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Abstract

We experimentally study cheap talk by reporters motivated by their reputation for being well
informed. Evaluators assess reputation by cross checking the report with the realized state of the
world. We manipulate the key drivers of misreporting incentives: the uncertainty about the state of
the world and the beliefs of evaluators about the strategy of reporters. Consistent with theory,
reporters are more likely to report truthfully when there is more uncertainty and when evaluators
conjecture that reporters always report truthfully. However, the experiment highlights two
phenomena not predicted by standard theory. First, a large fraction of reports is truthful, even
when this is not a best response. Second, evaluators have di�culty learning reporters' strategies
and overreact to message accuracy. We show that a learning model where accuracy is
erroneously taken to represent truthfulness ts well evaluators' behavior. This judgement bias
reduces reporters' incentives to misreport and improves information transmission.
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1 Introduction

Forecasting is a thriving industry in economics, finance, and politics. Experts’ predictions

of future trends constitute the basis of policy prescriptions, investment decisions, and firm

management. As a consequence, forecaster accuracy is actively monitored, and forecasters

who attain outstanding reputation face remarkable career prospects.1 The strength of these

incentives might lead one to believe that reputation motives and market forces should ensure

performance and truthfulness of forecasters. As reported by Keane and Runkle (1998), “since

financial analysts’ livelihoods depend on the accuracy of their forecasts [. . .], we can safely

argue that these numbers accurately measure the analysts’ expectations.”

Building on models of career concerns by Holmström (1999) and herding by Scharfstein

and Stein (1990), this belief has been challenged by a large theoretical literature positing that

forecasters are economic agents who make strategic choices and may be reluctant to release

truthful information that could be considered inaccurate. In its basic structure (Ottaviani

and Sørensen, 2006a), the strategic situation studied in this literature generates a game of

reputational cheap talk between a reporter and an evaluator. The reporter privately observes

a signal about a state of the world and reports a message to the evaluator. The informative-

ness of the reporter’s signal is uncertain and initially unknown to both the reporter and the

evaluator. The evaluator assesses the informativeness of the reporter’s signal on the basis of

the reporter’s message and the realized state of the world. The objective of the reporter is to

maximize the reputation for being well informed, according to the assessment made by the

evaluator. Variants of the reputational cheap talk game have been extensively used in the

applied theory literature to model the strategic incentives for reputation management in the

context of financial recommendations, news reporting, and communication in organizations

(Trueman, 1994; Ehrbeck and Waldmann, 1996; Graham, 1999; Ottaviani and Sørensen,

2001, 2006a,b; Lamont, 2002; Prat, 2005; Gentzkow and Shapiro, 2006; Levy, 2007; Visser

and Swank, 2007; Deb et al., 2018).

Testing the predictions of these theories has proven challenging. For example, it is hard

to measure, let alone manipulate, the information available to reporters and evaluators.

This leaves us with many interesting open questions: Do these models accurately predict

behavior? Do reporters misreport available information to appear competent? How does

1For example, Alan Greenspan and Lawrence Meyer ran successful consulting firms offering forecasting
services before becoming key members of the Board of Governors of the Federal Reserve Bank. In a different
domain, after successfully calling the winner in 49 states in the 2008 U.S. presidential election, Nate Silver
was named one of The World’s 100 Most Influential People by Time, licensed his blog for publication in the
New York Times, and eventually sold it to ESPN.
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this depend on uncertainty and evaluators’ expectations? Are evaluators able to interpret

forecasts or are they näıve? This paper develops an experimental framework to address

these questions. With our innovative design, we are able to measure and exogenously ma-

nipulate the information structure, the degree of uncertainty over the forecasted variable,

the evaluators’ expectations, and the evaluators’ learning process.

A first challenge for the experimental design is to find a simple way to implement the

information structure posited by the theory. We meet this challenge by developing a novel urn

scheme with nested balls, which builds on the classic urn paradigm pioneered by Anderson

and Holt (1997). As in the classic setting, the private signal observed by the reporter

corresponds to the color of a ball drawn from an urn (either blue or orange). We innovate by

introducing an inner core inside the outer shell of each ball; the color of the core—which is

not visible to the reporter—represents the state of the world (either blue or orange). We then

capture the informativeness of the signal about the state by constructing urns containing

a different composition of nested balls: an informative urn contains balls whose shell and

core have the same color; in an uninformative urn, instead, the color of the shell gives no

indication of the color of the core.

A second challenge for the experimental design is to find a way to control for evaluators’

beliefs about reporter truthfulness, a key driver of reporting incentives. Indeed, these beliefs

are difficult to pin down for both the experimenter analyzing the data and reporters engaged

in the experimental task. This is due to the existence of multiple equilibria and to the high

level of strategic sophistication required for equilibrium play in these games. We meet this

challenge by designing treatments where human reporters face computerized evaluators and

by introducing a novel model of Bayesian learning which determines how the beliefs of some

computerized evaluators evolve over time.

In particular, to study reporters’ strategic incentives, we employ eight different treat-

ments, manipulating two crucial dimensions of the game: the common prior belief on the

state of the world, q, and the evaluators’ expectations. We consider two values of q, cho-

sen to generate different predictions about reporter behavior. We vary how we control for

evaluators’ beliefs through four games: a game with computerized evaluators programmed to

believe that all reporters always report truthfully (CT); a game with computerized evaluators

programmed to believe that the fraction of reporters who report truthfully is uniformly dis-

tributed (CU); a game with computerized evaluators whose beliefs are programmed to evolve

according to Bayesian learning, based on the outcome of past individual interactions with

reporters (CL); and a game with human evaluators who have free beliefs about reporters’
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behavior (HF).

Our design isolates two forms of uncertainty about evaluators’ behavior that may affect

reporters’ choices: when facing human evaluators, reporters are uncertain both about the

beliefs evaluators may hold and about whether they best reply to held beliefs. Games CT

and CU eliminate both forms of uncertainty by fixing evaluators’ beliefs and, essentially,

transform the reputational cheap talk game in a decision problem for reporters. Game CL

eliminates only the latter form of uncertainty—since, there, evaluators best reply to evolving

beliefs—but allows us to control for learning on the side of evaluators. The tractable learning

process we develop for game CL—a noisy Bernoulli learning model whose conjugate prior is

a generalized Beta distribution—is of independent interest and also serves as a benchmark

to study learning by human evaluators.2

According to the theory of reputational cheap talk, prior belief about the state of the

world and evaluators’ beliefs about reporter truthfulness jointly determine which, among

two forces driving reporting incentives, should prevail. Intuitively, these two forces emerge

because the reporter uses the signal to simultaneously update beliefs about the state of the

world and about the informativeness of the signal. To understand the consequences of the

double role of the reporter’s signal, suppose that the prior about the state of the world is

unbalanced in favor of blue (as is always the case in our experiment) and that the evaluator

believes that the reporter truthfully reports the observed shell (as in our CT game). If the

evaluator’s assessment were formed just on the basis of the report but without observing

the state of the world, the reporter would always want to report a signal corresponding to

the most likely state (blue), so as to improve the evaluator’s assessment that the signal was

informative (blue shells are more abundant in the informative urn only). This first force

pushes toward misreporting whenever the reporter’s signal corresponds to the least likely

state of the world (that is, he observes an orange shell). But the evaluator’s assessment is

also based on the realized state of the world (the core). The second force then comes into

play because the reporter’s signal always increases the belief that the state of the world will

be equal to the observed signal (that is, the core observed by the evaluator will have the same

color as the observed shell). Since a matching signal and state of the world are indicative

of an informative urn, this second force creates an incentive for the reporter to truthfully

report the observed signal.

2For other uses of computerized opponents in experimental economics, where a game is reduced to a
decision problem, see Roth and Murnighan (1978), Fehr and Tyran (2001), Esponda and Vespa (2014), and
Koch and Penczynski (2018). In none of these experiments, computerized players are programmed to learn
about the strategy of their human opponents on the basis of their experience. The learning model and the
experimental methodology we introduce are portable to other games of asymmetric information.
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If the evaluator believes that the reporter is always truthful, the second force prevails

when the reporter, upon observing an orange shell, thinks that the core is more likely to be

orange than blue. This is the case when the prior is mildly unbalanced; then there exists a

separating Bayesian Nash equilibrium in which the reporter truthfully reports the observed

shell and the evaluator believes in the report. If, instead, the prior is strongly unbalanced,

there is only a pooling equilibrium in which the reporter reports a blue shell even when

observing an orange shell and the evaluator disregards the report.

Empirically, we find that, as predicted by the theory, reporters are more likely to truth-

fully report information supporting the ex-ante unlikely state when they are less certain

about the state of the world and when evaluators always expect them to report truthfully.

We also find that human evaluators appropriately use the information they receive about

signal informativeness (report and core): assessments based on different report and core

combinations are ranked in the order predicted by theory.

At the same time, the experiment highlights phenomena that are not accounted by the

standard theory. First, around a third of reports are truthful, even when this is not a best

reply and even when reporters have gained experience with the task. Cluster analysis reveals

that this can be partly attributed to a subset of subjects who is insensitive to the uncertainty

about the state of the world and reports truthfully under both values of q.

Second, we find human evaluators’ behavior to be incompatible with beliefs based on

correct inference about reporters’ strategies in different environments. In particular, we find

that human evaluators incorrectly weigh reporter accuracy—that is, predicting the state of

the world by matching the color of the core—and inaccuracy—that is, mispredicting the state

of the world. Accuracy and inaccuracy carry information about signal informativeness only

when reporters are truthful; instead, evaluators’ assessments are more reactive to accuracy

and inaccuracy exactly when reporters are predicted and found to be less truthful (when the

prior is strongly unbalanced). This cannot be simply attributed to confusion about the rules

of the game or inability to do Bayesian updating: we show that this result is driven by a

subset of subjects whose assessments are indistinguishable from those of a Bayesian learner

when the inference does not depend on reporters’ strategies. This behavior may reflect

a higher willingness of evaluators to reward accuracy or punish inaccuracy at a cost (for

example, because of reciprocal motives, as in Rabin 1993 and Dufwenberg and Kirchsteiger

2004), when they detect more misreporting. Alternatively, we show that a learning model

where accuracy is erroneously taken to represent truthfulness and inaccuracy to represent

misreporting also generates the above-mentioned overreaction.
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In turn, evaluators’ observed behavior reduces reporters’ incentive to misreport. Consider

the treatment with strongly unbalanced priors. In the unique equilibrium of the game, the

reporter always misreports and, thus, a Bayesian evaluator’s assessment of the signal infor-

mativeness equals the balanced prior, regardless of the signal accuracy. In the experiment,

the average assessment following an inaccurate (accurate) blue report is 30% (56%). While

misreporting remains the best response, the gain with respect to truth-telling is dampened by

the harsh punishment associated with an inaccurate report. If reporters’ choices are stochas-

tic rather than deterministic and respond continuously to incentives (as in a random utility

model or a quantal response equilibrium), this leads to a positive incidence of truth-telling,

even among subjects who are not averse to lying.

These results have important implications for models of reputational cheap talk and

the design of markets for professional forecasting. Overall, our experiment suggests that

current models of reputational cheap talk correctly capture reporters’ behavior but might

be missing important elements in the way evaluators process the available information or

reward reporters for their advice. It also suggests that making experts’ ex-post accuracy

(rather than experts’ advice) a salient element of the information available to clients might

ameliorate forecasters’ performance and the transmission of information.3

While there is a large experimental literature on the statistical herding models of Banerjee

(1992) and Bikhchandani et al. (1992),4 this is the first paper testing experimentally the

basic building block of the reputational herding model of Scharfstein and Stein (1990) with

a single sender. Other recent experimental papers in this area (Fehrler and Hughes, 2018;

Renes and Visser, 2018; Mattozzi and Nakaguma, 2019) focus on situations with multiple

senders. Fehrler and Hughes (2018) and Mattozzi and Nakaguma (2019) experimentally

examine the role of transparency when career-concerned experts, differently from our setup,

are privately informed about the informativeness of their own signal and make a decision on

behalf of the evaluator. In a similar setting, Renes and Visser (2018) consider the case in

which the committee experts care both about their reputation and the quality of collective

decision making. Koch et al. (2009) and Irlenbusch and Sliwka (2006) conduct experiments

based on Holmström’s (1999) career concerns model. Contrary to our experiments, where we

manipulate the experts’ incentives to misreport, the main experimental treatment of these

3An example of such focus on accuracy is TipRanks (www.tipranks.com), a dataset of analysts, hedge
fund managers, financial bloggers, and corporate insiders. The site uses Natural Language Processing algo-
rithms to aggregate and analyze financial data online.

4Anderson and Holt (1997) pioneered the investigation of informational cascades in the laboratory. Their
work was extended, among others, by Hung and Plott (2001), Kübler and Weizsäcker (2003), Çelen and Kariv
(2004), Goeree et al. (2007), and Eyster et al. (2015). Anderson and Holt (2008) provide an excellent review.
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works is the information available to the evaluator before making his assessment.

With the exception of Fehrler and Hughes (2018) and Renes and Visser (2018), where

experts are allowed to send messages to each other, in these experiments there is no commu-

nication among agents. Thus, differently from our work, in none of these studies do experts

send a message to evaluators about the information they possess.5

While in our setting the sender cares about his reputation, in the experimental litera-

ture testing models of cheap talk,6 the sender cares about a decision taken by the receiver,

with the preference alignment between the sender and the receiver as the key driver of in-

formation transmission. The experimental literature on “näıve advice” also explores the

determinants and consequences of advice transmitted from informed senders who internal-

ize, at least partially, the receiver’s well being (Schotter, 2003; Schotter and Sopher, 2007;

Chaudhuri et al., 2009; Çelen et al., 2010). Given that the reporter’s utility depends on the

beliefs of the evaluator about the reporter’s type, reputational cheap talk is a psychological

game (Geanakoplos et al., 1989; Battigalli and Dufwenberg, 2009). In typical applications

of psychological games, the effect of beliefs on utility is mediated by emotions, thus reducing

the appeal of direct belief manipulation via computerized agents (our work) or payoff dis-

tributions (Khalmetski, 2016; Ederer and Stremitzer, 2017), in favor of the elicitation and

communication of beliefs (Ellingsen et al., 2010), or their indirect manipulation (Dufwenberg

and Gneezy, 2000; Charness and Dufwenberg, 2006).

