-

tion model (Gronau, 1974; Heckman, 1976, 1979). In the classic selection model, a decision

maker decides whether to enter the market (e.g. work), and is paid a wage conditional on

working. When estimating wage regressions, the selection problem deals with the fact that

the sample is selected from a population of workers who found it “profitable to work.” Here,

firms (e.g. airlines) decide whether to enter a market and then, conditional on entry, they

choose prices. Our econometric model accounts for this selection when estimating demand

and supply equations, as in the single-agent selection model.

Our model consists of the following conditions: i) entry inequalities that require that, in

equilibrium, a firm must be making non-negative profit in each market that it serves; ii)

demand equations derived from a discrete choice model of consumer behavior; iii) pricing

first-order-conditions, which can be formally derived under the postulated firm conduct.

We allow for all firm decisions to depend upon market- and firm-specific random variables

(structural errors) that are observed by firms but not the econometrician. In equilibrium

firms make entry and pricing decisions such that all three sets of conditions are satisfied.

A set of econometric problems arises when estimating such a model. First, there are mul-

tiple equilibria associated with the entry game. Second, prices are endogenous as they are

associated with the optimal behavior of firms, which is part of the equilibrium of the model.

Finally, the model is nonlinear and so poses a heavy computational burden. We combine

the methodology developed by Tamer (2003) and Ciliberto and Tamer (2009) (henceforth

CT) for the estimation of complete information, static, discrete entry games with the widely

used methods for the estimation of demand and supply relationships in differentiated prod-

uct markets (see Berry, 1994; Berry, Levinsohn, and Pakes, 1995, henceforth BLP). We

simultaneously estimate the parameters of the entry model (the observed fixed costs and
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the variances of the unobservable components of the fixed costs) and the parameters of the

demand and supply relationships.

To estimate the model we use cross-sectional data on the US airline industry.3 The

data are from the second quarter of 2012’s Airline Origin and Destination Survey (DB1B).

We consider markets between US Metropolitan Statistical Areas (MSAs), which are served

by American, Delta, United, USAir, Southwest, and low cost carriers (e.g. Jet Blue). We

observe variation in the identity and number of potential entrants across markets.4 Each firm

decides whether or not to enter and chooses the price in that market.5 The other endogenous

variable is the number of passengers transported by each firm. The identification of the three

conditions relies on variation in several exogenous explanatory variables, whose selection is

supported by a rich and important literature, for example Rosse (1970), Panzar (1979),

Bresnahan (1989), and Schmalensee (1989), Brueckner and Spiller (1994), Berry (1990),

Ciliberto and Tamer (2009), Berry and Jia (2010), and Ciliberto and Williams (2014).

We begin our empirical analysis by running a standard GMM estimation (see Berry,

1994) on the demand and pricing first order conditions and comparing that to our proposed

methodology with exogenous entry. Next, we estimate the model with endogenous entry

using our methodology and compare the results with the exogenous entry results. We find

that allowing for endogenous entry, the price coefficient in the demand function is estimated

to be closer to zero than the case of exogenous entry, and markups are substantially larger.6

Next, we use our estimated model to simulate the merger of two airlines in our data: Amer-

ican and US Airways.7 Typical merger analysis involves predicting changes in market power

and prices given a particular market structure using diversion ratios based on pre-merger

3We also illustrate our methodology by conducting a numerical exercise, see the Appendix E.
4A market is defined as a unidirectional pair of an origin and a destination airport, as in Borenstein

(1989), Berry and Jia (2010), and Ciliberto and Williams (2014). An airline is considered a potential entrant
if it is serving at least one market out of both of the endpoint airports. See the Appendix C for more details.

5In practice we use the median of the prices observed in a market in a quarter, where each individual
price is weighted by the number of passengers on that ticket.

6The selection problem could lead to overestimation or underestimation of demand elasticities, and thus
markups, depending on the covariance of demand, marginal cost, and fixed costs unobservables. We illustrate
this dependence in the numerical exercise in Appendix E.

7The two firms merged in 2013 after settling with the Department of Justice.
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market shares, or predictions from static models of product differentiation (see Nevo, 2000).

Our methodology allows us to simulate a merger allowing for equilibrium changes to market

structure after a merger, which in turn may affect equilibrium prices charged by firms.

There are several findings from the merger analysis, which depend, crucially, on on how

we model the characteristics of the post-merger firm as a function of the pre-merger firms’

characteristics. We consider four different scenarios. First, we assume that the merged

firm takes on the best characteristics, both observed and unobserved, of the two pre-merger

firms, and call this the Best Case Scenario. Then we simulate two sub-cases, one in which the

merged firm only takes the best observable characteristics between the two pre-merger firms

and keeps the surviving firm’s unobservables, and another where we draw a new unobservable

for the new merged firm. Lastly, we consider a case where the surviving firms inherits the

average observed and unobserved characteristics between the two pre-merged firms, or what

we call the Average Case scenario.

We find that under all four scenarios there is substantial post-merger entry and exit

among the surviving airlines, especially for the surviving merged airline, American Airlines.

For the scenario in which we assume the most merger efficiencies, the average price across all

markets increases slightly, but consumer welfare also substantially rises due to post-merger

entry from the new merged airline. Of course, there is a lot of heterogeneity across the

types of markets, so we look at the effects of the merger on markets that share particular

pre-merger market structures. For example, we find that the the merged airline would enter

previously unserved markets with a likelihood between 49 and 53 percent, and prices would

fall by between 8.4 and 6.0 percent in markets that were previously only served by an AA

and US duopoly. In contrast, when we assume that the post-merger airline takes the average

characteristics from AA and US (the Average Case scenario), total consumer welfare does

not increase substantially, and may even fall. We find that the the merged airline would

enter previously unserved markets with a likelihood of only between 16 and 18 percent and

prices would rise by between 7.2 and 9.2 percent in markets that were previously only served

by aAA and US duopoly. Clearly, assumptions about merger efficiencies matter – not just
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for pricing pressure, but also for post-merger entry/exit. We systematically document the

these types of effects through many more pre-merger market structures.

Finally, we investigate the effects of the merger in markets originating or ending in DCA,

which were of concern for antitrust authorities because both of the merging parties had a

very strong incumbent presence. When we maintain that AA experiences large efficiencies,

we predict that prices would decrease even though concentration decreases. In the other

cases we find that prices would increase slightly along with concentration. In all cases, low-

cost carriers are not likely to replace the exiting US Airways, which was a major concern for

the DOJ and resulted in landing slot divestitures by the merging party.

There is other important work that has estimated static models of competition while

allowing for market structure to be endogenous. Reiss and Spiller (1989) estimate a monoply

model of airline competition. In contrast, we allow for multiple firms to choose whether or not

to serve a market. Cohen and Mazzeo (2007) assume that firms are symmetric within types,

as they do not include firm specific observable and unobservable variables. In contrast,

we allow for very general forms of heterogeneity across firms. Berry (1999), Draganska,

Mazzeo, and Seim (2009), Pakes et al. (2015) (PPHI), and Ho (2008) assume that firms self-

select themselves into markets based on observable characteristics by imposing restrictions on

information about the unobservables. In contrast, we focus on the case where firms self-select

themselves into markets that better match their observable and unobservable characteristics.

There are two recent papers that are closely related to ours. Eizenberg (2014) estimates a

model of entry and competition in the personal computer industry. Estimation relies on a

timing assumption (motivated by PPHI) requiring that firms do not know their own product

quality or marginal costs before entry, which limits the amount of selection captured by the

model.8 Similar timing assumptions are made by other papers as well, such Sweeting (2013),

8If we are willing to make this timing assumption, there would not be a selection on unobservables, because
the firm would only observe the demand and marginal cost shock after entering. In markets where there is
a long lag between the entry/characteristic decision and the pricing decision, such as car manufacturing or
computer manufacturing, such timing assumption would seem a reasonable assumption. In the airline indus-
try, firms can enter and exit market quickly, as long as they have access to gates. So the timing assumption
is less plausible. Generally, a prudent approach would be to allow for correlation in the unobservables, and
if that is non zero, then we could conclude that the timing assumption would be less acceptable.
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Lee (2013), Jeziorksi (2014b), Jeziorksi (2014a) in dynamic empirical games; and Fan (2013)

and Fan and Yang (2017) in static games.9 Another paper that is closely related to ours is

Li et al. (2017), who estimate a model of service selection (nonstop vs connecting) and price

competition in airline markets, but only consider sequential move equilibria. In addition, Li

et al. (2017) do not allow for correlation in the unobservables, which is a key determinant of

self-selection that we investigate in this paper.

The paper is organized as follows. Section 2 presents the methodology in detail in the

context of a bivariate generalization of the classic selection model, providing the theoretical

foundations for the empirical analysis. Section 3 introduces the economic model. Section 4

introduces the airline data, providing some preliminary evidence of self-selection of airlines

into markets. Section 5 shows the estimation results and Section 6 presents results and

discussion of the merger exercise. Section 7 concludes.

2 A Simple Model with Two Firms

We illustrate the inference problem with a simple model of strategic interaction between two

firms that is an extension of the classic selection model. Two firms simultaneously make an

entry/exit decision and, if active, realize some level of a continuous variable. Each firm has

complete information about the problem facing the other firm. We first consider a stylized

version of this game written in terms of linear link functions. This model is meant to be

illustrative, in that it is deliberately parametrized to be close to the classic single agent

selection model. This allows for a more transparent comparison between the single vs multi

agent model. Section 3 analyzes a full model of entry and pricing.

Consider the following system of inequality conditions,

9There is also an empirical literature on auctions (Li and Zheng (2009), Gentry and Li (2014), Roberts and
Sweeting (2013), Li and Zhang (2015)) that has relaxed, in static models, the assumption that unobservable
payoff shocks are not known at the time entry decisions are taken. However, in contrast to this literature,
we allow for multiple, possibly correlated, unobservables.
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y1 = 1 [δ2y2 + γZ1 + ν1 ≥ 0] ,
y2 = 1 [δ1y1 + γZ2 + ν2 ≥ 0] ,
S1 = X1β + α1V1 + ξ1,
S2 = X2β + α2V2 + ξ2

(1)

where yj = 1 if firm j decides to enter a market, and yj = 0 otherwise for j ∈ {1, 2}. So

{1, 2} is the set of potential entrants. The endogenous variables are (y1, y2, S1, S2, V1, V2).

We observe (S1, V1) if and only if y1 = 1 and (S2, V2) if and only if y2 = 1. The variables

Z ≡ (Z1, Z2) and X ≡ (X1, X2) are exogenous where (ν1, ν2, ξ1, ξ2) are unobserved and are

independent of (Z,X) while the variables (V1, V2) are endogenous (such as prices or product

characteristics).10

The above model is an extension of the classic selection model to cover cases with two

decision makers and allows for the possibility of endogenous variables on the rhs (the V ’s).

The key distinction is the presence of simultaneity in the ‘participation stage’ where decisions

are interconnected.

We first make a parametric assumption on the joint distribution of the errors. Let the

unobservables have a joint normal distribution,

(ν1, ν2, ξ1, ξ2) ∼ N (0,Σ) ,

where Σ is the variance-covariance matrix to be estimated. The off-diagonal entries of the

variance-covariance matrix are not generally equal to zero. Such correlation between the

unobservables is the source of selectivity bias.

One reason why we would expect firms to self-select into markets is because the fixed

costs of entry are related to the demand and the variable costs. One would expect products

of higher quality to be, at the same prices, in higher demand than products of lower quality

and also to be more costly to produce. For example, some unforeseen reason (unobserved

to the researchers) why a luxury car is more attractive to consumers may also be the reason

the car requires more up-front investment and requires greater costs to produce a single

10It is simple to allow β and γ to be different among players, but we maintain this homogeneity for
exposition.
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unit. This would introduce correlation in the unobservables of the demand, marginal, and

fixed costs. Alternatively, the data could be generated by a process similar to the classic

selection problem in labor markets: there could exist (unobservably) high ability firms who

have lower costs and a more attractive product, just like there might be high ability workers

who command higher wages and are more likely to receive offers.

In the structural model of the airline industry we present in Section 3, the unobservables

that determine outcomes also enter directly into the selection equation (see equation 7 in

section 3). So, even if the unobservables are mutually independent, the model would still

lead to selection effects. Firms with higher unobserved demand or lower unobserved costs

will be more likely to enter. This departs from the standard Heckman selection setup and

its generalization to two firms above because the structural errors terms that appear in the

outcome equations (the ξ1 and ξ2 in (1) above) do not enter the first two equations in (1)

(the entry equations).

Given that the above model defined in equation (1) is parametric, the only non-standard

complications that arise are multiplicity of equilibria in the underlying game and endogeneity

of the V ’s. Generally, and given the simultaneous game structure, the system (1) has multiple

Nash equilibria in the identity of firms entering into the market. This multiplicity leads to

a lack of a well-defined “reduced form” which complicates the inference question. Also, we

want to allow for the possibility that the V ’s are also choice variables (or variables determined

in equilibrium such as prices).

The data we observe are (S1y1, V1y1, y1, S2y2, V2y2, y2,X,Z) whereby, for example, S1 is

observed only when y1 = 1. Given the normality assumption, we link the distribution of

the unobservables conditional on the exogenous variables to the distribution of the out-

comes to obtain the identified features of the model. The data allow us to estimate the

distribution of (S1y1, V1y1, y1, S2y2, V2y2, y2,X,Z); the key to inference is to link this dis-

tribution to the one predicted by the model. To illustrate this, consider the observable

(y1 = 1, y2 = 0, V1, S1,X,Z). For a given value of the parameters, the data allow us to
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identify

P (S1 − α1V1 −X1β ≤ t1; y1 = 1, y2 = 0|X,Z) (2)

for all11 t1. The particular form of the above probability is related to the residuals evaluated

at t1 and where we condition on all exogenous variables in the model. We elaborate further

on this below.12

Remark 1 It is possible to “ignore” the entry stage and consider only the linear regres-

sion parts in (1) above. Then, one could develop methods for dealing with distribution of

(ξ1, ξ2|Z,X, V ). For example, under mean independence assumptions, one would have

E[S1|Z,X, V ] = X1β + α1V1 + E[ξ1|Z,X, V ; y1 = 1]

Here, it is possible to leave E[ξ1|Z,X, V ; y1 = 1] as an unknown function of (Z,X, V ) and

then use a control function approach for example. In such a model, separating (β, α1) from

this unknown function (identification of (β, α1)) requires extra assumptions that are hard to

motivate economically (i.e., these assumptions necessarily make implicit restrictions on the

entry model).

To evaluate the probability in (2) above in terms of the model parameters, we first let

(ξ1 ≤ t1; (ν1, ν2) ∈ AU(1,0)) be the set of ξ1 that are less than t1 when the unobservables (ν1, ν2)

belong to the set AU(1,0). The set AU(1,0) is the set where (1, 0) is the unique (pure strategy)

Nash equilibrium outcome of the model.

Next, let
(
ξ1 ≤ t1; (ν1, ν2) ∈ AM(1,0), d(1,0) = 1

)
be the set of ξ1 that are less than t1 when

the unobservables (ν1, ν2) belong to the set AM(1,0). The set AM(1,0) is the set where (1, 0) is

one among the multiple equilibria outcomes of the model. Let d(1,0) = 1 indicate that (1, 0)

was selected. The idea here is to try and “match” the distribution of residuals at a given

parameter value predicted in the data, with its counterpart predicted by the model using

11Here we use the CDF, but we could also use probabilities of the form P (t0 ≤ S1−α1V1−X1β ≤ t1; y1 =
1, y2 = 0|X,Z) for all t0 ≤ t1. Bounding histogram like probabilities in some cases may be easier to compute.

12In the case where we have no endogeneity for example (α’s equal to zero), then, one can use on the data
side, P (S1 ≤ t1; y1 = 1, y2 = 0|X,Z) which is equal to the model predicted probability P (ξ1 ≤ −X1β; y1 =
1, y2 = 0|X,Z).
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method of moments. By the law of total probability we have (suppressing the conditioning

on (X,Z)):

P (ξ1 ≤ t1; y1 = 1; y2 = 0) = P
(
ξ1 ≤ t1; (ν1, ν2) ∈ AU

(1,0)

)
(3)

+ P (d1,0 = 1 | ξ1 ≤ t1; (ν1, ν2) ∈ AM
(1,0)) P

(
ξ1 ≤ t1; (ν1, ν2) ∈ AM

(1,0)

)
The probability P (d1,0 = 1 | ξ1 ≤ t1; (ν1, ν2) ∈ AM(1,0)) above is unknown and represents the

equilibrium selection function. A feasible approach to inference, then, is to use the natural

(or trivial) upper and lower bounds on this unknown function to get:

P
(
ξ1 ≤ t1; (ν1, ν2) ∈ AU

(1,0)

)
≤ P (ξ1 ≤ t1; y1 = 1; y2 = 0) = P (S1 + α1V1 −X1β ≤ t1; y1 = 1; y2 = 0) ≤

P
(
ξ1 ≤ t1; (ν1, ν2) ∈ AU

(1,0)

)
+ P

(
ξ1 ≤ t1; (ν1, ν2) ∈ AM

(1,0)

)
The middle part

P (S1 − α1V1 −X1β ≤ t1; y1 = 1; y2 = 0)

can be consistently estimated from the data given a value for (α1, β, t1). The LHS and RHS

contain the following two probabilities

P
(
ξ1 ≤ t1; (ν1, ν2) ∈ AU(1,0)

)
, P
(
ξ1 ≤ t1; (ν1, ν2) ∈ AM(1,0)

)
.

