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are both vertically and horizontally di↵erentiated. In the absence of uniform-price obligations,

platforms maximize profits through price customization, using information on local elasticities.

We show how uniform pricing may either increase or decrease targeting, and identify conditions

under which it is beneficial to consumer surplus. The analysis has implications for online retailing,
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1 Introduction

Over the last two decades, new technologies have permitted the development of matching interme-

diaries of unprecedented scale engaging in unparalleled level of targeting. Notable examples include

ad exchanges, matching publishers with advertisers, business-to-business platforms, matching firms

with mutually beneficial commercial interests, and dating websites, matching agents with common

passions. The same advances in technology that favored high levels of targeting also enabled greater

price customization, whereby the price of a match finely depends on characteristics of the matching

partners.

In advertising exchanges, foe example, the assignment of, and payments from, advertisers depend

on scores that summarize the compatibility of the ads with each publisher’s content.1 A similar

trend can be found in other markets, not traditionally analyzed through the lens of matching. In

online shopping, for example, it is common practice among retailers to use customers’ personal data

to set personalized prices. In one of the most publicized cases, Orbitz, an online travel agency,

reportedly used information about customers’ demographics to charge targeted customers higher

hotel fees.2 Similarly, Safeway, an online grocery chain, often proposes individualized price o↵ers

and quantity discounts to customers with certain profiles.3 The retailers’ knowledge about consumers’

characteristics often comes from data brokers, who collect and sell personal information (in the form

of demographics, geolocation, browsing history, etc).4

In the markets mentioned above, price customization is easy to enforce, as the agents’ “horizontal”

characteristics are observable (for instance, in ad exchanges, the advertisers’ profile is often revealed

by the ads’ content) or can be learnt from third parties (for example, in online retailing, information

about consumers can often be obtained from data brokers or a�liated websites). In other markets,

instead, the agents’ horizontal characteristics that are relevant for price customization have to be

indirectly elicited, and this may require bundling.5 A case in point is that of media markets (for

instance, satellite/cable TV providers) where sophisticated pricing strategies are used to condition

payments on the entire bundle of channels selected by the subscribers.6

1See, for example, https://support.google.com/adxseller/answer/2913506?hl=en&ref topic=3376095. Moreover, ad

exchanges use advertiser-specific reservation prices which are easily automated using proxy-bidding tools. Ad exchanges

also price discriminate on the publisher side, by making the payments to the publishers depend on the publishers’ profile

and on the volume of impressions.
2See the article “On Orbitz, Mac Users Steered to Pricier Hotels,” the Wall Street Journal, August 23, 2012.
3See https://www.bloomberg.com/news/articles/2013-11-14/2014-outlook-supermarkets-o↵er-personalized-pricing.
4According to The New York Times, the data broker industry’s revenue reached $156 billion in 2013 (see the article

“The Dark Market for Personal Data,” August 16, 2014). See also Montes et al. (2018) for a discussion of the value of

privacy in online markets.
5For instance, ad exchanges have recently developed new contractual arrangements that allow them to bundle

di↵erent ads as a way of screening the publishers’ unobservable preferences (see, Mirrokni and Nazerzadeh (2017)).
6Most satellite/cable TV providers price discriminate on the viewer side by o↵ering viewers packages of channels

whereby the baseline configuration can be customized by adding channels at a cost that depends on the baseline

configuration originally selected (see, among others, Crawford (2000), and Crawford and Yurukoglu (2012)). For
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While having a long history in the policy debate, price customization has attracted renewed

attention due to the two-sided nature of matching intermediaries and the amount of information

now available for target pricing.7 The concern is that, by leveraging the platforms’ market power,

price customization hinders the e�ciency gains permitted by better targeting technologies. Recent

regulations speak directly to these issues. In the European Union, for example, the General Data

Protection Regulation (GDPR) and the ePrivacy Regulation (ePR) mandate that businesses ask for

consumers’ consent prior to collecting and transmitting personal data. Such regulations hinder price

customization based on data from third parties.8,9

Market decentralization poses yet another challenge to price customization. The same techno-

logical progress of the last few years that has facilitated the growth of matching markets is now

expected to favor a gradual transition of some of these markets from a centralized structure, where

matching is controlled by platforms, to a more decentralized structure where one side (typically, the

“seller” side) posts stand-alone prices, while the other side (typically, the “buyer” side) constructs

the matching sets. For example, in the market for media content, most analysts now believe that the

increase in the speed of fiber-optic and broadband internet connection will favor a gradual transition

to a market structure whereby viewers will pay directly the content providers, bypassing the inter-

mediation of media platforms (such as satellite or cable TV providers).10 In decentralized markets,

price customization can be hindered by the di�culty to collect data about consumers’ tastes (for

instance, due to privacy regulation), along with the di�culty of tracking consumers’ purchases with

other vendors. In contrast, in centralized markets, price customization can often be implemented,

even in the absence of data on consumers’ preferences, through bundling (see footnote 5).

The aim of this paper is to understand how targeting and price customization shape the match-

ing opportunities o↵ered by profit-maximizing platforms, and study the impact on targeting and

consumer welfare of uniform pricing (whereby payments to the platforms do not depend on the “hor-

izontal characteristics” of the agents’ profiles), be it a result of regulation or market decentralization.

example, in the US, Direct TV o↵ers various vertically di↵erentiated (i.e., nested) packages (both in English and in

Spanish). It then allows viewers to add to these packages various (horizontally di↵erentiated) premium packages, which

bundle together channels specialized in movies, sports, news, and games. In addition, viewers can further customize

the packages by adding individual sports, news, and movie channels.
7In the case of media markets, see, for example, the Federal Communications Commission 2004 and 2006 reports

on the potential harm of price customization through bundling. In the case of online retailing, see the UK O�ce of

Fair Trading 2010 eponymous report on online targeting in advertising and pricing.
8See Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the processing

of personal data and on the free movement of such data.
9In the US, the Federal Trade Commission (FTC) recommended in 2014 legislation increasing the trans-

parency of the data broker industry and giving consumers greater control over their personal information.

See https://www.ftc.gov/news-events/press-releases/2014/05/ftc-recommends-congress-require-data-broker-industry-

be-more.
10A similar trend is also taking place in online advertising, where many publishers now prefer employ-

ing direct-sales channels so as to avoid the commissions charged by the platforms. See, for instance,

https://digiday.com/media/advertisers-are-often-left-flying-blind-in-ad-exchanges/.
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Figure 1: Market geometry

To examine these issues, we develop a model where agents’ preferences exhibit elements of both

vertical and horizontal di↵erentiation. Certain agents value being matched with agents from the

other side of the market uniformly more than others (vertical di↵erentiation). At the same time,

agents from the same side may disagree on the relative attractiveness of any two agents from the

opposite side (horizontal di↵erentiation). We capture the two dimensions of di↵erentiation by letting

agents’ types be located on a cylinder, where the height represents the vertical dimension, while the

radial position determines the horizontal preference (see Figure 1).

Each agent’s utility from interacting with any other agent from the opposite side increases with

the agent’s vertical dimension. Fixing the vertical dimension, each agent’s utility is single-peaked

with respect to the horizontal dimension. More specifically, we identify each agent’s radial position

with his bliss point. Accordingly, each agent’s utility for interacting with any other agent from the

opposite side decreases with the circular distance between the agent’s bliss point (his radial position)

and the partner’s location (the partner’s radial position). Such preference structure, in addition to

its analytical convenience, mirrors the one in the “ideal-point” models typically used in the empirical

literature on media and advertising markets (see, for example, Goettler and Shachar 2001).

A key element of our analysis is the focus on matching tari↵s, which describe how the payments

asked by the platform vary with the matching sets demanded by the agents. A tari↵ exhibits

uniform pricing if all agents from a given side face the same price schedule for di↵erent quantities of

the matches with agents at a given location on the opposite side. Formally, uniform tari↵s are tari↵s

that do not condition an agent’s payment to the platform on the agent’s own radial position (i.e,

the horizontal dimension of the agent’s preferences). A particularly simple type of uniform pricing

often proposed as a potential regulatory remedy to the market power enjoyed by media platforms is

stand-alone linear pricing (for a discussion, see Crawford and Yurukoglu 2012).

Absent any regulation, platforms typically o↵er customized tari↵s on both sides, whereby the

customization is obtained by o↵ering agents menus of matching plans. Each plan is defined by its

baseline configuration (i.e., a baseline set of partners from the opposite side), a baseline price, and

a collection of prices describing the cost to the subscriber of customizing the plan by adding extra

matches. The cost of the customization is typically non-linear in the volume of matches of any

given type added to the plan (second-degree price discrimination). Importantly, the cost of the

customization is also a function of the baseline plan selected by the subscriber. Because di↵erent
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plans target agents from di↵erent “locations,” such tari↵s thus also display a form of third-degree

price discrimination.

Our first main result derives properties of the demands under profit-maximizing tari↵s. We then

o↵er a convenient representation of the profit-maximizing tari↵s in terms of elasticities on both sides

of the market. The representation yields a formula describing the price each agent from each given

location has to pay to include in his matching set any feasible amount of matches from any location

on the opposite side of the market. The formula links location- and volume-specific prices to the

various local elasticities of the demands on the two sides of the market. In this sense it constitutes

the analog in a matching market of the familiar Lerner-Wilson formula of optimal non-linear pricing

(see, for instance, Wilson (1993)). The formula di↵ers from the traditional one in that it accounts

for (a) the reciprocity of the matching, and (b) the fact that the platform combines second-degree

price discrimination (higher vertical types self-select into larger matching plans) with third-degree

price discrimination (the total price paid by each subscriber depends on the horizontal dimension of

the subscriber’s preferences).

We also leverage on this characterization to study the interplay between targeting and market

power. Specifically, we derive conditions (both in terms of elasticities and in terms of the agents’

match values and type distributions) under which the under-provision of matches under profit maxi-

mization (relative to the e�cient level) is either magnified or alleviated as the distance of a partner’s

location from an agent’s bliss point increases. This analysis has no parallel in the standard models

of price discrimination, which are not amenable to study the e↵ects of market power on targeting

levels.

Our second set of results investigates the e↵ects on prices, the composition of the matching

demands, and consumer welfare of uniform pricing on a given side of the market. Analogously to the

generalized Lerner-Wilson formula discussed above, we provide a novel representation of the optimal

price schedules that uses local elasticities to describe the prices agents on each side have to pay per

quantity of matches from each location on the opposite side. Relative to the case of customized

pricing, this new pricing formula identifies the relevant aggregate elasticities in environments where

location-specific pricing is not possible. The typical marginal revenue and marginal cost terms (which

determine the optimal cross-subsidization pattern) are now averages that take into account not only

the uniformity of prices, but also how the procurement costs of matches are a↵ected by the horizontal

component of the agents’ preferences. From a more theoretical perspective, the characterization

contributes to the mechanism design literature by developing a novel technique to handle constraints

on the transfer rule employed by the principal (as opposed to the familiar constraints on the allocation

rules, which are typically easier to analyze using standard techniques).

We then put this characterization to work, revealing how uniform pricing a↵ects targeting and

welfare. Intuition might suggest that uniform pricing should increase targeting by preventing plat-

forms from charging higher prices for the matches involving the most preferred partners. This simple

intuition, however, may fail to account for the fact that platforms re-optimize their entire price

5



schedules to respond to aggregate elasticities. Perhaps surprisingly, uniform pricing can either de-

crease or increase the equilibrium level of targeting, depending on how match-demand elasticities

vary with location. We also relate elasticities to match values and type distributions and identify

conditions under which targeting is higher (alternatively, lower) under uniform pricing (alternatively,

customized pricing).

We then use such characterization to look into the welfare e↵ects of uniform pricing. Exploiting

a novel connection between uniform pricing in matching markets and the literature on third-degree

price discrimination, we show how to adapt the elegant analysis in Aguirre et al. (2010) to the

matching markets under examination. The results identify su�cient conditions (both in terms of

elasticities and in terms of match utilities and type distributions) for uniform pricing to increase

consumer surplus (in the side where prices are uniform). These results, once combined with appro-

priate empirical work, can guide the design of regulatory interventions in platform markets where

price customization is a concern.

Lastly, we show how the same analysis that permits us to uncover the welfare e↵ects of uniform

pricing can be adapted to shed light on the welfare e↵ects of a transition from a centralized to a de-

centralized market structure (where sellers independently post stand-alone prices), thus contributing

a novel angle to the policy debate over whether or not such a transition should be encouraged.

Outline of the Paper. The rest of the paper is organized as follows. Below, we close the

introduction by briefly reviewing the pertinent literature. Section 2 presents the model. Section

3 identifies properties of profit-maximizing tari↵s and of the induced matching demands. Section

4 studies the e↵ects of uniform-pricing obligations, whereas Section 5 discusses the e↵ects of the

transition from a centralized to a decentralized market structure. Section 6 concludes. All proofs

are in the Appendix at the end of the document.

Related Literature

This paper studies many-to-many matching (with monetary transfers) in markets where the agents’

preferences are both vertically and horizontally di↵erentiated. Particularly related are Jeon, Kim and

Menicucci (2017) and Gomes and Pavan (2016). The first paper studies the provision of quality by a

platform in a setting where quality provision enhances match values. The second paper studies the

ine�ciency of profit maximization in many-to-many matching markets. Both papers abstract from

the possibility that agents’ preferences be horizontally di↵erentiated (in tastes and match values),

thus ignoring the issues of targeting and price customization that are the heart of the analysis in the

present paper. Fershtman and Pavan (2019) considers many-to-many matching in a model with a

rich preference structure similar to the one in the present paper, combining elements of vertical and

horizontal di↵erentiation. Contrary to the present paper, however, it focuses on dynamic markets in

which agents learn the attractiveness of the partners and experience shocks to their preferences over

time.

