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1 Introduction

Choosing a portfolio of projects is a central managerial problem. In corporate

strategy, managers must decide which business units or divisions to establish within

their firms, and which alliances or acquisitions to pursue. At a more disaggregate

level, division managers must decide which R&D projects or marketing campaigns

to greenlight, and venture capitalists must decide which businesses to support.

Our paper analyzes the managerial problem of selecting a portfolio from a pool of

projects given a research budget and allowing for value spillover across the projects.

The portfolio selection is made at the interim stage, where the manager has some

preliminary information about the projects’ profitability from past experience, early

reports, expert assessments, clinical trials, or peer reviews, but before their value

is fully realized. This timing allows us to make a distinction between two types of

spillover that has been largely overlooked in the literature: (a) managerial spillover,

whereby the appreciation of a project leads to the appreciation of other projects

under the same management through the sharing of managerial practices and real

assets; and (b) informational or statistical spillover, whereby market conditions or

other factors outside the management structure affect multiple projects, making the

preliminary reports about one project informative about the others.

The following examples shed light on this distinction:

• A farmer is considering whether to buy one or two neighboring plots of land. If

one of the plots is sufficiently large to make it profitable to invest in big and powerful

farm equipment, the same equipment can be employed to extract more value out of

the neighboring plot; this is a managerial spillover. At the same time, analyzing

the chemical composition of the soil in one plot to predict its fertility will shed

information on the fertility of the neighboring plot, as proximity typically implies

similar soil properties; this is a statistical spillover.

• A drilling company is interested in bidding for one or two neighboring oil

tracts. Proximity of the tracts can help the company mobilize resources across oil

platforms (managerial spillover) and makes findings on the properties of the soil

in one tract informative about the likelihood of finding oil in the neighboring tract

(statistical spillover).

• An investor is looking to fund two development projects in the same area.

Proximity allows the investor to mobilize construction equipment and labor across

projects (managerial spillover), while news about the real estate market gathered

from analysis on one project is useful to assess the other one (statistical spillover).
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• A pharmaceutical company is evaluating research on two alternative treatments

for a disease, Treatment A and Treatment B. The treatments are based on conflicting

hypotheses regarding the cause of the disease. Lab equipment and staff can be

shared across the two research teams (managerial spillover). At the same time, a

successful trial from treatment A is good news about it but bad news about treatment

B, and viceversa (statistical spillover).

This spillover distinction has tangible managerial implications. We show that,

under statistical spillover, projects can be assessed on a decentralized, case-by-case

basis, and undertaken autonomously as long as information that helps assess projects’

present values flows freely across divisions. If preliminary findings are shared across all

units, each unit can assess and carry out their own project. Exploiting managerial

spillover, on the other hand, requires projects to be undertaken under a common

managerial unit and to be assessed in blocks: The combined savings from passing

on two projects at once may outweigh their marginal contribution; thus, individual

assessments can be misleading.

We showcase these managerial implications in the cases of a company doing

R&D with product development and a company consisting of a headquarter and two

divisions, evaluating integration vs. decentralization. In the latter, HQ can integrate

the divisions in order to exploit managerial spillover, or maintain a decentralized

structure while facilitating the flow of information across the divisions, integrating

“informationally.”

While an important portion of the management literature overlooks managerial

spillover (Arora and Gambardella, 1994b; Adner and Levinthal, 2004; Trigeorgis and

Reuer, 2017), there is a rich line of work that accounts for such spillover. Fox et al.

(1984) analyzes projects whose present value can have a non-linear impact on profit.

Ghasemzadeh et al. (1999) specifies linear profit but accommodates value spillover

as successor constraints on project choice. Dickinson et al. (2001) represents project

dependency by means of a (not necessarily symmetric) square matrix; the value

of a portfolio and projects’ interactions are additive. Liesio et al. (2008) represents

project dependency by introducing dummy projects with value and cost given by the

value and cost interaction across projects. This approach can accommodate specific

spillovers across a small number of projects, but the number of dummy projects

needed to account for the more global managerial spillover grows exponentially with

number of projects under consideration. While the managerial objective in all of

these papers is unidimensional (namely, the value of the portfolio), Gutjahr et al.

(2010) develops a multi-objective optimization problem for portfolio selection.
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Statistical spillover, however, has been largely overlooked in the literature and

remains understudied. Of course, the literature recognizes that returns to projects

are random and that managers maximize expected profit. However, expectations

are typically taken as exogenous, while our statistical spillover has to do with how

these expectations are taken on the basis of noisy signals. Loch and Kavadias (2002),

for instance, studies a multi-period, multi-product firm under uncertainty about the

market conditions for their different products. They allow for correlation across

market conditions (Proposition 4), but their analysis is carried out from the point

of view of time 0, the ex-ante stage, so all expectations are unconditional. In Solak

et al. (2010), the uncertainty on projects’ present value gradually resolves provided

the manager invests in said projects. However, investment on one project does not

by itself produce information on the return of another project.

As noted, accounting for statistical spillover in project portfolio assessment has

key managerial implications. Fox et al. (1984) states that, if ex-post profit is additive

across projects, then expected values are independent. This suggests that a manager

can decentralize the assessment and undertaking of projects to the corresponding

divisions. However, if values are correlated, then the information that one division

acquires can be useful for other divisions regardless of the final decision of the former on

its projects; thus, at the interim stage, expected values can be interdependent even if

ex-post profit is additive—namely, in the absence of managerial spillover.

The paper is organized as follows. Section 2 presents the formal setting. Section 3

discusses the general managerial problem. In section 3.1, we analyze the implications

of statistical spillover alone; section 3.2 looks at managerial spillover in isolation; and

section 3.3 considers a case of R&D plus product development with both kinds of

spillover interacting. Section 4 presents the managerial implications for physical vs.

informational integration in the case of a company with a headquarters and two

divisions. Finally, section 5 concludes. Proofs are collected in the appendix.

2 The General Problem

There is a pool of n projects, denoted by N = {1, . . . , n}. The individual gross

present value (PV) of undertaking project i is denoted by vi ∈ [vi, vi], where vi > vi.