The paper proceeds as follows: Section 2 introduces the theory underpinning our exper-

imental investigation and explains the design of the experiment. Section 3 derives in detail

the testable hypotheses we take to the laboratory. Section 4 presents the experimental re-

sults. Section 5 concludes. The Appendix develops a novel and tractable learning model

that combines a generalized Beta distribution with a noisy Bernoulli outcome; this learning

model plays a key role in the experimental design and analysis, but is also of independent

interest. The Online Appendix contains proofs, supplementary empirical results, and full

experimental instructions.

5In some treatments of Renes and Visser (2018), experts can transmit to evaluators a statement about
their confidence in the committee decision.

6See Blume et al. (Forthcoming) for a comprehensive review.
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2 Model and Experimental Design

2.1 Model

We consider a Bayesian game of reputational cheap talk between a reporter and an evaluator.

The model has been explicitly designed to capture the key issues from the reputational cheap

talk literature, while at the same time keeping it simple enough to investigate its predictions

in the laboratory.

The reporter and the evaluator are uncertain about a state of the world (corresponding

in the experiment to the color of the core of the ball), which can be either blue or orange,

c ∈ {b, o}. The common prior belief is unbalanced towards state b, Pr (c = b) = q ≥ 1/2.7

The reporter privately observes a signal about the state (the color of the Shell), which

can be either Blue or Orange, S ∈ {B,O}. There are two types of reporters (urns from

which signals are drawn), u ∈ {I, U}: reporters with u = I receive perfectly informative

signals, meaning that core and Shell color are equal for sure. Reporters with u = U receive

perfectly uninformative signals, meaning that regardless of the color of the Shell, the core

is equally likely to be blue or orange. The reporter and the evaluator are uncertain about

the signal’s informativeness and, ex-ante, believe that both possibilities are equally likely,

Pr (u = I) = Pr (u = U) = 1/2.

After observing the signal, the reporter sends a report to the evaluator, R ∈ {B,O}.
The reporter is unable to prove the signal received, so R is a cheap talk message. In the

theoretical analysis as well as in the experiment, we constrain the reporter to report R = B

after observing S = B and we allow misreporting only after observing S = O.8 Thus, the

reporter has two possible strategies:

• Misreporting (M): always report R = B, regardless of the signal.

• Truth-telling (T): report R = B when S = B; report R = O when S = O.

After observing the report R and the state of the world c, the evaluator assesses the

likelihood that the reporter was informed (i.e., that the signal was drawn from the informative

urn): Pr (u = I|R, c) = pRc. The reporter benefits from being perceived as informed with

a payoff proportional to this assessment. We assume the reporter to be risk neutral, with

expected utility from either strategy proportional to the expected evaluator’s assessment,

7Since the model is perfectly symmetric with respect to c, this is without loss of generality.
8Following observation of S = B, for q ≥ 1/2, there is no belief of the evaluator about the reporter’s

strategy for which the reporter finds it optimal to report R = O. Thus, to simplify the analysis and the
experimental task, we do not allow for this kind of misreporting.
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E[pRc]. The reporter, who does not know the state of the world when making the report,

perceives the evaluator’s assessment as a random variable taking the value pRb if the state of

the world is b, and pRo if the state of the world is o. Thus, if the reporter sends R = O, the

evaluator’s assessment will be either pOb or pOo; if the reporter sends R = B, the reporter

induces assessments pBb or pBo.

The evaluator’s objective is to make an accurate assessment of the reporter’s informative-

ness. This assessment depends on the evaluator’s belief about the probability the reporter

is truthful, denoted by f . Conditional on this belief f , on the received report R, and on

the observed state c, the evaluator has an incentive to make the most accurate possible

assessment.9

2.2 Experimental Implementation

The previous section describes the game played in one period of our experiment. In this

section, we further specify experimental subject payoffs, the structure of a session (composed

of several periods), and the structure of the entire experiment (composed of several sessions

and treatments).

2.2.1 Structure of a Session and Payoffs

Periods and Blocks. An experimental session consists of 4 blocks of 16 periods (for a total

of 64 periods) to allow learning. Each reporter is randomly re-matched with an evaluator

at the beginning of each period. The value of q is fixed during a block but it changes from

one block to the next (within-subject treatment variation), so that each value occurs in two

non-consecutive blocks. We use the term first block to indicate the block in which a given

value of q is encountered for the first time, and second block to indicate the block in which

this same q is encountered for the second time.

9The reduced-form payoffs we posit can be derived by appending a second period in which the same
game is played again, following a construction formulated in Holmström (1999) and further developed by
Scharfstein and Stein (1990). Before the second period starts, the report sent in the first period and the
realized state are publicly observed by at least two evaluators who compete to hire the reporter. Given
that this second period is also the last, the reporter has no incentives to lie and so can be safely assumed
to report truthfully. When hiring a reporter, each evaluator obtains a decision payoff that increases in
the informativeness of the reporter, because a more informed reporter truthfully sends a more informed
report. This justifies evaluators in our setting being paid by the accuracy of their assessment. Because of
competition among evaluators, the reporter is paid the expected value of her information, thus justifying
that the compensation of reporters is the evaluator’s assessment of their informativeness.
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u = I

u = U

(a) q = 6/10

u = I

u = U

(b) q = 8/10

Figure 1: Informative and uninformative urns with a mildly unbalanced prior—6 balls have
a blue core—in panel (a), and a strongly-unbalanced prior—8 balls have a blue core—in
panel (b).

Information Structure. The urns and nested balls structure is implemented with a com-

puterized toss of a fair coin to determine the urn type, u ∈ {I, U}, and computerized selection

of a nested ball from the chosen urn. Draws are independent across reporter-evaluator pairs

and periods. Urns in our experiment are composed of 10 balls each, among which Q = 10q

have a blue core and the remainder an orange core. Figures 1a and 1b, which are given

to experimental subjects as part of their instructions, represent the urn composition for,

respectively, q = 6/10 and q = 8/10. Consider our mildly unbalanced prior of q = 6/10

(Figure 1a). The informative urn in this case, is composed of six balls with a blue shell and

a matching blue core and of four balls with an orange shell and a matching orange core. The

uninformative urn also contains six balls with a blue core and four balls with an orange core;

however, among the six balls with a blue core, only three have a blue shell and, similarly,

among the four balls with an orange core, only two have an orange shell. Notice that the

uninformative urn always contains five balls with an orange shell and five with a blue shell.

As the prior probability of the blue state of the world increases to generate a strongly unbal-

anced prior, q = 8/10 (Figure 1b), the number of balls with a blue core increases to eight in

both urns, but the number of balls with a blue shell only increases in the informative urn.

Choices. As in the model, reporters in the experiment can choose to truthfully report the

received signal always, or to misreport by sending a report R = B when they observe S = O.

We use the strategy method to elicit reporters’ strategies as a plan of action set out before

they observe the drawn ball’s shell. Reporters in the experiment thus choose one of the

9



following two plans of action:

1. If I see a BLUE shell, I will report: “The shell is BLUE”.

If I see an ORANGE shell, I will report: “The shell is ORANGE”.

2. If I see a BLUE shell, I will report: “The shell is BLUE”.

If I see an ORANGE shell, I will report: “The shell is BLUE”.

The first plan corresponds to truth-telling and the second plan to misreporting. After re-

ceiving the report and observing the realized state of the world (core of the drawn ball),

evaluators are asked to assess the probability that the ball was drawn from the informative

urn.10

Payoffs. At the beginning of each block of periods, the reporter receives a budget of e4.

In each period, the reporter pays an operating fee of e0.25 and obtains a payoff equal to

eP , where P ∈ [0, 1] represents the evaluator’s assessment of the probability that the ball

was drawn from the informative urn. The operating fee allows for negative payoffs in periods

where received assessments are particularly low, which may stimulate best reply behavior.

The block budget of e4 ensures that reporters will never have negative final payoffs, since

negative payoffs are hard to enforce in the laboratory.11 We compensate human evaluators

using a binarized scoring rule (Harrison et al., 2013; Hossain and Okui, 2013). Once the

scoring rule is binarized, it is optimal for evaluators to truthfully report their personal

assessment, even if they are risk averse or do not have expected utility preferences, provided

that they prefer a binary lottery that assigns a higher probability to the larger reward to

one that assigns a lower probability to the same reward. An exact description of this scoring

rule can be found in the experimental instructions in Online Appendix C.

Feedback. At the end of each period, each reporter receives individual feedback about

the color of the core of the ball, the type of urn from which the ball was drawn, and the

evaluator’s assessment (that is, the reporter’s payoff). Similarly, at the end of each period,

each evaluator receives feedback on the type of urn from which the ball was drawn and

the evaluator’s payoff. We give this feedback to reporters and evaluators to allow them to

gain experience and learn how to play the game. Given that evaluators observe neither the

10To assist human evaluators in their assessment, the software provides a slider and computes the payoff
for different provisional assessments made by subjects.

11See Feltovich (2011) for a thorough discussion of the use of negative payoffs in economics experiments.
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strategy of reporters nor the color of the shell, feedback given to evaluators is also meant to

help them learn the strategy used by reporters.

2.2.2 Experimental Treatments and Sessions

Experimental Treatments. Experimental treatments vary along two dimensions, be-

tween two values of the prior probability of the state of the world, and between four forms

of experimental control of evaluator beliefs, thus yielding eight distinct treatments. The

prior probability of the state of the world is varied between a mildly unbalanced prior with

q = 6/10, and a strongly unbalanced prior with q = 8/10. Experimental control of evaluator

beliefs, f , is varied between four treatment games, described below. The value of q varies

within subject, since in each session subjects are confronted with both, while the treatment

game varies across subject (that is, one treatment game per session).

Treatment Games. The following treatment games are implemented:

• HF (Human Free). Evaluators are human subjects with free beliefs about reporters’

behavior.

• CT (Computerized Truthful). Given a received report and an observed core, comput-

erized evaluators in this game assess the probability that a drawn ball comes from an

informative urn as if they believed reporters are always truthful.

• CL (Computerized Learning). Computerized evaluators in this game are programmed

to learn about reporter truthfulness through experience. Evaluators are endowed with

a learning model that assumes there is a true, fixed, but unknown fraction f of re-

porters that report truthfully. Evaluators initially hold a uniformly-distributed belief

over the true value of f and update their belief with signals given by the triple of in-

formation that any evaluator (human or not) has after an interaction with a reporter:

the received report, the observed core, and the true informativeness of the urn. Some

triples constitute positive signals, others negative signals, and others are noisy signals

of the reporter’s truthfulness. Bayesian updating of beliefs using these signals gener-

ates an Exton-generalized Beta conjugate learning model (see Section 4.2.3 and the

Appendix).

• CU (Computerized Uniform). Given a received report and an observed core, comput-

erized evaluators in this game assess the probability that a drawn ball comes from
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Game Sessions Decisions (R-E Pairs) Subjects
q = 6/10 q = 8/10 Reporters Evaluators

HF 4 1,504 1,504 47 47
CT 2 1,504 1,504 47 0
CU 2 1,504 1,504 47 0
CL 4 1,536 1,536 48 0

Table 1: Experimental Design. R-E stands for Reporter-Evaluator.

an informative urn as if they believed the probability that reporters are truthful were

uniformly distributed, f ∼ U [0, 1]. This treatment is intermediate between CT and

CL: like in CT, beliefs are fixed; like in CL, the starting belief is a uniform distribution

over f .

Treatments and Sessions. We committed ex-ante to the described treatments. We ran

at least two sessions with the same treatment game, and a total of 12 sessions. Each session

lasted around two hours. To control for order effects in learning, we ran an equal number

of sessions with order 6868—initial block had q = 6/10—and order 8686—initial block had

q = 8/10. The number of sessions, subjects and decisions for each treatment game is reported

in Table 1.

Subjects and Realized Earnings. All experimental sessions were conducted at Bocconi

Experimental Laboratory for the Social Sciences (BELSS). Subjects’ age ranged between 18

and 30 (with an average of 21) and 45.76% of participants were female. Subjects partici-

pated in only one session and maintained their role of reporter or evaluator throughout the

whole session. Average earnings (including a e5 show-up fee) were e36.05 for reporters and

e39.66 for evaluators. Full experimental instructions were read out with the help of a video.

They are reported in Online Appendix C. The experiments were programmed using zTree

(Fischbacher, 2007).

3 Theoretical Analysis and Experimental Hypotheses

Equilibrium predictions, carefully presented in this section, constitute an important baseline

for our experiment. Another important baseline is that of reporter incentives and best-reply

behavior given the parameters q and f that we manipulate across treatments. We commence

with this analysis.
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Reporter Gain from Misreporting. Our analysis of reporter best-reply behavior cen-

ters around the gain a reporter expects to obtain if she misreports instead of telling the

truth after observing signal S = O, as a function of q and f . This magnitude, which we

denote ∆EU (q, f), captures all expected payoff differences between the two strategies, since

truth-telling and misreporting differ only if the signal is O. After observing S = O, the re-

porter weighs evaluator assessments given a report and a state of the world, using posterior

probability qO that the state of the world is b. Noticing that qO depends on the prior, q,

and that evaluator assessments, pRc, depend on their belief about reporter truthfulness, f ,

we obtain

∆EU (q, f) = [(1− qO(q)) pBo(f) + qOpBb(f)]︸ ︷︷ ︸
=EUM

− [(1− qO(q)) pOo(f) + qOpOb(f)]︸ ︷︷ ︸
=EUT

, (1)

where EUM and EUT denote the reporter’s expected payoff from misreporting or truth-

telling after observing an Orange shell.

3.1 Evaluator’s Assessments

If the evaluator could observe the signal and the state of the world, he would always update

his prior belief about signal quality based on whether signal and state matched or not.

Specifically, a matching signal and state of the world is twice as likely to occur if the signal

is informative than if it is uninformative, and a mismatch between signal and state of the

world is impossible if the signal is informative. This logic applies without qualifiers when the

evaluator receives a report R = O, since reporters are not allowed to use this report falsely.

Thus, in this case, received report equals observed shell, and the posterior from a match is

pOo = 2/3, and from a mismatch is pOb = 0.