6



Related are also Jullien and Pavan (2018), and Tan and Zhou (2019). The former paper studies

platform competition in markets where agents’ preferences for di↵erent platforms are heterogenous

but where agents value homogeneously the interactions with agents from the opposite side of the

market. The latter paper studies price competition in a model where multiple platforms compete

by o↵ering di↵erentiated services to the various sides of the market, and where agents’ preferences

are heterogenous and exhibit both within-side and across-sides network e↵ects. While considering

rich preference structures, both papers abstract from price discrimination. The latter is examined in

Damiano and Li (2007) and Johnson (2013). Contrary to this paper, these works consider markets

where matching is one-to-one and agents’ preferences are di↵erentiated along a vertical dimension

only.

This paper considers a many-to-many matching market where agents might disagree on the

relative attractiveness of any two agents from the other side (horizontal di↵erentiation). Similar

preferences structures are examined in the matching literature surveyed in Roth and Sotomayor

(1990) (for a more recent treatment, see Hatfield and Milgrom (2005)), and in the literature on

the school assignment problem (see, for example, Abdulkadiroglu, Pathak and Roth (2005a, 2005b)

and Abdulkadiroglu and Sonmez (2003)). These literatures are methodologically distinct from the

current paper, in that they focus on solution concepts such as stability and do not allow for transfers.

More broadly, markets where agents purchase access to other agents are the focus of the broad

literature on two-sided markets (see Belleflamme and Peitz (2017) for the most up-to-date overview).

Most of this literature, however, restricts attention to a single network, or to mutually exclusive

networks. Ambrus, Calvano and Reisinger (2016) relax this structure by proposing a model of

competing media platforms with overlapping viewerships (i.e., multi-homing). By contrast, we stick

to a monopolistic market, but introduce a richer preferences structure (allowing for horizontal tastes

for matches), which enables us to study targeting and price customization in such markets.

Our discussion of market decentralization is related to Loertscher and Niedermayer (2017), who

compare the agency and wholesale business models by a platform that faces competition from an

independent bilateral exchange. To focus on the substitutability between market places, that paper,

however, abstracts from targeting and price customization.

The study of price customization is related to the literature on price discrimination. In the case of

second-degree price discrimination, Mussa and Rosen (1978), Maskin and Riley (1983), and Wilson

(1993) study the provision of quality/quantity in markets where agents possess private information

about a vertical dimension of their preference. Our analysis di↵ers from this literature in two

important dimensions. First, the platform’s feasibility constraint (namely, the reciprocity of the

matches) has no equivalent in standard markets for commodities. Second, agents’ preferences are

di↵erentiated along both a vertical and a horizontal dimension. This richer preferences structure

calls for a combination of second- and third-degree price discrimination and leads to novel cross-

subsidization patterns.11

11Related is also Balestrieri and Izmalkov (2015). That paper studies price discrimination in a market with hori-
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The paper also contributes to the literature on third-degree price discrimination. In addition to

the paper by Aguirre et al. (2010) mentioned above, see Bergemann, Brooks, and Morris (2015) for

an excellent overview of this literature and for recent developments. The latter paper characterizes all

combinations of producer and consumer surplus that arise from di↵erent information structures about

the buyers’ willingness-to-pay (alternatively, from di↵erent market segmentations). The present

paper di↵ers from the above two papers in the assumed preferences structure and in the two-sideness

of the platform’s problem, reflecting features of the matching applications under consideration.

Related is also the literature on bundling (see, among others, Armstrong (2013), Hart and Reny

(2015), and the references therein). The present paper di↵ers from that literature in two important

aspects. First, while preferences are multi-dimensional both in the present paper and in that litera-

ture, in our setting, preferences can be decomposed into a vertical and a horizontal dimension. The

bundling literature, instead, assumes a more general preference structure, which, however, hinders

the characterization of the optimal price schedules, except in certain special cases. Second, reflecting

the practices of many-to-many matching intermediaries, we assume that sales are monitored, so that

prices can condition on the entire matching set of each agent. The bundling literature, by contrast,

typically assumes that purchases are anonymous.

Lastly, the paper contributes to the literature on targeting in advertising markets (see, for ex-

ample, Bergemann and Bonatti (2011, 2015) and Kox et al. (2017) and the references therein). Our

work contributes to this literature by introducing a richer class of (non-linear) pricing strategies and

by comparing the matching outcomes that emerge under a decentralized structure to their counter-

parts in platform markets where the matching between the advertises and the publishers (or content

providers) is mediated. Contrary to some of the papers in this literature, however, we abstain from

platform competition. Importantly, we also assume that agents can perfectly communicate their

preferences and face no informational frictions regarding the desirability of the matches. Eliaz and

Spiegler (2016) relax these assumptions and consider the mechanism design problem of a platform

that wants to allocate firms into search pools created in response to noisy preference signals provided

by the consumers. Relatedly, Eliaz and Spiegler (2017) consider the problem of a profit-maximizing

advertising platform eliciting the advertisers’ profiles so as to match them to consumers with prefer-

ences for diversity. These papers do not investigate the e↵ects of uniform pricing, but rather focus

on the incentives of firms to truthfully reveal their “ideal audiences.”

2 Model

A monopolistic platform matches agents from two sides of a market. Each side k 2 {a, b} is popu-

lated by a unit-mass continuum of agents. Each agent from each side k has a bi-dimensional type

zontally di↵erentiated preferences by an informed seller who possesses private information about its product’s quality

(equivalently, about the “position” of its good in the horizontal spectrum of agents’ preferences). The focus of that

paper is information disclosure, while the focus of the present paper is matching, targeting, and price customization.
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✓k = (vk, xk) 2 ⇥k ⌘ Vk ⇥ Xk which parametrizes both the agent’s preferences and the agent’s

attractiveness.

The parameter vk 2 Vk ⌘ [vk, vk] ✓ R [ {+1} is a shifter that captures heterogeneity in

preferences along a vertical dimension. It controls for the overall utility the agent derives from

interacting with a generic agent from the opposite side, before doing any profiling. The parameter

xk 2 Xk ⌘ [0, 1], instead, describes the agent’s location and captures heterogeneity in preferences

along a horizontal dimension. It controls for the agent’s relative preferences over any two agents

from the opposite side. Figure 1 depicts the above structure. The cylinder on each side represents

the population on that side of the market. Each individual is located on the external surface of the

cylinder, with the hight of the cylinder measuring the vertical type and the position on the circle

measuring the horizontal type.

Agents derive higher utility from being matched to agents whose locations are closer to their

own. Their utility also increases, over all locations, with their vertical type. We assume the utility

that an agent from side k with type ✓k = (vk, xk) derives from being matched to an agent from side

l 6= k with type ✓l = (vl, xl) is represented by the function

uk(vk, |xk � xl|),

where |xk � xl| is the circular (minimal) distance between the two agents’ locations. The function

uk is Lipschitz continuous, bounded, strictly increasing in vk, and weakly decreasing in |xk � xl|. To
make things interesting, we assume uk is strictly decreasing in |xk � xl| on at least one side.12

Each agent’s type ✓k = (vk, xk) is an independent draw from the absolutely continuous distri-

bution function Fk with support ⇥k. The total payo↵ that type ✓k = (vk, xk) obtains from being

matched, at a price p, to a set of types sk ✓ ⇥l from side l 6= k is given by

⇡k(sk, p; ✓k) =

Z

sk

uk (vk, |xk � xl|) dFl(✓l)� p. (1)

The payo↵ that the same agent obtains outside of the platform is equal to zero.13

12In a previous version of this paper, we considered a more general structure where vertical types also contribute to

the agents’ attractiveness, and showed it does not contribute to any important new e↵ect. The agents’ vertical types

should thus be interpreted as the usual vertical shifter that is responsible for the overall importance each individual

assigns to interacting with agents from the opposite side, and not as a proxy for an individual own vertical quality.
13The representation in (1) assumes the agent is matched to all agents from side l 6= k whose type is in sk. That

matching sets are described by the agents’ types, as opposed to identities, reflects the property that, under both the

welfare- and the profit-maximizing tari↵s, each agent from each side k who decides to include in his matching set some

agent from side l 6= k whose type is ✓l optimally chooses to include in his matching set all agents from side l whose

type is ✓l. The specification in (1) also implies that the utility that agent i from side k derives from being matched to

agent j from side l 6= k is invariant to who else the agent is matched with, as well as who else from the agent’s own

side is matched to agent j. In a previous version, we considered a more general setting where such assumptions are

relaxed. We opted here for the representation in (1) because it permits us to simplify the exposition and favors sharper

conclusions.
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We assume that the vertical dimensions vk are the agents’ private information. As for the horizon-

tal dimensions, xk, to ease the exposition, in the main text, we assume they are publicly observable.

In the Appendix, however, we explain how the analysis can accommodate for the possibility that

locations are also private information, under additional assumptions on the distributions Fk that

guarantee that the platform can screen the agents’ locations without leaving extra informational

rents to agents (see the proof of Lemma 1).

Let F v

k
(alternatively, F x

k
) denote the marginal distribution of Fk with respect to vk (alternatively,

xk), and F
v|x
k

the distribution of vk conditional on xk. Then let f
v

k
be the density of F

v

k
and

�
v

k
⌘ f

v

k
/[1 � F

v

k
] its hazard rate. An analogous notation applies to the densities and hazard rates

of the conditional distributions F v|x
k

. Finally, let Int[Vk] denote the interior of the set Vk and ⌃(⇥l)

the collection of all Fl-measurable subsets of ⇥l. Hereafter, we assume that the “virtual values”

'k (✓k, ✓l) ⌘ uk (vk, |xk � xl|)�
1� F

v|x
k

(vk|xk)
f
v|x
k

(vk|xk)
· @uk
@v

(vk, |xk � xl|)

respect the same rankings as the true values, which is the natural analog of standard regularity

conditions (e.g., Myerson (1981)) in matching environments.14 The following examples illustrate the

type of markets the analysis is meant for.

Example 1. (ad exchange) The platform is an ad exchange matching advertisers from side a to

publishers from side b. The expected profit that an advertiser of type ✓a = (va, xa) obtains from

an impression at the website of a publisher of type ✓b = (vb, xb) is given by ua(va, |xa � xb|) =

va� (|xa � xb|) , where va is the advertiser’s profit per sale and where the strictly decreasing function

� : [0, 12 ] ! [0, 1] describes how the probability of a conversion (i.e., the probability the ad view

turns into a sale) varies with the distance between the publisher’s profile, xb, and the advertiser’s

ideal audience, xa. The matching (dis)utility ub(xb, |xa � xb|) that a publisher of type ✓b = (vb, xb)

obtains from displaying the ad of advertiser ✓a = (va, xa) may reflect both the opportunity cost of

not using the advertisement space to sell its own products, or from not selling the ad slot outside of

the platform, as well as the (positive or negative) impact that the ad may have on the publisher’s

viewership. Both the advertisers’ ideal type of audience, xa, and each content provider’s profile, xb,

are observable by the platform.15 }

Example 2. (media platform) The platform is a media outlet matching viewers from side a with

content providers from side b. The utility ua(va, |xa�xb|) that a viewer of type ✓a = (va, xa) derives

from the content of a provider of type ✓b = (vb, xb) is increasing in the overall importance that the

viewer assigns to having access to content, captured by the parameter va 2 Va ⇢ R+, and decreasing

14By this we mean the following. Take any pair (✓k, ✓l) , (✓
0
k, ✓

0
l) 2 ⇥k ⇥⇥l. Then 'k (✓k, ✓l) � 'k (✓

0
k, ✓

0
l) if and only

if uk (vk, |xk � xl|) � uk (v
0
k, |x0

k � x0
l|).

15Another example that shares the preference structure of Example 1 is that of a lobbying firm (platform) matching

interest groups from side a with public o�cials from side b (see Kang and You (2016) for a detailed description of this

market).
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in the distance between the viewer’s ideal type of content, xa, and the provider’s content, xb. The

matching (dis)utility ub(vb, |xb � xa|)) of the content provider may reflect the extra revenue from

advertisers (which may depend on the type of viewers reached, as advertisers typically pay more

to content providers with a higher exposure to viewers of certain characteristics), or the expenses

from broadcasting rights paid to third parties (which are typically invariant to the type of audience

reached). While each content provider’s profile (the type of content provided) is observable, each

viewer’s ideal type of content may be known to the media outlet (for example, when the latter has

access to data about viewers’ characteristics), or be private information (for example, as the result

of privacy-protecting regulations).16 }

Another example that shares the preference structure of Example 2 is that of an online interme-

diary matching consumers from side a with sellers from side b. Each seller’s location, xb, identifies

the seller’s product variety, whereas each buyer’s location, xa, identifies the buyer’s most preferred

variety. In turn, the vertical parameters va > 0 and vb < 0 capture heterogeneity in consumers’

willingness to pay and in sellers’ marginal costs, respectively.

Tari↵s and Matching Demands

The platform o↵ers matching tari↵s on each side of the market. A matching tari↵ Tk specifies the

(possibly negative) total payment Tk (sk|xk) that each agent from each location xk 2 Xk is asked

to pay to be matched to each set of types sk from the opposite side of the market.17 To guarantee

participation by all agents, we require that, for all xk, Tk (sk|xk) = 0 if sk = ;.
Given the tari↵ Tk, we say that the function sk : ⇥k ! ⌃(⇥l) is a matching demand consistent

with the tari↵ Tk if, for any ✓k = (vk, xk) 2 ⇥k,

sk(✓k) 2 arg max
sk2⌃(⇥l)

⇢Z

⇥l

uk (vk, |xk � xl|) dFl(✓l)� Tk (sk|xk)
�
. (2)

Definition 1. The tari↵ profile (Tk)k=a,b is feasible if there exists a pair of matching demands

(sk)k=a,b consistent with (Tk)k=a,b satisfying the following reciprocity condition, for all (✓k, ✓l) 2
⇥k ⇥⇥l, k, l 2 {a, b}, l 6= k:

✓l 2 sk(✓k) () ✓k 2 sl(✓l). (3)

That is, if an agent from side k with type ✓k finds it optimal to be matched to all agents from

side l 6= k with type ✓l, then all agents from side l with type ✓l find it optimal to be matched to all

agents from side k with type ✓k.