These can be computed analytically (or via simulations) from the model for a given value

of the parameter vector (that includes the covariance matrix of the errors) using the as-

sumption that (ξ1, ξ2, ν1, ν2) has a known distribution up to a finite dimensional parameter

(we assume normal) and the fact that the sets AM(1,0) and AU(1,0), which depend on regressors

and parameters, can be obtained by solving the game given a solution concept (See CT for

examples of such sets). For example, for a given value of the unobservables, observables and

parameter values, we can solve for the equilibria of the game which determines these sets.

Remark 2 Note that we bound the distribution of the residuals as opposed to just the dis-

tribution of S1 to allow some of the regressors to be endogenous. The conditioning sets in

the LHS (and RHS) depend on exogenous covariates only, and hence these probabilities can

be easily computed or simulated (for a given value of the parameters).
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The upper and lower bounds on the probability of the event (S2−α2V2−X2β ≤ t2, y1 =

0, y2 = 1) can similarly be calculated. In addition, in the two player entry game (i.e. δ’s are

negative) above with pure strategies, the events (1, 1) and (0, 0) are uniquely determined,

and so

P (S1 − α1V1 −X1β ≤ t1; S2 − α2V2 −X2β ≤ t2; y1 = 1; y2 = 1)

is equal to (moment equality)

P (ξ1 ≤ t1, ξ2 ≤ t2, ν1 ≥ −δ2 − γZ1, ν2 ≥ −δ1 − γZ2)

which can be easily calculated (via simulation for example). We also have:

P (y1 = 0, y2 = 0) = P (ν1 ≤ −γZ1, ν2 ≤ −γZ2)

To summarize, and for the two-equation selection models, the statistical moment inequal-

ity conditions implied by the model at the true parameters are:

ml
(1,0)(t1,Z; Σ) ≤ E

(
1
[
S1 − α1V1 −X1β ≤ t1; y1 = 1; y2 = 0

])
≤ mu

(1,0)(t1,Z; Σ)

ml
(0,1)(t2,Z; Σ) ≤ E

(
1
[
S2 − α2V2 −X2β ≤ t2; y1 = 0; y2 = 1

])
≤ mu

(0,1)(t2,Z; Σ)

E
(
1
[
S1 − α1V1 −X1β ≤ t1;S2 − α2V2 −X2β ≤ t2; y1 = 1; y2 = 1

])
= m(1,1)(t1, t2,Z; Σ)

E
(
1
[
y1 = 0; y2 = 0

])
= m(0,0)(Z; Σ)

where

ml
(1,0)(t1,Z; Σ) = P

(
ξ1 ≤ t1; (ν1, ν2) ∈ AU(1,0)

)
mu

(1,0)(t1,Z; Σ) = ml
(1,0)(t1,Z; Σ) + P

(
ξ1 ≤ t1; (ν1, ν2) ∈ AM(1,0)

)
ml

(0,1)(t2,Z; Σ) = P
(
ξ2 ≤ t2; (ν2, ν2) ∈ AU(0,1)

)
mu

(0,1)(t2,Z; Σ) = ml
(0,1)(t2,Z; Σ) + P

(
ξ2 ≤ t2; (ν1, ν2) ∈ AM(0,1)

)
m(1,1)(t1, t2,Z; Σ) = P (ξ1 ≤ t1, ξ2 ≤ t2, ν1 ≥ −δ2 − γZ1, ν2 ≥ −δ1 − γZ2)

m(0,0)(Z; Σ) = P (ν1 ≤ −γZ1, ν2 ≤ −γZ2)
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Hence, the above can be written as

E[G(θ, S1y1, S2y2, V1y1, V2y2, y1, y2; t1, t2)|Z, X] ≤ 0 (4)

where G(.) ∈ Rk.

The last moment, m(0,0)(Z; Σ), is the CT moment when no entrants are in the market. It

is an important moment condition for the estimation of the fixed cost parameters. Observe

that when t1, t2 → ∞, the CMT moments collapse to the CT moments. Therefore, we also

add the other CT moments to set of moment conditions that are used in estimation.

We use standard moment inequality methods to conduct inference on the identified pa-

rameters. In particular:13

Result 3 Suppose the above parametric assumptions in model (1) are maintained. In ad-

dition, assume that (X,Z) ⊥ (ξ1, ξ2, ν2, ν2) where the latter is normally distributed with mean

zero and covariance matrix Σ. Then given a large iid data set on (y1, y2, S1y1, V1y1, S2y2, V2y2,X,Z)

the true parameter vector θ = (δ1, δ2, α1, α2, β, γ,Σ) minimizes the nonnegative objective

function below to zero:

Q(θ) = 0 =

∫
W (X,Z)‖G(θ, S1y1, S2y2, V1y1, V2y2, y1, y2)|Z, X]‖+dFX,Z (5)

for a strictly positive weight function W (X,Z).

It is simple to see that the above objective function is zero at the true parameter vector.

In addition, if the model is partially identified, this objective function is also zero on all the

parameters that belong to the identified set. The above is a standard conditional moment

inequality model where we employ discrete valued variables in the conditioning set along

with a finite (and small) set of t’s.14

Clearly, the stylized model above provides intuition about the conceptual issues involved,

but in the next section, we link this system to a model of behavior where the decision to

enter (or to provide a product) is more explicitly linked to an economic condition of profits.

13See the Appendix A for more details. See CT for an analogous result and the proof therein.
14We discuss the selection of the t’s in Appendix B.
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This entails specification of costs, demand, and an equilibrium solution concept. This is the

subject of the next Section, the main contribution of the paper.

3 A Model of Entry and Price Competition

3.1 The Structural Model

Above, we described our methodology using a linear outcome and selection equation for

clarity and consistency with the literature on selection. In this section, we present a structural

model of demand, pricing, and entry that we take to data from the airline industry. We

consider the case of two potential entrants who decide, simultaneously, whether to serve a

market and the price to charge in the market.

The profits of firm 1 if this firm decides to enter is

π1 = (p1 − c (W1, η1))M · s̃1 (p,X,y, ξ)− F (Z1, ν1) ,

where

s̃1 (p,X,y, ξ) =

duopoly demand︷ ︸︸ ︷
s1 (p,X,y, ξ) y2 +

monopoly demand︷ ︸︸ ︷
s1 (p1, X1, ξ1) (1− y2)

is the share of firm 1 which depends on whether firm 2 is in the market, M is the market

size, c (W1, η1) is the constant marginal cost for firm 1, F (Z1, ν1) is the fixed cost of firm 1,

and prices p = (p1, p2). A profit function for firm 2 is specified in the same way.

In addition, we have equilibrium first order conditions that determine prices and shares,{
(p1 − c (W1, η1)) ∂s̃1 (p,X,y, ξ) /∂p1 + s̃1 (p,X,y, ξ) = 0
(p2 − c (W2, η2)) ∂s̃2 (p,X,y, ξ) /∂p2 + s̃2 (p,X,y, ξ) = 0

, (6)

which are the first order equilibrium conditions in a simultaneous Nash Bertrand pricing

game.

In this model, yj = 1 if firm j decides to enter a market, and yj = 0 otherwise, where

j = 1, 2 indexes the firms. We impose the following entry condition:

yj = 1 if and only if πj ≥ 0 j = 1, 2
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There are six endogenous variables: p1, p2, S1, S2, y1, and y2. The observed exogenous

variables are M, W = (W1,W2), Z = (Z1, Z2), X = (X1, X2). So, putting these together,

we get the following system:

y1 = 1⇔ π1 = (p1 − c (W1, η1))M · s̃1 (p,X,y, ξ)− F (Z1, ν1) ≥ 0, Entry Conditions

y2 = 1⇔ π2 = (p2 − c (W2, η2))M · s̃2 (p,X,y, ξ)− F (Z2, ν2) ≥ 0,

S1 = s̃1 (p,X,y, ξ) , Demand

S2 = s̃2 (p,X,y, ξ) ,

(p1 − c (W1, η1)) ∂s̃1 (p,X,y, ξ) /∂p1 + s̃1 (p,X,y, ξ) = 0, Equilibrium Pricing

(p2 − c (W2, η2)) ∂s̃2 (p,X,y, ξ) /∂p2 + s̃2 (p,X,y, ξ) = 0,

(7)

The first two inequalities are entry conditions that require that in equilibrium a firm

that serves a market must be making non-negative profits. The third and fourth equations

are demand equations. The fifth and sixth equations are pricing first order conditions. An

equilibrium of the model occurs when firms make entry and pricing decisions such that all

the six conditions are satisfied. The firm level unobservables that enter into the fixed costs

are denoted by νj, j = 1, 2. The unobservables that enter into the variable costs are denoted

by ηj, j = 1, 2 while the unobservables that enter into the demand equations are denoted

by ξj, j = 1, 2. The model represented by the set of equations above might have multiple

equilibria in market structure. There are no multiple equilibria in the pricing game: Nocke

and Schutz (2018) show that there is a unique pricing equilibrium in the case of single-

product nested logit, which is what we consider in our application (See Appendix 3 of their

On-line Appendix).

Even though the conceptual approach is the same, the inference procedure for this system

is computationally more demanding for this model than the one we studied in Section 2.

It is more complex because one needs to solve for the equilibrium of the full model, which

has six (rather than just four) endogenous variables. On the other hand, one only had to

solve for the equilibrium of the entry game in the model (1). The methodology presented in
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Section (2) can be used to estimate model (7), but now there are two unobservables for each

firm over which to integrate (the marginal cost and the demand unobservables).

To understand how the model relates to previous work, observe that if we were to estimate

a reduced form version of the first two inequalities of the system (7), then that would be akin

to the entry game literature (Bresnahan and Reiss, 1990, 1991; Berry, 1992; Mazzeo, 2002;

Seim, 2006; Ciliberto and Tamer, 2009). If we were to estimate the third to sixth equation

in the system (7), then that would be akin to the demand-supply literature (Bresnahan,

1987; Berry, 1994; Berry, Levinsohn, and Pakes, 1995), depending on the specification of the

demand system. So, here we join a demand and entry model, while allowing the unobserv-

ables of the six conditions to be correlated with each other. This is important, as a model

that combines both pricing and entry decisions is able to capture a richer picture of firms’

response to policy. For example, the model allows for market structure to adjust optimally

after a merger, which may in turn affect prices.

3.2 Parameterizing the model

To parametrize the various functions above, we follow Bresnahan (1987) and Berry, Levin-

sohn, and Pakes (1995), where the unit marginal cost can be written as:

ln c (Wj, ηj) = ϕjWj + ηj. (8)

As in the entry game literature mentioned above, the fixed costs are

lnF (Zj, νj) = γjZj + νj. (9)

We assume demand is derived from the canonical differentiated product discrete choice

model (Bresnahan, 1987; Berry, 1994; Berry, Levinsohn, and Pakes, 1995). We include a

product nest which allows for all of the inside products to share unobserved heterogeneity.

Specifically, indirect utility for consumer i from choosing carrier j is

uij = X ′jβ + αpj + ξj + υig + (1− λ) εij, (10)

ui0 = εi0,
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where Xj is a vector of product characteristics, pj is the price, (β, α) are the taste parameters,

and ξj are product characteristics unobserved to the econometrician.

Following Berry (1994), carrier j’s market share is

sj(X,p, ξ, βr, α, λ) =
e(X

′
jβ+αpj+ξj)/(1−λ)

D

D(1−λ)

1 +D(1−λ) , (11)

where the D represents the sum of exponentiated utilities for all products

D =
J∑
j=1

e(X
′
jβ+αpj+ξj)/(1−λ).

Unlike in typical demand estimation, we need to compute shares for any given potential

market structure. To do this, we introduce some notation. Let

E ≡ {(y1, .., yj, .., yK) : yj = 1 or yj = 0, ∀1 ≤ j ≤ K}

denote the set of possible market structures, which contains 2K elements. Let e ∈ E be

an element or a market structure. For example, in the model above where K = 2, the

set of possible market structures is E = {(0, 0) , (0, 1) , (1, 0) , (1, 1)}. Let Xe, pe, and ξe,

N e denote the matrices of, respectively, the exogenous variables, prices, unobservable firm

characteristics, and number of firms when the market structure is e.

We can express demand for any given market structure in the following way,

ln sj (β, α,Xe,pe, ξe)− ln s0 (β, α,Xe,pe, ξe) = Xjβ + αpj + λ ln sj/g + ξj, (12)

where sj/g is share of carrier j among all other carriers in the market, excluding the outside

option.

Lastly, unlike typical demand estimation but similar to the entry literature, we param-

eterize the joint distribution of unobservables. Following Berry (1992) and CT, we specify

the unobservables that enter into the fixed cost inequality condition, ηjm, as including firm-

specific unobserved heterogeneity, η̃jm, as well as market specific unobserved heterogeneity,

ηm. ηm are unobservables that are market specific and capture, for example, the fact that

in market m there are cost shocks that are common across the potential entrants. Thus, we
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have ηjm = η̃jm + ηm. Following Bresnahan [1987] and BLP [1995], the marginal cost and

demand unobservables only includes firm-specific heterogeneity.

The unobservables have a joint normal distribution:

(ν1, ν2, ξ1, ξ2, η̃1m, η̃2m) ∼ N (0,Σ) (13)

where Σ is the variance-covariance matrix to be estimated. Notice that here we do not

include ηm because we assume it is independent of other errors.15

The off-diagonal terms pick up the correlation between the unobservables that is part of

the source of the selection bias in the model. In the empirical implementation of our model,

we use the following variance-covariance matrix

Σm =

 σ2
ξ · IKm σξη · IKm σξν · IKm

σξη · IKm σ2
η · IKm σην · IKm

σξν · IKm σην · IKm σ2
ν · IKm

 ,
where IKm is a Km × Km identity matrix. For computational simplicity, this specification

restricts the correlations to be the same for each firm. It maintains that the correlation is

non-zero only among the unobservables of a firm (within-firm correlation), and not between

the unobservables of the Km firms (between-firm correlation).

3.3 Simulation Algorithm

To estimate the parameters of the model we need to predict the market structures and derive

distributions of demand and supply unobservables to construct the distance function. This

requires the evaluation of a large multidimensional integral, therefore we have constructed

an estimation routine that relies heavily on simulation. We solve directly for all equilibria

at each iteration in the estimation routine.

The simulation algorithm is presented for the case when there are K potential entrants.

We rewrite the model of price and entry competition using the parameterizations above.

15When we perform simulation, we draw η̃jm and ηm independently from two standard normal distri-
butions. Then, we will apply the Cholesky decomposition to allow for correlations between the demand,
marginal cost, and the firm specific fixed cost unobservables. Then, we add the market-specific fixed cost
unobservable to the firm-specific fixed cost unobservable. See Online Appendix B for details.
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yj = 1⇔ πj ≡ (pj − exp (ϕWj + ηj))Msj (Xe,pe, ξe)− exp (γZj + νj) ≥ 0,

ln sj (β, α,Xe,pe, ξe)− ln s0 (β, α,Xe,pe, ξe) = X ′jβ + αpj + λsj|g + ξj

ln [pj − bj (Xe,pe, ξe)] = ϕWj + ηj,

, (14)

for j = 1, ..., K and e ∈ E.

We present the simulation algorithm here and provide many more details, including com-

putational guidance, in Appendix B.

First, we take ns pseudo-random independent draws from a 3×|K|-variate joint standard

normal distribution, where |K| is the cardinality of K. Let r = 1, ..., ns index pseudo-random

draws. These draws remain unchanged during the minimization. Next, the algorithm uses

three steps that we describe below.

Set the candidate parameter value to be Θ0 = (α0, β0, ϕ0, γ0,Σ0) .

1. We estimate the probability distributions of the residuals. The steps here do not

involve any simulations.

(a) Use α0, β0, ϕ0 to compute the demand and first order condition residuals ξ̂êj and

η̂êj . These can be done easily using (14) above.

(b) Construct Pr(ξ̂ê <= tD, η̂
ê <= tS | X,W,Z), which are joint probability distri-

butions of ξ̂ê, η̂ê conditional on the values taken by the control variables. tD are

the t’s for the demand residuals, while tS are the t’s for the supply residuals.

2. Next, we construct the probability distributions for the lower and upper bound of the

“simulated errors”selected by the model for a guess of the parameters, Θ0.

(a) Simulate random vectors of unobservables (νr, ξr, ηr) from a multivariate normal

density with a given covariance matrix, Σ0, using the pseudo-random draws de-

scribed above.
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(b) For each potential market structure e of the 2|K| − 1 possible ones (excluding the

one where no firm enters), we solve the subsystem of the N e demand equations

and N e first order conditions in (14) for the equilibrium prices p̄er and shares s̄er.
16

(c) Compute 2|K| − 1 total profits.