Instead, when the evaluator receives a report R = B, he knows the signal may have been

S = O, since the reporter may have misreported. The observation of report and state of the

world, thus, differs in its informational content from the observation of signal and state of

the world. Specifically, given report B, state of the world c, and belief f , by Bayes’ rule the

evaluator’s assessment that the reporter is informed is

pBc = Pr (u = I|R = B, c, f) =
Pr (R = B|c, u = I, f) 1

2

Pr (R = B|c, u = I, f) 1
2

+ Pr (R = B|c, u = U, f) 1
2

. (2)

The evaluator’s assessments after a Blue report crucially depend on the likelihood that

the reporter is truthful, f . A belief that the reporter may misreport, 1 − f > 0, dampens
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the evaluator’s favorable inference about informativeness following a match between report

and state, pBb, as well as the unfavorable inference following a mismatch, pBo. From (2), we

have

pBb =
1

3
2

+ (1− f)1
2

and pBo =
(1− f)

1
2

+ (1− f)3
2

.

The evaluator’s assessments are most extreme and informative when the reporter is always

truthful, f = 1. If the evaluator expects that the reporter truthfully reports R = O following

S = O with lower probability f , the information content of the report is reduced and the

assessments that the urn is informative following reports R = B are dampened toward

p = 1/2. When the reporter is believed to always misreport, f = 0, the posterior assessments

must be equal to the prior, pBb = pBo = 1/2. We conclude:

Proposition 1 (Ranking of Evaluator’s Assessments) (a) Assessment pBb is strictly

increasing in f , with pBb ∈ [1/2, 2/3]; pBo is strictly decreasing in f , with pBo ∈ [0, 1/2]. (b)

The evaluator’s assessments are weakly ranked: pOo ≥ pBb ≥ pBo ≥ pOb for any f ∈ [0, 1]. If

f ∈ (0, 1), this ranking is strict: pOo > pBb > pBo > pOb. If f = 0, pOo > pBb = pBo > pOb.

If f = 1, pOo = pBb > pBo = pOb.

3.2 Reporter’s Incentives

Equation (1) and derivations in the previous section tell us that the two main drivers of

reporters’ behavior are the common prior belief on the state of the world, q, and the evalua-

tor’s belief on the reporter’s strategy, f . Our experimental design exploits this observation

by varying q and manipulating f via computerized evaluators in three of our four treatment

games. The following analysis of the way in which these two factors affect the reporter’s

propensity to misreport, underlies our experimental hypotheses. In Section 3.3 we derive the

equilibrium f as a function of q.

Comparative Statics with Respect to q. When the state of the world is more likely

to be b, the reporter is more confident that a report R = B will match the state and that a

report R = O will not, regardless of the signal received. As q increases, the posterior belief

that the state of the world is b, qO, increases and, thus, a reporter who misreports expects a

favorable assessment, pBb, to become more likely relative to an unfavorable one, pBo. On the

one hand, this means that the expected utility from misreporting increases in q, given that

pBb ≥ pBo regardless of f ∈ [0, 1]. On the other hand, as q increases, truth-telling becomes
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(a) Changing q, fixed f = 1. (b) Changing f , fixed q = 6/10.

Figure 2: Reporter’s expected gain from misreporting. Comparative statics with respect to
q and f .

less attractive, because the evaluator is more likely to assess pOb and less likely to assess pOo,

where pOo > pOb for all f ∈ [0, 1]. More generally:

Proposition 2 (Comparative Statics with Respect to q) The reporter’s incentive to

misreport (i.e., the expected gain from misreporting with respect to truth-telling) is strictly

increasing in q for any f ∈ [0, 1]. Furthermore, the reporter strictly prefers to misreport

rather than reporting truthfully if and only if q > (4− f) / [4(2− f)].

To illustrate, suppose f = 1. Figure 2a determines the reporter’s best reply for the values

of q used in our experiment. Represented functions are the reporter’s expected payoff after

observing S = O and choosing to truthfully report R = O (downward sloping segment) or

to misreport (upward sloping segment), as a function of the probability that the state is

b, qO. When the prior is mildly unbalanced (q = 6/10), the posterior belief that the state

is b is qO = 1/3 < 1/2 and the reporter’s gain from misreporting after seeing signal O is

∆EU (6/10, 1) = −2/9 (the unconditional gain, before observing S = O, is −1/10). When the

prior is strongly unbalanced (q = 8/10), the reporter’s posterior belief is qO = 4/7 > 1/2, the

gain from misreporting is ∆EU (8/10, 1) = 2/21 (unconditionally, before observing S = O, it

is 1/30), and, thus, the reporter prefers to misreport.

Comparative Statics with Respect to f . Next, turn to the effect of the evaluator’s

belief f that the reporter is truth-telling on the reporter’s expected gain from misreporting.

In general, the effect is ambiguous. While the gain in state o decreases with f , the gain
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in state b increases with f . Depending on q and on the evaluator’s initial belief, increased

trust (an increase in f) may either reduce or enhance the reporter’s incentives to misreport.

Nonetheless, for both values of q used in the experiment, incentives to misreport are lowest

when the evaluator is strictly trusting. More generally, we have:

Proposition 3 (Comparative Statics with Respect to f) If q ∈ [1/2, 9/10], the re-

porter’s incentive to misreport (i.e., the expected gain from misreporting with respect to

truth-telling) is lowest when f = 1.

The evaluator’s belief about the reporter’s truthfulness affects the expected assessment

from misreporting only through pBb and pBo. When f decreases, by Proposition 1, both

assessments pBb and pBo are dampened toward the prior, given that the signal is now less

informative. A smaller f reduces the assessment when the core is blue and the report

is accurate (pBb), but improves the assessment when the core is orange and the report is

inaccurate (pBo). When the prior q is sufficiently low (and thus qO is also low), the expected

payoff of misreporting, EUM = (1− qO) pBo + qOpBb, assigns more weight to pBo, given that

observing an orange core is more likely. Since pBo is decreasing in f , for low values of q,

EUM is decreasing in f , so that the incentives to misreport are minimized at f = 1. After

a certain threshold of q, the expected gains from misreporting become increasing in f and

are minimized at f = 0.12

Figure 2b illustrates changing reporter gains from misreporting for different evaluator

beliefs, f , and a mildly unbalanced prior, q = 6/10. The continuous upward sloping line

represents EUM when f = 1. The expected payoff from misreporting becomes flatter as

evaluator beliefs become less trusting, since pBb and pBo are dampened toward the prior

1/2. The dotted line represents EUM when f = 4/5, and the flat dashed line represents

EUM when f = 0 (in this case evaluator assessments always equal the prior). For q = 6/10,

the gain from misreporting increases as f decreases. The reporter is better off truthfully

reporting when f = 1 (or f = 4/5), but prefers misreporting when f = 0.

3.3 Equilibrium Analysis

The analysis of the reporter’s best reply hints at the structure of the equilibria. If the

common prior belief about the state of the world is such that the reporter’s best reply to an

12We give exact values for all mentioned thresholds in the proof provided in Supplementary Appendix A.
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evaluator with perfectly trusting beliefs is to report truthfully, then such behavior can be

sustained in equilibrium. Otherwise, only misreporting can be sustained in equilibrium.13

Proposition 4 (Equilibria) When the prior belief about the state is mildly unbalanced,

q ∈ [1/2, 3/4], there are three Bayesian Nash equilibria: (i) a separating equilibrium in which

the reporter reports truthfully, (ii) a pooling equilibrium in which the reporter misreports,

and (iii) a hybrid mixed-strategy equilibrium (MSE) in which the reporter reports truthfully

with probability:

f ∗ (q) =
8q − 4

4q − 1
(3)

and misreports with complementary probability, 1 − f ∗. When the prior belief is strongly

unbalanced, q ∈ [3/4, 1] there is only a pooling equilibrium in which the reporter misreports.

Figure 3 illustrates the intuition behind Proposition 4. For mildly unbalanced prior

probabilities of the state, q ∈ [1/2, 3/4], the thick dashed line corresponds to the inverse

of equation 3, and thus represents the hybrid mixed strategy equilibrium of the game: the

belief, f , that for a given prior, q, makes the reporter exactly indifferent between misre-

porting and truth-telling. The arrows indicate that this MSE is unstable. If the evaluator’s

belief about the reporter’s truthfulness is slightly larger than f ∗(q) the reporter is better off

reporting truthfully. Thus, points to the right and below the dashed curve constitute the

basin of attraction of the separating equilibrium. If, instead, the evaluator’s belief about the

reporter’s truthfulness is smaller than f ∗(q), the reporter is better off misreporting. Thus,

points to the left and above the dashed curve constitute the basin of attraction of the pooling

equilibrium. For strongly unbalanced priors, q ∈ [3/4, 1], only the pooling equilibrium exists

and all evaluator beliefs lie in the basin of attraction of this equilibrium.

Figure 3 also shows that as f decreases, the set of priors for which the reporter prefers

to misreport increases. Intuitively this happens because, when the evaluator expects the

reporter to be more likely to misreport, report R = B contains less information about S,

so that the evaluator becomes less able to make inference about u, the reporter’s type. The

assessment after report R = B is thus dampened towards 1/2, the prior probability that

the signal is informative. This in turn reduces the potential loss from misreporting, which

accrues if the state is o. Thus, misreporting may prove profitable even when state o has a

high probability (low values of q).

13See also Ottaviani and Sørensen (2001) Lemma 1. We use Harsanyi’s Bayesian Nash equilibrium notion
since the choices made by the reporter and the evaluator are strategically simultaneous. The reason is that
the evaluator observes only the report but not the reporter’s strategy, even though the reporter’s choice of
a report precedes the evaluator’s choice of an assessment.
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Figure 3: Equilibrium Set and Basin of Attraction.

3.4 Testable Hypotheses

The theory delivers the following testable hypotheses:

Reporters’ Behavior

HP1 Reporters are more likely to misreport when there is less uncertainty about the state of

the world (that is, when q is larger).

Proposition 2 predicts that the incentives to misreport increase in q. As the fraction of

balls with a blue core increases, the fraction of balls with a Blue shell increases in the

informative urn but remains unchanged in the uninformative urn. Hence, an Orange

shell becomes a stronger indication that the urn is uninformative, giving the reporter

a stronger incentive to misreport. Furthermore, as discussed in Proposition 4, when

q = 8/10 only the pooling equilibrium (where the reporter misreports) exists, while

q = 6/10 admits multiple equilibria.

HP2 Reporters are least likely to misreport when the evaluator believes all reports are truth-

ful, f = 1.

The effects of a change in f on the incentives to misreport are ambiguous. On the

one hand, as f increases, the payoff from misreporting when the core is Blue increases,

because a Blue report is a stronger indication that the reporter observed a Blue shell

and, thus, that the urn was informative. On the other hand, as f increases, the payoff

from misreporting when the core is Orange decreases, because a stronger belief that

18



the shell is truly Blue more strongly indicates that the urn was uninformative. Ac-

cording to Proposition 3, nonetheless, for the values of q used in our experiment, the

loss from misreporting increases faster in f than the gain, so that the net gain reaches

a minimum at f = 1.

Evaluators’ Behavior

HP3 Assessments are ranked: evaluators believe reporters are more likely to be informed after

observing any accurate report than after observing any inaccurate report. If the received

report is one that can only be made by a truthful reporter (that is, R = O), an accurate

report leads to the highest belief that the reporter is informed, and an inaccurate report

leads to the lowest belief that the reporter is informed (that is, pOo ≥ pBb ≥ pBo ≥ pOb).

Matching shell and core is the strongest indication that the urn is informative. We

have pOo ≥ pBb because a matching orange report and core can only result if the shell

is orange; instead, matching blue report and core may result from a Blue shell or from

a misreported Orange shell. Next, pBb ≥ pBo because the evaluator is more confident

that the reporter is informed when the report matches the state. Finally, pOb is the

lowest assessment because an Orange report perfectly reveals an Orange shell, which

combined with a blue core results in pOb = 0.

HP4 Assessments after reports that can only be made by a truthful reporter (that is, R =

O), do not depend on evaluators’ beliefs about the reporter’s strategy (that is, f).

Assessments after reports that can be made by both truthful and misreporting reporters

(that is, R = B), are more sensitive to the report’s accuracy when evaluators believe

that reporters are more likely to report truthfully (that is, are further from the 50%

prior when f is larger).

An Orange report perfectly reveals that the shell was Orange, resulting in an assessment

independent of f . When the evaluator expects the reporter to be less likely to misreport

(larger f), a Blue report contains more information about the observed shell, so that the

evaluator makes a better inference about informativeness u. According to Proposition

1, the assessment after a Blue report then moves further away from 1/2, the prior

probability that the signal is informative.

19



Figure 4: Reporters’ Behavior by Game and Prior Beliefs on State (q). Experienced Subjects.

4 Experimental Results

4.1 Reporters’ Behavior

Our experimental treatments are explicitly designed to investigate the effect of both q, the

common belief about the state of the world, and f , the evaluator’s belief about the reporter’s

strategy, on the reporters’ incentives to misreport. We can thus use the behavior observed

in our experimental games to test hypotheses HP1 and HP2 from Section 3.4. Throughout

the Results section, we focus on experienced subjects, that is, on decisions belonging to the

second block for each treatment.14 Figure 4 shows the fraction of truthful plans of action

by treatment. In all treatment games, the incidence of truth-telling is larger with q = 6/10

than with q = 8/10. The treatment with the largest incidence of truth-telling is game CT

with q = 6/10 (65%) while the treatment with the least incidence of truth-telling is game

CT with q = 8/10 (34%). In the rest of this section, we investigate whether these treatment

effects are statistically significant. Whenever we state a result is significant, unless otherwise

indicated, we refer to significance at the 1% level.

14Our findings are unchanged if we use all decisions. We present summary statistics for first-block decisions
and discuss the effect of experience in Online Appendix B.
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Pr[Reporter Chooses Truthful Plan of Action]
(1) (2) (3) (4)

q = 8/10 -0.12 -0.31 -0.09 -0.10
(0.02) (0.02) (0.02) (0.02)

Constant 0.49 0.65 0.44 0.47
(0.05) (0.03) (0.04) (0.04)

Game HF CT CU CL
N 1472 1504 1504 1536

Table 2: The Effect of Prior Belief on Reporter’s Behavior. Random effects GLS regressions.
Experienced subjects. Each subject is a panel and periods are times within a panel. Standard
errors in parentheses (clustered at the session level in columns 1 and 4). Results are robust to
using random effects Probit regressions or OLS/Probit regressions with subject fixed effects.