16The structure of this example follows closely the one typically assumed in the empirical literature on media markets

(see, e.g., Goettler and Shachar 2001).
17In their most general form, matching tari↵s might depend on locations (which are observable by the platform), but

not on the agents’ vertical dimensions, which are the agents’ private information.
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The platform’s problem consists of choosing a pair of feasible tari↵s (Tk)k=a,b along with a pair of

matching demands (sk)k=a,b consistent with the selected tari↵s, that jointly maximize the platform’s

profits, which are given by
X

k=a,b

Z

⇥k

Tk(sk(✓k)|xk)dFk(✓k). (4)

A pair of tari↵s (T ⇤
k
)k=a,b is profit-maximizing if there exist matching demands (s⇤

k
)k=a,b consistent

with (T ⇤
k
)k=a,b such that the platform’s profits under (T ⇤

k
, s

⇤
k
)k=a,b are at least as high as under any

other quadruple (Tk, sk)k=a,b, where (Tk)k=a,b is a pair of feasible tari↵s and (sk)k=a,b are demands

consistent with (Tk)k=a,b. Hereafter we denote by (T ⇤
k
)k=a,b a pair of profit-maximizing tari↵s, and by

(s⇤
k
)k=a,b the matching demands that, together with with (T ⇤

k
)k=a,b, maximize the platform’s profits.

3 Customized Tari↵s

We now introduce a class of tari↵s that plays an important role in the analysis below. Under such

tari↵s, which we call customized, the platform o↵ers to each side-k agent a baseline matching set at

a baseline price, along with a collection of personalized prices that the agent can use to customize

his matching set. The total price of the customization is separable in the locations of the agents

added to the baseline configuration, but may vary non-linearly with the amount of agents from each

location. Importantly, the personalized prices the agents pay for the customization depend on their

own locations, a form of third degree price discrimination. Customized tari↵s capture important

features of real-world matching plans o↵ered by platforms such as cable TV providers, ad exchanges,

and online retailers. Before proceeding to the definition, we need to introduce the following piece

of notation: Given any matching set sk, any location xl, we let qxl(sk) denote the “mass” of side-l

agents located at xl included in the matching set sk.18

Definition 2. The tari↵ Tk is customized if there exists a collection of triples

{(sk(xk), T k(xk), ⇢k(·|·;xk)) : xk 2 Xk} ,

one for each location xk 2 Xk, such that each side-k agent located at xk choosing the matching set

sk 2 ⌃(⇥l) is asked to make a total payment equal to

Tk(sk|xk) = T k(xk) +

Z 1

0
⇢k(qxl(sk)|xl;xk)dxl, (5)

with ⇢k (qxl (sk(xk)) |xl;xk) = 0 for all xl 2 Xl.

A customized tari↵ can thus be thought of as a collection of matching plans, one for each lo-

cation xk. Each plan comes with a baseline configuration, given by the default set of types sk(xk)

18Hereafter, we abuse of terminology by referring to the density of agents of a certain type as the “mass” of agents

of that type.
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from side l 6= k included in the package, and a baseline price T k(xk). Each agent under the plan

(sk(xk), T k(xk), ⇢k(·|·;xk)) can then customize his matching set by adding extra matches. The cost

of the customization is separable in the type of matches added to the baseline configuration, with

each schedule ⇢k(qxl |xl;xk) describing the non-linear fee for raising the amount of xl-agents from the

default level qxl (sk(xk)) to qxl .
19 Importantly, each price ⇢k(qxl |xl;xk) depends on the baseline plan,

which is conveniently indexed by the location of the agents targeted by the plan. The dependence

of the price ⇢k(qxl |xl;xk) on the plan xk is a manifestation of a particular form of bundling. In par-

ticular, note that a customized tari↵ combines elements of second-degree price discrimination (each

price function ⇢k (qxl |xl;xk) is possibly non-linear in qxl) with elements of third-degree price discrim-

ination (each non-linear price function ⇢k (qxl |xl;xk) depends on the plan, and hence the location, of

the side-k agents).

Clearly, not all tari↵s are customized, in the sense of Definition 2. For instance, tari↵s that

condition the price for the xl-matches on the demand for the x
0
l
-matches are not customized.

The following result shows that the platform can attain maximal profits by o↵ering a pair of

customized tari↵s.

Lemma 1. (properties of the optimum) The following are true:

1. there exists a pair of customized tari↵s (T ⇤
k
)k=a,b that are profit-maximizing;

2. the matching demands (s⇤
k
)k=a,b consistent with the profit-maximizing customized tari↵s (T ⇤

k
)k=a,b

are described by threshold functions t
⇤
k
: ⇥k ⇥Xl ! Vl such that

s
⇤
k
(✓k) = {(vl, xl) 2 ⇥l : vl > t

⇤
k
(✓k, xl)} ,

with the function t
⇤
k
non-increasing in vk and non-decreasing in |xk � xl|.

Under the profit-maximizing tari↵s, for any given location xk, the matching sets demanded by

those agents with higher vertical types are supersets of those demanded by agents with lower vertical

types. Moreover, side-l agents located at xl with a low vertical type vl are included in the matching

sets of the side-k agents located at xk only if the latter’s vertical types vk are large enough. Finally,

the range of vertical types that an agent of type ✓k is matched to at location xl is smaller the larger

is the distance |xk � xl| between locations. Figure 2 illustrates these properties.

To gain intuition, note that the marginal profits the platform obtains by matching type ✓l =

(vl, xl) from side l to type ✓k = (vk, xk) from side k are positive if, and only if,

'k (✓k, ✓l) + 'l (✓l, ✓k) � 0. (6)

Echoing Bulow and Roberts (1989), the above condition can be interpreted as stating that two

agents are matched if, and only if, their joint marginal revenue to the platform is weakly positive

19The schedules ⇢k(qxl |xl;xk) also specify the price for reducing the amount of xl-agents below the default level.

However, as we show in the Appendix, in equilibrium, under both the profit-maximizing and the welfare-maximizing

tari↵s, the induced demands are such that sk(✓k) � sk(xk) for all ✓k = (vk, xk), k = a, b.
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Figure 2: Matching sets under profit-maximizing tari↵s. The shaded area in the figure describes the

matching set for an agent from side a located at xa = 1/2.

(we elaborate on this point further in the next subsection). That virtual values respect the same

rankings as the true values implies existence of a threshold t
⇤
k
(✓k, xl) such that Condition (6) is

satisfied if, and only if, vl � t
⇤
k
(✓k, xl), with the threshold t

⇤
k
(✓k, xl) non-increasing in vk and non-

decreasing in |xk � xl|. Jointly, these properties imply that, as vk increases, the matching set of

type ✓k expands to include new agents with lower vertical types. Moreover, as vk increases, the

vertical type of the marginal agents located at xl added to the matching set s⇤
k
(vk, xk) are higher the

“farther” away the location xl is from xk.

Remark 1. In the Appendix, we show that the result in Lemma 1 extends to markets in which loca-

tions are private information provided two extra requirements are satisfied. First, the distributions

are symmetric across locations, in which case, when the tari↵s are also symmetric, the matching

demands of any two types ✓k = (vk, xk) and ✓
0
k
= (vk, x0k) with the same vertical dimension are loca-

tion translations of one another. This guarantees that the platform can screen the agents’ locations

without leaving extra informational rents to the agents. Moreover, this condition also rules out the

optimality of bunching and lotteries over matching sets, thus permitting us to highlight the role of

targeting and price customization in the simplest possible manner. Second, the platform is able to

restrict the set of permissible customizations the agents can choose from. This permits the platform

to restrict the agents to select only those customizations that would be selected by some agents

under complete information about locations. Restricting the set of permissible customizations may

be necessary to prevent the agents from misreporting their locations so as to pay cheaper prices for

the matches they like the most.
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3.1 Lerner-Wilson formula for matching schedules

We now derive further properties of the customized tari↵s that maximize the platform’s profits.

Consider first the problem of a side-k agent of type ✓k = (vk, xk) under the plan xk. The mass of

agents located at xl demanded by type ✓k is given by20

q̂xl(✓k) 2 arg max
q2[0,fx

l (xl)]
{uk(vk, |xk � xl|) · q � ⇢k(q|xl;xk)} .

Assuming the price schedule ⇢k(·|xl;xk) is convex and di↵erentiable in q, with derivative ⇢0
k
(·|xl;xk),

it follows that q̂xl(✓k) is a solution to the following first-order condition21

uk(vk, |xk � xl|) = ⇢
0
k
(q̂xl(✓k)|xl;xk) (7)

whenever q̂xl(✓k) is interior, i.e., whenever q̂xl(✓k) 2 (0, fx

l
(xl)).

Next, for any pair of locations xk, xl 2 [0, 1], and any “interior” marginal price

⇢
0
k
2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)] ,

let v̂xl (⇢
0
k
|xk) denote the value of vk that makes each agent from side k located at xk indi↵erent

between adding the extra q-th unit of the xl-agents or not, given the marginal price ⇢
0
k
. Note that,

irrespective of q, v̂xl (⇢
0
k
|xk) is implicitly defined by

uk(vk, |xk � xl|) = ⇢
0
k
. (8)

If, instead, ⇢0
k
/2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)], let v̂xl (⇢

0
k
|xk) = vk for all ⇢0

k
< uk(vk, |xk � xl|),

and v̂xl (⇢
0
k
|xk) = v̄k for all ⇢0

k
> uk(v̄k, |xk � xl|).

Note that, because the price function ⇢k(·|xl;xk) is strictly convex over the range of quantities

purchased in equilibrium, the marginal price ⇢
0
k
uniquely identifies the quantity q. Furthermore,

because agents with higher vertical types demand larger matching sets, the demand for the q-th unit

of the xl-agents by the xk-agents, at the marginal price ⇢
0
k
, is given by22

Dk

�
⇢
0
k
|xl;xk

�
⌘
h
1� F

v|x
k

�
v̂xl

�
⇢
0
k
|xk

�
|xk

�i
f
x

k
(xk), (9)

where, as above, we dropped the arguments (q|xl;x) of the marginal price to lighten the notation.

Accordingly, Dk (⇢0k|xl;xk) coincides with the mass of agents from side k located at xk whose vertical

type exceeds v̂xl (⇢
0
k
|xk).

20Recall that the maximal amount of side-l agents that are located at xl is f
x
l (xl).

21The strict convexity of the price function ⇢k(·|xl;xk) over the set of quantities purchased in equilibrium is a direct

implication of the supermodularity of the agents’ payo↵s uk(vk, |xk � xl|) · q in (vk, q).
22By the demand for the q-th unit of the xl-agents by the xk-agents, we mean the mass of agents from side k located

at xk who demand at least q matches with the xl-agents.
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Using (9), we then define the elasticity of the demand by the side-k agents located at xk (in

short, the xk-demand) for the q-th unit of the xl-agents with respect to its marginal price ⇢
0
k
by

(once again, the arguments of the marginal price ⇢
0
k
are dropped to ease the notation)

"k

�
⇢
0
k
|xl;xk

�
⌘ �

@Dk (⇢0k|xl;xk)
@
�
⇢
0
k

� ·
⇢
0
k

Dk

�
⇢
0
k
|xl;xk

� . (10)

The next proposition characterizes the price schedules associated with the profit-maximizing cus-

tomized tari↵s of Lemma 1 in terms of the location-specific elasticities of the demands on both sides

of the market. To ease the exposition, the dependence of the marginal prices, ⇢⇤
k

0, the demands Dk,

and the elasticities, "k, on the locations (xa, xb) is dropped from all the formulas in the proposition.

Proposition 1. (Lerner-Wilson price schedules) The price schedules ⇢
⇤
k
associated with the

profit-maximizing customized tari↵s T
⇤
k
are di↵erentiable and convex over the equilibrium range.

23

Moreover, for all pair of locations (xa, xb), and all interior pairs of demands (qa, qb) such that

qa = Db (⇢⇤b
0(qb)) and qb = Da (⇢⇤a

0 (qa)),24 the marginal prices ⇢
⇤
a
0(qa) and ⇢

⇤
b

0(qb) jointly satisfy

the following Lerner-Wilson formulas

⇢
⇤
a

0(qa)

✓
1� 1

"a (⇢⇤a
0(qa))

◆

| {z }
net e↵ect on side-a profits

+ ⇢
⇤
b

0(qb)

 
1� 1

"b

�
⇢
⇤
b
0(qb)

�
!

| {z }
= 0.

net e↵ect on side-b profits

(11)

The Lerner-Wilson formulas (11) jointly determine the price schedules on both sides of the market.

Intuitively, these formulas require that the marginal contribution to profits from adding to the

matching sets of the xk-agents the qk-th unit of the xl-agents coincide with the marginal contribution

to profits from adding to the matching sets of the xl-agents the ql-th unit of the xk-agents, where

qk and ql are jointly related by the reciprocity condition in the proposition. As for the standard

Lerner-Wilson formula for monopoly/monopsony pricing, on each side, the marginal contribution to

profits of such an adjustment has two terms: the term ⇢
⇤
k

0 captures the marginal benefit from adding

the extra agents, whereas the semi-inverse-elasticity term ⇢
⇤
k

0 ["k (⇢⇤k
0)]�1 capture its associated infra-

marginal losses.