(d) We use the total profits to determine which of the 2|K| market structures are

predicted as equilibria of the full model. If there is a unique equilibrium, say

e∗, then we collect the simulated errors of the firms that are present in that

equilibrium, ξe
∗
r and ηe

∗
r . In addition, we collect νe

∗
r and include them in AUe∗ ,

which was defined in Section (2). If there are multiple equilibria, say e∗ and

e∗∗, then we collect the “simulated errors” of the firms that are present in those

equilibria, respectively
(
ξe
∗
r , η

e∗
r

)
and

(
ξe
∗∗
r , ηe

∗∗
r

)
.17 In addition, we collect νe

∗
r and

νe
∗∗
r and include them, respectively, in AMe∗ and AMe∗∗ , which were also defined in

Section (2).18

(e) Construct

Pr
(
ξer <= tD, η

e
r <= tS; ν ∈ AMe |X,W,Z

)
and Pr

(
ξer , η

e
r ; ν ∈ AUe |X,W,Z

)
.19

3. We construct the distance function (5) in Section (2). The approach we use for inference

follows the implementation of Chernozhukov, Hong, and Tamer (2007) in CT, where

we use subsampling based methods to construct confidence regions.

Conceptually, the above is a minimum distance procedure that compares the distribution

function from the data (constructed in Step 1 above) to the upper and lower bounds on

this distribution predicted by the model (the upper and lower bounds are constructed in

16For example, if we look at a monopoly of firm j (|e| = 1) then the demand Qj (pjr, Xjr, ξjr;β) is readily
computed, and the monopoly price, pjr, as well. Given the parametric assumptions, there is a unique pure-
strategy price equilibrium, conditional on the market structure. See Nocke and Schutz (2018) for uniqueness
in the single product nested logit case considered in our empirical exercise.

17The set of firms in the two equilibria (if there are multiple equilibria) may not be the same.
18See Appendix B (page 4) for details, including how we handle situations where no pure-stategy equilibria

exist.
19These CDFs in this setting with two unobservables for each firm are analogous to the ones with just one

unobservable per firm on described in Section 2. We use the same t’s that we used to construct the CDFs
of the residuals.
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Step 2. The upper and lower bounds in Step 2 are a result of multiple equilibria while the

complication in Step 1 is due to endogeneity.

4 Data and Industry Description

We apply our methods to data from the airline industry. This industry is particularly

interesting in our setting for two main reasons. First, there is considerable variation in prices

and market structure across markets and across carriers, which we expect to be associated

with self-selection of carriers into markets. Second, this is an industry where the study of

market structure and market power are particularly meaningful because there have been

several recent changes in the number and identity of the competitors, with recent mergers

among the largest carriers (Delta with Northwest, United with Continental, and American

with USAir). Our methods allow us to examine, within the context of our model, the

implications of mergers on equilibrium prices and also on market structure. We start with

an examination of our data, and then we provide our estimates.

4.1 Market and Carrier Definition

Data. We use data from several sources to construct a cross-sectional dataset, where the

basic unit of observation is an airline in a market (a market-carrier). The main datasets

are the second quarter of 2012’s Airline Origin and Destination Survey (DB1B) and of the

T-100 Domestic Segment Dataset, the Aviation Support Tables, available from the DOT’s

National Transportation Library. We also use the US Census for the demographic data.20

We define a market as a unidirectional trip between two airports, irrespective of intermedi-

ate transfer points.21 The dataset includes the markets between the top 100 US Metropolitan

Statistical Areas ranked by their population. We include markets that are not served by any

carrier. There are 8, 163 unidirectional markets, and each one is denoted by m = 1, ...,M .

20See Section C of the Appendix for a detailed discussion on the data cleaning and construction.
21We do not model the decision of nonstop versus connecting flights. This is very difficult problem given

the hub-network structure of airline markets. See Aguirregabiria and Ho (2012) for a treatment of hub-spoke
networks using a dynamic game framework and Li et al. (2017) for a recent treatemnt in a static framework.
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There are six carriers in the dataset: American, Delta, United, USAir, Southwest, and a low

cost type, denoted by LCC. The Low Cost Carrier type includes Alaska, JetBlue, Frontier,

Allegiant, Spirit, Sun Country, Virgin. These firms rarely compete in the same market. The

subscript for carriers is j, j ∈ {AA,DL,UA,UA,LCC}. There are 23, 155 market-carrier

observations for which we observe prices and shares. There are 710 markets that are not

served by any firm.

We denote the number of potential entrants in market m as Km where |Km| ≤ 6. An

airline is considered a potential entrant if it is serving at least one market out of both of the

endpoint airports.22

Tables 1 and 2 present the summary statistics for the distribution of potential and actual

entrants in the airline markets. Table 1 shows that American Airlines enters in 39 percent

of the markets, although it is a potential entrant in 71 percent of markets. Southwest, on

the other hand, is a potential entrant in 64 percent of markets, and enters in 46 percent of

the time. So this already shows some interesting heterogeneity in the entry patterns across

airlines. Table 2 shows the distribution in the number of potential entrants, and we observe

that the large majority of markets have between four and six potential entrants, with less

than 2 percent having just one potential entrant.

Table 1: Entry Moments

Actual Entry Potential Entry

AA 0.39 0.71
DL 0.73 0.95
LCC 0.18 0.46
UA 0.51 0.80
US 0.49 0.87
WN 0.46 0.64

Empirical entry probabilities and the percent of

markets as a potential entrant, across airlines.

22See Goolsbee and Syverson (2008) for an analogous definition. Variation in the identity and number of
potential entrants has been shown to help the identification of the parameters of the model (Ciliberto et al.,
2010).
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Table 2: Distribution of Potential Entrants Across Markets

Number of Potential Entrants

1 2 3 4 5 6

Percent of Markets 1.74 10.61 14.58 16.57 28.13 28.37

Distribution of the fraction of markets by number of potential entrants.

For each firm in a market there are three endogenous variables: whether or not the firm is

in the market, the price that the firm charges in that market, and the number of passengers

transported. Following the notation used in the theoretical model, we indicate whether a

firm is active in a market as yjm = 1, and if it is not active as yjm = 0. For example, we set

yLCC = 1 if at least one of the low cost carriers is active.

Table 3 presents the summary statistics for the variables used in our empirical analysis.

For each variable we indicate in the last column whether the variable is used in the entry

inequality conditions, demand and marginal cost equations. As in Berry, Carnall, and Spiller

(2006), Berry and Jia (2010), and Ciliberto and Williams (2014), market size is the geometric

mean of the MSA population of the end-point cities.

The top panel of Table 3 reports the summary statistics for the ticket prices and passengers

transported in a quarter. For each airline that is actively serving the market we observe the

quarterly mean ticket fare, pjm, and the total number of passengers transported in the

quarter, Qjm. The average value of the mean ticket fare is 242.88 dollars and the average

number of passengers transported is 2, 602.79.

Demand. Demand is here assumed to be a function of the number of Origin Presence,

which is defined as the number of markets served by an airline out of the origin airport. We

maintain that this variable is a proxy of frequent flyer programs: the larger the number of

markets that an airline serves out of an airport, the easier is for a traveler to accumulate

points, and the more attractive flying on that airline is, ceteris paribus. The Distance between

the origin and destination airports is also a determinant of demand, as shown in previous

studies (Berry, 1990; Berry and Jia, 2010; Ciliberto and Williams, 2014).
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Table 3: Summary Statistics

Mean Std. Dev. Min Max N Equation

Endogenous Variables

Price ($) 242.88 55.25 77.13 364.00 22,445 Entry, Utility, MC
Passengers 2602.79 7042.02 90 112,120 22,445 Entry, Utility, MC

All Markets

Origin Presence 100.36 71.88 0 267 48,978 Utility, MC
Nonstop Origin 7.04 13.57 0 127 48,978 Entry
Nonstop Destin. 7.11 13.61 0 127 48,978 Entry
Distance (000) 1.11 0.58 0.15 2.72 48,978 Utility, MC

Markets Served

Origin Presence 143.23 57.91 1 267 22,445 Utility, MC
Nonstop Origin 10.60 16.76 0 127 22,445 Entry
Nonstop Destin. 10.67 16.77 0 127 22,445 Entry
Distance (000) 1.17 0.56 0.20 2.72 22,445 Utility, MC

Summary statistics from sample dscribed in the text. Observations from 48,978 potential airline-markets

from 8,163 distinct markets. 22,445 airline-markets are active.

The middle and bottom panels of Table 3 report the summary statistics for the exogenous

explanatory variables. The middle panel computes the statistics on the whole sample, while

the bottom panel computes the statistics only in the markets that are served by at least one

airline.

There is clearly selection on observables in our setting. The mean value of Origin Presence

is 100.36 across all markets, and it is up to 143.23 in markets that are actually served. The

mean value of Distance is 1110 miles (one-way), which is slightly lower than the mean values

for active airline-markets, 1170 miles.

Fixed and Marginal Costs in the Airline Industry.23 The total costs of serving an

23We thank John Panzar for helpful discussions on how to model costs in the airline industry. See also
Panzar (1979).

24



airline market consists of three components: airport, flight, and passenger costs.24

Airlines must lease gates and hire personnel to enplane and deplane aircrafts at the two

endpoints. These airport costs do not change with an additional passenger flown on an

aircraft, and thus we interpret them as fixed costs. We parameterize fixed costs as functions

of Nonstop Origin, the number of non-stop routes that an airline serves out of the origin

airport, and Nonstop Destination, the number of non-stop routes that an airline serves out

of the destination airport, to capture economies of density (Brueckner and Spiller (1994)).

Next, a particular flight’s costs also enter the marginal cost. This is because these costs

depend on the number of flights serving a market, on the size of the planes used, on the fuel

costs, and on the wages paid to the pilots and flight attendants. In our static model, the

flight costs are variable in the number of passengers transported in a quarter. The accounting

unit costs of transporting a passenger are those associated with issuing tickets, in-flight food

and beverages, and insurance and other liability expenses. These costs are very small when

compared to the airport and flight specific costs. We maintain that the flight and passenger

costs enter the economic opportunity cost of flying a passenger.25

Returning to the middle and bottom panels of Table 3 we observe that there is selection

on these observables as well. The mean value of Nonstop Origin is 7.04 in all markets,

and 10.60 in markets that were actively served. The magnitudes are analogous for Nonstop

Destination.

The economic marginal cost is not observable (Rosse, 1970; Bresnahan, 1989; Schmalensee,

1989). We parameterize it as a function of Origin Presence. The idea is that the opportunity

cost is a function of i) the whole network of that carrier that can be reached out of that

airport, and ii) of the degree of competition that the carrier faces out of that airport, which is

here captured by the size of the network that other airlines have at the origin airport. Given

our interpretation of flight costs as entering the variable costs, we also allow the marginal

24Other costs are incurred at the aggregate, national, level, and we do not estimate them here (advertising
expenditures, for example, are rarely market specific).

25This can be interpreted as the highest profit that the airline could make off of an alternative trip that
uses the same seat on the same plane, possibly as part of a flight connecting two different airports (Elzinga
and Mills, 2009).
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cost to be a function of the non-stop distance, Distance, between two airports.

4.2 Identification

We begin by discussing the source of exogenous variation in our estimation and how the pa-

rameters of the model are identified. Several variables are omitted in the demand estimation,

and their omission could bias the estimation of the price coefficient. For example, we do not

include frequency of flights or whether an airline provides connecting or nonstop service be-

tween two airports. As mentioned before, quality of airline service is also omitted. All these

variables enter in ξ. We instrument for price using the exogenous variables for all poten-

tial rivals. These instruments are different than the “BLP instruments” widely used in the

literature (Berry, Levinsohn, and Pakes, 1995). The aggregation typically used in the form

of the BLP instruments has been shown to be problematic (see Gandhi and Houde, 2016).

26 Our approach is slightly different from the standard one and capture greater variation

in competitive environments because: i) we include every potential entrants’ characteristics

separately instead of summing or averaging the characteristics in a market; ii) we consider

the characteristics of all potential entrants, and not just those of the actual entrants. In

addition, the exogenous variables that affect fixed costs, which correlate with equilibrium

prices through the entry conditions in our model, also enter as instruments for the demand

estimation.

The fixed cost parameters in the entry inequalities are identified if there is a variable that

shifts the fixed cost of one firm without changing the fixed costs of the competitors. This

condition is also required to identify the parameters in Ciliberto and Tamer (2009), but in

our case this variable should also be excluded from demand and marginal cost. First, we use

the carrier’s Nonstop Destination, the number of nonstop flights from the destination airport.

Our choice of this variable as our exclusion restriction is motivated by the observation that

passengers only care about the network out of the origin airport when they select and airline,

for example because of their ability to accumulate frequent flyer miles over time.27 In our

26For example, this approach is also used by Berry and Jia (2010).
27Berry and Jia (2010) also assume that the variable Nonstop Destination is excluded from the demand.
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robustness analysis we have determined that we can also include the carrier’s Nonstop Origin.

Notice that the origin-specific variable, Nonstop Origin is the same across markets from the

same origin airport. In contrast, the destination variable, Nonstop Destination, is not, and

this allows for the fixed costs to change across markets from the same airport.

A crucial source of exogenous variation across markets, which reinforces the identification

power of the instruments discussed above, is given by the variation in the identity and

number of potential entrants across markets, as in Berry (1992). First, the parameters

of the exogenous variables in the entry inequalities are point identified when there is only

one potential entrant because the model would collapse to a classic discrete choice model.

Second, the exogenous variables shifting the demand function vary across markets from the

same airport. If the exogenous variables in the demand function were the same across all

markets from the same airport, then the differences in prices and shares that we observe

in those markets would have to be fully explained by the random variables. Instead, the

variation is also explained by the variation in the identity of the potential entrants and,

consequently, by variation in the attributes of rival products.

Next, we discuss the variation in the data that identifies the variance-covariance matrix.

The variance of the unobservable entering the demand function is identified by the variance

in (the logarithms of) the odds, which, in turn, are functions of the shares of passengers

transported by the airlines. The variance of the unobservables entering in the marginal cost

is identified by the variance in the markups charged by the firm, which in turn are functions

of the observed prices. The variance in the unobservables entering the entry inequality is

identified by the variance in the variable profits, which in turn are functions of the observed

revenues. Notice that variable profits are expressed in monetary terms, and therefore the

fixed cost parameters do not suffer from the standard caveat that they are identified up to

However, they assume that this variable enters the marginal cost equation. Earlier, we discussed our assump-
tions about marginal and fixed costs in our context (whereas Berry and Jia, 2010, do not model fixed costs).
We think of marginal costs as the opportunity cost of serving other passengers from the origin airport, and
so should include variables relating to the origin airports. As discussed in the text, we think of fixed costs as
relating to economies of density (see Brueckner and Spiller, 1994). One way to capture the network density
is to consider how many connections happen at the destination airport.
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a scale.

Next, we describe how the correlations between the unobservables are identified.28 The

two most important correlations are those that govern the unobserved selection: the corre-

lations of the unobserved fixed cost with the unobserved component of marginal cost and

demand. For example, suppose there is a set of firms that share the same observable at-

tributes (i.e., same market type) which implies we predict them to have the same exact

revenue conditional on entering the market. If, among this set of firms, we observe in the

data that firms that enter are more likely to have a lower price (again, holding revenues con-

stant), then we would infer that there is a positive correlation between marginal costs (the

reason for the low price) and fixed costs (the reason for entering, holding revenue fixed). If

among this group of firms we observe firms that enter are more likely to have higher market

shares, then we would infer that there is a negative correlation between unobserved demand

(the reason why demand is high) and unobserved fixed costs (low fixed costs being the reason

for entering conditional on revenues). More generally, we observe three things in the data:

demand, prices, and entry. We use the averages, variances, and covariances between these

variables to identify features of the utility function, cost functions (marginal and fixed), and

covariances between utility and costs.

5 Results

We organize the discussion of the results in two steps. First, we present the results when

we estimate demand and supply using the standard GMM method (i.e. Berry, 1994). Next,

we estimate demand and supply using our method, but assume that entry is exogenous.

Lastly, we present results using our methodology that accounts for firms’ entry decisions. To

facilitate the comparison across model specifications and methodologies, in all columns of

Table 4 we report the confidence region that is defined as the set that contains the parameters

28Given our assumptions (or lack thereof) on equilibria selection in our model, we do not claim that the
parameters of interest are point identified. However, it is useful to generally understand what covariation in
the data informs us about the identified set.
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that cannot be rejected as the truth with at least 95% probability.29

5.1 Results with Exogenous Market Structure

In Column 1 of Table 4, we display the results from GMM estimation of a model where the

inverted demand is given by a nested logit regression, as in Equation 12.30

In order to limit the space over which to draw for the minimization procedure, we stan-

dardize all the exogenous variables.31 All the results are as expected and resemble those in

previous work, for example Berry and Jia (2010) and Ciliberto and Williams (2014).32 Start-

ing from the demand estimates, we find the price coefficient to be negative, and included in

[-2.394,-2.192] and λ, the nesting parameter, to be between 0 and 1.33 The corresponding

median elasticity is included in [-8.170,-8.096], and the confidence interval for the median

markup is [30.312,30.383]. A larger presence at the origin airport is associated with more

demand as in (Berry, 1990), and longer route distance is associated with stronger demand

as well. The marginal cost estimates show that it is increasing in distance, and decreasing

in presence.