Project i’s cost is a fixed number ci > 0.1 We assume that vi = 0 for all i, so that gross

1Since we consider a static project portfolio problem with additive costs, the assumption that there
is no uncertainty on costs is without loss of generality: If projects’ costs were random variables, we
could replace them with their expectation. Cost uncertainty can be relevant in a dynamic environment
where costs are incurred over time.
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PV cannot be negative, they do not destroy value; of course, as projects are costly, net

PV may well be negative. Given a profile of project values v = (v1, . . . , vn), if project

portfolio A ⊆ N is chosen, the ex-post profit for the general manager is given by:

Π(A, v) := ∑
i∈A



vi



1 + θ ∑
j∈A\{i}

vj



− ci



 , (1)

where θ ≥ 0 is the degree of managerial spillover (MS) between projects. Handling

projects in house, with shared managerial resources, adds a positive interaction effect

to the projects’ value; θ captures the degree of this interaction.2

The specification in (1) is inspired by the model of knowledge accumulation of

Cohen and Levinthal (1989) and the synergy specifications of Fox et al. (1984) and

Loch and Kavadias (2002). Projects spill their PV over to other projects’ PV. This

effect is proportional, so spillover can increase the revenue from a successful project

but cannot cause an unsuccessful project to succeed: If a project always yields a gross

value of 0, no amount of spillover from other projects will change that.

Unexpected market shifts or shocks render projects’ PV’s uncertain. We allow for

PV’s to be correlated, either positively or negatively, across projects. For instance, two

farms in neighboring lands will have similar yields based on similarities in their soil

or weather conditions; the state of the real estate market will affect two neighboring

development projects. These are examples of positive correlation. Alternatively, oil-

price shocks that negatively affect Toyota’s gas car projects will boost their electric

car projects, and viceversa;3 or consider a pharmaceutical lab conducting research

on two possible treatments A and B for a disease based on conflicting hypotheses on

the cause of the disease, so that only one of them can succeed. These are examples

of negative correlation.

Portfolios must be chosen before PV’s are realized, on the basis of preliminary

information or signals obtained from experience with similar projects, research trials,

peer reviews or reports, etc., signals that speak to how promising is a given project.

2The assumption that the range of gross PV vi is non-negative is little more than a convenient
normalization. We can accommodate projects that can yield negative values, vi < 0, by replacing their
value vi with ṽi = vi − vi ≥ 0 and its cost ci with c̃i = ci − vi > ci. Doing this would overestimate the
spillover of this project on others, however, so (1) would have to be adjusted accordingly.

This normalization plays a role in the specification of MS in (1). Combined with the assumption
that θ ≥ 0, it ensures that MS is non-negative; sharing managerial resources is an asset, not a liability.
Allowing for vi < 0 in (1) would propagate negative impacts, unless we model MS using absolute
values. For multi-period projects, one could make a case for managers “learning from mistakes.” See
the discussion below before Lemma 1.

3We thank an anonymous referee for suggesting this example.
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We denote project i’s signal by si ∈ [si, si], where si > si. Given vi, si is drawn

from the conditional distribution with pdf fi(si|vi), independently of other projects’

signals.4 We assume that, for each i, the signals (vi, si) are affiliated. This means that

higher project values are more likely given higher signals. In other words, a high

signal is good news about the value of the corresponding project. We assume that

it is in fact strictly good news, in the sense that the corresponding E[vi|si] is strictly

increasing in si for every i.

As we allow for correlation across projects’ PV’s, even though the signals are

conditionally independent (conditional on the corresponding PV), they are generally

not independent under their unconditional distribution: A promising signal for one

project is indicative of a high PV for said project, which is informative of other

projects’ PV’s, which in turn affect their own signals. For example, a promising

soil testing in a farm is indicative of high yield potential for said farm but also for

nearby farms; a successful clinical trial for treatment A is indicative that A is the

right treatment, suggesting that the trials for treatment B are likely to fail.

The manager employs the signals s1, . . . , sn to assess the projects using Bayes’

rule to compute the posterior moments of the gross PV’s v1, . . . , vn. The correlation

across signals means that, in general, the expected PV of a given project depends

on the signals of other projects as well as its own. For each i, given signal profile

s = (s1, . . . , sn), we define the conditional expectation function φi(s) = E[vi|s]; the

manager’s interim-expected profit (given the projects’ signals) is:

π(A, s) : = E [Π(A, v)|s] = ∑
i∈A

[φi(s) − ci] + θ ∑
i∈A

∑
j∈A\{i}

E[vivj|s]. (2)

We assume that the signals are costless, or alternatively, that the signals have already

been acquired so their cost is sunk.5

Our statistical spillover (SS) is captured by the dependence of φi(s) on s−i, where

s−i is the profile of signals for projects other than i.6 If two projects are positively

correlated and we get a low signal from one but a high signal from the other, the

4The assumption that the distributions of signals are continuous is made for simplicity of the
exposition; continuous distributions allow us to ignore the possibility of ties. Discrete distributions
can be accommodated in the analysis.

5Accounting for the cost of acquiring signals (e.g., producing reports, conducting tests, building
prototypes), the manager must compare the cost of these signals against the increase in profit from
the resulting better-informed project portfolio selection.

6Thus, assuming that the signals are conditionally independence is with little loss of generality: It
does not preclude cross informativeness of the projects; and if the signals are conditionally correlated,
the updated PV distribution would confound the two sources of correlation (the signals and the PV’s
themselves).
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latter’s high signal puts the former’s lower signal into perspective (and viceversa).

A low productivity outcome from a farm can be attributed to a bad weather draw or

contained pest (and thus discounted) in light of a high productivity outcome from a

neighboring farm with similar soil and technology. On the other hand, if the projects

are negatively correlated, the low signal from the first project is even better news

about the second one. In our pharmaceutical example, a failed trial for treatment A

is good news for treatment B. Thus, as noted in the introduction, SS makes a project’s

signal be relevant about other projects’ PV even in the absence of MS. Of course, under

statistical independence, we have that φi(s) is a function only of si: φi(s) = φi(si).

Loch and Kavadias (2002) allows for project-pair specific MS. In our setting, the

MS parameter is not project specific but “manager specific.” We can account for

project-pair specific synergies through correlation between PV’s; however, project-

pair specific MS parameters cannot capture SS.7

Assumption 1 summarizes the information structure of our problem of selecting

project portfolios.