Importantly, as anticipated above, the quantities qk and ql at which the conditional price schedules

are evaluated have to clear the market, as required by the reciprocity condition (3). The result in the

proposition uses the fact that the demands under the optimal tari↵s satisfy the threshold structure

in Lemma 1 to establish that the mass of xk-agents that, at the marginal price ⇢
⇤
k

0(qk), demand qk

agents or more of type xl coincide with the mass Dk (⇢⇤k
0 (qk)) of xk-agents with vertical type above

v̂xl (⇢
⇤
k

0|xk), where recall that v̂xl (⇢
⇤
k

0|xk) is the threshold type for whom the utility of interacting with

the xl-agents equals the marginal price ⇢⇤
k
, as defined in (8). Together with reciprocity, Lemma 1 then

also implies that the mass qk of xl-agents that, at the marginal price ⇢⇤
l

0(ql), demand ql = Dk (⇢⇤k
0 (qk))

or more of the xk-agents coincides with the mass of xl-agents with vertical type above v̂xk (⇢
⇤
l

0|xl).
23Namely, at any ql 2 [qxl(sk(vk, xl + .5)), qxl(sk(vk, xl))], k, l = a, b, l 6= k.
24The pair (qa, qb) is interior for a location pair (xa, xb) if qk 2 (0, fx

l (xl)) for all k, l 2 {a, b}.
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Finally, that the price schedules ⇢
⇤
k
(qk) are convex in qk reflects the fact that the matching

demands of the xk-agents for the xl-agents are increasing in the vertical types vk. As a result, the

marginal price ⇢
⇤
k

0(qk) for the qk-unit of the xl-agents has to increase with qk.

The formulas in (11) also reveal how profit-maximizing platforms optimally cross-subsidize in-

teractions among agents from multiple sides of the market while accounting for heterogeneity in

preferences along both vertical and horizontal dimensions. In particular, the price schedules o↵ered

at any two locations xk and xl are a function of the location-specific demand elasticities "k (·|xl;xk)
at these locations. This reflects the fact that, at the optimum, platforms make use of information

about horizontal preferences to o↵er matching tari↵s that extract as much surplus as possible from

agents from both sides. As we show below, the ability to tailor price schedules to locations (a form

of third-degree price discrimination) has important implications for the composition of the demands

prevailing under optimal tari↵s.

The formulas in (11) define a system of structural equations that relate the cut-o↵ types on both

sides of the market.25 The spirit of these formulas is the same as in the reduced-form approach

pioneered by Saez (2001) in the context of optimal taxation. As such, they can be used by the

econometrician to estimate the distribution of the agents’ preferences from data on price schedules

and match volumes. The work by Kahn and You (2016) follows a related strategy in the matching

market for lobbying, but abstracts from horizontal di↵erentiation.

3.2 Distortions and Horizontal Di↵erentiation

We now investigate how market-power distortions in the supply of matching opportunities vary with

the agents’ horizontal preferences. In particular, we are interested in whether, relative to e�ciency,

agents are primarily precluded from interacting with partners whom they like the most (closer to their

bliss point), or the least (further away from their bliss point). The analysis in this section, which,

to the best of our knowledge, has no parallel in the price discrimination literature, has important

implications for how policy makers may consider intervening in certain platform markets.

Let X

k=a,b

Z

⇥k

Z

sk(✓k)
uk (vk, |xk � xl|) dFj(✓j)dFk(✓k), (12)

denote the welfare associated with a pair of matching demands consistent with the feasible tari↵s Tk,

k = a, b. It is straight-forward to see that a pair of feasible tari↵s (T e

k
)k=a,b is welfare-maximizing if

there exist matching demands consistent with the tari↵s (T e

k
)k=a,b satisfying the following property:

25To see this, fix (xa, xb) and drop it to ease the notation. For any qa 2 [0, fx
b (xb)], the result in Lemma 1 implies

that the most economical way of giving the xa-agents access to qa agents located at xb is to match them to all xb-

agents whose vertical type is above ṽb, with ṽb defined by [1 � F v|x
b (ṽb|xb)]f

x
b (xb) = qa. For any qb 2 [0, fx

a (xa)], the

marginal price ⇢⇤b
0(qb) is then equal to ub(ṽb, |xa � xb|). Given qa and ⇢⇤b

0(qb), the marginal price ⇢⇤a
0(qa) is then given

by equation (11). Once ⇢⇤a
0(qa) is identified, the threshold va = t⇤b((ṽb, xb), xa) is given by the unique solution to

ua(va, |xa � xb|) = ⇢⇤a
0(qa).
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For any two agents with types ✓k = (vk, xk) and ✓l = (vl, xl),

✓l 2 sk(✓k) () uk (vk, |xk � xl|) + ul (vl, |xk � xl|) � 0.

In turn, this means that there exist threshold functions t
e

k
(·) such that the tari↵s (T e

k
)k=a,b are

welfare-maximizing if and only if the matching demands they induce are such that ✓l 2 sk(✓k) if and

only if vl � t
e

k
(✓k, xl), for any ✓k = (vk, xk) 2 ⇥k, any ✓l = (vl, xl) 2 ⇥l, k, l 2 {a, b}, l 6= k.

Arguments similar to those establishing Lemma 1 and Proposition 1 then imply that the matching

demands that maximize welfare can be induced by o↵ering customized tari↵s T e
a and T

e

b
where the

associated marginal price schedules (⇢e
k
)0 jointly solve

⇢
e

a

0(qa) + ⇢
e

b

0(qb) = 0,

for ant pair of locations (xa, xb) and any pair qa and qb such that qa = Db (⇢eb
0(qb)) and qb =

Da (⇢ea
0(qa)).

We are now ready to formalize the idea that distortions due to market power increase (alterna-

tively, decrease) with distance.

Definition 3. (distortions and distance) Distortions on side k 2 {a, b} decrease (alternatively,

increase) with distance if, and only if, for any ✓k 2 ⇥k,

�(✓k, xl) ⌘ ul (t
⇤
k
(✓k, xl), |xl � xk|)� ul (t

e

k
(✓k, xl), |xl � xk|)

decreases (alternatively, increases) with |xk � xl|.

Hence, fixing the type ✓k = (vk, xk) of a side-k agent, distortions decrease with distance when

the di↵erence between the minimal utility asked by a profit-maximizing platform and by a welfare-

maximizing platform to an xl-agent to be matched with each side-k agent of type ✓k decreases

with the distance between the two agents’ locations. Note that the di↵erence in utilities reduces

to the di↵erence in the thresholds when the side-l’s preferences are invariant to locations. Figure 3

illustrates the case of a market in which distortions decrease with distance and the side-b preferences

are invariant to locations.

The next definition identifies the key property of the matching demands that is responsible for

whether distortions increase or decrease with distance.

Definition 4. The semi-elasticities of the side-k matching demands are increasing (alternatively,

decreasing) in distance if, and only if, given any xk 2 Xk, any ⇢
0
k
2 R, the function

"k (⇢0k|xl;xk)
⇢
0
k

(13)

is increasing (alternatively, decreasing) in |xl�xk|. The semi-elasticities are increasing (alternatively,

decreasing) in price if, and only if, for any pair (xk, xl) 2 Xk ⇥Xl, the function in (13) is increasing

(alternatively, decreasing) in ⇢
0
k
.
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Figure 3: The welfare-maximizing demand threshold t
e
a (✓a, xb) (dashed blue curve) and the profit-

maximizing demand threshold t
⇤
a (✓a, xb) (solid black curve) for agents on side a located at xa = .5

in a market in which the side-b preferences are location-invariant and the side-a distortions decrease

with distance.

Proposition 2. (distortions under customized pricing) Either one of the following two sets

of conditions su�ce for distortions on side k to decrease with distance:
26

(1.a) the side-k semi-elasticities are increasing in distance and decreasing in price, whereas the

side-l semi-elasticities are increasing in both distance and price;

(1.b) uk submodular, xl and vl independent, the hazard rate for F
v

l
increasing in vl, ul submodular

and concave in vl.

Either one of the following two sets of conditions su�ce for distortions on side k to increase with

distance:

(2.a) the side-k semi-elasticities are decreasing in distance and increasing in price, whereas the

side-l semi-elasticities are decreasing in both distance and price.

(2.b) uk supermodular, xl and vl independent, the hazard rate for F
v

l
decreasing in vl, ul super-

modular and convex in vl.

Recall that, under the matching demands induced by the profit-maximizing tari↵s, a pair of

agents with types ✓k and ✓l is matched if, and only if, 'k (✓k, ✓l) + 'l (✓l, ✓k) � 0. Instead, under

the demands induced by the welfare-maximizing tari↵s, the same pair is matched if, and only if,

uk (vk, |xk � xl|) + ul (vl, |xk � xl|) � 0. Also note that the virtual values 'k (✓k, ✓l) di↵er from the

true values uk (vk, |xk � xl|) by the “markup handicaps”

1� F
v|x
k

(vk|xk)
f
v|x
k

(vk|xk)
@uk

@vk
(vk, |xk � xl|)

which control for the surplus the platform must leave to the agents to induce them to reveal their

private information and naturally reflect the platform’s profit-maximization objective. When prices

26Strictly so, if at least one of the properties is strict.
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are interior,27 the handicaps are equal to the inverse of the semi-elasticities of the matching demand,

that is,

1� F
v|x
k

(vk|xk)
f
v|x
k

(vk|xk)
@uk

@vk
(vk, |xk � xl|) =

⇢
0
k

"k

�
⇢
0
k
|xl;xk

�
�����
⇢
0
k=uk(vk,|xk�xl|)

. (14)

To understand the distortions brought in by profit-maximization (vis-à-vis welfare maximization),

it is convenient to consider the wedge

�(✓k, xl) =
1� F

v|x
k

(vk|xk)
f
v|x
k

(vk|xk)
@uk

@vk
(vk, |xk � xl|) +

1� F
v|x
l

(t⇤
k
(✓k, xl) |xl)

f
v|x
l

�
t
⇤
k
(✓k, xl) |xl

�
@ul

@vl
(t⇤

k
(✓k, xl) , |xk � xl|)

=
⇢
0
k

"k

�
⇢
0
k
|xl;xk

�
�����
⇢
0
k=uk(vk,|xk�xl|)

+
⇢
0
l

"l

�
⇢
0
l
|xk;xl

�
�����
⇢
0
l=ul(t⇤k(✓k,xl),|xk�xl|)

. (15)

The results in parts (1.a) and (2.a) in the proposition then follow directly from the monotonicities

of the handicaps (equivalently, of the semi-elasticities), along with the fact that, fixing ✓k = (vk, xk),

as the distance |xk � xl| between ✓k and ✓l increases, the maximal price ⇢
0
k
= uk (vk, |xk � xl|)

that type ✓k is willing to pay to interact with the xl-agents declines, whereas the price ⇢
0
l
=

ul (t⇤k (✓k, xl) , |xk � xl|) that the platform asks to the xl-agents to interact with type ✓k increases.

The results in parts (1.b) and (2.b), instead, use the specific relation between the demand elasticities

and the primitives in (15) to identify joint conditions on match values and type distributions guaran-

teeing that the sum of the markups on the two sides is monotone in distance, accounting for the joint

variations in the marginal prices. Importantly, both the conditions involving the demand elasticities

as well as those involving the match values and the type distributions can be empirically estimated

using techniques similar to those in the empirical auction literature. Whether the econometrician

may prefer working with the elasticities or with the primitive conditions is likely to depend on the

application under consideration and, in particular, on the type of data available.

As we show in the next two sections, conditions similar to those in Proposition 2 are also respon-

sible for whether targeting and welfare are higher under customized or uniform pricing, as well as

for whether welfare is higher in a decentralized or in a centralized market.

4 Uniform Pricing

Stringent regulations on the transfer of personal data together with restrictions on bundling imposed

on certain platforms are expected to hinder the customization of prices and favor instead uniform

pricing. In this section, we study platforms’ behavior when subject to uniform-pricing obligations.

27That is, when ⇢0k 2 [uk(vk, |xk � xl|), uk(v̄k, |xk � xl|)].
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Uniform Pricing and Aggregate Demand Elasticities

Definition 5. The tari↵ Tk is consistent with uniform pricing if there exists a collection of (possibly

non-linear) price schedules pk(q|xl), one for each location xl 2 Xl, such that the total payment asked

by the platform to the side-k agents for each matching set sk 2 ⌃(⇥l) is given by

Tk(sk) =

Z 1

0
pk(qxl(sk)|xl)dxl. (16)

Hence, under uniform pricing, the tari↵ o↵ered by the platform to the side-k agents consists of a

collection of non-linear price schedules, (pk(·|xl))xl2[0,1], one for each type of the side-l agents, with

each schedule pk(q|xl) specifying the total price each side-k agent has to pay to be matched to q

agents from side l 6= k located at xl 2 [0, 1]. Importantly, contrary to the case of price customization,

the price pk(q|xl) is independent of the agent’s own location, xk.

Suppose the platform is forced to adopt a uniform price schedule pa(·|xb) on side a (with marginal

schedule p
0
a(·|xb)). Recall that, for each location xb 2 [0, 1], and each quantity q 2 [0, fx

b
(xb)], such a

schedule specifies the price that the side-a agents have to pay to be matched to q agents from side b

located at xb. Under such a schedule, the aggregate demand (over all locations xa) for the q-th unit

of the xb-agents at the marginal price p
0
a (q|xb) is equal to

D̄a

�
p
0
a|xb

�
⌘
Z 1

0
Da

�
p
0
a|xb;xa

�
dxa =

Z 1

0

n
1� F

v|x
a

�
v̂xb

�
p
0
a|xa

�
|xa

�o
f
x

a (xa)dxa,

where, as in the previous section, Da (p0a|xb;xa) denotes the mass of agents located at xa that demand

q units or more of the xb-agents, and where, as in the previous section, the arguments (q|xb) of the
marginal prices p0a (q|xb) have been dropped, to ease the exposition.