Next, we estimate the same exogenous entry model using our methodology. We do this

because our methodology requires additional assumptions to those of GMM, such as main-

taining the assumption that the unobservables are normally distributed. Estimating the

exogenous version using our methodology allows us to (1) examine how close the estimates

using these additional assumption are to the standard GMM approach and (2) compare the

endogenous market structure version of the model more directly with the exogenous market

structure version.

We present the results of this estimation in Column 2 of Table 4. We observe that all of

29This is the approach that was used in CT. See the On-line Supplement to CT and Chernozhukov, Hong,
and Tamer (2007) for details. Notice that there are no multiple equilibria in Columns 1 and 2.

30We instrument for price and the nest shares using the value of the exogenous data for every firm,
regardless of whether they are in the market, including fixed costs which are excluded from supply and
demand. So, for example, there are six instruments for every element in X, W , and Z.

31See Section C in the Appendix for more details.
32We also have estimated the GMM model only with the demand moments, and the results were very

similar. See Section D in the Appendix.
33We denote fares in $100s for readability of the estimates.
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the cost estimates in Column 2 overlap those in Column 1. Most of the demand estimates in

Column 2 overlap with those in Column 1, and the ones that do not overlap are very close.

The estimate of the median elasticity of demand and of the markup are also overlapping the

ones in Column 1. In future work we hope to relax some of the distributional assumptions

made in our current work.

Table 4: Parameter Estimates

GMM Exogenous Entry Endogenous Entry

Demand

Price [-2.394, -2.192] [ -2.450, -2.290] [ -1.992, -1.956]
λ [0.318, 0.518] [ 0.300, 0.566] [ 0.116, 0.144]
Distance [0.309, 0.365] [ 0.155, 0.394] [ 1.085, 1.273]
Origin Presence [0.293, 0.340] [ -0.128, 0.191] [ -0.613, -0.426]
LCC [-0.334, -0.143] [ -2.028, -0.991] [ 0.353, 0.853]
WN [0.217, 0.336] [ -0.115, 0.575] [ 0.904, 1.409]
Constant [-1.588, -1.105] [ -2.588, -2.180] [ -5.191, -4.878]

Marginal Cost

Distance [0.118, 0.124] [ 0.076, 0.128] [ 0.111, 0.158]
Origin Presence [-0.030, -0.020] [ -0.050, 0.014] [ -0.649, -0.626]
Cons LCC [-0.349, -0.320] [ -0.506, -0.281] [ -0.002, 0.108]
Cons WN [-0.154, -0.137] [ -0.165, -0.038] [ 0.203, 0.330]
Constant [5.360, 5.370] [ 5.341, 5.394] [ 5.267, 5.290]

Fixed Cost

Nonstop Origin – – [ -0.452 -0.264]
Nonstop Dest. – – [ -2.260 -1.885]
Constant – – [ -1.657 -1.288]

Variance-Covariance*

Variance Demand 1.523 [1.336 2.853] [5.142, 5.826]
Variance Marg. Cost 0.060 [0.018 0.055] [0.334,0.373]
Variance Fixed Cost – – [3.721 5.5332]
Demand-MC Covariance 0.185 [0.112 0.256] [-0.099,0.243]
Demand-FC Covariance – – [0.631,0.786]
MC-FC Covariance – – [1.119,1.215]

Market Power

Median Elasticity [-8.170, -8.096] [-9.429, -7.020] [-4.031, -3.864]

Median Markup [28.129, 28.259] [22.219, 33.006] [44.416, 46.083]

Results from estimation of the model presented in Section 3. Column 1: Standard GMM estimation.

Column 2: Estimation using the methodology described in Section 2, but holding market structure

exogenous. Column 3: Estimation using the methodology described in Section 2. Column 1 presents the

standard 95% confidence intervals. Columns 2 and 3 contain 95% confidence bounds constructed using

the method in Chernozhukov, Hong, and Tamer (2007). Price coefficient multiplied by 100.
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5.2 Results with Endogenous Market Structure

Column 3 of Table 4 displays the estimates from our model using the methodology developed

in Section 2.

We estimate the coefficient of price to be included in [-1.992, -1.956] with a 95 percent

probability, which is statistically smaller than the estimate from the model with exogenous

market structure in Column 2 of Table 4.

We estimate λ for the exogenous entry case to be in the interval [0.300, 0.566] (Column 2

of Table 4), while in the endogenous entry case we estimate λ to be included in [0.116, 0.144].

Thus, we find that the within group correlation in unobservable demand is also estimated

with a bias when we do not account for the endogenous market structure.

Overall, these sets of results lead us to over-estimate the elasticity of demand and under-

estimate the market power of airline firms when we maintain that market structure is ex-

ogenous. To see this, we compare the implied mean elasticities in the bottom panel of Table

4. The mean elasticity for the exogenous market structure case is [-9.429, -7.020], while the

we estimate the mean elasticity to be [-4.031, -3.864] when we allow for endogenous market

structure. This leads to a difference in estimated markups: [22.219, 33.006] in the exogenous

case compared with [44.416, 46.083] in the endogenous market structure case.

Next, we show the results for the estimates of the fixed cost parameters. Clearly, these are

not comparable to the results from the previous model where market structure is assumed

to be exogenous and fixed cost estimates are not recoverable. Column 3 of Table 4 shows the

constant in the fixed cost inequality condition to be included in [-1.657, -1.288], and greater

values of the variables Nonstop Origin and Nonstop Destination lead to lower fixed costs as

one would expect if there were economies of density.

We compute the confidence interval for mean fixed costs to be [3931.25, 10949.74] dollars.

To put these numbers in perspective, we need to recall that these are market fixed costs,

and they are not the fixed costs paid to serve one of the legs of that market. Compared to

the number of (uni-directional) non-stop segments served by an airline, the number of (uni-

directional) markets served by that airline is many times larger. That is, a single non-stop
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leg will be part of the service on many markets, and we cannot infer the cost of serving the

single non-stop leg, which is bound to be much larger, from the fixed costs of serving the

markets.34 The confidence interval of the ratio of the fixed costs over the variable profit is

[0.110, 0.124], which means that the fixed costs are approximately 10 percent of the variable

profits for the average carrier-market.

Next, we investigate the estimation results for the variance-covariance matrix. The vari-

ance of demand error is included in [1.336, 2.853] in Column 2 (exogenous market structure)

and in [5.142, 5.826] in Column 3 (endogenous market structure). The variance of the

marginal cost unobservables is estimated in [0.018, 0.055] in Column 2 and [0.334, 0.373] in

Column 3. The larger values are explained in part by the fact that in the exogenous case, the

distribution represents a selected distribution whereas in the endogenous case our estimates

represent the full unselected distribution of the errors.

The covariance between the demand and marginal cost is positive in all three columns,

with the caveat that it is not statistically different from zero in Column 3, although most of

the confidence intervals is to the right of the zero value.

The covariance of the demand and fixed cost unobservables is estimated to be included

in [0.631, 0.786] and the covariance between fixed and marginal costs unobservables is

[1.119,1.215]. Carriers with unexpectedly (not predicted by observables in the model) high

demand also have unexpectedly high fixed costs. Firms with unexpectedly high fixed costs

have unexpectedly high marginal costs.

The variance covariance matrix implies that unobservables that lead to high demand

correlate with higher fixed and marginal costs. This is intuitive if unobservables represent

quality and the cost of quality – higher quality increases demand but it comes at some cost

to the airline that we do not capture in the covariates. This is in contrast to an alternative

story that is more akin to the selection on ability in labor markets where high demand firms

are also low-cost producers.

Finally, we discuss the fit of the model. This consists of comparing the equilibrium market

34See Aguirregabiria and Ho (2012) for a rigorous discussion of this point.
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structures, prices, and shares predicted by the model with those observed in the data. The

particular way we think about model fit is necessitated by the fact that the model does not

make unique predictions and that, if we were to compare aggregate statisitics, we would be

comparing samples with different market structures. We compare model predictions to the

data simulation-by-simulation and market-by-market and then tally up the number of times

the model predictions are consistent with the data. For the model prediction to be consistent

with the data, the data (e.g. a price) must lie in the 95 percent confidence interval.35

Specifically, we draw 100 parameters from the identified set, and simulate the model 200

times. For any given market structure in any given market, we construct the confidence

interval for prices by taking the 2.5 and 97.5 percentile across parameter vectors. Then we

compare the price for each airline for that market in the data to the confidence error for the

predicted price. We do this again for product shares.36

The data lie within the confidence interval for prices 41.14 percent of the time and our

model fits the shares 36.76 percent of the times. The model replicates the entry patterns

well. In Table 5 we display the empirical entry probabilities for each airline along with the

confidence intervals for entry probabilities predicted by the model. Additionally, the model

fits the exact market structure 32.02 percent of the time (meaning all six carriers have the

correct participation in the market) and the model predicts a given airline’s entry correctly

74.48 percent of the time.37 In our sample, 8.7 percent of markets are not served by any

carrier while our model predicts this outcome in between 3.6 percent and 4.9 percent of

markets.

35We construct the confidence interval for the prediction for an individual market in the same way we
compute confidence intervals elsewhere, by sampling parameter vectors in the identified set.

36Note that in the typical econometric procedures used to estimate logit and random coefficient demand
systems, shares and prices fit the data perfectly by construction. Our econometric procedure differs in that
we do not have a completely flexible product characteristic residual that is allowed to adjust to exactly fit
the data.

37These four numbers are not included in Table 4 for sake of brevity.
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Table 5: Aggregate Entry Probabilities

AA DL LCC UA US WN No Entry

Data 0.390 0.727 0.175 0.513 0.488 0.457 0.087
Model Prediction [0.403, 0.436] [0.737, 0.784] [0.178, 0.215] [0.521, 0.560] [0.492, 0.533] [0.439, 0.488] [0.036, 0.049]

Note: Entry probabilities across all markets in the sample described in the text. Intervals for the model are constructed using the sub-sampling routine
described in the text.

6 The Economics of Mergers When Market Structure

is Endogenous

We present results from counterfactual exercises where we allow a merger between two firms,

American Airlines and US Airways. A crucial concern of a merger from the point of view

of a competition authority is the change in prices after the merger. It is typically thought

that mergers imply greater concentration in a market, which, in turn, implies an increase in

prices. However, in reality changes in the potential set of entrants along with changes in costs

and demand after a merger may lead firms to optimally enter or exit markets. For example,

cost synergies for the merged firm may cause entry into a new market to be profitable. Or,

after the merger of the two firms, there might be room in the market for another entrant.

Or, if demand is greater for the new merged firm, it may be able to steal market share from

a rival such that the rival can not profitably operate.

Our methodology is ideally suited to evaluate both the endogenous price responses and

the endogenous market structure responses as a consequence of a merger. Importantly, as

we discuss below, changes in market structure imply changes in prices, and vice versa, so

incorporating optimal entry decisions into a merger analysis is crucial for understanding the

total effect of mergers on market outcomes. Section 9 of the Horizontal Merger Guidelines

(08/19/2010) of the Department of Justice states that entry alleviates concerns about the

adverse competitive effects of mergers. In contrast, the canonical model of competition

among differentiated products takes as exogenous the set of competing products (eg BLP

and Nevo, 2001), and thus the post-merger and pre-merger market structures are the same,

except that the products are now owned by a single firm.38

38Mazzeo et. al. (2014) make a similar argument. They quantify the welfare effects of merger with
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6.1 The Price and Market Structure Effects of the AA-US Merger

To simulate the effects of the AA-US Airways merger for a particular market, we use the

following procedure. If US Airways (US) was a potential entrant we delete them and consider

American (AA) the surviving firm. If American is a potential entrant before the merger, they

continue to be a potential entrant after the merger. If American (AA) was not a potential

entrant and US Air was a potential entrant before the merger, we assume that after the

merger American is now a potential entrant. If neither firm was a potential entrant before

the merger this continues after the merger.

We consider four different assumptions about what it means for AA and US to merge.

The four assumptions underscore the key observation that post-merger efficiencies could come

from both observed and unobserved features of the carriers. Thus, the different assumptions

that we discuss next have to do with potential efficiencies from the merger, and have two

aims: to check the robustness of the results of the counterfactual exercise, and, to help with

the interpretation of those empirical results.

First, we consider a case where the surviving firm, AA, takes on the best observed and

unobserved characteristics of both pre-merger carriers and call this the “Best Case” sce-

nario.39 More specifically, we combine the characteristics of both firms and assign the “best”

characteristic between AA and US to the new merged firm. For example, in the consumer

utility function, our estimate of Origin Presence is positive, so, after the merger, we assign

the maximum of Origin Presence between AA and US to the post-merger AA. For marginal

costs, we assign the highest level of Origin Presence between AA and US to the post-merger

AA. And for fixed costs, we assign the highest level of Nonstop Origin and Nonstop Dest

endogenous enty/exit in a computational exercise using a stylized model that is similar to our model. In
contrast, we provide a methodology to estimate an industry model and perform a merger analysis using
those estimates. Also, we allow for multiple equilibiria in both estimation and the merger analysis, whereas
Mazzeo et. al. (2014) assume a unique outcome from a selection rule based on ex ante firm profitability.

39This is the “best case” scenario that the firms would be able to present in court to make the strongest
case that the merger is pro-competitive. Our reasoning for choosing to look at the “best case” scenario from
the merging parties’ viewpoint is that a merger should definitively not be allowed if there are no gains even
under such scenario. However, this case may cause the exit of some firms or prices to rise in some markets,
so this might not be, ex ante, the best case from the point of view of the regulator.
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between AA and US to the post-merger AA. We implement the same procedure for the

unobserved shocks. We use the same simulation draws from estimation for the merger sce-

nario, and we assign the “best” simulation draw (for utility the highest and for costs the

lowest) between AA and US to the post-merger AA. Our second scenario closely follows the

“best case” scenario, but AA inherits only the best observable characteristics, and we assume

the new firm inherits AA’s previous unobservables. The results are presented as a subcase

called “only observables.” Our third scenario assumes that the new firm inherits the best

observables and gets a new draw for the unobservables, which we term “new unobservables.”

We simulate these two sub-cases to help us quantify the relative importance to the merger

simulations of the efficiency in observables versus unobservables.

Lastly, we consider a scenario where the surviving firm takes on the mean values of the

observed and unobserved characteristics from the two pre-merger firms, and call this the

“Average Case Scenario.”

Table 6: Aggregate Effects of Merger, per market ($)

Mean Fare Mean Consumer Welfare Total AA+US Profit* Total DL+UA Profit*

Pre-merger [197.72, 205.30] [171813, 294556] [427, 721] [941, 1,580]

Post-merger

Best Case [199.81, 207.84] [302562, 504337] [1639, 2812] [906, 1,527]

... only observables [195.55, 202.90] [193839, 322185] [617, 1048] [937, 1,577]

... new unobservables [195.56, 202.89] [193394, 321417] [614, 1039] [937, 1,577]

Average Case [202.96, 210.66] [156677, 268422] [284, 489] [948, 1590]

Note: Confidence intervals are constructed using the sub-sampling routine described in the text. * In millions of USD – sum of profit across
all markets. Mean Consumer Welfare is the average market-level consumer welfare across all markets.

In Table 6, we present confidence intervals for aggregate statistics to provide an industry

wide analysis of how an hypothetical merger would impact market structure, prices and

consumer and producer surplus. The rows in Table 6 represent the pre-merger predictions of

the model (first row) and the four scenarios we consider after the merger. The first column

is the 95% confidence interval for the median fare (share weighted across markets). The

second column is the median consumer welfare across markets, the third column is the total

profit for AA and US (summed over all markets) and the fourth column is the sum of total
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profit for Delta and United.40

Under the “Best Case” scenario, the confidence interval for average prices is slightly

greater than the baseline, although the two intervals overlap, [197.72, 205.30] versus [199.81,

207.84]. Consumer welfare would increase substantially from [171813, 294556] to [302562,

504337], as would the the profit of the new merged firm compared with the sum of the

pre-merger AA and US profit, [427, 721] to [1639, 2812]. This welfare increase is likely

unreasonably large, but highlights the importance of merger efficiency assumptions, as our

other estimates of consumer welfare are much more moderate. In the sub-case where only

the best observable characteristics are inherited by the merged firm, consumer welfare goes

up by less than the best case, as does the merged firm’s profit. The “new unobservables” case

is similar. In the case where the new firm inherits the average pre-merger characteristics,

the results are much different. The confidence interval for consumer surplus is shifted lower,

as is the merged-firm’s proft. In this case, inheriting the average characteristic is not enough

efficiency to overcome the merger paradox. The sum of DL and UA profit remains roughly

unchanged. We will explore the mechanisms for these changes below, which are partially due

to the fact that our model endogenizes product market structure changes due to a merger.

Overall, there are substantial potential efficiency gains from the merger, but this crucially

dependent on assumptions about cost synergies due to the merger.

In Table 7 we report changes in predicted entry probabilities after the merger for all four

cases. Specifically, we display 95% confidence interval for entry probabilities for each of the

airlines for the baseline and all four merger scenarios. After the merger, AA’s likelihood

of entry increases substantially in the best case scenario, from entry in [0.403, 0.436] to

[0.807, 0.832] of markets. The increase in entry is not surprising given that AA inherits all

of USAir’s potential markets. This happens at the expense of the other airlines, who see

slight decreases in entry probabilities, even though they face one fewer potential entrant.