Assumption 1 (Information structure). PV’s v1, . . . , vn are random variables; signals

s1, . . . , sn are continuous random variables, each si drawn conditional on vi; for each

i, φi(si, s−i) is strictly increasing in si; correlation is reflected by the dependence of

φi(s) on s−i.

Example 1. A venture capitalist has n = 4 investment projects for consideration.

Each investment i = 1, . . . , 4 can either be successful, in which case vi = 1, or a dud,

in which case vi = 0. The projects are independent, and their signals s1, . . . , s4 ∈ [0, 1]

are their probability of success; here, φi(si) = si. Given costs and θ, the profit from

green-lighting projects 2 and 4 is π({2, 4}, s) = s2 − c2 + s4 − c4 + 2θs2s4.

Assume now that the projects may pay out any amount between 0 and 1, and

that the signals are lower-bound estimates of the projects’ values. Formally, vi is

uniformly distributed on the interval [0, 1] and si is uniformly distributed on the

interval [0, vi]. Then, φi(si) = si−1
ln(si)

. The profit from selecting projects 2 and 4 is:

π({2, 4}, s) =
s2 − 1
ln(s2)

− c2 +
s4 − 1
ln(s4)

− c4 + 2θ
s2 − 1
ln(s2)

s4 − 1
ln(s4)

under this alternative distribution. 4
7As indicated in (2), the MS term between projects i and j is θE[vivj|s]. If we define θij(s) :=

θφi(s)φj(s)E[vivj|s]−1, this term becomes θij(s)φi(s)φj(s). However, the SS remains insofar as φi(s)
depends on sj and viceversa.
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Example 2. An urban developer is evaluating two housing projects. If demand for

housing is lower than anticipated, the projects will yield no more than 1 each; if

demand is high, they can yield up to 2. More precisely, v1, v2 are independently and

uniformly drawn from the interval [0, 1] if demand is low, and from [0, 2] if demand

is high—each case with probability 1
2 . While the projects are independent conditional

on the state of demand, they are positively correlated unconditionally. Notice that

projects may yield low PV even under favorable market conditions.

Signals are, once again, lower-bound estimates of the projects’ PV; signal si is

uniformly drawn from [0, vi]. If even one signal is above 1, we can conclude that

market conditions are high and that 2 is the highest possible PV; however, if both

signals are below 1, we cannot be sure whether the market is slow or whether our

estimates are too conservative. If 1 ≥ s1 > s2, the expected value of project 2 is:

φ2(s1, s2) =
−5 ln(s1)(1 − s2) + ln(2)

5 ln(s1) ln(s2) − ln(2) ln(s1) − ln(2) ln(s2) + ln(2)2 .

For the same s2, if s1 > 1, we infer that the market is favorable and that our estimate

for project 2 is too conservative; our expectation for project 2 becomes:

φ2(s1, s2) =
2 − s2

ln(2) − ln(s2)
= φ2(s2).

For instance, if s2 = 0.4 and s1 = 0.9, we get φ2(s1, s2) = 0.6039; but if s1 = 1.4, we

can attribute the low s2 to a “bad draw” and reassess φ2(s1, s2) = 0.9941—the higher

s1 is good news about both PV’s and puts the lower s2 into perspective. 4

Example 3. A medical lab is conducting research on two possible treatments for a

disease based on different hypotheses regarding its cause, which is represented by

state ω ∈ {0, 1}; we have v1 = ω and v2 = 1 − ω. Each state is initially believed to

be equally likely. The signals represent the outcomes of clinical trials. An effective

treatment is more likely to succeed in trials, yet poor experimental design may cause

a potentially successful trial to fail while an ineffective treatment may yield “false

positives.” So,

si|vi=1 =

{
1 0.9,

0 0.1;
si|vi=0 =

{
1 0.1,

0 0.9.

If we assess treatment 1 based on s1 alone, then:

φ1(s1) =

{
0.9 s1 = 1,

0.1 s1 = 0.
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If we take s2 into account, then we assess project 1 according to Table 1 below. While

two equal signals convey no information, we have that:

φ1(1) = 0.9 < 0.9878 = φ1(1, 0);

s1 = 1 by itself might be a false positive, but it becomes a more reliable success signal

when the trial for treatment 2 has failed. 4

There are two effects that our framework omits: (1) As our analysis is static in

nature, we do not allow managers to learn from past “mistakes” when a project’s

realized PV is lower than expected; and (2) Low-profit projects may be valuable if

they provide know-how for managers to help other projects succeed. The latter can

be captured, to some extent, as negative correlation across projects.

3 SS vs. MS in Project Portfolio Choice

Let B > 0 be the manager’s research budget. Given a profile of signals s =

(s1, . . . , sn), the manager chooses a project portfolio A ⊆ N in order to maximize

interim-expected profit (2) subject to the constraint ∑i∈A ci ≤ B.

The next lemma establishes that the general manager’s problem is a well-behaved

programming problem.

Lemma 1. The increment in profit from adding a project is larger the larger is the underlying

portfolio. Formally, given s, π(A, s) is supermodular in A: For any two portfolios A ⊆ B ⊆

N and any project j /∈ B, π(B ∪ {j}, s) − π(B, s) ≥ π(A ∪ {j}, s) − π(A, s).

However, finding the optimal portfolio can be cumbersome. We can form 2n

portfolios from a pool of n projects; with only 10 projects on the table, we have 1,024

portfolios to assess. In fact, the manager’s problem of maximizing interim-expected

profit subject to the budget constraint is NP hard. Lemma 1 allows this problem to

φ1(s1, s2) s2 = 0 s2 = 1
s1 = 0 0.5 0.0122
s1 = 1 0.9878 0.5

Table 1: Expectation of v1 conditional on s1, s2 in Example 3.
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be solved as a size-constrained supermodular maximization problem, which is itself

NP hard; see, for instance, Nagano et al. (2011).8

Proposition 1. Consider the set of possible sizes of affordable portfolios, NB := {|A| : A ⊆

N, ∑i∈A ci ≤ B}. For each k ∈ NB, given a profile of signals s, consider the problem of

maximizing π(A, s) subject to the constraint |A| = k, and let A∗
k (s) be a solution to this

problem. Then, a solution to the manager’s problem, A∗(s), is given by the most profitable

A∗
k (s) across k ∈ NB: A∗(s) = arg max{π(A∗

k (s), s) : k ∈ NB}.