The elasticity of the side-a aggregate demand for the q-th unit of the xb-agents with respect to

the marginal price p
0
a is then equal to

"̄a

�
p
0
a|xb

�
⌘ �@D̄a (p0a|xb)

@ (p0a)
· p

0
a

D̄a (p0a|xb)
= E

H̄(x̃a|xb,p
0
a)

⇥
"a

�
p
0
a|xb; x̃a

�⇤
,

where "a (p0a|xb;xa) is the elasticity of the demand by the xa-agents, as defined in (10), and where

the expectation is over Xa = [0, 1], under the distribution H̄ (·|xb, p0a) whose density is equal to

h̄
�
xa|xb, p0a

�
⌘ Da (p0a|xb;xa)R 1

0 Da (p0a|xb;x0a) dx0a
.

Hereafter, we refer to "̄a (·|xb) as the aggregate elasticity of the side-a demand for the q-th unit

of the xb-matches. This elasticity measures the percentage variation in the mass of agents from side

a that demand at least q matches with the side-b agents located at xb in response to a percentage

change in the marginal price for the q-th unit of the xb-agents. It is also equal to the average (over

the side-a locations) elasticity of the xa-demands for the q-th unit of the xb-agents with respect to

the marginal price p
0
a, where the average is under a distribution that assigns to each location xa a
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weight proportional to the mass of agents Da (p0a|xb, xa) located at xa demanding q units, or more,

of the xb-agents.

The next proposition derives properties of the profit-maximizing tari↵s T
u
a and T

u

b
o↵ered by a

platform that is constrained to price uniformly on side a. To ease the exposition, the dependence

of the marginal price p
u
a
0 and of the aggregate elasticity "̄a on xb, as well as the dependence of the

marginal price ⇢̂
u

b

0 and of the local elasticity "̂b on (xa, xb), are dropped from all the formulas in the

proposition.

Proposition 3. (uniform pricing) Suppose the platform is constrained to price uniformly on side

a, but is free to o↵er any tari↵ on side b. The profit-maximizing tari↵s (T u

k
)k=a,b are such that T

u

b

is customized. The price schedules p
u
a and ⇢

u

b
associated with the profit-maximizing tari↵s (T u

k
)k=a,b

are di↵erentiable and convex over the equilibrium ranges.
28

Moreover, for all locations xb 2 Xb, and

all interior quantity pairs (qa, qb(x̃a)), x̃a 2 Xa, such that

qa = Db

�
⇢
u

b

0 (qb|xb;xa) |xb;xa
�

and qb(x̃a) ⌘ Da

�
p
u

a

0(qa)|xb;xa
�
,

the marginal prices schedules p
u
a
0
and ⇢

u

b

0
jointly satisfy the following optimality condition:

p
u

a

0(qa)

✓
1� 1

"̄a (pua
0(qa))

◆

| {z }
net e↵ect on side-a profits

+ EH(x̃a|xb,p
u
a
0(qa))

2

64⇢ub 0(qb(x̃a))
 
1� 1

"b

�
⇢
u

b
0(qb(x̃a))

�
!

| {z }

3

75 = 0,

net e↵ect on side-b profits

(17)

where H (xa|xb, pua 0) is the distribution over Xa whose density is given by

h
�
xa|xb, pua 0

�
⌘ @Da (pua

0|xb;xa)
@ (pua

0)

✓
@D̄a (pua

0|xb)
@ (pua

0)

◆�1

.

The result in the proposition provides structural equations similar to those in Proposition 1,

but adapted to account for the imposition of uniform pricing on side a. Such structural conditions

jointly determine the price schedules on both sides of the market. Under uniform pricing, the price

schedule on side a for the sale of the xb-agents cannot condition on the location of the side-a agents.

As a result, the markup for the sale of the q-th unit of the xb-matches is constant across all side-a

locations xa. The relevant elasticity for determining this markup is then the aggregate elasticity

"̄a(·|xb), rather than the location-specific elasticities "a (·|xb;xa) in the Lerner-Wilson formula (11).

Interestingly, even if the platform can price discriminate on side b by o↵ering di↵erent price schedules

⇢
u

b
(q|xa;xb) to the side-b agents as a function of their locations, xb, when it is constrained to price

uniformly on side a, the cost of procuring the xb-agents is the average (mark-up augmented) price

EH(x̃a|xb,p
u
a
0(qa))

"
⇢
u

b

0(qb(x̃a))

 
1� 1

"b

�
⇢
u

b
0(qb(x̃a))

�
!#

28Namely, at any qa 2 [qxb(sa(va, xb + .5)), qxb(sa(va, xb))] and qb 2 [qxa(sb(vb, xb)), qxa(sa(vb, xb))].
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charged to the xb-agents for their interactions with the various xa-agents demanding qa, or more, of

the xb-matches.

Also note that, by virtue of the reciprocity condition (3), the quantities qa and qb at which the

price schedules are evaluated have to clear the market for any pair of locations (xa, xb). For this to be

possible, it is important that the platform be able to price discriminate on side b, as this ensures that

the platform has enough price instruments to procure the side-b matches demanded by the side-a

agents, while respecting reciprocity.

Finally, as in the case where price discrimination is allowed on both sides, the convexity of the

price schedules pua(·|xb) and ⇢
u

b
(·|xa;xb) in qa and qb, respectively, reflects the fact that the matching

demands of those agents with a higher vertical type are supersets of those with a lower vertical type.

As revealed by the pricing formulas (11) and (17), the e↵ects of the imposition of uniform pricing

on side a on the composition of the matching sets on both sides hinge on the comparison between the

aggregate inverse-elasticity 1/"̄a(·|·) and the location-specific inverse-elasticities 1/"a (·|·;xa) on side

a, as well as the comparison between the average inverse-elasticity EH(x̃a|p0a) [1/"b (·|x̃a; ·))] of the xb-

demands for the various xa-matches and the inverse-elasticities 1/"b (·|x̃a; ·)) of the same demands for

the specific matches. In turn, such comparisons naturally reflect how the average virtual valuations

on both sides compare to their location-specific counterparts. To see this, first note that, given the

marginal price p
u
a
0 for the q-th unit of the xb agents,

1

"̄a (pua
0)

= EH(x̃a|xb,p
u
a
0)


1

"a (pua
0|xb; x̃a))

�
. (18)

That is, the inverse aggregate elasticity of the side-a demand for the q-th unit of the xb-matches

is equal to the average of the various location-specific inverse elasticities of the side-a agents for

the same unit of the same xb-matches, where the average is under the same measure H (xa|xb, p0a)
introduced in the proposition.

Next, let v̌b be implicitly defined by

⇣
1� F

v|x
b

(v̌b|xb)
⌘
f
x

b
(xb) = q.

Note that v̌b denotes the value of the vertical dimension of the xb-agents such that the mass of

xb-agents with a vertical type higher than v̌b is equal to q. Using the characterization in Lemma 1,

we then have that the optimality condition (17) can be re-written as

EH(x̃a|xb,p
u
a
0)

⇥
'a

��
v̂xb

�
p
u

a

0|x̃a
�
, x̃a

�
, (v̌b, xb)

�⇤
| {z }

net e↵ect on side-a profits

+ EH(x̃a|xb,p
u
a
0)

⇥
'b

�
(v̌b, xb)) ,

�
v̂xb

�
p
u

a

0|x̃a
�
, x̃a

��⇤
| {z }

= 0.

net e↵ect on side-b profits

(19)

Hereafter, we assume that the left-hand side of (19) is monotone in the marginal price p
0
a, which

amounts to quasi-concavity of the platform’s profit function with respect to the marginal price, after

accounting for the cost of procuring the xb-agents, as explained in the proof of Proposition 3. The

above property implies that the necessary condition in (19) is also su�cient for optimality.
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Now recall that, under price customization (on both sides), the platform matches a pair of agents

✓a = (va, xa) and ✓b = (vb, xb) if, and only if, type-✓a’s virtual value for interacting with type ✓b is

large enough to compensate for the virtual value that type ✓b derives from interacting with type ✓a

(formally, ✓a and ✓b are matched if, and only if, 'a(✓a, ✓b) + 'b(✓b, ✓a)� 0). Under uniform pricing

(on side a), instead, the platform matches the above pair of agents if, and only if, the following

is true: if all side-a agents with the same true value for interacting with type ✓b as type ✓a were

to be matched to type ✓b, the average virtual value among such agents for the match with type ✓b

would compensate for the average virtual value that type ✓b derives from being matched with all

such agents. Formally, under uniform pricing (on side a), types ✓a and ✓b are matched if, and only

if, when p
0
a = ua(va, |xb � xa|),

EH(x̃a|xb,p
0
a) ['a ((v̂xb (p

0
a|x̃a) , x̃a) , ✓b)] + EH(x̃a|xb,p

0
a) ['b (✓b, (v̂xb (p

0
a|x̃a) , x̃a))] � 0.

This observation plays an important role in determining how targeting and welfare are a↵ected by

the imposition of uniform pricing, as we show below.

4.1 Targeting under Uniform and Customized Pricing

Digital technology is often praised for its ability to increase match precision (or targeting) in a variety

of markets. Yet, technology alone is no guarantee of large targeting gains, as the matches enjoyed

by the agents obviously depend on the pricing practices followed by platforms. Price customization

allows a platform to charge the agents prices that depend on the agents’ own horizontal preferences

(either directly, when the latter are observable, or indirectly, through bundling). To the extent

that agents value the most those matches of higher proximity, one might expect price-customization

to hinder targeting, as it permits platforms to set higher prices for those matches the agents like

the most. Without further inquiry, this observation seems to lend support to policies that impose

uniform pricing. Indeed, recent proposals requiring stringent protection of consumer privacy (de

facto banning price customization), stand-alone pricing for media content (thus banning bundling),

or anonymous pricing for advertising slots, appear to follow this line of reasoning. This intuition is,

however, incomplete, as it ignores the (endogenous) changes in prices that platforms undertake in

response to uniform-pricing obligations. The analysis below provides some guidelines when it comes

to the e↵ects of uniform and customized pricing on targeting.

Definition 6. (targeting) Customized pricing (on both sides) leads to more targeting than uniform

pricing (on side a) if, for each ✓a = (va, xa), there exists d(✓a) 2 (0, 12) such that

t
⇤
a(✓a, xb)� t

u

a(✓a, xb)

(
< 0 if |xa � xb| < d(✓a)

> 0 if |xa � xb| > d(✓a).

Conversely, uniform pricing on side a leads to more targeting than customized pricing on both sides
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Figure 4: The threshold function t
⇤
a(✓a, xb) under customized pricing (solid black curve) and uniform

pricing tua(✓a, xb) (dashed blue curve) when customized pricing (on both sides) leads to more targeting

than uniform pricing (on side a).

if, for each ✓a = (va, xa), there exists d(✓a) 2 (0, 12) such that

t
⇤
a(✓a, xb)� t

u

a(✓a, xb)

(
> 0 if |xa � xb| < d(✓a)

< 0 if |xa � xb| > d(✓a).

Intuitively, customized pricing (on both sides) leads to more targeting than uniform pricing (on

side a) if, under the profit-maximizing customized tari↵s, agents demand more matches close to

their ideal points, and less matches far from their ideal points, relative to what they do under

uniform pricing. Accordingly, the threshold function t
⇤
a(✓a, xb) under customized pricing is below

the corresponding threshold function t
u
a(✓a, xb) for nearby matches (i.e., for locations xb such that

|xa�xb| < d(✓a)), and above tua(✓a, xb) for more distant matches (for which |xa�xb| > d(✓a)). Figure

4 illustrates the situation captured by the above definition.

Note that, because matching is reciprocal, the above definition has an analogous implication for

side b. Namely, when customized pricing (on both sides) leads to more targeting than uniform pricing

(on side a), then the side-b threshold function under customized pricing, t⇤
b
(✓b, xa), also single-crosses

its counterpart under uniform pricing, tu
b
(✓b, xa), only once, and from below, as a function of the

distance |xa � xb|.
The next proposition identifies conditions under which uniform pricing on side a (for short,

uniform pricing) leads to more targeting than customized pricing on both sides (for short, customized

pricing). For simplicity, the result is for a market in which preferences on side b are location-invariant.

Proposition 4. (comparison: targeting) Suppose preferences on side b are location-invariant.

1. Uniform pricing (on side a) leads to more (alternatively, less) targeting than customized

pricing (on both sides) when the side-a semi-elasticities are increasing (alternatively, decreasing) in

both distance and price.
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2. The side-a semi-elasticities are increasing in both distance and price when xa and va are

independent, the hazard rate for F
v
a is increasing in va, and ua is submodular and concave in va

(alternatively, they are decreasing in both both distance and price when xa and va are independent,

the hazard rate for F
v
a is decreasing in va, and ua is supermodular and convex in va).

Consider Part 1 and fix the side-b location xb. Under uniform pricing, the elasticity of the

aggregate demand by the side-a agents for the q-th unit of the xb-agents is invariant to the distance

|xb � xa|, as the marginal price for the q-th unit of xb-matches is the same for all xa-locations. As

a consequence, when the semi-elasticities of the side-a demands increase (alternatively, decrease)

with distance, the marginal price for the q-th unit of xb-matches charged to the xa-agents under

customized pricing is lower than the corresponding price under uniform pricing when locations are

far apart, whereas the opposite is true at nearby locations. Accordingly, there is more targeting under

uniform pricing than under customized pricing. The result in Part 2 then uses the characterization of

the matching demands in the previous section to translate the result in Part 1 in terms of conditions

on match values and type distributions.

Remark 2. To simplify the exposition, Proposition 4 assumes that, on side b, preferences are location-

invariant. A similar result, however, applies more generally. Let t
⇤
k
(·) be the threshold functions

describing the matching demands optimally induced by the platform when it can o↵er customized

tari↵s on both sides of the market. Let L : Xa ⇥⇥b ! R be the function defined by

L(xa|✓b) ⌘ 'b (✓b, (t⇤b(✓b, xa), xa))�
1�F

v|x
a (t⇤b (✓b,xa)|xa)

f
v|x
a (t⇤b (✓b,xa)|xa)

· @ua
@v

(t⇤
b
(✓b, xa), |xa � xb|)

= ⇢
0
b

✓
1� 1

"b(⇢0b|xa;xb)

◆����
⇢
0
b=ub(vb,|xa�xb|)

� ⇢
0
a

"a(⇢0a|xb;xa)

���
⇢0a=ua(t⇤b (✓b,xa),|xa�xb|)

As we show in the Appendix, uniform pricing (on side a) leads to more (alternatively, less) targeting

than customized pricing, on both sides, if, for any ✓b, the function L(·|✓b) is non-decreasing (alter-

natively, non-increasing) in |xb � xa|. When preferences on side b are location-invariant, the above

property reduces to the monotonicity conditions in the proposition. More generally, uniform pricing

(on side a) leads to more targeting than customized pricing (on both sides) when the semi-elasticities

on both sides of the market increase su�ciently sharply with distance relative to the utility that the

side-b agents derive from interacting with the side-a agents when the distance increases.