In the other cases, AA sees a modest increase in the number of markets served, and the

other airlines realize very slight increases in aggregate entry probabilities. In the remaining

40To compute changes in welfare we consider the log-sum logit compensating variation formula, see Train
(2009).
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discussion in this section, we go deeper into the mechanisms that explain these aggregate

changes by considering changes in particular types of markets.

Table 7: Entry Probabilities, Post-merger

AA DL LCC UA US WN

Pre-merger [0.403, 0.436] [0.737, 0.784] [0.178, 0.215] [0.521, 0.560] [0.492, 0.533] [0.439, 0.488]
Post-merger

Best Case [0.807, 0.832] [0.730, 0.778] [0.175, 0.212] [0.514, 0.554] – [0.436, 0.485]

... only observables [0.631 0.672] [0.736 0.784] [0.178 0.215] [0.521, 0.560] – [0.439, 0.487]

... new unobservables [0.631 0.672] [0.736, 0.783] [0.178, 0.214] [0.520, 0.559] – [0.439 0.487]
Average Case [0.632, 0.675] [0.738, 0.785] [0.179, 0.215] [0.523, 0.561] – [0.440, 0.488]

Note: Entry probabilities across all markets in the sample described in the text. Confidence intervals are constructed using the sub-sampling
routine described in the text.

We begin our detailed analysis by looking at two sets of markets that are at the polar

opposites in terms of post-merger effects: markets that were not served by any airline before

the merger; and markets that were served by American and USAir as a duopoly before the

merger. These are natural starting points because we want to ask whether new markets

could be profitably served as a consequence of the merge of American and USAir, which is

clearly a strong reason for the antitrust authorities to allow for a merger to proceed. We

also want to examine pre-merger duopolies, which are markets that are most likely to see

high prices and larg welfare losses post-merger.

In the following tables we report the likelihood of observing particular market structures

and expected percentage change in prices conditional on a particular market structure tran-

sition. Table 8 is a simple “transition matrix” that relates the probability of observing a

market structure post-merger (columns) conditional on observing a market structure pre-

merger (rows).41 The 2 x 2 table consists of the two pre-merger market structures, with no

firm in the market and with a duopoly of US and AA. The post-merger market structures

are those markets with no firm in the market and with a monopoly of AA/US.42

Table 8 shows that under the Best Case Scenario the probability that the merged firm

AA/US will enter a market that was not previously being served is between 48.9 and 52.9

41Although our model is static, we use the terminology “transition” in order to convey predicted changes
pre-merger to post-merger.

42The complete transition table would be of dimension 64 x 32 for each pre-merger market structure, which
we do not present for practical purposes. Instead, we take slices of these tables.
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percent, which is a substantial and positive effect of the merger that would be ignored by

the standard economic analysis with exogenous market structure. We also find that there

is a probability between 99.4 and 100 percent that the merged firm would serve a market

as a monopolist that both independent firms were serving pre-merger. In those two-to-one

cases the merged firm would charge a lower price (between -8.4 and -6.0 percent) due to the

efficiency gains from the merger.

The predictions from the other scenarios are remarkably different, which illustrates the

importance of the assumptions we make on the observed and unobserved characteristics of

the merged firm. More specifically, under the Average Case we find that the probability that

the merged firm AA/US will enter a market that was not previously being served is between

16.3 and 18.4 percent, much lower than the Best Case. The prices would now increase by

7.2 to 9.2 percent for those markets.

Table 8: Market Structures in AA and US Monopoly and Duopoly Markets

Post-merger Entry Post-merger %∆ Price

Pre-merger No Firms AA Monopoly AA Monopoly

Best Case Scenario

No Firms [0.471, 0.511] [0.489, 0.529] –
AA/US Duopoly [0.000, 0.000] [0.994, 1.000] [-8.4, -6.0]

...only observables

No Firms [0.677, 0.711] [0.289, 0.323] –
AA/US Duopoly [0.000, 0.000] [0.952, 0.969] [-13.5, -12.7]

...new unobservables

No Firms [0.504, 0.539] [0.461, 0.496] –
AA/US Duopoly [0.255, 0.297] [0.604, 0.632] [2.4, 5.6]

Average Case Scenario

No Firms [0.816, 0.837] [0.163, 0.184] –
AA/US Duopoly [0.000, 0.003] [0.948, 0.965] [7.2, 9.2]

Next, we can investigate how the entry of the other potential entrants would change the

prices in those markets where AA and US were a duopoly before the merger. Table 9 shows

the probability that one of the other four competitors would enter, and the corresponding

change in AA’s price, in markets where there was a duopoly of American and USAir pre-
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merger.

Under the Best Case Scenario (top panel of Table 9) we find very little evidence that

other competitors would enter. In fact, in the other three cases, there is only a small chance

that a carrier would replace US in a previous AA-US duopoly. The most likely carriers to

replace US are Delta and United, the two other major airlines. In those cases, we would

expect prices to change by between -0.1 and 14.3 percent (average case, Delta) or between

-0.7 and 18.1 percent (average case, United).

Table 9: Entry in former AA and US Duopoly Markets

Best Case Scenario Duopoly AA/US & DL Duopoly AA/US & LCC Duopoly AA/US & UA Duopoly AA/US & WN

Prob mkt structure [0.000, 0.003] [0.000, 0.001] [0.000, 0.002] [0.000, 0.001]

Percent Change in price of AA [-0.098, 0.251] [ -0.249, 0.491] [-0.046, 0.812] [-0.113, 0.771]

... only observables

Prob mkt structure [0.013, 0.023] [0.001, 0.004] [0.008 0.016] [0.003, 0.010]

Percent Change in price of AA [-12.4 -7.0] [-10.9, 3.3] [-11.4, -3.7] [-17.1, -2.0]

...new unobservables

Prob mkt structure [0.013, 0.024] [0.001, 0.005] [0.013, 0.021] [0.003, 0.010]

Percent Change in price of AA [-14.1, 9.1] [-11.6, 35.6] [-6.3, 11.8] [-14.4, 30.6]

Average Case Scenario

Prob mkt structure [0.014, 0.023] [0.000, 0.003] [0.009, 0.018] [0.003, 0.009]

Percent Change in price of AA [-0.1, 14.3] [-18.9, 46.8] [-0.7, 18.1] [-8.2, 26.9]

We now take a different direction of investigation. Instead of focusing on markets where

there would be an ex-ante concern that prices increase after the merger, we explore in more

depth the possible benefits of a merger, which could allow a new, possibly more efficient,

firm to enter into markets that were monopolies pre-merger.

In Table 10 we consider the likelihood that after its merger with US, AA enters a market

where it was not present before the merger. In this table we only consider those markets that

were monopolies before the merger. In the first column we display the likelihood that AA

replaces the monopolist after the merger, and in the second column we display the likelihood

that AA joins the monopolist and forms a duopoly after the merger. For example, AA would

replace DL as a monopolist with a probability between 1.6% and 2.3%, for the “Best Case
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Scenario.” It is much more likely that AA enters to form a duopoly, between 50% and 53.6%,

and the DL prices would fall by roughly 2% in that case. AA is more likely to replace an

LCC than other airlines, and in all cases of duopoly we should expect lower prices on the

order of one to two percent. Under “Average Case Scenario” the likelihood of entry is much

less than in the “Best Case Scenario.” These results highlight the potential benefits of the

merger. They also highlight, again, that the merged firm faces a stronger competition in

entry from the other major carriers.

The intuition for the new market entry by AA/US and the corresponding changes in prices

is straightforward. Under our assumptions about the merger, the new firm will typically

generate higher utility and/or have lower costs in any given market than each of AA and

US did separately before the merger. Low costs will promote entry of AA and lower prices

for rivals after entry (in our model prices are strategic complements) and higher utility will

promote entry by AA and upward price pressure, or even lead to exit by incumbents, as we

predict in those monopoly markets where AA/US replaces the incumbent.

In Table 11, we focus on markets where AA is already present in the market and another

incumbent duopolist exits after the merger. There are two reasons why a competitor would

drop out of a market after a merger. First, after the merger AA might become more efficient

in terms of costs, therefore lowering price and making it difficult for the rival to earn enough

variable profit to cover fixed costs.43 Second, AA might become more attractive to consumers

after the merger and steal business from rivals. For ease of exposition we only consider

markets where AA and other incumbents were in the market, and we do not report the

results for the other merging firm, USAir.

The first row of Column 1 in Table 11 shows that, for the Best Case Scenario, there is

a probability between 1.3 and 2.1 percent that DL will leave the duopoly market with AA

after the merger. In such cases, AA’s price will be between 3.1% and 15.2% higher. Overall

the greatest likelihood of exit is for the LCC airline, along with the highest expected change

43AA could either experience a decrease in marginal costs, or a decrease in fixed costs. For the fixed costs
case, AA could have been a low marginal costs firm before the merger, but high fixed costs prevented entry.
After the merger, a decrease in fixed costs could lead to entry with the already low marginal costs.
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Table 10: Post-merger Entry of AA in Former Monopolies

AA AA
Replacement Entry

Pre-merger Firm Entry Probability Entry Probability Price Change (%)

Best Case Scenario

DL [0.016, 0.023] [0.500, 0.536] [-2.6, -2.0]
LCC [0.038, 0.062] [0.420, 0.472] [-2.2, -1.7]
UA [0.024, 0.037] [0.494, 0.533] [-2.5, -2.0]
WN [0.019, 0.030] [0.439, 0.475] [-2.0, -1.6]

...only observables

DL [0.007, 0.011] [0.303, 0.333] [-2.4, -1.8]
LCC [0.015, 0.034] [0.237, 0.271] [-2.0, -1.5]
UA [0.010, 0.018] [0.270, 0.297] [-2.2, -1.8]
WN [0.010, 0.016] [0.248, 0.277] [-1.8, -1.4]

...new unobservables

DL [0.013, 0.020] [0.503, 0.534] [-2.5, -2.0]
LCC [0.037, 0.065] [0.415, 0.460] [-2.1, -1.7]
UA [0.023, 0.035] [0.502, 0.540] [-2.5, -2.0]
WN [0.017, 0.027] [0.435, 0.465] [-1.9, -1.5]

Average Case Scenario

DL [0.002, 0.004] [0.166, 0.186] [-1.5, -1.1]
LCC [0.005, 0.018] [0.151, 0.189] [-1.7, -1.2]
UA [0.003, 0.006] [0.177, 0.201] [-1.6, -1.2]
WN [0.003, 0.006] [0.150, 0.168] [-1.3, -0.9]
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in price. In the cases where AA’s new price will be slightly lower than before the merger, this

suggests that the cost efficiency effects dominate the business stealing effects. In contrast,

when there are not sizable efficiencies, the likelihood of rival exit is small, only up to 0.6%

for LCC in the Average Case scenario, but as low as 0.44

Table 11: Likelihood of Exit by Duopoly Competitors after AA-US Merger

Probability AA Price
Pre-merger Firm of Exit Change (%)

Best Case Scenario

DL [0.013, 0.021] [3.1, 15.2]

LCC [0.020, 0.054] [-2.2, 27.5]

UA [0.022, 0.033] [-1.5, 5.2]

WN [0.013, 0.027] [1.7, 19.2]

...only observables

DL [0.007, 0.013] [-15.1 -9.4]

LCC [0.008, 0.030] [-21.0 -3.3]

UA [0.013, 0.021] [-15.6 -9.8]

WN [0.007, 0.015] [-21.7 -12.2]

...new unobservables

DL [0.006 0.011] [12.1 29.7]

LCC [0.008 0.029] [3.1 46.7]

UA [0.008 0.016] [11.6 36.0]

WN [0.006 0.013] [7.8 50.3]

Average Case Scenario

DL [0.001, 0.002] [31.6, 78.9]

LCC [0.000, 0.006] [-58.3, 95.6]

UA [0.001, 0.004] [8.2, 46.7]

WN [0.000, 0.003] [16.2, 142.8]

44Even in the Average Case Scenario AA may experience some efficiencies. Although AA could also have
higher costs after the merger, which is likely in cases where AA was already an entrant because they were
probably more efficient than US in such markets.
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6.2 The Economics of Mergers at a Concentrated Airport: Reagan
National Airport

The Department of Justice reached a settlement with American and USAir to drop its

antitrust challenge if American and USAir were to divest assets (landing slots and gates) at

Reagan National (DCA), La Guardia (LGA), Boston Logan (BOS), Chicago O’Hare (ORD),

Dallas Love Field (DAL), Los Angeles (LAX), and Miami International (MIA) airports. The

basic tenet behind this settlement was that new competitors would be able to enter and

compete with AA and US, should the new merged airline significantly raise prices.

We conduct a counterfactual exercise on the effect of the merger in markets originating

or ending at DCA. These markets were of the highest competitive concern for antitrust

authorities because both merging parties had a very strong incumbent presence.45

Table 12 reports the results of a counterfactual exercise that looks at the exit of competi-

tors and changes in price in markets with DCA as an endpoint that were served by both AA

and US before the merger.46

Let us begin with the triopoly AA/US/DL. We find that there is a significant likelihood

that the market becomes more concentrated. The AA/US/DL market turns into a AA/DL

market with probability [0.964, 1.000] for the “Best Case” scenario [0.964, 1.000] for the

“Average Case” scenario, for example. We find that in all cases, this would not result in a

significant rise in price.

In none of the pre-merger markets where AA and US were both present, LCC or WN are

likely to replace US. This finding confirms that DL and UA offer a service that is a closer

substitute to the one provided by AA and US than WN and LCC do. This also justifies the

DOJs concern that airport slots go to Southwest or Jet Blue instead of incumbent majors.

For market with four firms,, the most likely outcome across all cases is a consolidation

to AA/DL/UA. For the Best Case Scenario, this is accompanied by lower prices. For the

45Although we do not model slot constraints, our model would provide crucial information on which
airports would be the ones where anticompetitive concerns would be the most relevant and the results
suggest DCA was indeed one where there should have been competitive concerns regarding AA/US.

46None of the DCA markets in our sample were a AA/US duopoly before the merger, so we look at other
market structures that involve both airlines.
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Average Case Scenario, we find evidence of higher prices in several markets. Assumptions

about merger efficiencies are crucial for determining the effects of the merger.

Overall, our results suggest that the decisions made by the Department of Justice to facil-

itate the access to airport facilities to new entrants were justified under certain assumptions

about merger efficiencies (our “Average Case”), and should help control the post-merger

increase in prices and promote low-cost carrier coverage at DCA.

Table 12: Post-merger entry and pricing Reagan National Airport

Post-merger Market Structure

Pre-merger Markets AA/DL AA/UA AA/DL/LCC AA/DL/UA AA/DL/WN

Best Case Scenario

AA,US,DL Markets

Mkt Struct. Transitions [0.964, 1.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000] [0.000, 0.000]
%∆ Shares Weighted Price [-13.2, -9.9] [n.a.] [n.a.] [n.a.] [n.a.]

AA,US,DL,UA Markets

Mkt Struct. Transitions [0.002, 0.020] [0.002, 0.020] [0.000, 0.000] [0.968, 0.993] [0.000, 0.000]
%∆ Shares Weighted Price [-28.3, -3.4] [ -34.3, -6.3] [n.a.] [-12.5, -11.0] [n.a.]

Average Case Scenario

AA,US,DL Markets

Mkt Struct. Transitions [0.959, 1.000] [0.000, 0.000] [0.000, 0.019] [0.000, 0.030] [0.000, 0.027]
%∆ Shares Weighted Price [-0.8, 1.7] [n.a.] [-29.9, 21.4] [-10.0, 47.9] [-30.8, 33.2]

AA,US,DL,UA Markets

Mkt Struct. Transitions [0.000, 0.002] [0.000, 0.004] [0.000, 0.000] [0.975, 0.999] [0.000, 0.000]
%∆ Shares Weighted Price [-12.4, 11.8] [-41.1, 24.3] [n.a.] [0.8, 1.8] [n.a.]

Note: Counterfactual predictions for markets with DCA as one endpoint. Pre-merger market structure of AA/DL/UA and
AA/US/DL/UA.

7 Conclusions

We provide an empirical framework for studying the quantitative effect of self-selection of

firms into markets and its effect on market power in static models of competition. The

counterfactual exercise consists of a merger simulation that allows for changes in market

structures, and not just in prices. The main takeaways are: i) allowing for the selection of

firms into markets based on unobservables can lead to different estimates of price elasticities

and markups than those that we find when we assume that market structure is exogenous to
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the pricing decision; ii) this in turn leads to potentially important differences from exogenous

entry models in the predicted response to policy counterfactuals, such as merger simulations.

More generally, this paper contributes to the literature that studies the effects that mergers

or other policy changes have on the prices and structure of markets, and consequently the

welfare of consumers and firms. These questions are of primary interest for academics and

researchers involved in antitrust and policy activities.

One extension of our model is to a context where firms can change the characteristics

of the products they offer. To illustrate, consider Sovinsky Goeree (2008) who investigates

the role of informative advertising in a market with limited consumer information. Sovin-

sky Goeree (2008) shows that the prices charged by producers of personal computers would

be higher if firms did not advertise their products, because consumers would be unaware of

all the potential choices available to them, thus granting greater market power to each firm.