In what follows, given the complexity of the general problem, we look at different

benchmarks in order to shed further light on the differential managerial implications

of SS versus MS for portfolio selection. We start by isolating each form of spillover

in turn before analyzing a case with both forms simultaneously.

3.1 SS without MS

We start by considering the benchmark with no MS, namely the case with θ = 0.

Here, expected profit is additively separable across projects: For each A ⊆ N and

signal profile s, π(A, s) = ∑i∈A[φi(si, s−i)− ci]. SS without MS is reflected in the fact

that, while expected profit reduces to the sum of expected net PV’s, each of these

expectations is conditional (in principle) on the entire profile of signals. Aside from the

novel way of computing expectations, the problem without MS can be reduced to a

standard linear programming problem (Fox et al., 1984).

In certain special cases, the problem can be further simplified to the point of

yielding a simple characterization of the optimal project portfolio. For instance, in

the absence of a budget constraint, finding the optimal portfolio of projects is simple:

Take on all projects with non-negative expected net PV, basing expectations on all

relevant signals: A∗(s) = {i : φi(s) ≥ ci}. However, the budget constraint adds an

opportunity cost of picking a project, making projects interdependent in the selection

problem—even if there were no spillovers of any kind.

If there is a budget constraint but the projects are comparable in costs, we can rank

them according to their expected PV—once again, based on all relevant signals—and

undertake all of those with highest expected (positive) net PV that can be afforded.

The next proposition characterizes the optimal portfolio in this case. Denote the PV

order statistics as φ(1)(s) = max{φi(s) : i = 1, . . . , n} and φ(k)(s) = max{φi(s) <

8Nagano et al. (2011) analyzes the equivalent problem of minimizing submodular functions.

10



φ(k−1)(s) : i = 1, . . . , n} for k = 2, . . . , n; let ik(s) for k = 2, . . . , n be the index of the

project with the k-th highest expected PV; finally, let c be the value of projects’ cost,

c = c1 = ∙ ∙ ∙ = cn; bB/cc is the highest number of projects that the manager can

afford.

Proposition 2. Assume that θ = 0, so that there is no MS, and that projects have equal

cost: c = c1 = ∙ ∙ ∙ = cn. Given a profile of signals s, rank the projects according to their

expected PV’s, and let i+(s) be the index of the project with lowest yet positive expected net

PV: i+(s) = max
{

ik(s) : φ(k)(s) ≥ c
}

. The optimal portfolio of projects is:

A∗(s) = {ik(s) : k = 1, . . . , min {i+(s), bB/cc}} .

In words, the optimal portfolio of projects consists of as many of the top-ranked

projects with positive net expected PV as we can afford. Proposition 2 yields a very

simple and intuitive decision rule: We start by ruling out any project with negative

expected PV; we then rank the "shortlisted" or surviving projects from highest to

lowest according to their (positive) expected net PV and undertake as many of the

top-ranked projects as our budget allows.

Example 1 (Continued). Project i’s net PV is si − ci, its probability of success net of

its cost. Assume that c1 = ∙ ∙ ∙ = c4 = 0.5, B = 1, and s1 > s2 > s3 > 0.5 > s4. Then,

bB/cc = 2 and A∗(s) = {1, 2} . The venture capitalist can greenlight two projects,

and the two most-promising projects constitute the best portfolio. If the budget is

expanded to B = 1.5, the third-ranked project becomes profitable as well: bB/cc = 3

and A∗(s) = {1, 2, 3} . However, adding one more project to the budget will not

change the answer, as the last project has a negative expected net PV. 4

While this simple and intuitive decision rule may appear to be well known, our

contribution lies in the way project values are assessed given SS. Even if profit has

an additive structure, correlation precludes separability: Each project’s conditional

expected value depends on the signals of all correlated projects.

Example 2 (Continued). Project 1’s net PV, if s2 < s1 < 1, is:

−5 ln(s2)(1 − s1) + ln(2)
5 ln(s1) ln(s2) − ln(2) ln(s1) − ln(2) ln(s2) + ln(2)2 − c1;
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otherwise, if s1 > 1, we have:

2 − s1

ln(2) − ln(s1)
− c1.

Similarly for s2. Assume that c1 = c2 = 1.2, B = 2.4, and s2 = 0.7. If s1 = 0.9, both

housing projects have negative net PV and neither should be pursued: φ2(s1, s2) =

0.861 < φ1(s1, s2) = 0.8815 < 1.2. However, if s1 = 1.1, both projects have positive net

PV and should be pursued: φ1(s1) = 1.5661 > φ2(s2) = 1.2383 > 1.2. 4

Under Proposition 2, we can rule out any project whose expected PV does not

meet its cost; of those that do, undertake as many of the top-ranked projects as the

budget allows. Unfortunately, despite its appeal, this simple and intuitive rule breaks

down when the projects have different costs—even if we rank projects according to their

net expected PV.9 As the next example indicates, it may pay to pass on the top-ranked

projects if doing so makes enough room in the budget for two or more projects with

collectively-higher net PV.

Example 4. There are three independent projects i = 1, 2, 3, each of which can either

be successful, in which case vi = 10, or a dud, in which case vi = 0. As in Example 1,

signals s1, s2, s3 ∈ [0, 1] are their probability of success; here, φi(si) = 10si. Costs are

c1 = 5 and c2 = c3 = 1.5, while the budget is B = 5. For signals s1 = 0.9, s2 = 0.4, and

s3 = 0.35, project 1 has the highest expected net PV: φ1(0.9) − c1 = 4, φ2(0.4) − c2 =

2.5, and = φ3(0.35)− c3 = 2. However, project 1 is also the most expensive one and it

exhausts the budget. By passing on it, the manager can undertake both lower-ranked

projects 2 and 3 for a total profit of 4.5 > 4. 4

3.2 MS without SS

The simple, naive rule in Proposition 2 also breaks down when we introduce

MS, even if all projects are equally costly; as the next example shows, a binding

budget constraint and correlation across projects may make it profitable to drop a

high-standing project to make room in the budget for a project with lower expected

net PV but with higher MS.