4.2 Welfare under Uniform and Customized Pricing

The result in Proposition 4 can also be used to study the welfare implications of uniform-pricing

obligations. To see this, suppose that targeting is higher under uniform pricing than under customized

pricing. Then, under uniform pricing on side-a, the side-a agents face lower marginal prices p0a (q|xb)
for the xb-agents they like the most and higher marginal prices for those side-b agents whose location

is far from their bliss point.
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The above findings permit us to adapt results from the third-degree price discrimination literature

to the matching environment under consideration here to identify conditions under which welfare of

the side-a agents increases with the imposition of uniform pricing on side a. Formally, recall that,

under uniform pricing, the demand by the xa-agents for each q-th unit of the xb-matches at the

marginal price p
0
a is given by

Da

�
p
0
a|xb;xa

�
=
h
1� F

v|x
a

�
v̂xb

�
p
0
a|xa

�
|xa

�i
f
x

a (xa)

where, to ease the notation, we dropped (q|xb) from the arguments of the marginal price p
0
a(q|xb).

Now let

CDa

�
p
0
a|xb;xa

�
= �@

2
Da (p0a|xb;xa)
@ (p0a)

2

✓
@Da (p0a|xb;xa)

@ (p0a)

◆�1

p
0
a

denote the convexity of the demand by the xa-agents for the q-th unit of the xb-agents with respect

to the marginal price p
0
a.

29 Before proceeding, we have to impose the following regularity condition.

Condition 1. [NDR] Nondecreasing Ratio: For any (xa, xb) 2 Xa ⇥Xb, any q 2 [0, fx

b
(xb)], the

function

za

�
p
0
a|xb;xa

�
⌘ p

0
a

2� CDa (p0a|xb;xa)
is nondecreasing in the marginal price p

0
a for the q-th unit of the xb-agents.

We then have the following result:

Proposition 5. (comparison: welfare) Suppose Condition NDR holds and either one of the

following alternatives is satisfied:

1. targeting is higher under uniform pricing than under customized pricing and, for any p
0
a and

xb, CDa (p0a|xb;xa) declines with |xa � xb|.
2. targeting is higher under customized pricing than under uniform pricing and, for any p

0
a and

xb, CDa (p0a|xb;xa) increases with |xa � xb|.
Then welfare of the side-a agents is higher under uniform pricing on side a than under customized

pricing on both sides.

Condition NDR, as well as the convexity properties of the demand functions in Proposition 5,

parallel those in Aguirre et al (2010). The value of the proposition is in showing how our results about

the connection between targeting and customized pricing also permit us to apply to the environment

under examination here the welfare results from the third-degree price discrimination literature.

Note that Proposition 4 is key to the result in Proposition 5. It permits us to identify “stronger

markets,” in the sense of Aguirre et al. (2010), with those for matches involving agents from closer

locations (Part 1) or more distant locations (Part 2). Once the connection between targeting and

29Note that CDa(p
0
a|xb;xa) is also the elasticity of the marginal demand @Da(p

0
a|xb;xa)/@p

0
a with respect to the

marginal price p0a.
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price customization is at hand, the welfare implications of customized pricing naturally parallel those

in the third-degree price discrimination literature.

Also note that the result in Proposition 5 is just an illustration of the type of welfare results that

Proposition 4 permits. Paralleling the analysis in Proposition 2 in Aguirre et al. (2010), for example,

one can also identify primitive conditions under which welfare is higher under price customization

than under uniform pricing, as well as conditions under which price customization impacts negatively

one side of the market and positively the other.

5 Centralized vs Decentralized Markets

In the market for media content, several analysts believe that the increase in the speed of fiber-

optic and broadband internet connection will favor a gradual transition of the market to a structure

whereby viewers will pay directly the content producers, thus bypassing current market intermediaries

such as cable TV providers. This corresponds to a decentralized market (where matching is governed

by agents on one side of the market posting prices for their matches with the other side), as opposed

to the centralized markets considered so far in this paper (where matching and pricing are controlled

by a platform). As it turns out, the results above also permit us to assess the e↵ects of market

decentralization on matching allocations and welfare.

To illustrate, consider a matching market where side a is populated by “buyers” and side b

is populated by “sellers”. Unlike in the baseline model, suppose sellers post prices independently

and sell the “match” directly to the buyers (i.e., the market is decentralized). Absent data about

consumers’ tastes (for instance, due to privacy regulation), we can assume that buyers’ locations are

private information, whereas sellers’ locations (their product variety) is observable by the buyers. In

this environment, provided sellers are not able to monitor the purchases that each buyer makes with

the other sellers (which amounts to no bundling), customized pricing on side a is infeasible. This

is to be contrasted to a centralized matching market, where, as explained in the proof of Lemma 1

in the Appendix, location-dependent prices can be implemented by the platform, through bundling,

even when locations are private information.

Therefore, a move from a centralized to a decentralized structure is akin to the imposition of

uniform-pricing obligations in a centralized market, in that sellers have to set (for lack of information

and pricing instruments) the same prices for all buyers.30 But there is more: Decentralization also

brings a reduction in the prices set by the sellers, due to the elimination of the monopsony mark-up

applied by the platform in a centralized market. Combining this extra e↵ect with the ones identified

in Propositions 4 and 5 permits us to conclude that, whenever uniform pricing increases the welfare

30To facilitate the comparison with the centralized case, we assume that, in a decentralized market, each seller of

variety xb sells a single unit to each buyer (unit demands). The marginal price schedule p0a(q|xb) should then be

interpreted as the inverse aggregate market supply curve resulting from the aggregation of the behavior of di↵erent

sellers posting di↵erent stand-alone prices as a function of their di↵erent marginal costs (captured by the term vb).
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of the side-a agents, so does market decentralization. The conditions in Proposition 5 are therefore

su�cient to conclude that consumer surplus (i.e., the welfare of the side-a agents) is higher in a

decentralized market than in a centralized one. This observation may help policymakers identify

markets where the transition to a decentralized structure should be promoted, for example through

fiscal incentives and/or direct subsidies.

6 Concluding Remarks

This paper studies many-to-many matching in markets in which agents’ preferences are both verti-

cally and horizontally di↵erentiated. The analysis delivers the following results. First, it characterizes

properties of the matching demands when profit-maximizing platforms engage in price customiza-

tion, that is, they o↵er agents the possibility to customize their matching set by including partners of

di↵erent profiles based on their horizontal preferences, with the price for such customization varying

with the configuration of the baseline plans. As the matching sets expand, the marginal agents from

each location included in the set are always those with the lowest value for matching. The composi-

tion of the pool of marginal agents, however, naturally respects horizontal di↵erences in preferences,

with most of the marginal agents coming from “locations” close to the agent’s bliss-point. We then

provide a formula relating the optimal prices to location-specific elasticities of the demands on both

sides of the market that can be used in empirical work for testing and structural estimation and that

permits us to study how the distortions in the provision of matching services vary with the horizontal

dimension of the agents’ preferences.

Second, the paper studies the e↵ects on prices, the composition of matching sets, and welfare,

of uniform-pricing obligations that hinder platforms’ possibility to condition prices on agents’ “loca-

tions”, as in the case of privacy regulations preventing online retailers from conditioning prices on

buyers’ age, gender, of physical location. Finally, the paper contributes to the policy debate about

the desirability of intermediation in matching markets by o↵ering a new angle relating the welfare

e↵ects of decentralization to the targeting and price-customization implications of di↵erent market

structures.

We believe the results have useful implications for various markets. Consider, for example, online

shopping. As mentioned in the introduction, recent regulations requiring consumers’ consent for

the di↵usion of personal information are expected to hinder price customization when third-party

data are needed. Perhaps surprisingly, our analysis shows that this may either increase or decrease

targeting levels, depending on testable characteristics of consumer demand. Related conditions

can also be used to evaluate whether or not the imposition of uniform-pricing obligations increase

consumer welfare.

Another natural application of our framework is the market for online advertising (see, among

others, Bergemann and Bonatti (2011) for an overview of such markets). Ad exchanges such as

AppNexus, AOL’s Marketplace, Microsoft Ad Exchange, OpenX, Rubicon Project Exchange, and
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Smaato, use sophisticated pricing algorithms where prices depend not only on volumes but also on

advertisers’ and publishers’ profiles. Such algorithms thus enable price-customization practices that

appear similar, at least in spirit, to those studied in the present paper. While such algorithms have

initially been praised for the customization possibilities they o↵er, more recently they have been

associated with targeting and price-discriminatory practices often seen with suspicion by consumers

and regulators. The policy debate about the desirability of regulations imposing uniform pricing,

or about the pros and cons of market decentralization, lacks a formal model shedding light on how

matching demands and welfare are a↵ected by such changes. Our paper contributes to such debate

by o↵ering a stylized yet flexible framework that one can use to study both the distortions associated

with price customization, as well as the market outcomes under uniform pricing.

Next, consider the market for cable TV. Most providers price discriminate on the viewer side by

o↵ering viewers packages of channels whereby the baseline configuration can be customized by adding

channels at a cost that depends on the baseline configuration originally selected (see, among others,

Crawford (2000), and Crawford and Yurukoglu (2012)). Such industry is evolving fast and many

analysts predict a transition to a market structure whereby viewers will purchase content directly

from the channels, thus bypassing the intermediation of the current providers. Our analysis sheds

light on how prices set by individual channels compare to their counterparts in markets where the

interactions between the channels and the viewers are mediated by cable companies, and identifies

conditions under which the transition to a decentralized structure is advantageous to the viewers.

We conclude by discussing a few limitations of our analysis and venues for future research. First,

our analysis abstracts from platform competition. Second, and related, it assumes platform have the

power to set prices on both sides of the market. While these assumptions are a plausible starting

point, there are many markets where multiple platforms compete on multiple sides and their ability

to set prices is hindered by their lack of bargaining power. For example, the market for cable TV

is populated by multiple providers. Furthermore, as indicated in Crawford and Yurukoglu (2012),

large channel conglomerates enjoy nontrivial bargaining power vis-a-vis cable TV providers, which

suggests that prices are likely to be negotiated on the channel side instead of being set directly by the

platforms. Extending the analysis to accommodate for platform competition and limited bargaining

power on one, or multiple, sides of the market is an important step for future research.

Furthermore, certain platforms, most notably B2B platforms, have recently expanded their ser-

vices to include e-billing and supply-management. These additional services open the door to more

sophisticated price-discriminatory practices that use instruments other than the composition of the

matching sets. Extending the analysis to accommodate for such richer instruments is another inter-

esting direction for future work (see Jeon, Kim, and Menicucci (2016) for related ideas).

Lastly, in future work, it would be desirable to extend the analysis to accommodate for “within-

side” network e↵ects (e.g., congestion and limited attention) and dynamics (whereby agents gradually

learn the attractiveness of the partners and platforms indirectly control the speed of such learning

with their pricing strategies). All the above extensions are challenging but worth exploring.
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7 Appendix

In this Appendix, we provide the proofs for all the results in the main text. The proofs are estab-

lished for more general environments in which, in addition to possessing private information about

the vertical dimensions, vk, the agents may possess private information also about their horizontal

dimensions, i.e., about their locations xk. In particular, we consider the following four scenarios:

• Scenario (i): Locations are public on both sides;

• Scenario (ii): Locations are private on side a and public on side b;

• Scenario (iii): Locations are public on side a and private on side b;

• Scenario (iv): locations are private on both sides.

All the results in the main body are for Scenario (i). Below, we discuss how the results extend to

Scenarios (ii)-(iv) provided a certain combination of the following two conditions holds.

Condition 2. [Ik] Independence on side k: for any ✓k = (vk, xk) 2 ⇥k, Fk(✓k) = F
x

k
(xk)F v

k
(vk).

Condition Ik requires that the vertical dimensions vk be drawn independently from the locations

xk. This condition implies that knowing an agent’s “bliss point” carries no information about the

overall importance the agent assigns to matching with agents from the opposite side.

Condition 3. [Syk] Symmetry on side k: for any ✓k = (vk, xk) 2 ⇥k, Fk(✓k) = xkF
v

k
(vk).

Condition Syk strengthens the independence condition by further requiring that locations be

uniformly distributed over Xk = [0, 1], as typically assumed in models of horizontal di↵erentiation.31

To accommodate the possibility that locations are private information, we need to generalize the

notion of customized tari↵s, as follows:

Definition 7. The tari↵ Tk is customized if there exists a collection of quadruples

{(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) : xk 2 Xk} ,

one for each location xk 2 Xk, such that each side-k agent selecting the plan indexed by xk and then

choosing the customization sk 2 Sk(xk) from the set of permissible customizations Sk(xk) is asked

to make a total payment equal to32

Tk(sk|xk) = T k(xk) +

Z 1

0
⇢k(qxl(sk)|xl;xk)dxl, (20)

31Similar assumptions are typically made also in the targeting literature; see, for example, Bergemann and Bonatti

(2011, 2015), and Kox et al. (2017).
32The payment specified by the tari↵ for any non-permissible customization sk /2 {[Sk(xk) : xk 2 Xk} can be

taken to be arbitrarily large to guarantee that no type finds it optimal to select any such customization. The ex-

istence of such payments is guaranteed by the assumption that uk is bounded, k = a, b. Furthermore, in case loca-

tions are private information on side k, the collection of matching plans is required to have the property that for

any set sk 2 Sk(xk) \ Sk(x
0
k), the total payment associated with sk is the same no matter whether the set is ob-
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where ⇢k (qxl (sk(xk)) |xl;xk) = 0 for all xl 2 [0, 1].