However, this presumes that the producers would continue to optimally produce the same

varieties if consumers were less aware, while in fact one would expect them to change the

varieties available if consumers had less information, for example by offering less differenti-

ated products. It is possible to extend our framework to investigate questions like this where

firms choose product characteristics.

Also, the proposed methodology can be applied in all economic contexts where agents

interact strategically and make both discrete and continuous decisions. For example, it can

be applied to estimate a model of household behavior where a husband and a wife must

decide whether to work and how many hours.

We also show that our results depend, as one would expect, on the assumptions that we

make on the efficiency gains from a merger. First, quantifying the efficiency gains from a

merger is a difficult empirical exercise that is at the center of all merger investigations by

the federal agencies, and which is often based on confidential accounting cost data. Second,

even if current and past accounting cost data are available, normally it takes time for the

efficiencies to be fully realized. We believe that our approach, which is based on being

upfront and clear about the efficiency gains, provides a promising path for future research in
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antitrust merger research. More generally, determining the efficiency gains from a merger is

a difficult empirical exercise that is at the center of all merger investigations by the federal

agencies. In some cases it takes a long time for the efficiencies to be fully realized, and it is

not always possible to identify their magnitude. Our approach shows how we can quantify

these efficiencies under various plausible assumptions. We hope our approach provides a

promising approach for future research in antitrust merger research.

To conclude, we summarize some of the limitations of our approach. There are several

components/variables in the classical model (Bresnahan, 1987; or Berry, 1994) that are taken

as exogenous. More specifically, the classical model takes as exogenous: the entry decision;

the location decision in the space of the observed characteristics; and the location decision in

the space of the unobserved characteristics. Our goal is to relax one of those – the decision

to participate in the market, and continue to assume that the location in the space of the

observed and unobserved characteristics is exogenous. We leave to future work the next step,

which is to relax those assumptions as well. Some recent important work in that direction

is in Li et al. (2017). Also, Petrin and Seo (2017) propose an interesting approach for the

problem of endogenous product characteristics (conditional on entry) by using information

from the firms’ necessary optimality conditions for the choice of product characteristics.

47



References

Aguirregabiria, Victor and Chun-Yu Ho. 2012. “A dynamic oligopoly game of the

US airline industry: Estimation and policy experiments.” Journal of Economet-

rics 168 (1):156 – 173. URL http://www.sciencedirect.com/science/article/pii/

S030440761100176X. The Econometrics of Auctions and Games.

Berry, Steven and Panle Jia. 2010. “Tracing the Woes: An Empirical Analysis of the Airline

Industry.” American Economic Journal: Microeconomics 2 (3):1–43.

Berry, Steven, James Levinsohn, and Ariel Pakes. 1995. “Automobile prices in market

equilibrium.” Econometrica: Journal of the Econometric Society :841–890.

Berry, Steven T. 1990. “Airport presence as product differentiation.” The American Eco-

nomic Review :394–399.

———. 1992. “Estimation of a Model of Entry in the Airline Industry.” Econometrica:

Journal of the Econometric Society :889–917.

———. 1994. “Estimating discrete-choice models of product differentiation.” The RAND

Journal of Economics :242–262.

———. 1999. “Free entry and social inefficiency in radio broadcasting.” The RAND Journal

of Economics 30 (3):397–420.

Bresnahan, Timothy F. 1987. “Competition and collusion in the American automobile in-

dustry: The 1955 price war.” The Journal of Industrial Economics :457–482.

———. 1989. “Empirical studies of industries with market power.” Handbook of industrial

organization 2:1011–1057.

Bresnahan, Timothy F and Peter C Reiss. 1990. “Entry in monopoly market.” The Review

of Economic Studies 57 (4):531–553.

48



———. 1991. “Entry and competition in concentrated markets.” Journal of Political Econ-

omy :977–1009.

Brueckner, Jan K and Pablo T Spiller. 1994. “Economies of traffic density in the deregulated

airline industry.” Journal of Law and Economics :379–415.

Chernozhukov, Victor, Han Hong, and Elie Tamer. 2007. “Estimation and confidence regions

for parameter sets in econometric models1.” Econometrica 75 (5):1243–1284.

Ciliberto, Federico, Amalia Miller, Helena Skyt Nielsen, and Marianne Simonsen. 2010.

“Playing the fertility game at work.” Unpublished manuscript .

Ciliberto, Federico and Elie Tamer. 2009. “Market structure and multiple equilibria in airline

markets.” Econometrica 77 (6):1791–1828.

Ciliberto, Federico and Jonathan W Williams. 2014. “Does Multimarket Contact Facilitate

Tacit Collusion? Inference on Conduct Parameters in the Airline Industry.” Inference on

Conduct Parameters in the Airline Industry (February 12, 2014) .

Cohen, Andrew M and Michael J Mazzeo. 2007. “Market structure and competition among

retail depository institutions.” The Review of Economics and Statistics 89 (1):60–74.

Draganska, Michaela, Michael Mazzeo, and Katja Seim. 2009. “Beyond plain vanilla: Mod-

eling joint product assortment and pricing decisions.” QME 7 (2):105–146.

Eizenberg, Alon. 2014. “Upstream Innovation and Product Variety in the US Home PC

Market*.” The Review of Economic Studies :rdu004.

Elzinga, Kenneth G and David E Mills. 2009. “Predatory Pricing in the Airline Industry:

Spirit Airlines v. Northwest Airlines (2005).” The Antitrust Revolution, 5th Edition, edited

by J. Kwoka and L. White, Forthcoming .

Fan, Ying. 2013. “Ownership Consolidation and Product Characteristics: A Study of the

US Daily Newspaper Market.” American Economic Review 103 (5):1598–1628.

49



Fan, Ying and Chenyu Yang. 2017. “Competition, Product Proliferation and Welfare: A

Study of the U.S. Smartphone Market.” Tech. rep., mimeo, University of Michigan.

Gandhi, Amit and Jean-François Houde. 2016. “Measuring substitution patterns in dif-

ferentiated products industries.” University of Wisconsin-Madison and Wharton School

.

Gentry, Matthew and Tong Li. 2014. “Identification in Auctions With Selective Entry.”

Econometrica 82 (1):315–344.

Goolsbee, Austan and Chad Syverson. 2008. “How Do Incumbents Respond to the Threat

of Entry? Evidence from the Major Airlines.” The Quarterly Journal of Economics

123 (4):1611–1633.

Gronau, Reuben. 1974. “Wage Comparisons–A Selectivity Bias.” The Journal of Political

Economy :1119–1143.

Heckman, James J. 1976. “The common structure of statistical models of truncation, sample

selection and limited dependent variables and a simple estimator for such models.” In

Annals of Economic and Social Measurement, Volume 5, number 4. NBER, 475–492.

———. 1979. “Sample selection bias as a specification error.” Econometrica: Journal of the

econometric society :153–161.

Ho, Katherine. 2008. “Insurer-Provider Networks in the Medical Care Market.” American

Economic .

Jeziorksi, Przemyslaw. 2014a. “Effects of mergers in two-sided markets: The U.S. radio

industry.” American Economic Journal: Microeconomics 6 (4):35–73.

———. 2014b. “Estimation of cost synergies from mergers: The U.S. radio industry.” RAND

Journal of Economics 45 (4):816–846.

50



Lee, Robin. 2013. “Vertical Integration and Exclusivity in Platform and Two-Sided Markets.”

American Economic Review 103 (7):2960–3000.

Li, Sophia, Joe Mazur, Yongjoon Park, James Roberts, and Andrew Sweeting. 2017. “En-

dogenous and Selective Service Choices After Airline Mergers.” working paper, University

of Maryland .

Li, Tong and Bingyu Zhang. 2015. “Affiliation and Entry in First-Price Auctions with

Heterogeneous Bidders: An Analysis of Merger Effects.” American Economic Journal:

Microeconomics 7 (2):188–214.

Li, Tong and Xiaoyong Zheng. 2009. “Entry and Competition Effects in First-Price Auctions:

Theory and Evidence from Procurement Auctions.” The Review of Economic Studies

76 (4):1397–1429.

Mazzeo, Michael J. 2002. “Product choice and oligopoly market structure.” RAND Journal

of Economics :221–242.

Nevo, Aviv. 2000. “Mergers with differentiated products: The case of the ready-to-eat cereal

industry.” The RAND Journal of Economics :395–421.

Nocke, Volker and Nicolas Schutz. 2018. “Multiproduct-Firm Oligopoly: An Aggregative

Games Approach.” Econometrica 86 (2):523–557.

Olley, G Steven and Ariel Pakes. 1996. “The Dynamics of Productivity in the Telecom-

munications Equipment Industry.” Econometrica: Journal of the Econometric Society

:1263–1297.

Pakes, Ariel, J Porter, Joy Ishii, and Kate Ho. 2015. “Moment Inequalities and Their

Application.” Econometrica 83:315–334.

Panzar, John C. 1979. “Equilibrium and welfare in unregulated airline markets.” The

American Economic Review :92–95.

51



Petrin, Amil and Boyoung Seo. 2017. “Identification and Estimation of Discrete Choice

Demand Models when Observed and Unobserved Product Characteristics are Correlated.”

.

Reiss, Peter C and Pablo T Spiller. 1989. “Competition and entry in small airline markets.”

Journal of Law and Economics :S179–S202.

Roberts, James and Andrew Sweeting. 2013. “When Should Sellers Use Auctions?” Amer-

ican Economic Review 103 (5).

Rosse, James N. 1970. “Estimating cost function parameters without using cost data: Illus-

trated methodology.” Econometrica: Journal of the Econometric Society :256–275.

Schmalensee, Richard. 1989. “Inter-industry studies of structure and performance.” Hand-

book of industrial organization 2 2.

Seim, Katja. 2006. “An empirical model of firm entry with endogenous product-type choices.”

RAND Journal of Economics :619–640.

Sovinsky Goeree, Michelle. 2008. “Limited information and advertising in the US personal

computer industry.” Econometrica 76 (5):1017–1074.

Sweeting, Andrew. 2013. “Dynamic Product Positioning in Differentiated Product Industries:

The Effect of Fees for Musical Performance Rights on the Commercial Radio Industry.”

Econometrica 81 (5).

Tamer, Elie. 2003. “Incomplete simultaneous discrete response model with multiple equilib-

ria.” The Review of Economic Studies 70 (1):147–165.

Train, Kenneth E. 2009. Discrete choice methods with simulation. Cambridge university

press.

52



Appendix: Market Structure and Competition in Airline
Markets

Federico Ciliberto∗ Charles Murry† Elie Tamer‡

February 10, 2020

A Identification Details

This section closely follows Ciliberto and Tamer (2009) (henceforth CT), and we refer to
that paper for further reading.

We provide a set of sufficient conditions that guarantee point identification of the model
parameters in equation (1) in the main text. These conditions are natural in this context and
rely on large support regressors. Our inference methods do not require that these conditions
be satisfied as the moment inequalities adapt to partial identification, but we give them here
to give intuition as to what exogenous variation might be helpful for gaining identification.

Theorem 1 Suppose Z = (z1, z2) is such that z1|z2,X has continuous support over the real

line and that γ 6= 0. In addition, assume that E
(
[Xi

...X3−i][Xi
...Vi]

′ | zi
)

has full column rank
for i = 1, 2. Suppose that there is Nash equilibrium play (possibly in mixed strategies) and
that (ν1, ν2, ξ1, ξ2) ⊥ (X,Z). Then,

1. The parameters of the first two inequalities in (1) are identified as z1, z2 →∞.

2. In addition, (β, α1, α2) are also point identified as z1, z2 →∞.

The intuition for the above result is simple. Large support conditions are sufficient for
point identification of the entry model (see Tamer, 2003). Now, for the outcome equation,
we can do 2SLS at infinity as follows. For large values of z1 (large negative or positive values
depend on the sign of γ which can be learned fast by looking at whether large positive values
of z1 say correspond to higher likelihood of seeing a player 1 in the market) for example,
player 1 is in the market with probability 1. Hence, we can use X2 as an instrument for V1
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and do 2sls on the first outcome equation conditional on the event that z1 → ∞. Driving
player 1 to enter with probability 1 eliminates the correlation between ξ1 and y1 = 1 which
allows us to use “standard methods” to estimate the first outcome equation. These methods
would be based on the moment condition

E[(X ′1, X
′
2)
′ξ1|z1 →∞] = 0

Hence, what is needed for the identification of outcome equation 1 for example (arguments for
the second outcome equation are similar) is two excluded variables: a standard instrument
X2 and an excluded variable from the outcome equation, z1 in this case, that takes large
values and can influence the entry of player 1. Such a variable can be one that affects fixed
costs only, but not variable costs and can be exogenously moved. In the standard case, the
only needed condition is an instrument X2. So, to control for the first stage, we are required
to have another instrument that can take large values. Note that the identification results
in the Theorem above do NOT require that 1) the joint distribution of the unobservables be
known, but requires that those be independent of the exogenous regressors, and 2) that the
players play pure strategies (also here, the results in the Theorem do not require that the
sign of the ∆’s be known but we maintain here that the sign of these is strictly negative).
On the negative side, these point identification results based on large supports lead to slow
rates of convergence which makes it hard to be used with standard data sets.

Without such large support conditions, it is unclear whether we get point identification
and hence it is crucial that any inference methods used is robust to failure of point identi-
fication. Basing our inference on the derived moment inequalities does not require that the
parameter is point identified. The confidence regions that these methods use are based on
inverting test statistics like the following ones.

So, under the null that θ = θ∗, we have

H0 : E[G(θ∗, S1y1, S2y2, V1y1, V2y2, y1, y2)|Z, X] ≤ 0 for all (X,Z, t1, t2)

The next theorem provides the objective function that we use to define our test statistic.

Theorem 2 Suppose the above parametric assumptions in model (1) are maintained. In ad-
dition, assume that (X,Z) ⊥ (ξ1, ξ2, ν2, ν2) where the latter is normally distributed with mean
zero and covariance matrix Σ. Then given a large data set on (y1, y2, S1y1, V1y1, S2y2, V2y2,X,Z)
the true parameter vector θ = (δ1, δ2, α1, α2, β, γ,Σ) minimizes the nonnegative objective
function below to zero:

Q(θ) = 0 =

∫
W (X,Z)‖G(θ, S1y1, S2y2, V1y1, V2y2, y1, y2)|Z, X]‖+dFX,Z (A.1)

for a strictly positive weight function (X,Z).

The above is a standard conditional moment inequality model where we employ discrete
valued variables in the conditioning set along with a finite (and small) set of t’s.1

1It is possible to use recent advances in inference methods in moment inequality models with a continuum
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B Computational Guide

The estimation algorithm compares moments from the data (which themselves depend on
parameters) to model predicted analogues. The entry model generally predicts multiple
equilibria, so for a given set of parameters and a given draw from the joint distribution of
model errors, there may be multiple predictions from the model. Below, we detail the steps
we use to estimate the model: (i) Evaluating the moments from the data, (ii) simulating
the bounds on the moments from the model, (iii) comparing the data to the model, (iv)
computation of optimization and inference, and (v) counterfactuals.

(i) Moments from the data

For a given guess of the parameters Θ0 = (α0, β0, ϕ0, γ0,Σ0) we estimate the probability
distribution functions for the residuals from the demand and supply equations. In the data,
each market has an observed market structure, êm ∈ E. For all markets and all active
carriers, we compute the following two residuals:

ξ̂êmjm = log(sjm)− log(s0)−X ′β0 − α0pjm − λln(sjm|g) (A.2)

η̂êmjm = ln(pjm − [
1− λ

α(1− λsj|g − (1− λ)sj)
])− ϕWjm, (A.3)

where we are clear that the residuals are specific to a particular market structure, êm, j
indexes carriers, and m indexes markets.

The moments we use in estimation are the joint distribution of these residuals. In practice,
we compute the joint probability distribution (joint between supply, demand, and across all
firms) function,

Pr(ξ̂ê <= tD, η̂
ê <= tS | X,W,Z) (A.4)

by constructing a histogram by binning up the domain of the residuals and counting the
frequency of residuals in each bin.2 As we describe next, the moments are constructed by
taking differences between the bin-counts of the distribution of residuals from the data with
the distribution of selected errors predicted by the model.

(ii) Model predictions

We construct the distribution of structural errors predicted to be selected by the model
using simulation. For the same guess fo parameters, Θ0, we make 100 draws from the joint

of moments, but these again will present computational difficulties especially in the empirical model we
consider below. We detail in the next Section the exact computational steps that we use to ensure well
behavior (and correct coverage) of our procedures.