9We thank an anonymous referee for bringing this to our attention.
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Example 5. Consider again a pharmaceutical lab, now conducting research on three

possible treatments for a disease. For each treatment, vi|si = si with probability 1
2

and vi|si = 0 with probability 1
2 . Treatments 1 and 2 are conceived on the basis of

conflicting hypotheses on the cause of the disease, so they are negatively correlated;

on the other hand, treatments 1 and 3 share scientific foundations and so they are

positively correlated. See Table 2 below. Signals are drawn from the interval [0, 2];

costs are c1 = c2 = c3 = 1, and the lab can undertake up to two projects: B = 2.

With θ = 0 and s1 > s2 > s3 > 1, Proposition 2 prescribes choosing projects 1 and

2. However, E(v1v2|s1, s2) = 0 and E(v1v3|s1, s3) = s1s3
2 ; with θ > 0, as long as s3 is

not too low—more precisely, for s3 > s2
1+θs1

—, we have that A∗(s) = {1, 3}: Only one

of the two most-promising treatments can succeed, so it pays to overlook the middle

one to make room in the budget for the third one (if it is promising enough). 4

To isolate the impact of MS, we now turn to independent projects, so that there is

no SS. We continue to assume that projects’ costs are equal, which allows us to select

projects based on their expected PV ranking as in Proposition 2.

The next lemma establishes that—ignoring the budget—we can always improve

upon a portfolio by replacing any of its projects with an excluded better one, if there

are any.

Lemma 2. Fix a profile of signals s and a project portfolio A. For every project ik(s) ∈ A

and every ih(s) /∈ A, if ih(s) is ranked higher than ik(s) (so that k > h), then swapping the

two increases profit: π((A \ {ik(s)}) ∪ {ih(s)}, s) > π(A, s).

This lemma implies that we can characterize the optimal portfolio by means of a

cutoff: Given s, the optimal portfolio is of the form {i1(s), . . . , ik(s)} for some k ∈ N

(unless it is empty). Thus, we can reduce the manager’s problem to the problem of

choosing k ∈ {1, . . . , n} to maximize π({i1(s), . . . , ik(s)}, s) subject to the constraint

k ≤ bB/cc.

v1 \ v2, v3 v2 = 0 v2 = s2 v3 = 0 v3 = s3

v1 = 0 0 1/2 1/2 0
v1 = s1 1/2 0 0 1/2

Table 2: Joint distribution of v1, v2, v3 in Example 5.
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Example 1 (Continued). Imagine that signals are s1 = 0.9, s2 = 0.6, s3 = 0.4, s4 = 0.1;

costs are c1 = c2 = c3 = c4 = 0.35; and θ = 0.5. With expected PV’s given by

φi(si) = si, Figure 1a depicts the profit from portfolios of the form {1, . . . , i} for

i = 1, . . . 4. If the budget constraint is not binding, the venture capitalist should

support the top three projects: A∗(s) = {1, 2, 3}. Under the alternative distribution,

all projects should be supported: A∗(s) = {1, 2, 3, 4}; see Figure 1b. 4

Example 6. A marketing manager has 3 campaigns for consideration. In terms of

boosting sales for the client, campaigns 1 and 2 can either be successful or a dud,

while campaign 3 is more gradual. Expected PV’s are φ1(s1) = s1, φ2(s2) = s2, and

φ3(s3) = s3−1
ln(s3)

. Costs are c1 = c2 = c3 = 0.55, B = 1.1, and θ = 0.5. Let the signals

be s1 = 0.8, s2 = 0.2, and s3 = 0.1; we have φ1(s1) = 0.8 and φ2(s2) = 0.2 but

φ3(s3) = 0.3909 > φ2(s2). Figure 2 identifies the optimal decision as pursuing the

top-two campaigns, which are campaigns 1 and 3. 4

In both Figures 1a and 1b, the profit from the portfolios of the form {1, . . . , j} is

single-peaked. This makes finding the optimal portfolio as easy as under Proposition

2: Starting from the lowest-ranked project, even if its individual net expected PV is

negative, discard projects one at a time while doing so raises profit; as soon as profit

would start going down, stop if you are within your budget or keep going until you

meet your budget.

(a) φi(si) = si (b) φi(si) = si−1
ln(si)

Figure 1: Expected profit for the relevant portfolios given the signals in Example 1.
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Figure 2: Profit from portfolios {1}, {1, 3}, and {1, 2, 3} in Example 6.

While similar in spirit as the decision rule in Proposition 2, under MS, managers

should evaluate projects from bottom to top and should not rule out projects with

negative individual net PV. This is because a project’s contribution to a portfolio

depends on the expected PV of the other projects in the portfolio. Thus, a project

that does not “pay for itself” may be profitable when combined with others; and a

project can be safely ruled out if it brings profit down even when combined with all

higher-ranked projects, where the MS on it is largest.

Unfortunately, single-peakedness is not a general property of the problem, but

rather a special feature of these examples. The next example shows that interim-

expected profit may not be single-peaked.

Example 7. In the same environment as in Example 1 but with only 3 projects, take

signals s1 = 0.99, s2 = 0.3, s3 = 0.29; costs are c1 = c2 = c3 = 0.64; and θ = 0.5.

Figure 3 depicts the profit from portfolios of the form {1, . . . , i} for i = 1, . . . 3. The

full portfolio is more profitable than portfolio {1, 2}; however, the best course of

action is to greenlight project 1 alone. It does not pay for the venture capitalist to cut

project 3 alone, but it does pay to cut it together with project 2. 4

Thus, under MS, projects within a unit must be evaluated in blocks. We start with

the lowest-ranked project, where the MS is maximal. If adding it to the portfolio of all
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Figure 3: Expected profit for the relevant portfolios given the signals in Example 7.

other projects decreases profit, it is hopeless and can be safely discarded. However,

said contribution being positive does not mean the project should be immediately

adopted: It may be profitable to discard it together with other projects—even if we are

within our budget. The intuition is that, while MS makes a project more profitable if all

superior ones are undertaken, the savings in aggregate cost from abandoning multiple

projects at once may outweigh the corresponding loss in revenue.