Relative to Definition 2 in the main text, Definition 7 adds the requirement that a customization

must be permissible, that is, it has to belong to the collection of possible customizations Sk(xk) ✓
⌃(⇥l). As we show below, when locations are public on side k, without loss of optimality the platform

can set Sk(xk) ⌘ ⌃(⇥l), in which case Definitions 2 and 7 coincide.

Proof of Lemma 1. The proof below establishes the following result, for which the claim in the

main text is a special case. Suppose the environment satisfies the properties of one of the following

four cases: Scenario (i); Scenario (ii) along with Conditions Ia and Syb; Scenario (iii) along with

Conditions Sya and Ib; Scenario (iv) along with Conditions Sya and Syb. Then,

1. there exists a pair of customized tari↵s (T ⇤
k
)k=a,b that is profit-maximizing;

2. the matching demands (s⇤
k
)k=a,b consistent with the profit-maximizing customized tari↵s (T ⇤

k
)k=a,b

are described by threshold functions t
⇤
k
: ⇥k ⇥Xl ! Vl such that

s
⇤
k
(✓k) = {(vl, xl) 2 ⇥l : vl > t

⇤
k
(✓k, xl)} ,

with the threshold function t
⇤
k
non-increasing in vk and non-decreasing in |xk � xl|.

3. When locations are public on side k 2 {a, b}, Sk(xk) = ⌃(⇥l), for all xk 2 Xk.

Conditions Ik and Syk guarantee that the platform can price discriminate along the agents’ locations,

without leaving the agents rents for the private information the agents may possess regarding their

locations. That is, in Scenarios (ii)-(iv), these conditions guarantee that the platform obtains the

same profits as when locations are public on both sides, as in Scenario (i). To gain some intuition,

consider first Scenario (ii). Under Conditions Ia and Syb, the platform’s pricing problem on side a

is symmetric across any two locations. This is because of two reasons. First, the location of any

agent from side a provides no information about the agent’s vertical preferences (this is guaranteed

by Condition Ia). Second, when the platform o↵ers the same tari↵s as in Scenario (i), the gross

utility that each type ✓k = (va, xa) obtains from the matching set s
⇤
a(✓k) coincides with the gross

utility obtained by type (va, xa + d) from choosing the matching set s
⇤
a(va, xa + d), d 2 [0, 1/2].

This occurs because the matching set s
⇤
a(va, xa + d) is a parallel translation of the matching set

s
⇤
a(va, xa) by d units of distance, along the horizontal dimension (this is guaranteed by Condition

Syb). As a result, when, in Scenario (ii), the platform o↵ers the same matching plans and tari↵s as in

Scenario (i), the matching sets demanded by any two agents with types (va, xa) and (va, xa + d) are

parallel translations of one another, and are priced identically. Note that, to guarantee that agents

tained by selecting the plan xk or the plan x0
k. When, instead, locations are public, the collection of matching plans

{(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) : xk 2 Xk} may entail multiple prices for the same matching set sk. However, be-

cause, in this case, each agent can be constrained to choosing the plan designed for his location, de facto each agent

faces a tari↵ specifying a single price for each set.
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reveal their locations when the latter are the agents’ private information, the platform may need to

restrict the set of possible customizations at each location, Sk(xk), to coincide with the matching

sets demanded under Scenario (i).33 The above properties, together with a judicious restriction on

the set of possible customizations Sk(xk), imply that the matching demands and payments induced

in Scenario (i) are implementable also under Scenario (ii). A symmetric situation applies to Scenario

(iii). Arguments similar to the ones above for Scenarios (ii) and (iii) imply that, in Scenario (iv),

where locations are private on both sides, when the platform o↵ers the same matching plans and

tari↵s as in Scenario (i) to each side, agents continue to choose the same matching sets as in Scenario

(i), provided that Condition Syk holds on both sides of the market.

We establish the above results using mechanism design techniques. Let

(sk(✓k), pk(✓k))
k=a,b

✓k2⇥k

denote a direct revelation mechanism, where agents are asked to report their types and where

(sk(✓k), pk(✓k)) denotes the allocation (matching set and total transfer) specified by the mechanism

for each side-k agent reporting ✓k.

By familiar envelope arguments, a necessary condition for each type ✓k = (vk, xk) 2 ⇥k, k = a, b,

to prefer reporting truthfully to lying with respect to the vertical dimension vk while reporting

truthfully the horizontal dimension xk is that transfers satisfy the envelope conditions

pk(✓k) =

Z

sk(✓k)
uk (vk, |xk � xl|) dFl(✓l)�

Z
vk

vk

Z

sk(y,xk)

@uk

@v
(y, |xk � xl|) dFl(✓l)dy, (21)

� Uk(vk, xk),

where Uk(vk, xk) is the payo↵ of a side-k agent with type (vk, xk).

Using (21), the platform’s profits under any incentive-compatible mechanism can then be written

as

X

k=a,b

Z

⇥k

8
<

:

R
sk(✓k)


uk (vk, |xk � xl|)�

1�F
v|x
k (vk|xk)

f
v|x
k (vk|xk)

· @uk
@v

(vk, |xk � xl|)
�
dFl(✓l)

�Uk(xk, vk)

9
=

; dFk(✓k).

Using the definition of the virtual-value functions 'k (✓k, ✓l) in the main text, we then have that the

platform’s profits are maximal when Uk(vk, xk) = 0 for all xk 2 Xk, k = a, b, and when the matching

sets are chosen so as to maximize

X

k=a,b

Z

⇥k

(Z

sk(✓k)
'k (✓k, ✓l) dFl(✓l)

)
dFk(✓k) (22)

subject to the reciprocity condition

✓l 2 sk(✓k) () ✓k 2 sl(✓l), l, k 2 {a, b}, k 6= l. (23)

33In the absence of such restrictions, an agent of type ✓k = (vk, xk) misrepresenting his location to be x0
k 6= xk may

find it optimal to select a matching set that no agent located at x0
k would have demanded under Scenario (i).
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Hereafter, we first describe the matching sets that maximize (22) subject to the above reciprocity

condition and then show that, under the assumptions in the lemma, the platform can implement the

allocations (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
, where the functions sk(·) are those that maximize (22) subject to

(23), and where the functions pk(·) are as in (21), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b.

Define the indicator function mk(✓k, ✓l) 2 {0, 1} taking value one if and only if ✓l 2 sk(✓k), that

is, if and only if the two types ✓k and ✓l are matched. Then define the following measure on the

Borel sigma-algebra over ⇥k ⇥⇥l:

⌫k(E) ⌘
Z

E

mk(✓k, ✓l)dFk(✓k)dFl(✓l). (24)

Reciprocity implies that mk(✓k, ✓l) = ml(✓l, ✓k). As a consequence, the measures ⌫k and ⌫l satisfy

d⌫k(✓k, ✓l) = d⌫l(✓l, ✓k). Equipped with this notation, the expression in (22) can be rewritten as

X

k,l=a,b, l 6=k

Z

⇥k⇥⇥l

'k (✓k, ✓l) d⌫k(✓k, ✓l)

=

Z

⇥k⇥⇥l

4k(✓k, ✓l)mk(✓k, ✓l)dFk(✓k)dFl(✓l), (25)

where, for k, l = a, b, l 6= k,

4k(✓k, ✓l) ⌘ 'k (✓k, ✓l) + 'l (✓l, ✓k) .

Note that the functions 4a(✓a, ✓b) = 4b(✓b, ✓a) represent the marginal e↵ects on the platform’s

profits of matching types ✓a and ✓b. It is then immediate that the rule (mk(·))k=a,b that maximizes

the expression in (25) is such that, for any (✓k, ✓l) 2 ⇥k ⇥⇥l, k, l = a, b, l 6= k, mk(✓k, ✓l) = 1 if and

only if

4k(✓k, ✓l) � 0.

That the virtual values 'k (✓k, ✓l) are strictly increasing in vk, k, l = a, b, l 6= k, then implies that

the matching rule that maximizes (22) subject to the reciprocity condition (23) can be described by

means of a collection of threshold functions t
⇤
k
: ⇥k ⇥Xl ! Vl, k, l = a, b, l 6= k, such that, for any

✓k = (vk, xk), any ✓l = (vl, xl), ✓l 2 sk(✓k) if, and only if, vl � t
⇤
k
(✓k, xl). The threshold functions t⇤

k
(·)

are such that, for any ✓k 2 ⇥k, any xl 2 [0, 1], t⇤
k
(✓k, xl) = vl if 4k(✓k, (vl, xl)) > 0, t⇤

k
(✓k, xl) = v̄l if

4k(✓k, (v̄l, xl)) < 0, and t
⇤
k
(✓k, xl) is the unique solution to 4k (✓k, (t⇤k (✓k, xl) , xl)) = 0 if

4k(✓k, (vl, xl))  0  4k(✓k, (v̄l, xl)).

That the virtual values 'k (✓k, ✓l) are increasing in vk and decreasing in |xk � xl| also implies that,

for ay xk, xl 2 [0, 1]2, the threshold t
⇤
k
(✓k, xl) is decreasing in vk, and that, for any vk, t⇤k (✓k, xl) is

non-decreasing in |xl � xk|.
Equipped with the above result, we now show that, in each of the environments stated in

the generalized version of the lemma reported above, the platform can implement the allocations

(sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
, where sk(✓k) are the matching sets described by the above threshold rule, and

where the payment functions pk(✓k) are the ones in (21), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b.
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First observe that the payo↵ that each type ✓k obtains in the above direct revelation mechanism

when reporting truthfully is equal to

Uk(✓k) =

Z
vk

vk

Z

sk(y,xk)

@uk

@v
(y, |xk � xl|) dFl(✓l)dy.

That Uk(✓k) � 0 follows directly from the fact that uk is non-decreasing in vk. This means that the

mechanism is individually rational (meaning that each type ✓k prefers participating in the mechanism

and receiving the allocation (sk(✓k), pk(✓k)) to refusing to participate and receiving the allocation

(;, 0) yielding a payo↵ equal to zero).

Below we show that either the above direct mechanism is also incentive-compatible (meaning that

each type ✓k prefers the allocation (sk(✓k), pk(✓k)) designed for him to the allocation (sk(✓0k), pk(✓
0
k
))

designed for any other type ✓
0
k
), or it can be turned, at no cost to the platform, into a mecha-

nism implementing the same allocations as the above ones which is both incentive compatible and

individually rational.

Definition 8. (nested matching) A matching rule sk(✓k) is nested if, for any pair ✓k = (vk, xk)

and ✓̂k = (v̂k, x̂k) such that xk = x̂k, either sk(✓k) ✓ sk(✓̂k), or sk(✓k) ◆ sk(✓̂k). A direct revelation

mechanism is nested if its matching rule is nested.

Clearly, the direct mechanism defined above where the matching rule is described by the threshold

function t
⇤
k
(✓k, xl) is nested. Now let ⇧k(✓k; ✓̂k) denote the payo↵ that type ✓k obtains in a direct

revelation mechanism (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
by mimicking type ✓̂k .

Definition 9. (ICV) A direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
satisfies incentive com-

patibility along the v dimension (ICV) if, for any ✓k = (vk, xk) and ✓̂k = (v̂k, x̂k) with xk = x̂k,

Uk(✓k) � ⇧k(✓k; ✓̂k).

The following property is then true (the proof is standard and hence omitted):

Property 1. A nested direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
satisfies ICV if, and

only if, the following conditions jointly hold:

1. for any ✓k = (vk, xk) and ✓̂k = (v̂k, x̂k) such that xk = x̂k, vk > v̂k implies that sk(✓k) ◆ sk(✓̂k);

2. the payment functions pk(✓k) satisfy the envelope formula (21).

Clearly, the direct revelation mechanism where the matching rule is the one corresponding to the

threshold functions t
⇤
k
(·) described above and where the payment functions pk(✓k) are the ones in

(21), with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b, is not only nested but satisfies the two conditions in

the lemma. It follows that such a mechanism satisfies ICV.

Equipped with the above results, we now show that, in each of the environments corresponding

to the combination of conditions described in the general version of the lemma presented above,

the above direct revelation mechanism is either incentive-compatible, or it can be augmented to

implement the same allocations prescribed by (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
at no extra cost to the platform.
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Consider first Scenario (i). Recall that, in this case, locations are public on both sides. That the

mechanism is ICV implies that any deviation along the vertical dimension is unprofitable. Further-

more, because locations are public on both sides, any deviation along the horizontal dimension is

detectable. It is then immediate that the platform can augment the above direct revelation mech-

anism by adding to it punishments (in the form of large fines) for those agents lying along the

horizontal dimension. The augmented mechanism is both individually rational and incentive com-

patible and implements the same allocations as the original mechanism (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
, at no

extra cost to the platform.

Next suppose the environment satisfies the properties of Scenario (ii) and, in addition, Conditions

Ia and Syb hold. Again, because locations are public on side b, incentive compatibility on side b can

be guaranteed by augmenting the mechanism as described above for Scenario (i). Thus consider

incentive compatibility on side a. The latter requires that

Ua(va, xa) � ⇧a((va, xa); (v̂a, x̂a)),

for all (xa, x̂a, va, va) 2 X
2
a ⇥ V

2
a . The above inequality is equivalent to

Z
va

va

Z

sa(y,xa)

@ua

@v
(y, |xa � xb|) dFb(✓b)dy �

Z
v̂a

va

Z

sa(y,x̂a)

@ua

@v
(y, |x̂a � xb|) dFb(✓b)dy (26)

+

Z

sa(v̂a,x̂a)
[ua (va, |xa � xb|)� uk (v̂a, |x̂a � xb|)]dFb(b).