4.1.1 Effect of Prior Beliefs on State (q)

Table 2 shows estimates of the effect of holding strongly unbalanced (q = 8/10) rather than

weakly unbalanced priors (q = 6/10) about the state of the world on the probability reporters

choose the truthful plan of action. We use random effects panel regressions to account

for the fact that each individual makes multiple decisions in a single game. Moreover, we

cluster standard errors at the session level to account for potential interdependencies between

observations that come from random re-matching of subjects between periods in a session

(when the reporters are matched with human evaluators, as in HF, or with computerized

evaluators with strategies evolving over time, as in CL). All coefficients reported in Table 2

have the hypothesized sign and are significant at the 1% level.

FINDING 1: In all games, reporters are more likely to misreport with strongly

unbalanced priors (q = 8/10) than with mildly unbalanced priors (q = 6/10). This

provides evidence in favor of HP1.

4.1.2 Effect of Evaluators’ Beliefs on Reporters’ Strategy (f)

In games CU and CT, we exogenously manipulate evaluators’ beliefs about reporters’ strate-

gies. Knowing that truth-telling incentives are maximal in treatment CT (HP2) gives a

benchmark for comparison also for treatments CL and HF, where we do not control beliefs.

We can thus test how reporters respond to the change in incentives due to a shock to their

opponents’ strategies by comparing reporter behavior across games. Table 3 shows estimates

of the effect of the game on the probability the reporter chooses the truthful plan of action,
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Pr[Reporter Chooses Truthful Plan of Action]
(1) (2) (3) (4) (5) (6) (7) (8)

CT 0.21 0.19 0.17 -0.01 -0.02 -0.03
(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)

CU -0.21 -0.02 -0.04 0.01 -0.02 -0.02
(0.06) (0.06) (0.07) (0.06) (0.06) (0.07)

CL -0.19 0.02 -0.02 0.02 0.02 -0.01
(0.06) (0.06) (0.06) (0.06) (0.06) (0.06)

HF -0.17 0.04 0.02 0.03 0.02 0.00
(0.07) (0.07) (0.06) (0.07) (0.07) (0.06)

Constant 0.65 0.44 0.47 0.49 0.34 0.35 0.36 0.37
(0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) (0.05)

Baseline CT CU CL HF CT CU CL HF
q 0.6 0.6 0.6 0.6 0.8 0.8 0.8 0.8
N 3008 3008 3008 3008 3008 3008 3008 3008

Table 3: The Effect of Evaluators’ Beliefs on Reporter’s Behavior. Random effects GLS
regressions. Experienced subjects. Each subject is a panel and periods are times within a
panel. Standard errors in parentheses.

keeping prior beliefs about the state of the world constant. Columns (1)–(4) report estimates

for q = 6/10, while columns (5)–(8) report estimates for q = 8/10.

FINDING 2: With mildly unbalanced priors (q = 6/10), reporters are less likely

to misreport when evaluators believe they report truthfully (f = 1, i.e., in game

CT). This provides evidence in favor of HP2.

Column (1) in Table 3 shows that, with q = 6/10, there is significantly less misreporting

in CT than in HF, CL, and CU. This provides evidence in favor of HP2. Column (5) in the

same table shows that, with q = 8/10, there is no evidence of differential behavior between

CT and the other games. This is not in line with predictions but the theory does predict a

smaller effect for q = 8/10. For example, consider CU and CT—the two treatments where

we exogenously manipulate f and the comparison is, thus, sharper. The difference in the

expected gain from misreporting in a single period of the two games is e0.21 with q = 6/10

but only e0.10 with q = 8/10. The other columns in Table 3 show that we do not find any

other significant difference between reporters’ behavior in any other pair of games for any q.
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Figure 5: Reporters’ Strategies Grouped in Clusters. Game HF. Experienced Subjects.

4.1.3 Behavioral Heterogeneity

The experimental results discussed above show that reporters, on average, adopt strategies

which are consistent with the logic of our reputational cheap talk model. At the same time,

aggregate data might hide heterogeneity in individual behavior. To investigate this possibil-

ity, we focus on game HF and use k-means clustering analysis of reporters’ strategies.15

We use a subject as one observation and we define each subject’s strategy as a two-

dimensional vector including the probability of truthful reporting when q = 6/10 and the

probability of truthful reporting when q = 8/10. The results indicate that about 90% of

subjects can be classified into three clusters, whose representative strategies are displayed in

Figure 5.16 Two clusters, accounting for 56% of subjects, exhibit behavior which is consistent

with equilibrium predictions: subjects belonging to one cluster, which accounts for 41% of

observations, misreport most of the time regardless of the belief on the state of the world;

15K-means clustering is a common unsupervised learning methodology used to group observations ac-
cording to their similarity in a multidimensional space of observable characteristics (see MacQueen 1967,
Hartigan 1975, Hastie et al. 2005, and Murphy 2012; for a recent use in experimental economics, see Fréchette
et al. 2019). The procedure randomly selects k points in the space of observable characteristics to be the
centers of k clusters; each observation is then associated with the closest center, and centers are iterated on
to minimize the total within cluster variance. This procedure is repeated 10 times with 10 different random
cluster centers; if the final clusters are different, the algorithm selects the best result.

16K-means clustering requires the choice of the number of clusters at the outset. As customary, we
determined the number of clusters for evaluators and reporters with the elbow method. The figure also
displays a “residual cluster” that gathers all the remaining, harder-to-categorize, subjects.
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Figure 6: Human Evaluators’ Assessments. Boxplots by Observed Report-Core Pair and
Prior Beliefs on State (q). Game HF. Experienced Subjects.

subjects belonging to a second cluster, which accounts for 15% of observations, misreport

most of the time when they hold strongly unbalanced priors on the state of the world and

report truthfully most of the time when they hold mildly unbalanced priors. Another cluster,

which includes 30% of subjects, displays truthful reporting regardless of the priors on the

state of the world, that is, including when priors are strongly unbalanced and the unique

equilibrium prescribes misreporting. While inconsistent with equilibrium predictions, the

behavior of these subjects can be accounted for by lying aversion (Gneezy et al., 2018)

or preferences for truth-telling (Abeler et al., 2019) and contributes to explain the large

incidence of truth-telling we observe in the aggregate data.

4.2 Human Evaluators’ Behavior

We study evaluators’ behavior in game HF, the only one with human evaluators. Given the

incentives of human evaluators, we expect them to truthfully reveal their best assessment

about the probability that the drawn ball in any period came from the informative urn.

With this in mind, evaluators’ assessments should be affected only by three variables: the

received report, the observed color of the core of the ball, and the belief about reporters’

truthfulness, f . While we do not exogenously set any of these variables, we can exploit the

variation in the realization of reports and states of the world, as well as the indirect effect

of the common prior, q, on evaluators’ beliefs, f , for our hypotheses tests. We thus use
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N Average Median Theory
Blue Report, Blue Core 383 54.4 54.5 [50, 66.7]

Blue Report, Orange Core 194 35.4 40.0 [0, 50]

Orange Report, Blue Core 54 15.2 0.1 0

Orange Report, Orange Core 105 58.6 65.0 66.7

Table 4: Human Evaluators’ Assessments, q = 6/10. Game HF, experienced subjects.

N Average Median Theory
Blue Report, Blue Core 522 56.4 55.0 [50, 66.7]

Blue Report, Orange Core 117 30.2 30.0 [0, 50]

Orange Report, Blue Core 59 16.8 1.0 0

Orange Report, Orange Core 38 58.7 66.2 66.7

Table 5: Human Evaluators’ Assessments, q = 8/10. Game HF, experienced subjects.

behavior observed in game HF to test hypotheses HP3 and HP4 from Section 3.4

4.2.1 Effect of Observing Different Reports and Cores

Figure 6, Table 4 and Table 5 show summary statistics for human evaluators’ assessments

of the probability the urn is informative. Each boxplot (in the figure) and each row (in the

tables) are for a different pair of observed report and observed core. Table 4 focuses on the

treatment with mildly unbalanced prior (q = 6/10), while Table 5 focuses on the treatment

with strongly unbalanced prior (q = 8/10).

FINDING 3: Evaluators’ assessments are strictly ranked: pOo > pBb > pBo >

pOb. This provides evidence in support of HP3. Moreover, following an Orange

report, assessments in the experiment are indistinguishable from assessments by

a Bayesian evaluator, pOo = 2/3 and pOb = 0.

We compare the whole distribution of assessments following each report and core pair with

Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney tests. For both q = 6/10 and q = 8/10,

evaluators are most confident that the signal is informative (that is, that the reporter is

well informed) when they observe an orange report and an orange core and least confident

when they observe an orange report and a blue core. Observing a blue report and a blue
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core makes evaluators more confident than observing any inaccurate report and observing a

blue report and an orange core makes them more confident than observing an orange report

and a blue core and less confident than observing any accurate report. All differences are

statistically significant at the 1% level.17 This evidence supports hypothesis HP3.

The median assessment following an orange report and an orange core (65.0 for q = 6/10

and 66.2 for q = 8/10) and the median assessment following an orange report and a blue

core (0.1 with q = 6/10 and 1.0 with q = 8/10) are indistinguishable from the assessments

made by a Bayesian evaluator (respectively, 66.6 and 0). Note that the assessments of a

Bayesian evaluator following an orange report do not depend on beliefs about the reporters’

strategy. On the other hand, the assessments of a Bayesian evaluator following a blue report

do depend on these beliefs. The average and median assessments after a blue report given by

our human evaluators are consistent with some belief f ∈ [0, 1]. We explore this in further

detail in Sections 4.2.2 and 4.2.3 below.

4.2.2 Effect of Prior Beliefs on the State (q)

Table 6 shows estimates of the effect of holding strongly unbalanced (q = 8/10) rather than

weakly unbalanced priors (q = 6/10) about the state of the world on human evaluators’

assessments of the probability the urn is informative. Each column focuses on a different

report and core pair. From the perspective of evaluators who are trying to assess the infor-

mativeness of the urn, the only possible difference between the two treatments lies in the

strategy adopted by reporters: both theoretically and empirically, reporters are less likely to

report their signal truthfully with q = 8/10 than with q = 6/10. A Bayesian evaluator who

is aware of this differential behavior should give assessments that are further from the 50%

prior (in the sense of rewarding to a larger extent a report matching the state and punishing

to a larger extent a report mismatching the state) with q = 6/10 than with q = 8/10. At

the same time, any difference in evaluators’ beliefs about the strategy adopted by reporters

with q = 8/10 and with q = 6/10 should not affect assessments following an orange report.

FINDING 4: Evaluators’ assessments after orange reports do not depend on q.

This is in line with HP4. Assessments after blue reports are further from the

prior with q = 8/10 than with q = 6/10. This is in line with HP4 only if evaluators

(incorrectly) believe reporters are more likely to misreport with q = 6/10.

17The only exception is the difference between assessments following a blue report and a blue core and
assessments following an orange report and an orange core with q = 8/10: the p-value of the Kolmogorov-
Smirnov test is 0.001 but the p-value of the Wilcoxon-Mann-Whitney test is 0.918.
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(1) (2) (3) (4)
Dependent Variable: Evaluator’s Assessment

q = 8/10 1.87 -4.34 1.52 -0.62
(0.65) (1.42) (1.66) (2.28)

Constant 54.99 34.46 15.53 59.20
(1.69) (1.89) (3.13) (2.40)

Report Blue Blue Orange Orange
Core Blue Orange Blue Orange
N 905 311 113 143

Table 6: Human Evaluators’ Assessments as a Function of q. Random effects GLS regres-
sions. Experienced subjects. Each subject is a panel and periods are times within a panel.
Standard errors clustered at the session level in parentheses.

Columns (3) and (4) in Table 6 show that evaluators’ assessments following an orange

report are not significantly affected by the prior belief about the state of the world. On the

other hand, the assessed likelihood that the urn is informative is significantly larger with

q = 8/10 after seeing an accurate blue report and significantly lower with q = 8/10 after

seeing an inaccurate blue report. This suggests that human evaluators are more sensitive

to information with q = 8/10 than with q = 6/10. This can be rationalized by a belief

reporters are more likely to report their signal truthfully with q = 8/10 than with q = 6/10.

Indeed, this is confirmed by the structural estimation of human evaluators’ beliefs about

reporters’ strategies reported in Table 7. For each human evaluator, the estimated f is

found as the minimizer of the sum of the squared distances from the Bayesian posteriors

for all assessments this subject makes following a blue report in a given treatment. Each

evaluator makes 16 assessments in each treatment (we consider only experienced evaluators—

second block of 16 periods). The median estimated probability that reporters are truthful is

50% with q = 6/10 and 65% with q = 8/10. Evaluators’ estimated beliefs are positively and

significantly affected by the treatment according to a Tobit (p-value 0.004) or linear (p-value

0.037) regression with subjects fixed effects. As discussed in Section 4.1.1 and Finding 1,

this perception is not in line with reporters’ actual behavior in game HF. In fact, consider a

Bayesian evaluator who best responds to reporters’ observed behavior, that is, an evaluator

who forms assessments using the empirical values of f . In the treatment with q = 6/10,

this evaluator would estimate a 57% chance the signal is informative when observing a blue

report and a blue core; and a 40% chance the signal is informative when observing a blue

report and an orange core. In the treatment with q = 8/10, this evaluator would estimate
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N Average 1st Quartile 2nd Quartile 3rd Quartile Theory

q = 6/10 47 0.43 0 0.50 0.80 [0,1]

q = 8/10 47 0.51 0.15 0.65 0.85 0

Table 7: Human Evaluators’ Estimated f . Experienced subjects. Game HF.

a 55% chance the signal is informative when observing a blue report and a blue core; and

a 44% chance the signal is informative when observing a blue report and an orange core.

The observed assessments are close to the best responses with one exception: assessments

following an inaccurate blue report with q = 8/10 are much more pessimistic than they

should (the average and median assessment being 30%).

4.2.3 Explanation for Discrepancy: Learning Model of Evaluators’ Behavior

To shed light on the origins of this discrepancy, we investigate whether human evaluators’

assessments are consistent with the learning model we endowed computerized evaluators

with in game CL. As described in more detail in the Appendix, this learning model has the

following elements:

• The “true” fraction f of reporters that report truthfully is unknown but constant.