2We estimate the CDF using histograms (using Matlab’s histcounts function). This takes much less
computer memory (at least the way we are thinking about the problem). The dimensionality of the array
that defines the histogram can be as small as 2-dimensional (a matrix) for a market with a single entrant
and as large as 12-dimensional array for a market with six entrants (each firm has a demand and supply
residual).
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distribution of demand, marginal cost, and fixed cost errors,

ξη
ν

 ∼MVN(0,Σ0) for every

market. We solve for all possible equilibria in each market for each simulation draw. Solving
for all possible equilibria involves finding a vector of profits (defined by the three vector-
valued equations in Equation 16 in the main text) that are consistent with pure strategy
Nash behavior for every potential market structure. Finding a vector of profits involves
finding the Nash Equilibrium of prices for any particular market structure, which is itself
the solution to a system of implicit non-linear equations in prices defined by the pricing
first-order-conditions.3 Because we have six potential entrants, we have 26 market structures
to solve for profits for every simulation draw in each market.4

When there are no pure-strategy equilibria in the entry game, we know that there exists
at least one equilibrium in mixed-strategies. In that case, which happens very rarely in
our empirical analysis, we proceed as follows. First, we determine the firms for which it
is a dominant strategy not to enter. Then, we know that there will be at least one mixed
strategy equilibrium where one of the remaining firms assigns a positive probability to the
entry decision. Finally, we count this observation-simulation as contributing to the upper
bound of the CDF of the simulated errors for all those firms.5

We collect all of the simulated errors that are part of equilibrium play. For example, if in
one market for one simulation AA and DL are the active firms, the structural errors associated
with those two carriers are the model selected errors, (ξe

∗
AA,mr, ξ

e∗
DL,mr, η

e∗
AA,mr, η

e∗
DL,mr), where

r indexes simulation draws. To construct the joint distribution of selected errors, we follow
the same procedure of binning up the domain of the errors (using the same bin cutoffs)
as we used for the computation of the distribution of the residuals. However, because of
multiple equilibria, there will be an upper limit to the distribution and a lower limit. The
upper limit is defined when we do not include any errors from those simulation-markets
with multiple equilibria, as we are agnostic about equilibrium selection. The lower limit
includes all errors from markets with multiple equilibria. This procedure is analogous to the
procedure in Ciliberto and Tamer (2009), and yields the upper and lower joint distributions
of model selected errors:

Pr

ξer <= tD, η
e
r <= tS;

ξη
ν

 ∈ AMe |X,W,Z

 (A.5)

3We employ a multi-method strategy for finding equilibrium prices. For a vast majority of the cases,
iterating on the markup equation solves for the vector of equilibrium prices quickly. However, we also
employ quasi-Newton root-finding when function iteration fails or moves slowly.

4We parallelize our code across markets. The 1 percentile of time that it takes to solve everything one
time for all simulations for all markets is 10.2 seconds; the 99 percentile that it takes is 24.6 seconds. The
median time that it takes is 12 seconds.

5For example, suppose that Firm 1 and Firm 2 are the only firms in a market, for a given simulation, for
which entry is not a dominated strategy. Then, we maintain that the simulated errors for those two firms,
for that simulation in that market, contribute to the upper bound of the CDF.
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and

Pr

ξer <= tD, η
e
r <= tS;

ξη
ν

 ∈ AUe |X,W,Z

 , (A.6)

where (from Section 2)

ξη
ν

 ∈ AUe denotes the realizations of the errors that imply unique

equilibria and

ξη
ν

 ∈ AMe denotes realization of the fixed cost error that imply multiple

equilibria. To construct the density function from the simulations, we take a simple average
over the psuedo-random Monte Carlo draws, indexed by r.

(iii) Constructing Moments

The moments we use for estimation involve comparing the distribution of residuals to the
upper and lower bounds of the distribution of model selected errors. We take the squared
difference of the bin counts that define the conditional joint distribution of residuals and
model selected errors. We sum these squared differences across bin counts and across the
different conditional distributions. Because of multiple equilibria, we only penalize the func-
tion if the cdf of the residuals is greater than the upper limit for the selected errors or less
than the lower limit for the selected errors. Notice that there are essentially two types of
ways the model will not fit the data: (1) conditional on a market structure and (X,Z,W ),
the residuals have a different distribution than the selected errors, and (2) the model predicts
different market structures than the data.

To choose the t’s in the grid, we proceed in two steps. First, we determine the distributions
of the demand and marginal cost residuals when we estimate the model with GMM without
selection. We use this to learn over what support the residuals are defined, in terms of their
max and min value. Using this approach, we selected the following values for the t of the
demand: [-10;-7.5;-5;-2.5;0;2.5;5;7.5;10]. And we chose the following values for the t of the
marginal cost: [-2;-1.5;-1;-0.5;0;0.5;1;1.5;2], or one-fifth the scale of the demand errors. In
our experimentation when estimating Column 1 of Table 4 (the exogenous case) we found
that this proportional relationship is important. Ideally, one would want to have a very
fine grid for the t but there is a trade-off because of memory limitations (explained above)
associated with storing so many cells used to construct the histogram estimate.

(iv) Objective Function Minimization, Computational Details, and Inference

The minimization of the distance function given by Equation (A.1) in the main text and
described above is computationally intensive because we have to use simulation methods to
integrate two multi-dimensional distribution functions and then compare them. In addition
to constructing the distribution functions, we need to solve for Nash equilibria in many
markets, and for many possible combinations of firms in each market. We need to do these
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things many times because the objective function may be non-smooth and non-convex, so
finding a set of parameters that minimize the objective function may be taxing.

The keys to finding the global minimum are:

1. Parallel computing;

2. Good initial guesses on as many parameters as possible;

3. Using many different starting values;

4. Using flexible minimization routines that mix different built-in algorithms.

Each one of these ingredients is important in finding a global minimum. Overall, we
reach the area of the global minimum in approximately three days and the optimization is
completed in approximately seven days. In practice, we have very good starting values for
many of the parameters from IV regressions that do not account for endogenous entry.

For inference purposes, we continue the minimization longer in order to collect as many
parameters close to the argmin. We use Matlab’s optimization algorithms to sample the
objective function and we save the results to get a snapshot of the surface of the function.
In addition, we randomly and non-randomly sample parameters close to the minimum to
achieve good coverage around the minimum in order to construct confidence regions.

Good Initial Guess on as many parameters as possible: The GMM estimation
that assumes exogenous market structure provides us with natural starting values for the
parameters of the utility and marginal cost functions.

To get starting values for the parameters in the fixed cost function, and for the remaining
parameters in the variance covariance matrix, we proceeded as follows. We compute the
total revenues (observed prices times observed quantities) minus the inferred variable costs
(GMM inferred marginal costs times quantities). This difference is equal to the profit of the
firm, plus the fixed costs. Therefore, this difference should be thought of as the upper bound
on the fixed costs. We regress this difference on the exogenous variables that enter into the
entry condition and saved these parameter estimates for our next step.

Many Starting Values: We start with multiple initial values, which are derived as
follows. For each of the initial guesses above, we find a reasonable interval around those
guesses in the sense that the intervals are on the same scale as the standard errors from the
GMM estimation and the interval implies sensible economic predictions, for example positive
marginal costs and markups that are not near zero. For example, for the price parameter
estimate, which is equal to -0.0229 in the GMM, we prepare an interval equal to [-0.035,
-0.010]. We repeat this exercise for all the parameters. An important remark: Recall that
in order to limit the space over which to draw for the argmin, we have standardized all the
exogenous variables. This stabilizes the search and allows us to limit the parameter search
within the intervals [-2,2] for all the exogenous variables while running patternsearch.6

6We did not find any of the parameters getting close to the bounds during the minimization process.
Otherwise, we would have restarted the minimization with wider bounds for that parameter.
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Next, we draw up to 50,000 independent random draws from these intervals. Out of these
50,000 starting values, we select the 10 that are associated with the lowest distance function
values. This first step takes approximately one day of time, but we save these function
evaluations, so this is itself part of the minimization and confidence function construction
processes. Our next step is to use canned algorithms in the Global Optimization Tool-
box in Matlab to minimize the function starting from the first round of 10 lowest values.

Multiple Iterations of Flexible Minimization Routines: In our experimentation we
have used different combinations of three canned algorithms in the Global Optimization
Toolbox in Matlab: simulannealbnd, patternsearch, and fminsearchOS. We have
found that patternsearch provides the best minimization results after we draw the 50,000
initial values, as described above. Therefore, we take the best 10 values out of the 50,000,
and run patternsearch.

We have found that after 1 day, patternsearch converges to a new parameter value. We
found that the new parameter value depends on the starting values, and that is why it is
crucial to draw as many starting values as we do. This is because the distance function is
highly nonlinear and the minimization problem is complex.

At this point we take the 10 local minima after running patternsearch, and reiterate
the process described in the Section above (Many Starting Value), but choosing tighter
bounds. We draw another 50,000 independent random draws. We run patternsearch again
on the 10 that are associated with the lowest distance function.

In our work, we have run few iterations of this two-step process of i) drawing randomly,
then ii) using patternsearch this process this time. We have determined that this process
is the one that reaches the global minimum in the most efficient way.

We finish the estimation with fminsearchOS, a more flexible implementation of Matlab’s
fminsearch, which can be found on Matlab’s FileExchange platform. There are no bounds
on the parameters when we run fminsearchOS. fminsearchOS only takes few hours to
converge.

Overall, for the estimation of Column 3 in Table 4 of the paper we end up with 589,083
iterations. The minimization process takes one week of time.

Plots Around the Minimum Following a Referee’s suggestion, we show plots of the
objective function around the minimum as we vary each parameter, one by one. The plots
are in Figure A1. Although this is not a formal proof of optimality, the plots lend credibility
to the outcome of our estimation routine.7

Inference The construction of confidence regions follows Chernozhukov, Hong, and Tamer
(2007), which involves obtaining critical values via subsampling. In practice, we use 100
subsamples of one-quarter the size of the original dataset and start the subsampling routine

7The domain of each plot was chosen so that the minimum can be visually identified. In all cases, if we
extend the domain the function value in those regions increases considreably and the plot becomes difficult
to visuall inspect.
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Figure A1: Objective Function in Each Parameter Dimension

from the argmin we found in the initial estimation. We compute the confidence region for
the point using the procedure outlined in the On-line Appendix of CT, page 5.

Note on normalizing the objective function Q(θ): after finding a minimizer of the objective
function, and so obtaining a value ηn = minθQn(θ) we normalize the sample objective
function and use Q∗n(θ) = Qn(θ)−ηn to construct confidence regions (as suggested in CHT).
This is similar to constructing constructing χ2 confidence regions in GMM and plays a
role in that it guarantees that in finite samples, the confidence intervals are non-empty.
Under a well specified model, this normalization plays no role asymptotically. If the model
is misspecified (i.e., minQ(θ) > 0), then this normalization will guarantee that we are
constructing confidence regions for the argmin of Q(θ).

(v) Details of Counterfactuals

We predict the effects of a AA-US merger for four different assumptions about the new
merged firms:

1. the surviving firm, AA, takes the best observed and unobserved characteristics from
the pre-merger AA and US,

2. the surviving firm inherits the best observed characteristics, but we take AA’s unob-
servable,
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3. the surviving firm inherits the best observed characteristics, but we re-draw errors for
the firm,

4. the surviving firm takes the mean values of the observed and unobserved characteristics
from the pre-merger AA and US, and

To construct confidence intervals for each of these counterfactual scenarios, we draw 100
parameter vectors from the confidence set and evaluate the counterfactual equilibrium market
outcomes for each parameter vector. For a specific table, for example Table 8, starting
from all of the counterfactual simulations we condition on a particular pre-merger market
structure. For a particular parameter vector, we compute the upper and lower bounds for
the number of times we observe the market structure changing to each possible market
structures, post merger. So for Table 8, we took all the simulations that (for a particular
parameter vector) predicted AA/US Duopoly before the merger and then computed then
counted the number of times we observed an AA monopoly post-merger. Then, to get the
95% confidence sets, we take the 2.5 percentile and 97.5 percentile of the probability of
observing each market structure, across the 100 parameter vectors we drew from the original
confidence set. We follow the same procedure for the prices – always conditioning on the
pre-merger market structure.

(vi) Timing and Acknowledgments

At the beginning of our computational work, in 2014, we ran testing for the code on multiple
systems, including the XSEDE resources Gordon and Trestles at the San Diego Supercom-
puting Center. Performance and scaling tests on Gordon indicated at most 32 workers
(cores) provided the shortest execution time before communication overhead to the workers
becomes significant. The computationally intense estimation of our models at the time in a
relatively short period of time was made feasible because of the use of XSEDE resources.8 In
our experimentation we found that having 200 or 500 simulations did not make a difference
in our results, while the time taken was much larger. Thus, the costs of more simulations
outweighed the benefits.

More recently, We have used two other resources to implement the optimization routine,
the HPC system at the University of Virginia known as Rivanna, and the HPC system
at Penn State University known as ACI. Rivanna is a 4800-core, high-speed interconnect
cluster, with 1.4 PBs of storage available in a fast Lustre filesystem. ACI is a 23,000 core
high-speed cluster with 20 PBs of storage and 640 teraflops of total peak performance.

We gratefully acknowledge the use of both the XSEDE resources and those at the Uni-
versity of Virginia and Penn State University.

8John Towns, Timothy Cockerill, Maytal Dahan, Ian Foster, Kelly Gaither, Andrew Grimshaw, Victor
Hazlewood, Scott Lathrop, Dave Lifka, Gregory D. Peterson, Ralph Roskies, J. Ray Scott, Nancy Wilkens-
Diehr, “XSEDE: Accelerating Scientific Discovery”, Computing in Science & Engineering, vol.16, no. 5, pp.
62-74, Sept.-Oct. 2014.
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C Data Construction

The main data are from the domestic Origin and Destination Survey (DB1B), the Form 41
Traffic T-100 Domestic Segment (U.S. Carriers), and the Aviation Support Tables : Car-
rier Decode, all available from the Department of Transportation’s National Transportation
Library. We also use the US Census for the demographic data, specifically to get the to-
tal population in each Metropolitan Statistical Area. The Origin and Destination Survey
(DB1B) is a 10 percent sample of airline tickets from reporting carriers. The dataset includes
information on the origin, destination, and other itinerary details of passengers transported,
most importantly the fare. The Form 41 Traffic T-100 Domestic Segment (U.S. Carriers)
contains domestic non-stop segment data reported by US carriers, including carrier, ori-
gin, destination of the trip. The dataset Aviation Support Tables : Carrier Decode is used
to clean the information on carriers, more specifically to determine which carriers exit the
industry over time, and which one merge, or are owned by another carrier.

We define a market as a unidirectional trip between two airports, irrespective of interme-
diate transfer points. For example, we will assume that the nonstop service between Chicago
O’Hare (ORD) and New York La Guardia (LGA) is in the same market as the connecting
service through Cleveland (CLE) from ORD to LGA. The market ORDLGA is a different
market from LGAORD.

We follow Borenstein (1989) and assume that flights to different airports in the same
metropolitan area are in separate markets. To select the markets, we merge this dataset with
demographic information on population from the U.S. Census Bureau for all the Metropoli-
tan Statistical Areas of the United States. We then construct a ranking of airports by
the MSA’s market size. Our final dataset includes a sample of markets between the top
100 Metropolitan Statistical Areas, ranked by the population size in 2012. We exclude the
Youngstown-Warren Regional Airport, Toledo Express Airport, St. Pete-Clearwater Interna-
tional Airport, Muskegon County Airport, and Lansing Capital Region International Airport
because there are too few markets between these airports and the remaining airports.

Then, we proceed to further clean the data as follows. We drop: 1) Tickets with more
than 6 coupons overall, or more than 3 coupons in either direction if a round-trip ticket; 2)
Tickets involving US-nonreporting carrier flying within North America (small airlines serving
big airlines) and foreign carrier flying between two US points; 3) Tickets that are part of
international travel; 4) Tickets involving non-contiguous domestic travel (Hawaii, Alaska,
and Territories) as these flights are subsidized by the US mail service; 5) Tickets whose fare
credibility is questioned by the DOT or for which the bulk fare indicator was equal to 1 ; 6)
Tickets that are neither one-way nor round-trip travel; 7) Tickets including travel on more
than one airline on a directional trip (known as interline tickets), here identified by whether
there was a change in the ticket carrier for the ticket.

Next, we follow the approach in Borenstein (1989) and Ciliberto and Williams (2014) and
consider a round-trip ticket as two directional trips on the market, and the fare paid on each
directional trip is equal to half of the round-trip fare. A one-way ticket is one directional
trip.
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Moreover, as in Berry and Jia (2010) and Ciliberto and Williams (2014), tickets sold
under a code-share agreement (for example, a ticket sold by USAir on a United operated
flight) are allocated to the airlines that sold the tickets (so, in the example, to USAir). This
is consistent with the notion that the ticketing carrier has access to the ”metal” (the seats)
of the operating carrier. Notice that this implies that there can be observations where the
airline does not have any nonstop routes out of an airport, but the airline can sell tickets for
flights out of that airport.

We then drop: 1) Tickets with fares less than 20 dollars; 2) Tickets in the top and bottom
one percentiles of the year-quarter fare distribution, and tickets for which the fare per mile
(the yield) was in the top and bottom one percentiles of the year-quarter yield distribution.

We then aggregate the ticket data by ticketing carrier and thus the unit of observation is
market-carrier-year-quarter specific.

Next, we drop markets whose distance is less than 150 miles. We also drop airlines that
served fewer than 90 passengers in a quarter. Finally, we determine the markets that are not
served by any airline, but that could be potentially served by one. These are the markets
that were served at least 80 percent of all quarters between the first quarter in 1994 and the
first quarter in 2017.