The next proposition provides an algorithm to construct the optimal portfolio

given a profile of signals. For this algorithm, we will employ the following measure

of incremental profit.

Definition 1 (Block incremental profit). Given a portfolio A, a project i ∈ A such that

i > 1, and a profile of signals s, define the block incremental profit (BIP) of dropping i

from A, ν(i, A, s), as the change in expected profit from discarding i together with all

projects in A ranked below i, if any: ν(i, A, s) := π({1, . . . , i − 1}, s) − π(A, s).

Ranking the projects by expected PV, Lemma 2 allows us to focus on the highest-

ranked projects that we can afford.

Proposition 3. Assume that all projects have the same cost: c = c1 = ∙ ∙ ∙ = cn. Given a

profile of signals s, the following algorithm constructs A∗(s).

1. Step 1: Set A0 =
{

i1(s), . . . , ib B
c c

(s)
}

and compute ν
(

ib B
c c

(s), A0, s
)

, namely the

BIP of dropping the lowest-ranked project that we can afford.
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(a) If this BIP is positive, set A1 = A0 \
{

ib B
c c

(s)
}

and move to step 2.

(b) Otherwise, set A1 = A0 and move to step 2.

2. Step k = 2, . . . ,
⌊ B

c

⌋
− 1: Compute ν

(
ib B

c c−k+1(s), Ak−1, s
)

, the BIP of dropping

project n − k + 1 from the portfolio of remaining projects under consideration.

(a) If this BIP is positive, set Ak = Ak−1 \
{

ib B
c c−k+1(s)

}
and move to step k + 1.

(b) Otherwise, set Ak = Ak−1 and move to step k + 1.

3. Step
⌊ B

c

⌋
: Compute π

(
Ab B

c c−1, s
)

.

(a) If this expected profit is negative, set A∗(s) = ∅ and stop.

(b) Otherwise, set A∗(s) = Ab B
c c−1 and stop.

Proposition 3 can be interpreted as a cautionary tale on the implications of the

non-linearity in values created by MS. Assessing projects based on their individual

contribution, as we would do in the context of Proposition 2 and in more traditional

settings, can be misleading, as illustrated in Example 7. Moreover, the algorithm

presented in the proposition can serve as a guide to managerial practice avoiding the

pitfalls of marginal analysis.

The algorithm reflects the asymmetry in the decision process. If removing a

project raises the profit from the portfolio of superior projects, then said project can

be safely discarded—sub-step (a). However, a project yielding positive incremental

profit to said portfolio should not be automatically approved, even if it is within our

budget, as it may be profitable to discard it along with other projects at once—sub-

step (b).

This asymmetry in the decision rule disappears if the profit function is single

peaked, as in Examples 1 and 6. In this case, we can simplify our search process

further. In order to show this, we introduce the following definitions.

Definition 2 (Marginal profit). Given a project i > 1 and a profile of signals s, define

the marginal profit (MP) of dropping i, μ(i, s), as the function μ(i, s) := ν(i, {1, . . . , i}, s).

Definition 3 (Concavity). Given a profile of signals s, we say that π({1, . . . , i}, s) is

strictly concave in i if the MP of dropping higher-ranked projects is lower than that of

lower-ranked projects: For every i = 2, . . . , n, μ(i − 1, s) < μ(i, s).10

10Concavity is a property that depends on the realization of signals. It would be useful if we
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We present a modified algorithm under strict concavity. The modifications are

immediate consequences of strict concavity, so additional details on the proof are

omitted.

Corollary 1. Under the conditions of Proposition 3, assume further that π({1, . . . , i}; s) is

strictly concave in i. The following algorithm constructs A∗(s).

1. Step 1: Set A0 =
{

i1(s), . . . , ib B
c c

(s)
}

and compute μ
(

ib B
c c

(s), s
)

.

(a) If this MP is positive, set A1 = A0 \
{

ib B
c c

(s)
}

and move to step 2.

(b) Otherwise, set A∗(s) = A0 and stop.

2. Step k = 2, . . . ,
⌊ B

c

⌋
− 1: Compute μ

(
ib B

c c−k+1(s), s
)

.

(a) If this MP is positive, set Ak = Ak−1 \
{

ib B
c c−k+1(s)

}
and move to step k + 1.

(b) Otherwise, set A∗(s) = Ak−1 and stop.

3. Step
⌊ B

c

⌋
: Compute π({i1(s)}, s).

(a) If this expected profit is negative, set A∗(s) = ∅ and stop.

(b) Otherwise, set A∗(s) = {i1(s)} and stop.

Under strict concavity, the selection process is symmetric: If removing a project

raises MP, it can be safely discarded; if doing so lowers MP, then our search can

stop (provided we are within our budget). The reason is that, if dropping a project

yields negative MP, so will dropping all higher-ranked projects. However, in general,

the relevant incremental-profit measure is BIP, not MP. As a broader statement for

managerial practice, the point is that MS is likely to require block-level assessment

as opposed to case-by-case, marginal assessments.

With asymmetric costs, Lemma 2 ceases to hold: A project that yields a high PV

and high spillover to other projects may not be profitable if its cost is too high, as in

Example 4. Here, we are back in the complexity of Proposition 1.

could identify conditions on the probability distributions that guarantee concavity for every possible
realization of signals. Unfortunately, this seems unlikely; in Example 7, changing s2 to 0.5 yields strict
concavity.
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3.3 A case with SS and MS: R&D vs. product development

With both types of spillover and a research budget constraint, little can be said

in general about how to find the optimal portfolio of projects. Thus, in order to to

shed some light on the interaction between SS and MS, we focus on a case where

the potential projects consist of one R&D project ir and N − 1 product development

projects i2, . . . , iN; we have both SS and MS between the R&D project and the product-

development projects, but not between product-development projects themselves.11

For instance, Microsoft may have an R&D project for a novel technology that can be

employed to improve their gaming hardware or it can be re purposed to develop a

smart device.