• The starting point of beliefs is the uniform distribution, f ∼ U(0, 1).

• Evaluators learn from each interaction with a reporter. At the end of a period, the

belief is updated based on the information available to human evaluators in game HF:

– the received report, R ∈ {B,O},

– the observed core, c ∈ {b, o},

– the true informativeness of the signal, u ∈ {I, U}.

This information is easily summarized as a triple, (R, c, u), taking on eight distinct values.

One of these triples, (O, b, I), cannot occur, while the remaining seven can be grouped into

four events considered to be positive, negative, neutral, or muddy signals about the reporters’

truthfulness. A negative signal tells the evaluator that the reporter he met this period

misreported for sure; a positive signal tells him that the reporter was truthful for sure; a

neutral signal bears no information; a muddy signal assigns positive but distinct likelihood to
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Event Triples – (R, c, u) Likelihood

Positive
(O, o, I)
(O, o, U)
(O, b, U)

3−2q
4
f

Negative (B, o, I) 1−q
2

(1− f)

Muddy
(B, o, U)
(B, b, U)

1
4

(2− f)

Neutral (B, b, I) q
2

Table 8: Events and likelihoods used for evaluators’ updating in the Bayesian learning model.

both truth-telling and misreporting. Table 8 summarizes these events and their likelihoods

given a prior belief, f , about the reporters’ truthfulness. Proposition 5 in the Appendix

characterizes the distribution of an evaluator’s beliefs over f as a function of the number of

negative, positive and muddy signals observed thus far. In the same Appendix, Proposition

6 characterizes the expected assessments given by an evaluator who receives a Blue report

and observes either an orange or a blue core as a function of his experience.

Table 9 reports summary statistics for assessments given by computerized evaluators who

update their beliefs on f as described above and have the same experience as human evalu-

ators in game HF. Table 10 reports estimates on the effect of holding strongly unbalanced

rather than weakly unbalanced priors about the state of the world on these computerized

evaluators’ assessments of the probability the urn is informative. Assessments following an

accurate blue report are significantly less generous and assessments following an inaccurate

blue report are significantly less punitive with q = 8/10 than with q = 6/10. This is in line

with computerized evaluators believing (correctly) that human reporters are more likely to

misreport with q = 8/10 than with q = 6/10.

FINDING 5: The behavior of human evaluators is not consistent with a learning

model that posits they initially believe f ∼ U(0, 1) and update beliefs according

to Bayes’ rule based on the evolution of the interaction with reporters.

Another possibility is that evaluators have limited attention and do not use all the infor-

mation available to them but focus on a salient piece of information, that is, whether reports

were accurate or inaccurate (that is, on whether they matched or not the core). If this is the

case, evaluators might näıvely infer reporters’ strategies from report accuracy. In particular,

we modify our learning model and assume that evaluators take any accurate report as a

positive signal (that is, a signal that the reporter he met this period was truthful for sure)

and any inaccurate report as a negative signal (that is a signal that the reporter he met this
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N Average Median Theory
q = 6/10

Blue Report, Blue Core 383 57.3 57.2 [50, 66.7]

Blue Report, Orange Core 194 37.2 38.2 [0, 50]
q = 8/10

Blue Report, Blue Core 522 56.1 55.6 [50, 66.7]

Blue Report, Orange Core 117 38.0 39.1 [0, 50]

Table 9: Hypothetical assessments made by computerized evaluators who initially believe
f ∼ U(0, 1), learn in a Bayesian way depending on interactions, and have the same experience
as humans in game HF.

(1) (2)
Dependent Variable: Computer Assessment
q = 8/10 -1.34 3.30

(0.13) (0.57)

Constant 57.39 37.21
(0.26) (0.61)

Report Blue Blue
Core Blue Orange
N 905 311

Table 10: Random effects GLS regressions. Experienced ‘Bayesian’ computers. Each com-
puter is a panel and periods are times within a panel. Standard error in parentheses.

period misreported for sure).

Table 11 reports summary statistics for assessments given by ‘näıve’ or ‘behavioral’ com-

puterized evaluators who update their beliefs on f as described above and have the same

experience as human evaluators in game HF. Table 12 reports estimates on the effect of

holding strongly unbalanced rather than weakly unbalanced priors about the state of the

world on these computerized evaluators’ assessments of the probability the urn is informa-

tive. As is the case for human evaluators, assessments following an accurate blue report are

significantly more generous and assessments following an inaccurate blue report are signifi-

cantly more punitive with q = 8/10 than with q = 6/10. This is in line with computerized

evaluators believing (incorrectly, and similarly to human evaluators) that human reporters
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N Average Median Theory
q = 6/10

Blue Report, Blue Core 383 59.8 59.6 [50, 66.7]

Blue Report, Orange Core 194 33.2 33.9 [0, 50]
q = 8/10

Blue Report, Blue Core 522 61.6 61.6 [50, 66.7]

Blue Report, Orange Core 117 27.7 29.3 [0, 50]

Table 11: Hypothetical assessments made by computerized evaluators who initially believe
f ∼ U(0, 1), learn ‘behaviorally’ depending on interactions, and have the same experience
as humans in game HF.

(1) (2)
Dependent Variable: Computer Assessment
q = 8/10 1.80 -5.59

(0.09) (0.54)

Constant 59.72 32.72
(0.19) (0.61)

Report Blue Blue
Core Blue Orange
N 905 311

Table 12: Random effects GLS regressions. Experienced ‘behavioral’ computers. Each
computer is a panel and periods are times within a panel. Standard error in parentheses.

are less likely to misreport with q = 8/10 than with q = 6/10.

FINDING 6: The behavior of human evaluators is consistent with a learning

model that posits they initially believe f ∼ U(0, 1) and learn depending on inter-

actions with reporters but mistakenly consider report accuracy (inaccuracy) as

a perfect signal of truthful reporting (misreporting).

4.2.4 Behavioral Heterogeneity

As for reporters, aggregate data might hide heterogeneity in individual behavior. To investi-

gate this possibility, we use k-means clustering analysis of human evaluators’ strategies. We

define each subject’s strategy as a six-dimensional vector including the average assessment
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Figure 7: Human Evaluators’ Strategies Grouped in Clusters, O Report

when the report is orange and the core is blue (unconditional on the belief on the state of

the world, as q does not matter for inference in this case), the average assessment when the

report is orange and the core is orange (again, unconditional on q), the average assessment

when the report is blue and the core is blue for each q, and the average assessment when the

report is blue and the core is orange for each q.18 The results indicate that subjects can be

classified into three clusters, whose representative strategies are displayed in Figure 7 (for

assessments following an orange report), Figure 8 (for assessments following an inaccurate

blue report), and Figure 9 (for assessments following an accurate blue report).

The first two clusters, which encompass 63% of subjects, have one feature in common:

assessments following an orange report — which is indicative of a truthful plan of action —

are consistent with those of a Bayesian learner. The modal strategy in these two clusters is

to assess a 0% chance the urn is informative following an inaccurate orange report and a 67%

chance the urn is informative following an accurate orange report. We label these subjects

as Bayesian learners. The third cluster is, instead, composed of subjects who fail to make

these basic inferences: their average assessments following an orange core are dispersed and,

in general, do not reward (punish) reporters sufficiently in case of an accurate (inaccurate)

report. We label these subjects as non-Bayesian learners. Interestingly, the two groups of

18We exclude from the analysis evaluators who do not make at least one assessment in each of these six
instances. This leaves us with 38 out of 47 subjects.
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Figure 8: Human Evaluators’ Strategies Grouped in Clusters, Inaccurate B Report

Figure 9: Human Evaluators’ Strategies Grouped in Clusters, Accurate B Report

Bayesian learners differ in the strategies following a blue report. While their assessments

remain consistent with Bayesian inference (under some belief on reporters’ strategy), sub-

jects belonging to the first cluster do not update their prior much in either direction and

their assessments do not depend on the prior beliefs on the state of the world: the typical
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assessments are around 51 after an accurate blue report and around 42 with an inaccurate

blue report. On the other hand, subjects belonging to the second cluster respond strongly

to the observed accuracy of a blue report, especially in the sense of punishing an inaccurate

report: the modal assessments when the report is accurate are 52 with q = 6/10 and 58 with

q = 8/10; when the same report is inaccurate, the typical response is to assess a 39% chance

of an informative urn with q = 6/10 and only a 34% chance with q = 8/10. Inconsistent

with best reply to the empirical rate of truth-telling, these subjects respond more strongly

to the accuracy of a blue report in the treatment with q = 8/10 than in the treatment with

q = 6/10 and are, thus, responsible for the pattern we documented in the previous section.

5 Conclusion

This paper presents a laboratory experiment designed to test a widely applied model of rep-

utational cheap talk where a reporter wants to convince an evaluator of being well informed.

A first innovation in the experimental design consists in the introduction of nested balls,

where the color of the inner core corresponds to the realization of the state while the color of

the outer shell corresponds to the noisy signal. A second, innovation consists in controlling

for strategic behavior and learning on the side of the evaluator in a number of intermediate

experiments in which we computerize evaluators by programming them to best reply to

expectations about the reporter’s behavior. In treatments CT and CU these beliefs are fixed

throughout the experiment, while, in treatment CL, computerized evaluators’ expectations

are updated according to a generalized Beta learning model that we characterize in the

Appendix. We analyze the outcomes of these experiments and use them as baselines to

study play in the full game where also evaluators are human subjects with unrestricted

beliefs.

Within the context and the sample of our experiment, we find that reporters realize how

their strategic incentives are affected by the uncertainty about the phenomenon they are

asked to forecast (q) and by the evaluators’ expectations (f) and learn to best reply even

when confronted with the noisy behavior of human evaluators. On the other side of the

game, human evaluators find it difficult to assess the quality of the information available to

reporters and to learn how the strategies used by reporters change in different environments.

The noisier evaluation that results from human evaluators, in turn, reduces the reporters’ in-

centives for misreporting and ameliorates information transmission. Overall, our experiment

suggests that current models of reputational cheap talk are accurate in modeling reporters’
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behavior but might be missing important elements in the way evaluators process the available

information or reward reporters for their advice.

Our experiment has also broader implications for sender-receiver games. In a compre-

hensive review, Blume et al. (Forthcoming) note that, “from its inception, the experimental

literature on strategic information transmission with a single sender and a single receiver

documents systematic over-communication, relative to the most informative equilibria [...].

Some of this over-communication can be accounted for by bounded-rationality approaches,

like learning and level-k reasoning.” To relate our experiment to this literature, we focus

on the treatment with human senders, human receivers and a unique equilibrium in which

senders misreport.19 As in the experiments reviewed by Blume and coauthors, we find evi-

dence of over-communication: truthful reporting is chosen around a third of the time, even

among subjects who have gained a considerable amount of experience. Replacing human

receivers with computerized receivers does not affect senders’ behavior (Finding 2). This

suggests that over-communication cannot be fully explained by lying costs: senders should

be less averse to misreport the available information when misreporting does not affect other

subjects’ ability to form accurate assessments and accrue higher earnings.

More plausibly, over-communication, both in our game and in other sender-receiver

games, could be due to the difficulty of both senders and receivers to learn the strategy

of their opponents. Our experiment shows that this is a hurdle even in a setting where the

space of messages is minimal and language is codified. Indeed, thanks to the tractable model

of Bayesian learning we introduce, we show that receivers in our experiment do not learn

senders’ strategies as a statistician would do. In turn, this can impair senders’ learning on re-

ceivers’ strategies. To test this hypothesis directly, we committed ex-ante to a series of novel

experimental treatments with computerized receivers whose beliefs are fixed or evolve in a

Bayesian way with experience and who use these beliefs optimally to make decisions. Our

attempt to manipulate receivers’ strategies and their learning does not reduce the amount of

over-communication we observe in the experiment, possibly because of bounded rationality

on the side of senders and because the treatments we devised do not reduce sufficiently the

complexity of the game. Future work should continue to investigate sender-receiver games

along this direction, for example, by using computerized receivers in other games of strategic

communication or developing treatments with computerized senders.

19In our experiment, the sender has two choices. As discussed in Section 3, with q = 6/10, both actions
are part of an equilibrium so there is no behavior which can be classified as over- or under-communication.
On the other hand, with q = 8/10, there is a unique equilibrium in which the sender misreports. In this case,
choosing the truthful plan of action can be regarded as over-communication relative to the most informative
equilibrium.
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Appendix: Generalized Beta-Noisy Bernoulli Model

The classic Bernoulli-Beta model—generalized in this appendix—characterizes the evolution

of the belief that a (possibly biased) coin, which, when tossed, gives Tails with frequency f

and Heads with complementary frequency. Suppose that the prior of f is Beta distributed

with parameters α and β. After observing a toss of the coin, the posterior of f is still Beta

distributed, with parameters α′ = α+ 1 and β′ = β if Tails is observed and with parameters

α′ = α and β′ = β + 1 if Heads is observed. Thus, the Beta distribution is a conjugate prior

with respect to Bernoulli-trial learning.

In the application we consider in this paper, the fraction of truthful reporters, f , is

an unknown parameter. Each period of the experiment in which evaluators and reporters

interact corresponds to a trial giving the evaluator the opportunity to learn about f . The

information received by evaluators at the end of each period’s trial, however, does not exactly

correspond to the observation whether the reporter drawn from the population is truthful

or not. The feedback evaluators receive consists, instead, of a triple, comprising the Report,

the observed core, and the true informativeness of the urn from which the ball was drawn,

(R, c, u).

As presented in Table 8, all feedback triples with R = O perfectly reveal that the reporter

is truthful, whereas the feedback triple involving an informative urn, an orange core, and

a Blue report, (B, o, I), is a perfect signal of a misreporting reporter. These signals are,

thus, equivalent to observing Heads or Tails in a Bernoulli trial. However, triples involving a

Blue report and an uninformative urn, are imprecise: when the urn is uninformative, a Blue

report may originate from a truthful or a misreporting reporter, regardless of the color of the

core. The conditional probabilities of these realizations depend on the fraction of truthful

reporters, so that these muddy signals contain some information.