The airlines in the initial dataset are: American, Alaska, JetBlue, Delta, Frontier, Al-
legiant, Spirit, Sun Country, United, USAir, Virgin, Southwest. By the second quarter of
2012, Southwest had completed the acquisition of AirTran, although the two carriers were
still issuing tickets with different code (FL vs WN). As in Ciliberto and Tamer (2009), we
deal with how to treat regional airlines that operate through code-sharing with national
airlines as follows. We assume that the decision to serve a spoke is made by the regional
carrier, which then signs code-share agreements with the national airlines. As long as the
regional airline is independently owned and issues tickets, we treat it separately from the
national airline.

The low cost type is composed of: Alaska, JetBlue, Frontier, Allegiant, Spirit, Sun Coun-
try, Virgin. We re-elaborate their data as follows. The LCC’s number of passengers is
the sum of the passengers over all the LCCs that serve a market. The LCC’s price is the
passenger weighted mean of the prices charged by all the LCC airlines in a market. For
the explanatory variables we take the maximum value among the low cost carriers serving
a market of the variables Origin Presence, Destination Presence, Nonstop Network Origin,
Nonstop Network Destination. We also take the maximum of the categorical variables that
indicate whether a firm is a potential entrant in a market.

After this preliminary cleaning, we compute the 95 percentile of the mean prices and yield
per mile, and we drop markets where prices and yields above these values were observed.

In order to compute the confidence intervals as in Chernozhukov, Hong, and Tamer (2007)
we discretize the exogenous variables. The discretization is done as follows. First, we stan-
dardize the continuous variables. Then, we construct intervals where the thresholds are given
by -1, -0.5, 0, 0.5, 1, as well as integers such as -2, 2, -3, 3. The discretization affects the
variables in both the solving the model as well as the values of the instruments. When also
estimate the exogenous-entry GMM specification with these discretized variables.
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D Robustness Analysis

This Section investigates how demand estimates change with changes in the modeling of the
demand and in the nature of the exogenous variation that identifies the demand coefficients.
The results are before the discretization of the variables.

Column 1 of Table A2 presents the baseline results from running a standard OLS regres-
sion. The price coefficient is estimated equal to -0.004, and it implies a median elasticity of
-0.902, which is inconsistent with a model of profit maximization. There are 15,100 obser-
vations out of 22,445 for which the elasticity is larger than -1.

Column 2 of Table A2 presents the baseline results from running a standard two stage
least squares nested logit regression, when we use Nonstop Destination and Nonstop Origin
as instrumental variables. We use both the values of the firm associated with the observation
as well as the values of the potential competitors. This is analogous to the identification
strategy in Bresnahan (1987). The coefficient estimate of the price is now equal to -0.012,
and the median elasticity is -3.005.

Table A2: Parameter Estimates with Exogenous Market Structure

Simple Logit Nested Logit Nested Logit Nested Logit
OLS Logit IV IV IV IV

Demand

Price -0.004 -0.012 -0.028 -0.020 -0.026
(0.000) (0.000) (0.001) (0.000) (0.001)

σ – – 0.529 0.361 0.420
– – (0.016) (0.012) (0.016)

Distance -0.241 0.161 0.923 0.518 0.790
(0.016) (0.027) (0.038) (0.028) (0.037)

Origin Presence 0.007 0.006 0.004 0.022 0.005
(0.000) (0.000) (0.000) (0.048) (0.000)

LCC 1.004 0.458 -0.505 0.082 -0.338
(0.037) (0.049) (0.062) (0.041) (0.060)

WN 1.201 0.957 0.062 0.445 0.232
(0.022) (0.027) (0.040) (0.031) (0.039)

Constant -8.148 -6.338 -1.936 -4.066 -2.736
(0.046) (0.108) (0.179) (0.127) (0.175)

Elasticities and Percentage Contribution Margins

Median Elasticity -0.901 -3.005 -11.975 -6.578 -9.1220
Elasticities >= −1 15,100 7 0 0 0

Nonstop Destina-
tion IV

No Yes Yes Yes Yes

Nonstop Origin IV No Yes Yes Yes No
Potential Entrants

IV
No No No Yes No

Column 3 presents the results when we estimate a nested logit as in Berry (1994) using
the same instrumental variables that we used in Column 2. We find the coefficient of price
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equal to -0.028, the coefficient of the nesting parameter equal to 0.528, and the corresponding
median elasticity equal to -11.975.

Column 4 presents the results when we include the information on the potential entrants
as instrumental variables. In practice, we add six variables as instrumental variables, one
for each of the six firms (AA, DL, UA, LCC, WN, US). The coefficient estimate of price is
now -0.020, and the nesting parameter is estimated equal to 0.361. These values are very
similar to those in our GMM estimates in Table 4 of the paper. The corresponding median
elasticity is equal to -6.578.

Finally, Column 5 of Table A2 shows the results if we maintain that only Nonstop Des-
tination can be used as instrumental variables. This is a key mantained assumption in the
identification strategy in Berry and Jia (2010). We find now that the price coefficient is
estimated equal to -0.026 and the nesting parameter is 0.420. The corresponding median
elasticity is -9.122.

Table A3: Parameter Estimates, Alternative Specifications

Main Specification (Table 4 in paper) Fixed Variance Segment Effects

Demand

Price [-1.992, -1.956] [-1.650, -1.633] [-1.360, -1.304]
λ [ 0.116, 0.144] [0.226, 0.238] [ 0.157, 0.189]
Distance [ 1.085, 1.273] [ 0.079, 0.148] [ 0.243, 0.300]
Origin Presence [-0.613, -0.426] [-0.459, -0.411] [-0.609, -0.505]
LCC [ 0.353, 0.853] [-1.558, -1.166] [-1.053, -0.787]
WN [ 0.904, 1.409] [ 0.299, 0.486] [-0.351, -0.210]
Constant [-5.191, -4.878] [-5.638, -5.560] [-6.473, -5.929]

Marginal Cost

Distance [ 0.111, 0.158] [-0.087, -0.071] [ -0.036, -0.029]
Origin Presence [ -0.649, -0.626] [-0.701, -0.692] [ -0.641, -0.600]
Cons LCC [ -0.002, 0.108] [-0.426, -0.371] [ -0.365, -0.286]
Cons WN [ 0.203, 0.330] [ 0.215, 0.281] [-0.120, -0.073]
Constant [ 5.267, 5.2901] [ 5.261, 5.277] [5.792, 5.804]

Fixed Cost

Constant [ -1.657, -1.288] [-1.353, -1.291] [-2.606, -1.992]
Nonstop Origin [ -0.452, -0.264] [-0.393, -0.323] [-0.143, -0.041]
Nonstop Dest. [ -2.260, -1.885] [-2.497, -2.434] [-2.032, -1.857]

Variance-Covariance*

Variance of Demand [5.142, 5.826] [3.939, 4.123] [4.494,4.766]
Variance Marg. Cost [0.334,0.373] [0.299,0.312] [0.322,0.338]
Variance of Fixed Cost [3.721 5.5332] 0.500* 1/3
Demand-MC Covariance [-0.099,0.243] [0.429,0.467] [0.541,579]
Demand-FC Covariance [0.631,0.786] [-0.246,-0.202] [-0.598,-0.537]
MC-FC Covariance [1.119,1.215] [0.246,0.255] [0.164,0.173]

Objective Function Value 0.885 0.890 0.886

Price coefficient multiplied by 100. * denotes a value that is fixed in estiamtion. The function value has been divided by

10000.

Overall, Table A2 shows that the parameter estimates of the price coefficients are stable
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across Columns 3-5, and show that the information on the potential entrants, as well as
the inclusion of Nonstop Origin as instrumental variables delivers estimates of the median
elasticity that are closer to previous work. More specifically, Berry and Jia (2010) use data
from 1996 to 2006 and estimate it between -2 and -3 in 2006 and trending upward from 1999.
Ciliberto and Williams (2014) use data from 2006 to 2008 and estimate the aggregate price
elasticity to be equal to -4.320 in their model that does not allow for collusive behavior.
Berry and Jia (2010) and, later on, Ciliberto and Williams (2014), use a two-type model
of demand, where they distinguish between two types, a coach type whose elasticity both
papers estimate to be between -6 and -6.5; and a business type, whose elasticity of demand
both papers estimate to be around -0.5. The estimates of the aggregate price elasticity
differs in Berry and Jia (2010) and Ciliberto and Williams (2014) because they estimate
different fractions of coach and business travelers. Berry and Jia (2010) estimate the share
of business passengers between 41 and 49 percent. Ciliberto and Williams estimate the
share of business passengers to be 34 percent. We infer that the average elasticity of demand
doubled between the period analysed by Berry and Jia and the one analysed by Ciliberto
and Williams, because of an increase in the share of economy passengers. Our dataset is
from 2012, well after the ones used by Berry and Jia (2010) and by Ciliberto and Williams
(2014), and therefore the increase in price elasticity is consistent with an increase in the
share of economy passengers.

In Table A3, we display estimation results from two alternative specifications of our model,
to show that freeing up the variance of the fixed cost firm unobservable is possible in our
context, in contrast to the CT (and any other discrete choice model, where the variance needs
to be normalized). In Column 1, we display our main results from Table 4 in the main text,
simply replicating them. In Column 2, we display results from a specification where we fix
the variance of fixed costs to 0.5 and the variance of the market specific error to 0.5 (so that
the sum is still equal to 1). In Column 3, we display the results from a specification where
we include an additional random effect at the bidirectional level. In practice, we maintain
that there are three errors in the entry equation: one that is firm specific; one that is uni-
directional specific (thus, LGAJFK has a different market specific error than JFKLGA), and
one that is bi-directional specific (thus, it is the same in the market LGAJFK and in the
market JFKLGA). Each one of these three errors is maintained to have a variance equal to
1/3. We observe that the results in Columns 2 and 3 are quite close to each other, with
the most important difference being that the price and nesting parameters are even smaller
in Column 3 than in Column 2. The comparison of the results in Column 1 vs 2 and 3
shows that freeing up the variance of the fixed costs leads to a lower function value of the
objective functions, as one would expect since there is one more free parameter. In general,
the magnitudes of the parameters are close to each other in the three specifications, which
assures that the model is robust to letting the variance of the firm fixed cost free.
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E Numerical Exercise

We run a series of numerical exercises to show that GMM estimates of markups are biased
if the true model has endogenous entry and to show that our estimation methodology works
well when we know the true parameters.

First, we present a slightly simplified version of our model. The simplifications include
fewer demand and cost variables. In practice, the model includes the minimum number of
parameters to make it comparable to our empirical analysis. The model is represented by
the following system of conditions:

Demand : ln(sjm) = αpjm + c1 +Xjmb1 + λln(sjgm) + ξjm (A.7)

Supply : ln(cjm) = c2 + b2Xjm + ηjm (A.8)

Entry : yj = 1⇔ πj ≡ (pjm − cjm)Mmsjm − exp(c3 + b4Z + ν)FCjm ≥ 0, (A.9)

(A.10)

where the epxression for demand and marginal costs are the following,

sjm =
exp(αpjm +Xjmβ + ξjm)

1 +
∑

k exp(αpjm +Xkmβ + ξkm)
(A.11)

cjm = pjm −
α(1− ρ)

1− ρsjgm − (1− ρ)sjm
. (A.12)

We assume the following variance covariance matrix for a particular airline:

Σjm =

 σ2
ξ σην σξν

σην σ2
η σην

σξν σην σ2
ν

 .
As in the main text, we assume that the correlation is only among the unobservables within a
firm, and not between the unobservables of the Km firms. This specification also restricts the
correlations to be the same for each firm and clearly reduces the parameters to be estimated.
However, the specification is rich compared to existing methods.

We generate covariates from a standard normal, one covariate for demand and one for
fixed costs. We also randomly generate market sizes for each market.

First, we can describe the role of selection in the model by displaying the distribution
of errors pre-selection and post-selection for various values associated with the covariance
matrix of the unobserved terms. In Figure A3 we display three graphs of histograms of errors.
In each graph, the larger histogram represents the pre-selected distributions of demand errors
for all of the potential firms in all of the simulated markets. This distribution is drawn
from an underlying joint normal with a mean of zero and the covariance matrix parameters
displayed in Column 1 of Table A4, except that we vary the correlation between demand
and fixed costs. In each graph, the smaller histogram represents those demand errors from
firms in markets that the model predicts to enter, or in other words, the selected errors. It

15



(a) cov(ξ, ν) = −0.4 (b) cov(ξ, ν) = 0 (c) cov(ξ, ν) = 0.4

Figure A3: Distribution of Demand Errors (ξ) For Different Covariances

is clear that the distribution of selected demand errors changes as the covariance between
demand and fixed costs changes. In the model, negative correlation between demand and
fixed cost shocks implies positively selected firms, which is intuitive and can be seen in the
first panel of Figure A3. The middle panel shows that without any correlation, the model
induces only a slightly shifted distribution of demand errors.9 When demand and fixed cost
shocks are positively correlated, the distribution of selected demand shocks is shifted to the
left. We would expect the corresponding bias in elasticity estiamtes to vary based on the
values of the covariance matrix as well.

Monte Carlo Simulation: Bias in “Standard” Model

We document the bias from estimating a standard model that does not account for selection.
To do this, we solve the model 1000 times for different random draws of the covariates, errors,
price parameter (α), nest parameter (λ), covariance matrix, and sets of potential entrants.
For each of the 1000 generated data sets, we estimate demand using the method suggested in
Berry (1994) and compute the implied markups. In Figure A3, we graphically compare the
implied markups from GMM to the true markups used to generate the 500 different draws
of data, varying the price sensitivity across datasets as well. It is clear that the estimates
are systematically different than the true values.

Model Estimation with Endogenous Entry

Next, we estimate the model using simulated data, employing the methodology we present
in Sections 2 and 3 of the main text. The true parameters are in Column 1 of Table A4.
In Column 2 we present the estimates using GMM, not accounting for selection a la Berry
(1994). In the Column 3, we present the 95% confidence intervals using our methodology.

Our methodology does quite well. Most of the true parameters lie within their associated
confidence intervals using our methodology, and in many cases the confidence intervals are

9We computed this numerical exercise for many different parameters and have found positive and negative
selection in the case where cov(ξ, η) = 0. We chose to display this particular case because these are the
parameters we use for the estimation exercise below.
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Figure A3: GMM Bias in Markups Across Different Parameter Values
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Note: Plot of true markups versus estimated markups using GMM that does not account for endogenous

selection/entry. Each point represents a different draw of data, errors, price parameter, and nesting

parameter.
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tight.10 In particular, our methodology does a much better job at estimating the price
coefficient than GMM.

It is not surprising that the price parameter, in particular, suffers from bias in the GMM es-
timation, because it links all three model conditions through its role in determining markups
(and, thus, the entry profit threshold condition as well).

Table A4: Parameter Estimates Using Simulated Data

True GMM Endogenous Entry

Demand

Price -0.02 -0.034 (0.005) [-0.029, -0.021]
Constant -3 0.077 (0.995) [-3.124, -1.842]
X 0.5 1.284 (0.278) [-0.819, 0.903]
Nest (λ) 0.30 0.307 (0.166) [0.273, 0.360]

Marginal Cost

Constant 5 5.067 (0.003) [4.670, 5.272]
X 0.5 0.375 (0.003) [0.107, 0.610]

Fixed Cost

Constant 3 – [1.071, 3.318]
Z -0.5 – [-0.594, -0.231]

Variance-Covariance

Marg. Cost Variance 0.10 0.074 [ 0.181, 0.263]
Demand Variance 2 3.254 [ 1.345, 3.498]
Demand-FC Covariance -0.10 – [-0.027, 0.147]
Demand-MC Covariance 0.20 – [ 0.551, 1.200]
MC-FC Correlation 0.10 0.3945 [ 0.286, 0.607]

Column 1: parameter values used to create simualted data. Column 2: Standard

GMM estimation. Column 3: Estimation using the methodology described in Section 2.

Standard errors in parentheses in Column 2. Columns 3 contain 95% confidence bounds

constructed using the method in Chernozhukov, Hong, and Tamer (2007). The dataset

includes 5000 markets with up to four potential entrants. We use 100 draws to simulate

the joint distribution of errors. As in the empirical application, we fix the fixed cost

variance at 0.5.

10The confidence intervals here are larger than in our empirical exercise. One reason is that our real data
looks irregular in the sense that it does not look normal like the fake data – in this sense the real data might
better satisfy large support conditions. Second, we use more bins to discretize the real data. Third, there is
more variation in potential entrants in the real data.

18



References

Berry, Steven T. 1994. “Estimating discrete-choice models of product differentiation.” The
RAND Journal of Economics :242–262.

Chernozhukov, Victor, Han Hong, and Elie Tamer. 2007. “Estimation and confidence regions
for parameter sets in econometric models1.” Econometrica 75 (5):1243–1284.

Ciliberto, Federico and Elie Tamer. 2009. “Market structure and multiple equilibria in airline
markets.” Econometrica 77 (6):1791–1828.

Tamer, Elie. 2003. “Incomplete simultaneous discrete response model with multiple equilib-
ria.” The Review of Economic Studies 70 (1):147–165.

19