In this setting, expected profit is:

π(A, s) = ∑
ij∈A

[
φij

(s) − cij

]

from every portfolio A such that ir /∈ A, and:

π(A, s) = φir(s) − cir + ∑
ij∈A\{ir}

[
φij

(s) − cij

]
+ 2θ ∑

ij∈A\{ir}

E[vir vij
|s]

otherwise. Notice that, even without direct spillover across product-development

projects, their signals might be informative about the PV of the R&D project, which

in turn affects all product-development projects.

Finding the best portfolio of projects can now be split into two problems: Finding

the optimal portfolio with and without the R&D project, then comparing the two.

The optimal portfolio without the R&D project features no spillover, so the project

selection can be made based entirely on individual net expected PV. If these projects’

costs are equal, or if the budget slacks, we can proceed as in Proposition 2; otherwise,

we must consider the possibility of trading a higher-ranked project for two or more

lower-ranked but cheaper projects, as in Example 4. We can proceed similarly when

we include the R&D project, but assessing the projects on the bases of their net

expected PV augmented by the MS:12

φij
(s) − cij

+ 2θE
[

vij
vir

∣
∣
∣ s
]

.

Once again, we can go with the highest-ranked projects if costs are equal or if the

11We thank an anonymous referee for suggesting this case.
12A counterpart of Lemma 2 can be established in this setting.
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budget slacks, but not necessarily if the budget binds.

The lesson of evaluating projects in “blocks” comes into play in this setting when

we compare the best portfolio with and without the R&D project. By “removing” the

R&D project, it may be the case that some product-development projects cease to be

promising without MS from the former.

Example 8. A firm is considering developing two perfectly-substitute products. To

get a sense of which will be more successful, the firm can also undertake an R& D

project that involves launching the first product line at a smaller scale. Thus we have

vr ∈ {0, 1/2}, vi1 = 2vr, and vi2 = 1 − 2vr; we have sr = P(vr = 1/2), so φr(s) = sr
2 ,

φi1(s) = sr, and φi2(s) = 1 − sr; costs are c for either of the product-development

projects and c
2 for the R&D project. Notice that E[vrvi1 |s] = sr and E[vrvi2 |s] = 0.

For θ = c = 0.5, B = 1.5 (so all three projects can be undertaken), and sr = 0.28, the

most-profitable portfolio that includes the R&D project is the full portfolio:

π({r, i1, i2}, sr) =
sr − c

2
+ 1 − 2c + 2θsr = 0.17;

however, the best portfolio is actually the portfolio of project i2 alone:

π({i2}, sr) = 1 − sr − c = 0.22.

The R&D project makes project i1 profitable through MS. However, the best strategy

is to develop i2, the more promising project, alone. 4

However, this lesson has its limits here: Depending on the spillover, if the budget

binds it may be the case that the optimal feasible portfolios with and without the R&D

projects are disjoint.

Example 8 (Continued). Assume now that θ = 0.9 and B = 1—so that the MS is

larger but up to only two projects can be undertaken. Because of the correlation

pattern, this larger MS only benefits project i1; thus, as the full portfolio is now

infeasible, the next best thing if we include the R&D project is to exclude project i2,

for a total expected profit of:

π({r, i1}, sr) =
sr − c

2
+ 1 − 2c + 2θsr = 0.174;

however, the best strategy is to go with the neglected project i2 alone—even if the
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budget slacks:

π({i2}, sr) = 1 − sr − c = 0.22.

The larger MS reinforces the profitability of project i1 to the point that, unable to

undertake all 3, the manager profits from dropping i2. However, the best course of

action remains developing i2 alone and letting the budget slack. 4

4 Managerial Lessons: Physical vs. Informational Integration

SS and MS have different managerial implications and provide different lessons

for management practice. Ranking projects and assessing their expected net PV in

isolation is the correct strategy under SS provided that the expectations are based on

information about all relevant projects. MS requires projects to be assessed in blocks,

jointly with other projects, due to the non-linearity of revenue.

In order to put the managerial lessons from our analysis into context, this section

considers the case of an organization that consists of a headquarter (HQ) and two

units or divisions, D1 and D2, each of which has two projects to assess, {i11, i12} and

{i21, i22}, respectively. The four projects have equal cost c, and the budget is B = 3c.

Each division observes the signals from their own projects: D1 observes s11 and s12

while D2 observes s21 and s22. HQ can allocate the budget and source the projects

from the divisions, with B1 = c and B2 = 2c, D2 being a larger division; or it can

integrate the two divisions to exploit MS. We denote the cost of integrating the two

divisions by C.13

If HQ delegates the choice of projects but does not support or facilitate the flow of

information across divisions, each division assesses the projects based only on their

own information. Denote s1 = (s11, s12) and s2 = (s21, s22); if both divisions exhaust

their budget, the total expected profit generated for the company is:

max {φ11(s1), φ12(s1)} − c + φ21(s2) + φ22(s2) + 2θE[v21v22|s2] − 2c. (3)

Of course, if one of the projects in D2 is not profitable or is dominated by one in D1,

then HQ can reallocate the slack budget, allowing D1 to exploit MS:

φ11(s1) + φ12(s1) + 2θE[v11v12|s1] − 2c + max {φ21(s2), φ22(s2)} − c. (4)

If HQ supports full information flow, the structure of the decisions remain the same

13Once again, we thank an anonymous referee for suggesting the analysis of this case.
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but now each division can compute expectations based on all signals:

max {φ11(s), φ12(s)} − c + φ21(s) + φ22(s) + 2θE[v21v22|s] − 2c; (5)

φ11(s) + φ12(s) + 2θE[v11v12|s] − 2c + max {φ21(s), φ22(s)} − c. (6)

We can appreciate SS in this setting as the difference between (3) and (5), and between

(4) and (6). Even in a decentralized decision structure, there should be information

integration to ensure that each division can make informed decisions.