Below we generalize the basic Beta learning model to allow for learning from Bernoulli

trials with imprecise signals of trial outcomes. As we show, the generalized Beta distribution

introduced by Exton (1976) is a conjugate prior with respect to noisy Bernoulli sampling

(Proposition 5). We then compute the expected value of a class of functions of random vari-

ables with Exton generalized Beta distribution (Proposition 6). To the best of our knowledge,

our characterization of this conjugate model is novel to the literature and constitutes an ad-

ditional, free-standing, contribution of our paper. The paper put this model to work to

program learning by computerized evaluators; this model can be applied more generally to

model learning about a fixed frequency in other settings involving imperfect signals. This

model also proves useful as a benchmark for our analysis of the learning behavior of human
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subjects.

Noisy Bernoulli Experiment. The underlying parameter is the unknown probability

θ ∈ (0, 1) that a Bernoulli trial gives i = 1. A noisy signal j ∈ {0, . . . , J} about the outcome

of the Bernoulli trial i ∈ {0, 1} is observed, rather than the outcome of the underlying

Bernoulli trial. Realization j of this noisy Bernoulli experiment has conditional probability

πj|1 when the outcome of the trial is i = 1, and πj|0 when the outcome of the trial is i = 0,

where π0|1 = πJ |0 = 0 capture the possibility that signal realizations j = 0 and j = J

perfectly reveal the outcome of the trial.20

Noisy Bernoulli sampling consists of K independent repetitions of this noisy Bernoulli

experiment, where σj denotes the number of times signal j is realized.

Exton Generalized Beta. The Exton Generalized Beta probability density function of

a random variable 0 ≤ x ≤ 1 is given by

g (x; v1, v2, d1, . . . , dH , δ1, . . . , δH) =
xv1−1 (1− x)v2−1

B (v1, v2)
×

(1− δ1x)d1−1 . . . (1− δHx)dH−1

F
(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

, (4)

with v1, v2 > 0, where

F
(H)
D (a;µ1, . . . , µH ; c; γ1, . . . , γH) =

∞∑
i1,...,iH=0

(a)i1+...+iH (µ1)i1 · · · (µH)iH
(c)i1+...+iH

γi11
i1!
· · · γ

iH
H

iH !

is the fourth Lauricella function with H ∈ N and positive real parts of a and c−a (v1 and v2

in the Exton generalized Beta), the notation (·)h denotes the Pochhammer symbol, defining

the function

(b)h =

{
1 if h = 0

b (b+ 1) . . . (b+ h− 1) if h > 0,

and

B (v1, v2) =
Γ (v1) Γ (v2)

Γ (v1 + v2)

20If, in addition, π0|0 = 0 or πJ|1 = 0 no such perfectly revealing outcomes are possible. Also, note that
in the degenerate case with π0|0 = πJ|1 = 1 we are back to the original Bernoulli trial. The special case with
J = 2 corresponds to Warner’s (1965) randomized response model. See also Winkler and Franklin (1979).
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is the Beta function with v1, v2 ∈ Z+, with

Γ(ν) =

∫ ∞
0

tν−1e−tdt

denoting the Gamma function.

Proposition 5 (Conjugation) The Exton Generalized Beta distribution is conjugate with

respect to noisy Bernoulli sampling.

Proof. With noisy Bernoulli sampling, the probability of observing signal j conditional on

θ is Pr (j| θ) = θπj|1 + (1− θ) πj|0. Knowing that j = 0 and j = J are precise signals of

i = 0 and i = 1, respectively, we have

Pr(j = 0| θ) = (1− θ) π0|0

Pr(j = 1| θ) = θπ1|1 + (1− θ) π1|0
...

Pr(j = J | θ) = θπJ |1

and, thus, the likelihood of the sample with signal frequencies σ0, σ1, . . . , σJ , is given by

l (σ0, . . . , σJ | θ) =
[
πσ00|0 × . . . π

σJ−1

J−1|0 × π
σJ
J |1

]
θσJ (1− θ)σ0

J−1∏
j=1

[
1−

(
1−

πj|1
πj|0

)
θ

]σj
. (5)

Notice that it is not necessary that there be precise signals (j = 0 and j = J), since all

ensuing steps will follow through if σ0 = σJ = 0 always.

Bayesian updating from a prior g (θ; ·), after observing sample σ0, σ1, . . . , σJ , yields pos-

terior

g (θ; ·|σ0, . . . , σJ) =
g (θ; ·) l (σ0, . . . , σJ | θ)∫
t
g (t; ·) l (σ0, . . . , σJ | t) dt

.

Assume that θ has an Exton generalized Beta prior, g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH),

with H ≥ J , and parameters δh = 1 − πh|1
πh|0

for h = 1, . . . , J − 1.21 The numerator of the

above expression is given by

21This is without loss of generality, since it suffices to set dh = 1 to obtain a prior with less than J + 1
factors, or whose original parameters, δh, differ from 1 − πh|1

πh|0
for all h. As is clear from the ensuing steps,

factors are added via the likelihood, as signals are sampled.
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g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH) l (σ0, . . . , σJ | θ)

=

[
θv1−1 (1− θ)v2−1∏H

h=1 (1− δhθ)dh−1
] [(

πσ00|0 . . . π
σJ−1

J−1|0π
σJ
J |1

)
θσJ (1− θ)σ0

∏J−1
j=1 (1− δjθ)σj

]
B (v1, v2)F

(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

=

(
πσ00|0 . . . π

σJ−1

J−1|0π
σJ
J |1

)
B (v1, v2)F

(H)
D (v1; 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

×[
θv1+σJ−1 (1− θ)v2+σ0−1

J−1∏
j=1

(1− δjθ)dj+σj−1
H∏
h=J

(1− δhθ)dh−1

]

The denominator being the integral on θ of the above expression, all terms independent of θ

(first factor in the final expression) exactly match in numerator and denominator and, thus,

cancel out to give

g (θ; v1, v2, d1, . . . , dH , δ1, . . . , δH |σ0, . . . , σJ)

=
θv1+σJ−1 (1− θ)v2+σ0−1∏J−1

j=1 (1− δjθ)dj+σj−1∏H
h=J (1− δhθ)dh−1∫ 1

0
tv1+σJ−1 (1− t)v2+σ0−1∏J−1

j=1 (1− δjt)dj+σj−1∏H
h=J (1− δht)dh−1 dt

= g (θ; v1 + σJ , v2 + σ0, d1 + σ1, . . . , dJ−1 + σJ−1, dJ , . . . , dH , δ1, . . . , δH) ,

where the last expression is again an Exton-generalized Beta function with parameters up-

dated by the sample, and the last equality follows from the integral representation of the

fourth Lauricella function, given below (Lauricella, 1893, p.149):

F
(H)
D (a;µ1, . . . , µH ; c; γ1, . . . , γH) = 1

B(a,c−a)

∫ 1

0

ta−1 (1− t)c−a−1
H∏
h=1

(1− γht)−µh dt. (6)

Proposition 6 (Expectation) If the random variable x follows an Exton Generalized Beta

distribution with v1, v2 ∈ Z+, the expectation of the function

ϕ (x; k, ζ0, ζ1, . . . , ζS,1 , . . . , zS) = ζ0x
k

S∏
s=1

(1− ζsx)zs−1 (7)
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is

E [ϕ (x)] = ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

F
(H+S)
D (v1+k,1−d1,...,1−dH ,1−z1,...,1−zS ;v1+v2+k;δ1,...,δH ,ζ1,...,ζH)

F
(H)
D (v1,1−d1,...,1−dH ;v1+v2;δ1,...,δH)

. (8)

Proof. Using (4) and (7) and collecting terms, we have

E [ϕ (x)] =

∫ 1

0

ϕ (x) g (x) dx

=

∫ 1

0

ζ0x
v1−1+k (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1

B (v1, v2)F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

dx

=
ζ0

B (v1, v2)

∫ 1

0
xv1+k−1 (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1 dx

F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

= ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

∫ 1

0
xv1+k−1 (1− x)v2−1∏H

h=1 (1− δhx)dh−1∏S
s=1 (1− ζsx)zs−1 dx

B (v1 + k, v2)F
(H)
D (v1, 1− d1, . . . , 1− dH ; v1 + v2; δ1, . . . , δH)

where the last equality follows from re-writing the Beta function as

1

B (v1, v2)
=

Γ (v1 + v2)

Γ (v1) Γ (v2)

=
Γ (v1 + v2)

Γ (v1) Γ (v2)

Γ (v1 + k) Γ (v2)

Γ (v1 + v2 + k)

Γ (v1 + v2 + k)

Γ (v1 + k) Γ (v2)

=
Γ (v1 + v2)

Γ (v1) Γ (v2)

Γ (v1 + k) Γ (v2)

Γ (v1 + v2 + k)

1

B (v1 + k, v2)

=
Γ (v1 + v2) Γ (v1 + k)

Γ (v1) Γ (v1 + v2 + k)

1

B (v1 + k, v2)
.

Using once more the integral representation of the Lauricella function given in 6, we replace

the numerator and conclude that

E [ϕ (x)] = ζ0
Γ(v1+v2)Γ(v1+k)
Γ(v1)Γ(v1+v2+k)

F
(H+S)
D (v1+k,1−d1,...,1−dH ,1−z1,...,1−zS ;v1+v2+k;δ1,...,δH ,ζ1,...,ζH)

F
(H)
D (v1,1−d1,...,1−dH ;v1+v2;δ1,...,δH)

.

We conclude this appendix by applying these results to the learning process used for com-

puterized evaluators in treatment CL, where the signals and their probabilities conditional

on the unknown parameter f , are given in Table 8. Let truth-telling correspond to outcome

i = 1 in the noisy Bernoulli trial, and the three possible signals, j = 0, 1, 2, be the negative,
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the muddy, and the positive signal, respectively. Their likelihoods according to Table 8 are

Pr(j = 0| f) = (1− f)
1− q

2

Pr(j = 1| f) = f

(
1

4

)
+ (1− f)

(
1

2

)
Pr(j = 2| f) = f

3− 2q

4
,

so that δ1 = 1 − 1/4
1/2

= 1/2. The uniform prior used in our application, corresponds to

parameters v1 = v2 = d1 = 1, and either H = 1 or dh = 1 for all h, of the Exton generalized

Beta function. Proposition 5 tells us that after a sample of n negative signals, p positive

signals, and m muddy signals, uncertainty about f is given by the density

g (f ; p+ 1, n+ 1,m+ 1, 1/2) =
fp (1− f)n

(
1− 1

2
f
)m

B (p+ 1, n+ 1)F
(1)
D

(
p+ 1;−m; p+ n+ 2; 1

2

)
=

fp (1− f)n
(
1− 1

2
f
)m∫ 1

0
xp (1− x)n

(
1− 1

2
x
)m

dx
.

Recall that the assessment of an evaluator who receives a Blue report and observes either

an orange or a blue core, is a function of f—either pBb(f) or pBo(f). Thus, the expected

assessments given by an evaluator whose experience so far is the sample (n,m, p) are respec-

tively E [pBb(f)] and E [pBo(f)], under the Exton generalized Beta density with parameters

v1 = p+ 1, v2 = n+ 1, d1 = m+ 1, and δ1 = 1/2. Recall that

pBb(f) =
1

3
2

+ (1− f) 1
2

=
1

2

(
1− 1

4
f

)−1

, and

pBo(f) =
(1− f)

1
2

+ (1− f) 3
2

=
1

2
(1− f)

(
1− 3

4
f

)−1

,

which means these functions satisfy the assumptions of Proposition 6.
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Online Appendix

A Proofs

Proof of Proposition 1. Part (a) follows from Bayes updating by the evaluator as stated

in equation (2). To compute evaluators’ assessments after receiving a report R = O, recall

that in this case, Pr (R|c, u, f) = Pr (S|c, u), since the report can only be Orange if truth-

ful. Noticing further that Pr (S = O|c = b, u = I) = 0, Pr (S = O|c = o, u = I) = 1, and

Pr (S = O|c = o, u = U) = 1/2, we have

pOb = Pr (u = I|S = O, c = b) =
1
2

Pr (S = O|c = b, u = I)
1
2

[Pr (S = O|c = b, u = I) + Pr (S = O|c = b, u = U)]
= 0.

pOo = Pr (u = I|S = O, c = o) =
1
2

Pr (S = O|c = o, u = I)
1
2

[Pr (S = O|c = o, u = I) + Pr (S = O|c = o, u = U)]
=

2

3

If, instead, the report is R = B, the color of the Shell may be either B or O, and thus

Pr (R|c, u, f) = Pr (R|S = O, f) Pr (S = O|c, u) + Pr (R|S = B, f) Pr (S = B|c, u)⇒
Pr (R = B|c, u, f) = (1− f) Pr (S = O|c, u) + Pr (S = B|c, u) ,

where we used the facts that (i) the reporter does not know the realizations of c and u when

sending the report, (ii) the joint distribution of signal, state, and reporter type does not

depend on the evaluator’s beliefs, and (iii) after a blue signal the report is always R = B.

Appropriately replacing the above in equation (2), we obtain

pBb = Pr (u = I|R = B, c = b, f) =
1
2

1
2

[
1 + (1− f)1

2
+ 1

2

] =
1

3
2

+ (1− f)1
2

,

and

pBo = Pr (u = I|R = B, c = o, f) =
(1− f)1

2
1
2

[
(1− f) + (1− f)1

2
+ 1

2

] =
(1− f)

1
2

+ (1− f)3
2

.

Note that pBb is continuous, strictly increasing, and convex in f for f ∈ [0, 1], so it attains

a minimum at f = 0 (where pBb = 1/2) and a maximum at f = 1 (pBb = 2/3). Similarly,

pBo is strictly decreasing and concave for f ∈ [0, 1]; thus, it attains a minimum at f = 1

(pBo = 0) and a maximum at f = 0 (pBo = 1/2). This concludes the proof of part (a).

To establish part (b), it is enough to note that pBb ∈ [1/2, 2/3] and pBo ∈ [0, 1/2]. From

part (a), this implies pBb ≥ pBo for all f ∈ [0, 1], with pBb = pBo whenever f = 0. Recalling

that pOo = 2/3 we can also conclude that for all f ∈ [0, 1], pOo ≥ pBb, with pOo > pBb for

f < 1. Since pOb = 0 we can conclude that pBo ≥ pOb with pBo > pOb if and only if f < 1.

Summing up, pOo ≥ pBb ≥ pBo ≥ pOb for all f ∈ [0, 1], with pOo > pBb > pBo > pOb for
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f ∈ (0, 1). For f = 0, pOo > pBb = pBo > pOb. For f = 1, pOo = pBb > pBo = pOb.

Proof of Proposition 2. For the first part, we must establish that the reporter’s gain

from misreporting is increasing in q. Since misreporting only matters when the observed

signal is O, this gain is given by Pr (S = O) ∆EU (q, f), and, from equation (1),

∆EU (q, f) = (1− qO(q)) [pBo(f)− pOo] + qO(q) [pBb(f)− pOb] .

Note that the evaluator’s assessments only depend on f . This is shown in the proof of propo-

sition 1, and follows intuitively because evaluators make their assessments after observing

the state of the world, and because their belief, f , is assumed exogenous. Therefore, the

probability of the state of the world, q, gives the evaluator no additional information about

the color of the shell or of the core. Instead, the posterior probability that the shell is B or

O, does depend on q as follows:

qO = Pr (c = b|S = O) = Pr(S=O|c=b)q
Pr(S=O)

=
1
4
q

Pr(S=O)
, and

1− qO = Pr (c = o|S = O) = Pr(S=O|c=o)(1−q)
Pr(S=O)

=
3
4

(1−q)
Pr(S=O)

Therefore, the gain from misreporting is the following function of q and f :

Pr (S = O) ∆EU (q, f) =
3

4
(1− q) [pBo(f)− pOo] +

1

4
q [pBb(f)− pOb] , (9)

and, thus

∂ [Pr(S = O)∆EU(q, f)]

∂q
=

3

4
(pOo − pBo(f)) +

1

4
(pBb − pBo) > 0,

since, by proposition 1, (pOo − pBo(f)) > 0 and (pBb − pBo) ≥ 0 for all values of f .

For the second part of the proposition, replace the values of the evaluator’s assessments

in equation (9) (the values are given in Section 3.1 and again in the proof of proposition 1),

to obtain

Pr (S = O) ∆EU (q, f) =
3

4
(1− q)

[
(1− f)

1
2

+ (1− f)3
2

− 2

3

]
+

1

4
q

[
1

3
2

+ (1− f)1
2

]
.

If the evaluator holds point beliefs about the reporter’s truthfulness, the reporter should

misreport only if the above expression—gain from misreporting—is positive, which boils

down to q > (4− f) / [4(2− f)]. This concludes the proof of Proposition 2.

Proof of Proposition 3. Consider ∆EU from equation (10). We have:

∂ [Pr(S = O)∆EU(q, f)]

∂f
=

(24q − 6)f 2 + (−96q + 48)f + 128q − 96

(3f 2 − 16f + 16)2
.
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The denominator is always positive. Thus, the derivative is negative if and only if the

numerator is negative. The numerator is negative if and only if

q <
3f 2 − 24f + 48

12f 2 − 48f + 64
.

This means that, if q ≤ 3
4
, the derivative is negative for any f ∈ [0, 1], and hence, it follows

that the expected gain from misreporting is minimized at f = 1. When q > 3
4
, the numerator

is negative if and only if

f >
q − (1− q)− 2

√
1
3
q(1− q)

3
4
q − 1

4
(1− q)

= f(q).

As long as q < 27/28, there is f ∈ [0, 1] such that this condition is satisfied. Thus, for prior

beliefs q ∈ [3/4, 27/28], Pr (S = O) ∆EU (q, f) is a concave function of f , minimized either

at f = 0 or f = 1. It is easy to see that, as long as q < 9/10, Pr(S = O)∆EU(q, 1) = 8q−6
9−6q

<

Pr(S = O)∆EU(q, 0) = 16q−8
48−32q

, thus completing the proof of the statement.

Additionally, notice that for q ∈ [9/10, 27/28], the concave incentives for misreporting are

minimized when f = 0. Moreover, when q > 27/28, expected gains from misreporting are

a strictly increasing function of f , immediately implying that they are minimized at f = 0

(and maximized at f = 1).

Proof of Proposition 4. First consider a strongly unbalanced prior belief about the

state, q ∈ (3/4, 1], and notice that the condition for the reporter to prefer misreporting,

q > (4− f) / [4(2− f)], is satisfied for all values of f : the right-hand side is strictly in-

creasing in f , and equals 3/4 when f = 1. This means that there can only be equilibria

where the reporter misreports. Since the condition is also satisfied when f = 0—when the

evaluator believes the reporter misreports for sure—misreporting and misreporting beliefs

indeed constitute a perfect Bayesian Nash equilibrium. Hence, with a strongly unbalanced

prior, the unique equilibrium of the game is a pooling equilibrium.

Now consider a mildly unbalanced prior, q, and suppose the evaluator holds beliefs

f ∗(q) = 8q−4
4q−1

. Simple transformations give a simplified expression for the reporter’s expected

gain from misreporting,

Pr (S = O) ∆EU (q, f) =
4q (2− f) + (f − 4)

2 (4− f) (4− 3f)
,

whose denominator is always positive. Replacing f = 8q−4
4q−1

, the numerator of the above

expression equals 0, meaning that the reporter is indifferent between misreporting and truth-

telling. Hence, the evaluator’s beliefs that the reporter picks a mixed strategy of truth-telling

with probability 8q−4
4q−1

can indeed be sustained with reporter’s best-replying behavior for those

beliefs. This shows that the MSE exists.

48



If the evaluator holds beliefs f > 8q−4
4q−1

, ∆EU < 0, meaning that the reporter prefers

to be truthful. Therefore, the only belief f > 8q−4
4q−1

that can be sustained by the reporter’s

behavior, is f = 1, where the reporter is truthful and the evaluator believes this: a separating

equilibrium exists.

If the evaluator holds beliefs f < 8q−4
4q−1

, ∆EU > 0, meaning that the reporter prefers

misreporting. Therefore, the only belief f < 8q−4
4q−1

that can be sustained by the reporter’s

best-replying behavior is f = 0, where the reporter misreports and the evaluator believes so:

a pooling equilibrium exists.

∆EU (q, f) = EU(M)− EU(T ) =
3
4

(1−q)
1
4
q+ 3

4
(1−q)

(
(1−f)

1
2

+(1−f) 3
2

− 2

3

)
+

1
4
q

1
4
q+ 3

4
(1−q)

(
1

3
2

+(1−f) 1
2

)
. (10)

B The Effect of Experience

The game faced by our experimental subjects is complicated and it might require some time

for subjects to understand the underlying incentives. This is the reason why we focused the

analyses on experienced subjects, as is customary in experimental economics. To explore

the possibility that behavior adapted to accumulated experience, we compare reporters’ and

evaluators’ behavior in the first block of each treatment (decisions 1–16), when subjects

were relatively inexperienced, to the second block (decisions 17–32), after subjects had been

exposed to feedback and a chance to learn. Tables 13, 14 and 15 report summary statistics

on reporters’ and evaluators’ behavior by block. Figures 10 and 11 show reporters’ and

evaluators’ behavior by period and treatment. Table 16 reports estimates of the effect of

experience on reporters’ behavior as a function of the game and the treatment. Table 17

reports estimates of the effect of experience on human evaluators’ behavior as a function of

the treatment and the observed report-core pair.

With the exception of CT with q = 6/10 (where there is significantly less misreporting

with experience) and of CU with q = 8/10 (where the effect of experience is negligible), expe-

rienced reporters are significantly less likely to report truthfully than inexperienced reporters

(significance at the 1% level, except for HF with q = 6/10 and CL with q = 8/10, which

are significant at, respectively, the 10% and the 5% level). Notice that in game CT with

q = 6/10 reporting truthfully is the best response to the beliefs of computerized evaluators

so experience leads reporters to make better choices, as is the case for HF with q = 8/10

and CT with q = 8/10. Regarding CU with q = 6/10, learning is away from the best

response: experienced reporters are more likely to misreport than inexperienced reporters

but misreporting gives a lower EU than truth-telling. At the same time, we must note that

the differences in EU between misreporting and reporting is minimal: e0.01 in each period.

The behavior of evaluators is only marginally affected by experience: experienced evaluators

punish significantly less severely an inaccurate blue report with q = 6/10 (possibly as a con-

sequence of increased misreporting by experienced reporters, which dampens the evaluators’

ability to infer the informativeness of the urn) and punish more severely (significant at the
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5% level) an inaccurate orange report (in the direction of what a Bayesian evaluator would

do). Finding 7 summarizes this discussion.

FINDING 7: Except when reporting truthfully is a best response to computer-

ized evaluators’ beliefs (game CT with q = 6/10), experienced reporters are more

likely to misreport than inexperienced reporters. Human evaluators’ assessments

are mostly unaffected by experience.

q = 6/10 q = 8/10
1st Block 2nd Block Theory 1st Block 2nd Block Theory

HF 0.53 0.49 [0,1] 0.44 0.37 0
(752) (745) (736) (736)

CT 0.59 0.65 1 0.43 0.34 0
(752) (752) (752) (752)

CU 0.52 0.44 1 0.38 0.35 0
(725) (752) (752) (752)

CL 0.54 0.47 [0,1] 0.41 0.36 0
(768) (768) (768) (768)

Table 13: Fraction of periods the reporters choose the truthful plan of action, by treatment
and experience. The number of observations is in parentheses. Each reporter makes 16
decisions in each treatment and block. There are 46 reporters in HF; 47 in CU and CT; and
48 in CL. In HF, there is one additional reporter making 16 decisions in the 1st Block with
q = 6/10 and 9 decisions in the 1st Block with q = 8/10.
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Assessments Empirical Frequency Theory
1st Block 2nd Block 1st Block 2nd Block

Blue Report & Blue Core 0.60 0.59 0.56 0.55 [0.50, 0.67]
(385) (383) (385) (383)

Blue Report & Orange Core 0.30 0.40 0.37 0.37 [0, 0.50]
(196) (194) (196) (194)

Orange Report & Blue Core 0.23 0.01 0.00 0.00 0.00
(60) (54) (60) (54)

Orange Report & Orange Core 0.66 0.65 0.64 0.68 0.67
(111) (105) (111) (105)

Table 14: Median assessment by the evaluators, by observed Report-Core and experience,
q = 6/10. The number of observations is in parentheses. There are 47 the evaluators, each
making 16 assessments in each treatment and each block. Because of missing observations by
the corresponding reporter, there are 7 missing observations for the 1st Block with q = 8/10
and 16 missing observations for the 2nd Block with either q.

Assessments Empirical Frequency Theory
1st Block 2nd Block 1st Block 2nd Block

Blue Report & Blue Core 0.60 0.55 0.59 0.56 [0.50, 0.67]
(536) (522) (536) (522)

Blue Report & Orange Core 0.36 0.30 0.37 0.46 [0, 0.50]
(113) (117) (113) (117)

Orange Report & Blue Core 0.10 0.01 0.10 0.01 0
(56) (59) (56) (59)

Orange Report & Orange Core 0.48 0.66 0.65 0.89 0.67
(40) (38) (40) (38)

Table 15: Median assessment by the evaluators, by observed Report-Core and experience,
q = 8/10. The number of observations is in parentheses. There are 47 the evaluators, each
making 16 assessments in each treatment and each block. Because of missing observations by
the corresponding reporter, there are 7 missing observations for the 1st Block with q = 8/10
and 16 missing observations for the 2nd Block with either q.
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Figure 10: Time Series of Reporters’ Behavior by Game and Prior Beliefs on State (q).

Pr[Reporter Chooses Truthful Plan of Action]
(1) (2) (3) (4) (5) (6) (7) (8)

2nd Block −0.04 −0.07 0.07 −0.09 −0.08 −0.03 −0.07 −0.05
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Game HF HF CT CT CU CU CL CL
q 6/10 8/10 6/10 8/10 6/10 8/10 6/10 8/10
N 1488 1481 1504 1504 1504 1504 1536 1536

Table 16: Random effects GLS regressions. Each subject is a panel and periods are times
within a panel. Standard errors in parentheses. Constant is omitted.
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Figure 11: Time Series of Average Human Evaluators’ Assessments by Observed Report-Core
Pair and Prior Beliefs on State (q).

Human Evaluator’s Assessment
(1) (2) (3) (4) (5) (6) (7) (8)

2nd Block 0.04 4.86 -2.14 -0.62 -0.66 -3.13 -5.80 1.67
(1.00) (1.36) (2.68) (1.94) (0.70) (2.19) (2.89) (5.02)

Report Blue Blue Orange Orange Blue Blue Orange Orange
Core Blue Orange Blue Orange Blue Orange Blue Orange
q 6/10 6/10 6/10 6/10 8/10 8/10 8/10 8/10
N 768 390 114 216 1058 230 115 78

Table 17: Random effects GLS regressions. Game HF. Each subject is a panel and periods
are times within a panel. Standard errors in parentheses. Constant is omitted.
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C Experimental Instructions

Experimental instructions were delivered in print and using a video of power point slides

with explanations of the situation and decisions to be made. The videos for each game can

be found at the following web addresses:

• For game CT, http://bocconicohortstudy.org/t11a.mp4

• For game CU, http://bocconicohortstudy.org/t11u.mp4

• For game CL, http://bocconicohortstudy.org/t22.mp4

• For game HF, http://bocconicohortstudy.org/t33.mp4

Here we reproduce the words and some of the figures contained in the slides handed out to

the subjects. Information outside boxes is relevant for all games; information inside boxes

is relevant for a specific game or set of games only, as indicated in the title of the box.

Some wording is slightly different between games CT, CU, and CL, on one side, and game

HF on the other. These alternate wordings are indicated inside square brackets, with the

wording used in game HF indicated in italics. We use square brackets and small caps to

insert comments about the graphical interface of the delivered instructions.