Example 9. A car company has two divisions, electric-car (D1) and gas-car (D2)

divisions, each of which is considering two different car models to develop. Since oil

is central to the design of a gas car, D2 has more in-depth estimates of the future price

of oil. However, the latter also affects the PV of electric cars through substitution in

the market, so it is relevant information for D1 as well. Let s12 = s22 = s0
2 be

the future price of oil as assessed by the specialists hired by D2; D1 only observes

s11 = s12 = s0
1 ∈ [0, 1], an index of how much consumers value electric cars. With

both signals, D1 will assess its models as, say, φ11(s0
1, s0

2) = 1 + 0.5s0
1 + 0.5s0

2 and

φ12(s0
1, s0

2) = 2.5s0
1 + 0.5s0

2; model 1 in D1 is valuable when consumers are not too

enthusiastic about electric cars in the first place (s0
1 < 1/2), while model 2 is more

profitable if electric cars are in high demand. However, without the information

from D2, D1’s assessments will be φ11(s0
1) = 1 + 0.5s0

1 + 0.5E(s0
2) and φ12(s0

1) =

2.5s0
1 + 0.5E(s0

2). While s0
2 does not affect the choice of one model over the other, it

can be crucial: If s0
1 = 1/2 and 1.25 + 0.5E(s0

2) < c < 1.25 + 0.5s0
2, D1 underestimates

the future price of oil to the point of finding neither model worth pursuing, when in

reality they are both equally profitable. 4

Alternatively, HQ can integrate the two divisions, collect all information, and

make a centralized portfolio choice. A centralized decision structure automatically

collects all information and can exploit MS across projects from different divisions;

however, integration comes at a cost. Thus, for instance, the expected profit from

undertaking projects i12 and i21 is:

φ12(s) + φ21(s) + 2θE[v12v21|s] − 2c − C.

If the cost of integrating the divisions is below the marginal profit from exploiting

the additional MS, then integration is profitable.
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Example 9 (Continued). Assume that the expected PV’s for the projects under D2

are φ21(s0
1, s0

2) = 2 − 0.5(s0
2 + s0

1) and φ22(s0
1, s0

2) = 4 − (s0
2 + s0

1). Imagine now that

c = 1.75, s0
1 = 0.8, and s0

2 = 0.5. Then, D1 will choose to develop model 2, while

D2 will choose to develop model 2 alone if θ < 0.0548. If the company integrates

and centralizes the decision, then undertaking model 1 of the former D2 as well can

be profitable provided that θ > 0.016; this is the case, for instance, if θ = 0.05 and

C = 0.5. 4

5 Conclusions

This paper revisits a classical problem for managers, the problem of choosing

portfolios of projects. Although this problem has received attention in the literature,

a key element of it, one with tangible managerial consequences, has been overlooked:

the distinction between managerial and statistical spillover.

In the absence of spillover of any kind, projects can be assessed and undertaken

in complete autonomy by the corresponding unit (subject to budgetary approval).

When projects’ values are correlated and decisions must be made at the interim

stage, on the basis of preliminary information, a project’s signal is informative of

other projects’ value. This statistical spillover is consistent with decentralized project

assessment and undertaking provided that the company is informationally integrated,

namely that the manager can ensure the free flow of information across divisions so

projects can be accurately assessed. Managerial spillover, on the other hand, requires

that projects be undertaken within the same structure—to ensure the exploitation

of common managerial resources and assets—and impacts how projects should be

assessed: We must consider block-incremental profit as opposed to marginal profit.

When both kinds of spillover are present, the general portfolio-selection problem

becomes too complex (NP hard). To shed light on the implications for management

practices of both types of spillover interacting, we consider the case of a company

evaluating an R&D project along with different product-development projects; we

have managerial spillover only across the R&D project and the product-development

projects, although statistical spillover can occur across the latter.

Our analysis also has managerial implications for integration, which we illustrate

in the case of a company consisting of an HQ and two divisions. In order to exploit

managerial spillover, HQ must integrate the divisions into a single management

structure—which can be costly. If HQ preserves the divisions’ autonomy, they should

still integrate informationally to allow the divisions to make better-informed decisions
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about project selection. HQ can reallocate the budget efficiently from a division that

finds it profitable to close a project to a division that finds it profitable to open a new

project.

A Proofs

Proof of Lemma 1. We can identify the subsets of N with vectors in {0, 1}n, where

set A ⊆ N is represented as a vector a with i-th entry 1 if i ∈ A and 0 otherwise.

Then, we have Π(a, v) = ∑n
i=1

[
ai(vi − ci) + θ ∑j 6=i aiajvivj

]
. For each fixed v, the

function Π(a, v) has increasing differences. Therefore, it is supermodular. Since

supermodularity is preserved by taking expectation over v, the result follows.

Proof of Proposition 1. Let A be any project portfolio such that ∑i∈A ci ≤ B. Since

|A| ∈ NB, we have that π(A, s) ≤ π(A∗
|A|(s), s) ≤ π(A∗(s), s), which establishes the

desired result.

Proof of Proposition 2. If φ(1)(s) < c, then A∗(s) = ∅, which is indeed the optimal

portfolio. Otherwise, A∗(s) 6= ∅, and any portfolio that beats A∗(s) must have at

least one extra project with positive expected net PV. But if this project is not in A∗(s)

in the first place, it is because it is not feasible under the budget.

Proof of Lemma 2. Write π((A \ {ik(s)}) ∪ {ih(s)}, s) − π(A, s) as:

π((A \ {ik(s)}) ∪ {ih(s)}, s) − π(A, s)

= φ(h)(s) − φ(k)(s) + 2θ
[
φ(h)(s) − φ(k)(s)

]
∑

h∈A\{ik(s)}

φh(sh).

The function r(x) = x + 2θx ∑h∈A\{ik(s)} φ(sh) is strictly increasing, and so the lemma

follows.

Proof of Proposition 3. Fix signal profile s; let the algorithm terminate at portfolio

A∗(s), and assume that we can find a different portfolio A′ such that π(A′, s) >

π(A∗(s), s) and |A′| ≤
⌊ B

c

⌋
. By Lemma 2, we may assume that A′ is of the form

A′ = {1, . . . , j} for some j ∈ N. (It cannot be empty, as otherwise we get an absurd:

0 = π(A′, s) > π(A∗(s), s) ≥ 0; and if it is not of the aforementioned form, we can

improve on it by swapping the lower-ranked projects in A′ with the missing higher-

ranked projects.) At step n − j, the algorithm either selects A′ or identifies another

feasible portfolio with an even higher payoff. Thus, if the algorithm terminates at
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A∗(s), it must be the case that either A∗(s) = A′ or π(A∗(s), s) > π(A′, s); both of

these cases lead to a contradiction.
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