An Experiment With Balls. Instructions

Welcome

• In this experiment your earnings will depend on your decisions, so that different par-

ticipants may earn different amounts

• Your earnings will be paid in cash at the end of the session in a separate room to

preserve the confidentiality of your scores

• Please be aware that your participation is voluntary and can be withdrawn at any time

without giving any reasons, but in that case your earnings will be nil

Informed Consent Form

• Please read carefully the Information for Data Subjects and Consent Request docu-

ment handed out along with these instructions. Please tick, date, and sign the Informed

Consent Form at the end of that document

• The data will be collected in an anonymous way by associating a code with your

identity

• The users of the data will associate the data with the code, but they will never be able

to associate the data with your individual identities

• The anonymized data will be stored and analyzed by the Principal Investigator for the

purpose of a research project on reporting and evaluating
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• The anonymized data will be kept indefinitely by the Principal Investigator and will

be made available to other researchers if and when the project leads to a publication

in a scientific journal

Practicalities

• Please remember to turn off your cell phones

• Once the experiment starts, please do not talk or in any way communicate with other

participants

• If you have any question or problem at any point, please raise your hand

• Participants intentionally violating rules may be asked to leave the experiment and

may not be paid

• You can contact Marco Ottaviani (marco.ottaviani@unibocconi.it), the project’s

Principal Investigator, to ask for corrections, updates, or cancellation of your data at

any time

• In case of ethical concerns related to the experiment, you can contact Bocconi’s Ethical

Committee (comitatoeticoricerca@unibocconi.it)

The Experiment

• This experiment consists of four (4) blocks of periods

• Each block consists of sixteen (16) periods

Games CT, CU, and CL only

• In each period you will play the role of reporter and you will interact with a

computerized evaluator

Game HF only

• In each period you interact with another participant

• Half of you are assigned the role of reporter, the other half the role of evaluator

• You maintain the role assigned in the first period for the entire experiment

[Screenshots are shown to illustrate the initial message which assigns

the role of reporter or evaluator to each subject]

• In each period a reporter is randomly paired with an evaluator

• If you are a reporter, in each period you are equally likely to be paired with any

of the evaluators, regardless of the evaluator you were paired with in the previous

period
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Figure 12: Game CL only: diagram to illustrate reporters’ matching with computerized
evaluators.

• You will never know the identity of the evaluators you are paired with

• If you are an evaluator, in each period the same mechanism randomly pairs you

with a reporter, whose identity you will never know

Game CL only

[Accompanied by the diagram in figure 12.]

Reporters & Computerized Evaluators

The number of computerized evaluators is the same as the number of reporters, which

in turn is equal to the number of experimental subjects in this room

Random Pairing

In each period you will be randomly paired with one of the computerized evaluators

Regardless of the computerized evaluator you were paired with in the previous period,

in each period you are equally likely to be paired with any of the computerized evaluators

Balls

• In each period the software draws a ball

• Each ball is made of two parts: a crystal inner core and an opaque outer shell

• The inner core is either blue or orange; similarly, the outer shell that covers the core

is either blue or orange

• Overall, there are four kinds of balls:

1. Balls with blue core and blue shell

2. Balls with blue core and orange shell

3. Balls with orange core and blue shell

4. Balls with orange core and orange shell

Urns
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Figure 13: Informative (left) and uninformative (right) urn used as an example in the ex-
perimental instructions.

• The ball is drawn from one of two urns [Figure 13 is shown]

• The number of balls in each of the two urns is always equal to 10

• In each urn the number of balls with a blue core is equal to Q

• At the beginning of a block of periods you are told the number of balls with a blue

core, Q, contained in each urn in every period of that block; the remaining 10 - Q balls

in each urn have an orange core

• In the example above, in both urns Q=2 balls have a blue core, so that the remaining

10 - Q=8 balls have an orange core

The Informative Urn

In the informative urn, the core of each and every ball is covered by a shell of the same color

EXAMPLE [The left panel of Figure 13 is shown]: The informative urn contains:

• Two (Q=2) balls with a blue core and a blue shell

• Eight (10 - Q=8) balls with an orange core and an orange shell

The Uninformative Urn

In the uninformative urn, for half of the balls the core is covered by a shell of the same color,

and for the remaining half of the balls the core is covered by a shell of the other color

EXAMPLE [The right panel of Figure 13 is shown]

• Out of the two (Q=2) balls with blue core, one (2/2=1) is covered by an orange shell

and one by a blue shell

• Out of the eight (10 - Q=8) balls with orange core, four (8/2=4) are covered by an

orange shell and four by a blue shell

Notice that in the uninformative urn five (5) balls always have a blue shell and five (5) balls

always have an orange shell

Draw
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• At the beginning of each period, the computer will simulate the toss of a fair coin to

determine from which of the two urns the ball is drawn

• If the coin lands Heads, the ball will be drawn from the informative urn

• If the coin lands Tails, the ball will be drawn from the uninformative urn

• When the ball is drawn, neither you (the reporter) nor the [computerized] evaluator

know the outcome of the coin toss

Thus nobody knows from which of the two urns the ball is drawn

[Your Task] [Task of the Reporter ]

[Your task as reporter] [The task of the reporter ] is to make a report about the

color of the shell

• The report has to be made through a plan to which [you] [the reporter ] must commit

before seeing the color of the shell

You [The reporter ] must choose one of the following two plans:

(1) If I see a BLUE shell, I will report: “The shell is BLUE”. If I see an ORANGE

shell, I will report: “The shell is ORANGE”.

(2) If I see a BLUE shell, I will report: “The shell is BLUE”. If I see an ORANGE

shell, I will report: “The shell is BLUE”.

EXAMPLE: [Caricature of a reporter who thinks the following sentence.] If

I see an ORANGE shell, I will report “The shell is BLUE”.

[Screenshots are given to illustrate how this choice can be made using the

computer interface of the experiment. See Figure 14.]

Implementation of Plan of Action

• After submitting the plan, [you] [the reporter ] see the color of the shell of the ball that

was actually drawn

• At this point, a report is automatically sent to the computerized evaluator according

to [the plan you have previously chosen] [the plan previously chosen by the reporter ]

• Recall that the report sent to the computerized evaluator is determined both by [your]

[the reporter’s ] plan and by the color of the shell of the ball that was actually drawn

• Notice that the plan is made before [you] [the reporter ] see the actual color of the shell

EXAMPLE: If I see an ORANGE shell, I will report “The shell is BLUE”.

The following ball is drawn [Graphical display of a ball with an orange shell

and an orange core. The shell is then isolated for the reporter to see. A
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Figure 14: The reporter chooses plan of action (2) (left), a ball is drawn that has an Orange
shell, so the reporter’s report is Blue (right).

dashed blue shell (indicating the report) is then sent to the evaluator.]

[Your goal as reporter] [The goal of the reporter ] is to be perceived as having

seen a ball drawn from the informative urn

[Screenshots are given to illustrate how the shell is shown to the reporter

and a report is automatically sent using the rule given by the reporter’s

chosen plan of action. See Figure 14.]

Task of the [Computerized] Evaluator

The task of the [computerized] evaluator is to assess how likely it is that the ball

was drawn from the informative urn

The [computerized] evaluator makes the assessment after receiving two pieces of information:

• The report sent by the reporter about the color of the shell

• The color of the core of the ball that has been drawn

Game CT only

• Throughout all the periods of this experiment, the computerized evaluator is pro-

grammed to believe that you always use plan (1)

– Thus, in each period, the evaluator you face believes that the color of the

shell you report is equal to the color of the shell you see
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Game CU only

Throughout all the periods of this experiment, the computerized evaluator is programmed

to interpret the report based on the belief that:

• A fraction f of the reporters uses plan (1) and a fraction 1− f uses plan (2)

• All values of f between 0 and 1 are equally likely

This means, for example, that the computerized evaluator believes that the probability

that a fraction f = 2/10 of reporters use plan (1) is the same as the probability that

a fraction f = 9/10 of reporters use plan (1), and so on for all possible values of the

fraction f

Game CL only

• In order to interpret the report and assess whether the ball was drawn from the in-

formative urn, the computerized evaluator is programmed to believe that a fraction

f of the reporters uses plan (1) and a fraction 1− f uses plan (2)

• However, computerized evaluators do not know the value of f

Experience and Dynamics of Beliefs

Computerized evaluators accumulate experience across periods with the same

value of Q, so that their belief about f evolves depending on their experience

• In each period, the experience of each computerized evaluator consists of the out-

come of the interaction with the reporters with whom this computerized evaluator

was paired in all previous periods with the same value of Q

• In the first period of a block of periods with a value of Q that has never been

encountered before, all evaluators believe that any value of f between 0 and 1 is

equally likely

• Thus, in the first period, the computerized evaluator believes, for example, that

the probability that a fraction f = 2/10 of reporters use plan (1) is the same as

the probability that a fraction f = 9/10 of reporters use plan (1), and so on for all

possible values of the fraction f

• Each computerized evaluator updates its belief about the fraction f on the basis of

the experience accumulated in each of the previous individual interactions with

reporters. This experience consists of:

– The reports received by that specific computerized evaluator

– The color of the cores observed by that specific computerized evaluator
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– Whether each ball was drawn from the informative or the uninformative urn

This experience allows the computerized evaluator to make an inference

about the plan used by the reporters it encountered in all previous

periods

• Note that the first time a block of periods with a certain Q starts, learning from

experience starts anew

• The “memory” of the computerized evaluator is then reset to believe that all values

of f between 0 and 1 are equally likely

• However, if a block starts a second time with the same Q as in an earlier block,

the computerized evaluator carries over the experience from the earlier block with

that same Q

Task of the [Computerized] Evaluator, continued

• The assessment of the [computerized] evaluator takes the following form:

“Given the core that I see and the reported shell, how likely is it that the ball was

drawn from the informative urn? My assessment is P% = %.”

• The number P is between 0 and 100

The goal of the [computerized] evaluator is to make an accurate assessment

EXAMPLE: The following ball is drawn [Graphical display of a ball with an or-

ange shell and an orange core. The core is separated from the shell. The

core is directly given to the evaluator to see. The shell is given to the

reporter who sends a dashed blue shell (report) to the evaluator. The

graphic evaluator ponders:] Given the core that I see and the reported shell, how

likely is it that the ball was drawn from the informative urn? My assessment is P% = %.

Notice that the [computerized] evaluator sees [your] [the reporter’s ] report, but sees neither

the reporter’s plan nor the actual color of the shell

Game HF only

[Screenshots are given to illustrate the information the evaluator will

have at the time when she/he will make her/his choice. See Figure 15.]

[Your Payoff] [Payoff of the Reporter ]

• At the beginning of each block of periods [you] [the reporter ] receive a budget of 4

euros
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Figure 15: The evaluator is reminded that the report she/he will see is the choice of the
reporter (up, left), and is given the opportunity to make a choice after receiving the report
and observing the core of the drawn ball (up, right). The evaluator can make her/his choice
using a slider (down, left), or by typing in a number (down, right).
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• In each period [you] [the reporter ] pay an operating fee of 25 euro cents and obtain a

payoff equal to P euro cents

• P% represents the [computerized] evaluator’s assessment of the probability that the

ball was drawn from the informative urn

[A screenshot is shown to illustrate how feedback is given to the reporter

about her choice, her payoff, and the truth about the core of the drawn

ball and the urn informativeness. See Figure 16.]

Game HF only

Payoff of the Evaluator

The payoff structure of the evaluator is designed to give the evaluator an

incentive to make and report an accurate assessment of the probability that

the ball was drawn from the informative urn

• Depending on the evaluator’s assessment, P%, the evaluator receives the following

numbers of lottery tickets:

– NI =
[
1− (1− P/100)2]× 10000 tickets that are marked by I and numbered

consecutively from 1 to NI

– NU =
[
1− (P/100)2] × 10000 tickets that are marked by U and numbered

consecutively from 1 to NU

• When the evaluator assesses P, the software displays the numbers NI and NU

corresponding to every value of P in a friendly format

• The payoff of the evaluator depends on the outcome of the lottery as follows:

i. Selection of the letter:

∗ If the ball was drawn from the informative urn, letter I is selected

∗ If the ball was drawn from the uninformative urn, letter U is selected

ii. Selection of the number: The software extracts a random number between 1

and 10000 (in each period all numbers are equally likely to be extracted and

extractions are independent across periods)

iii. If the evaluator owns the ticket with the selected letter and the selected num-

ber, the evaluator wins 75 euro cents; otherwise, the evaluator wins 0 euro

cents

[Screenshots are given to show how the evaluator can make an assess-

ment using either the keyboard or the slider in the experiment’s com-

puter interface. See Figure 15.]
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Figure 16: Feedback is given to the reporter(left) and to the evaluator (right) at the end of
each period.

Payoff of the Evaluator

• Suppose that the ball was actually drawn from the informative urn

• Suppose that the software randomly extracts number 5105

• Given that the evaluator owns the winning ticket (number I−5105), the evaluator

wins 75 cents!

• Note that if the number extracted had been greater than 5511, the evaluator would

have lost the lottery

[A screenshot is given with the evaluator’s feedback on payoff. See Fig-

ure 16.]

Evaluator Feedback

Evaluator

At the end of each period, the evaluator receives the following feedback about the out-

come of that period:

• The urn (informative or uninformative) from which the ball was drawn

• The evaluator’s own payoff

Recall that the evaluator sees neither the reporter’s plan nor the color of the shell

[A screenshot is given to show the historical feedback given to evalua-

tors in between experimental periods. See Figure 17.]

[Your] [Reporter ] Feedback
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Figure 17: In between periods, the reporter (left) and the evaluator (right) are reminded of
important outcome variables for all past periods.

At the end of each period, [you] [the reporter ] receive the following feedback about the

outcome of that period:

• The color of the core of the drawn ball

• [Your] [The reporter’s ] own payoff

• The urn (informative or uninformative) from which the ball was drawn

[A screenshot is shown illustrating the historical feedback given to the

reporter in between experimental periods. See Figure 17.]

Game CL only

Evaluator Feedback

Computerized Evaluator

At the end of each period, the computerized evaluator receives feedback about the urn

(informative or uninformative) from which the ball was actually drawn

Recall that the computerized evaluator sees neither your reporting plan nor the color of

the shell

Transition Across Periods & Blocks

• At the end of each period the ball is returned to the urn from which it was drawn

• At the beginning of the following period a new coin flip is simulated and a new ball is

drawn from the urn selected by the coin flip

• Urn selections and ball draws are therefore independent across periods

• You are allowed to take notes on scrap paper throughout the experiment
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(a) Games CT, CU, and CL. Additional text for CL in gray.

(b) Game HF.

Figure 18: Graphical summary of the experiment used in the experimental instructions.

• At the end of each block of periods you will have time to take notes about your

experience during that block

• You are advised to go over your notes whenever you happen to play again a block of

periods with the same number (Q) of balls with a blue core

Summary

At the beginning of each of the four (4) blocks of periods you are told the value of Q, the

number of balls with blue core out of the total ten (10) balls that are contained in each of

the two urns

For each of the sixteen (16) periods within each block, the timing is as follows: [see Figure

18.]
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