It is easy to see that, for any ✓a = (va, xa) 2 ⇥a,

Z

sa(va,xa)

@ua

@v
(va, |xa � xb|) dFb(✓b) =

Z

d2[0,1/2]

@ua (va, d)

@v
dW (d; ✓a), (27)

where W (d; ✓a) is the measure of agents whose distance from xa is at most d included in the matching

set sa(va, xa) of type ✓a under the proposed mechanism. It is also easy to see that, under Conditions

Ia and Syb, the expression in (27) is invariant in xa. That is, W (d; ✓a) = W (d; ✓0a) for any d 2 [0, 1/2],

any ✓a, ✓
0
a 2 ⇥a with va = v

0
a.

34 This means that
Z

v̂a

va

Z

sa(y,x̂a)

@ua

@v
(y, |x̂a � xb|) dFb(✓b)dy =

Z
v̂a

va

Z

sa(y,xa)

@ua

@v
(y, |xa � xb|) dFb(✓b)dy.

By the same arguments,
Z

sa(v̂a,x̂a)
ua (v̂a, |x̂a � xb|) dFb(✓b) =

Z

sa(v̂a,xa)
ua (v̂a, |xa � xb|) dFb(✓b).

Furthermore, because virtual values respect the same ranking as the true values, the threshold

functions t⇤
k
(✓k, xl) are non-decreasing in the distance |xl � xk|. In turn, this implies that

Z

sa(v̂a,x̂a)
ua (va, |xa � xb|) dFb(✓b) 

Z

sa(v̂a,xb)
ua (va, |xb � xa|) dFb(✓b).

34Conditions Ik, k = a, b, su�ce to guarantee that the function �k(✓k, ✓l) depends only on vk, vl, and |xl � xk|. The
strengthening of Condition Ib to Syb is, however, necessary to guarantee that the mass of agents of a given distance d

included in the matching sets of any pair of types ✓a, ✓
0
a 2 ⇥a with va = v0a is the same.
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It follows that the right hand side of (26) is smaller than
Z

v̂a

va

Z

sa(y,xa)

@uk

@v
(y, |xa � xb|) dFb(✓b)dy

+

Z

sa(v̂a,xa)
[ua (va, |xa � xb|)� ua (v̂a, |xa � xb|)]dFb(✓b),

which is the payo↵ that type ✓a = (va, xa) obtains by announcing (v̂a, xa) (that is, by lying about

the vertical dimension but reporting truthfully the horizontal one). That the inequality in (26) holds

then follows from the fact that the direct revelation mechanism (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
satisfies ICV.

The arguments for an environment satisfying the properties of Scenario (iii) along with Conditions

Ib and Sya are symmetric to those for an environment satisfying the properties of Scenario (ii) along

with Conditions Ia and Syb, and hence the proof is omitted.

Finally, consider an environment satisfying the properties of Scenario (iv) along with Conditions

Sya and Syb. That the proposed mechanism is incentive compatible follows from the same arguments

as for Scenario (ii) above, now applied to both sides of the market.

We conclude that, in each of the environments considered in the general version of the lemma

reported above, the allocations (sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
, where the matching sets sk(✓k) are the ones

specified by the threshold functions t
⇤
k
(·) described above, and where the payments are the ones

in (21) with Uk(vk, xk) = 0, all xk 2 Xk, k = a, b can be sustained in a mechanism that is both

individually rational and incentive compatible. The result we wanted to establish then follows from

the fact that (a) such allocations are profit-maximizing among those consistent with the rationality of

the agents (i.e., satisfying the IC and IR constraints), and (b) can be induced by o↵ering customized

tari↵s

{(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) : xk 2 [0, 1]}

satisfying the properties described below. For each plan xk 2 [0, 1], the baseline configuration is

given by

sk(xk) = sk(vk, xk),

the baseline price is given by

T k(xk) = pk(vk, xk) =

Z

sk(vk,xk)
uk (vk, |xk � xl|) dFl(✓l),

the set of possible customizations is given by

Sk(xk) = {sk(vk, xk) : vk 2 Vk} ,

and the price schedules ⇢k(q|xl;xk) are such that, for q = qxl (sk(vk, xk)), ⇢k(q|xl;xk) = 0, while for

q 2 (qxl (sk(vk, xk)) , qxl (sk(v̄k, xk))],

⇢k(q|xl;xk) = quk (vk(q;xk, xl), |xk � xl|)�
Z

vk(q;xk,xl)

vk

qxl (sk(y, xk))
@uk

@v
(y, |xk � xl|) dy � T k(xk)

(28)
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where

vk(q;xk, xl) ⌘ inf {vk 2 Vk : qxl(sk(vk, xk)) = q} .

Any agent selecting the plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) and then choosing a matching set

sk /2 Sk(xk) is charged a fine large enough to make the utility of such a set, net of the payment,

negative for all types. Likewise, when locations are public on side k, any side-k agent selecting a

plan other than (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) is charged a large enough fine to make the choice

unprofitable for any type. Note that the existence of such fines is guaranteed by the assumption that

uk is bounded, k = a, b.

That the above customized tari↵ implements the same allocations as the direct mechanism

(sk(✓k), pk(✓k))
k=a,b

✓k2⇥k
then follows from the following considerations. Each type ✓k = (vk, xk), by

selecting the plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) designed for agents with the same location as

type ✓k and then choosing the customization sk(vk, xk) specified by the direct mechanism for type

✓k is charged a total payment equal to

T k(xk) +
R 1
0

h
qxl(sk(vk, xk))uk (vk, |xk � xl|)�

R
vk

vk
qxl(sk(y, xk))

@uk
@v

(y, |xk � xl|) dy
i
dxl � T k(xk)

=
R
sk(✓k)

uk (vk, |xk � xl|) dFl(✓l)�
R
vk

vk

R
sk(y,xk)

@uk
@v

(y, |xk � xl|) dFl(✓l)dy

= pk(✓k),

exactly as in the direct mechanism. That each type ✓k maximizes his payo↵ by selecting the plan

(sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) and then choosing the customization sk(vk, xk) specified for him by

the direct mechanism then follows from the fact that (a) the direct mechanism is incentive compatible,

(b) the payment associated with any other plan (sk(x̂k), T k(x̂k), ⇢k(·|·; x̂k),Sk(x̂k)) followed by the

selection of a set sk is either equal to the payment specified by the direct mechanism for some report

(v̂k, x̂k), or is so large to make the net payo↵ of such selection negative.

Finally, to see that, when locations are public on side k, without loss of optimality, the side-k

customized tari↵ does not need to restrict the agents’ ability to customize their matching sets (that

is, Sk(xk) = ⌃(⇥l), all xk) recall that, in this case, each side-k agent located at xk can be induced

to select the matching plan (sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) designed for agents located at xk by

setting the fee associated with the selection of any other plan su�ciently high. The separability of

the agents’ preferences then implies that, once the plan sk(xk), T k(xk), ⇢k(·|·;xk),Sk(xk)) is selected,

even if Sk(xk) = ⌃(⇥l), because the price schedules ⇢k(·|·;xk) satisfy (28), type ✓k prefers to select

qxl(sk(vk, xk)) agents from each location xl to any other mass of agents from the same location xl,

irrespective of the mass of agents from other locations type ✓k includes in his matching set. Q.E.D.

Proof of Proposition 1. Fix a pair of locations xa, xb 2 [0, 1]. From Lemma 1, the profit-

maximizing tari↵s are customized and induce agents to select matching sets satisfying the thresh-

old property of Lemma 1. Furthermore, from the proof of Lemma 1, for any ✓k = (vk, xk), any
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xl 2 [0, 1], the threshold t
⇤
k
is such that t

⇤
k
(✓k, xl) = vl if 4k(✓k, (vl, xl)) > 0, t

⇤
k
(✓k, xl) = v̄l if

4k(✓k, (v̄l, xl)) < 0, and t
⇤
k
(✓k, xl) is the unique solution to 4k (✓k, (t⇤k (✓k, xl) , xl)) = 0 if

4k(✓k, (vl, xl))  0  4k(✓k, (v̄l, xl)).

This means that, for any qk 2 (0, fx

l
(xl)), either there exists no vk 2 Vk such that qxl(sk(vk, xk)) = qk,

or there exists a unique vk 2 Vk such that qxl(sk(vk, xk)) = qk. Now take any qk 2 (0, fx

l
(xl)) for

which there exists vk 2 Vk such that qxl(sk(vk, xk)) = qk. As explained in the main text, for any such

qk, the unique value of vk such that qxl(sk(vk, xk)) = qk is also the unique value of vk that solves

uk (vk, |xk � xl|) = ⇢
0
k
(qk|xl;xk) . (29)

Now let v̂xl (⇢
0
k
|xk) be the unique solution to (29) and v

0
l
(qk;xl) be the unique solution to

h
1� F

v|x
l

�
v
0
l
(qk;xl)|xl

�i
f
x

l
(xl) = qk.

That the demands under the profit-maximizing tari↵s satisfy the threshold structure of Lemma 1

implies that

t
⇤
k

��
v̂xl

�
⇢
0
k
|xk

�
, xk

�
, xl

�
= v

0
l
(qk;xl)

and that

'k

��
v̂xl

�
⇢
0
k
|xk

�
, xk

�
, (v0

l
(qk;xl), xl)

�
+ 'l

�
v
0
l
(qk;xl), xl),

�
v̂xl

�
⇢
0
k
|xk

�
, xk

��
= 0. (30)

Lastly, observe that, for any such qk,

⇢
0
k
(qk|xl;xk)

"k

�
⇢
0
k
|xl;xk

� =
1� F

v|x
k

(v̂xl (⇢
0
k
|xk) |xk)

f
v|x
k

(v̂xl

�
⇢
0
k
|xk

�
|xk)

@uk

@v

�
v̂xl

�
⇢
0
k
|xk

�
, |xk � xl|

�
. (31)

Using the definition of 'k from the main text together with (29) and (31), we then have that, for

any such qk,

'k

��
v̂xl

�
⇢
0
k
|xk

�
, xk

�
, (v0

l
(qk;xl), xl)

�
= ⇢

0
k
(qk|xl;xk)

"
1� 1

"k

�
⇢
0
k
|xl;xk

�
#
. (32)

Likewise, when ql =
h
1� F

v|x
k

(v̂xl (⇢
0
k
|xk) |xk)

i
f
x

k
(xk),

'l

��
v
0
l
(qk;xl), xl

�
,
�
v̂xl

�
⇢
0
k
|xk

�
, xk

��
= ⇢

0
l
(ql|xk;xl)

"
1� 1

"l

�
⇢
0
l
|xk;xl

�
#
. (33)

Combining (32) and (33) with (30), we obtain the result in the proposition. Q.E.D.

Proof of Proposition 2. Take any (✓k, xl) 2 ⇥k ⇥ [0, 1] for which t
⇤
k
(✓k, xl) , tek (✓k, xl) 2 Int[Vl].

Recall that, in this case, t⇤
k
(✓k, xl) is given by the unique solution to

'k (✓k, (t
⇤
k
(✓k, xl) , xl)) + 'l ((t

⇤
k
(✓k, xl) , xl) , ✓k) = 0,
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whereas te
k
(✓k, xl) is given by the unique solution to

uk (vk, |xk � xl|) + ul (t
e

k
(✓k, xl) , |xl � xk|) = 0.

This means that ul (t⇤k (✓k, xl) , |xl � xk|)� ul (tek (✓k, xl) , |xl � xk|) is given by the expression in (15)

in the main text. That the conditions in (1.a) and (2.a) su�ce for the distortions on side k to

decrease (alternatively, increase) with distance then follows from the triangular property, along with

the fact that, fixing ✓k = (vk, xk), ⇢0k = uk (vk, |xk � xl|) is decreasing in µ(xk, xl) ⌘ |xk�xl|, whereas
⇢
0
l
= ul (t⇤k (✓k, xl) , |xk � xl|) is increasing in µ(xk, xl). In turn, these properties follow from the fact

that the virtual values respect the same rankings as the true values.

Then consider parts (1.b) and (2.b). Without loss of generality, assume xl > xk (the results

for the case xl < xk are analogous to those for the case xl > xk, after the obvious change in sign

due to the fact that, in this case, increasing distance means decreasing xl). Di↵erentiating the

expression in the right-hand-side of the second equality in (15) with respect to xl at some xl for

which µ(xk, xl) 2
�
0, 12

�
, we obtain that

@

@xl
[ul (t⇤k (✓k, xl) , |xl � xk|)� ul (tek (✓k, xl) , |xl � xk|)] =

1�F
v
k (vk)

f
v
k (vk)

· @
2
uk(vk,|xk�xl|)

@v@µ

�(�v
l )

0(t⇤k(✓k,xl))
�
v
l (t⇤k(✓k,xl))

2
@t

⇤
k

@xl
(✓k, xl)

@ul(t⇤k(✓k,xl),|xk�xl|)
@vl

+ 1
�
v
l (t⇤k(✓k,xl))

✓
@
2
ul(t⇤k(✓k,xl),|xk�xl|)

@v
2
l

@t
⇤
k(✓k,xl)
@xl

+
@
2
ul(t⇤k(✓k,xl),|xk�xl|)

@vl@µ

◆
,

where �v

l
(vl) ⌘ f

v

l
(vl)/[1�F

v

l
(vl)] is a shortcut for the hazard rate of the marginal distribution of the

vertical dimension vl, when vl and xl are independent on side l 6= k. By Lemma 1,
@t

⇤
k

@xl
(✓k, xl) � 0.

Therefore, under the conditions of Part (1.b), the expression above is negative, whereas, under the

conditions of Part (2.b), the above expression is positive. That distortions decrease (alternatively,

increase) with distance under the conditions of Part (1.b) (alternatively, (2.b)) then follows from the

above properties. Q.E.D.

Proof of Proposition 3. The platform’s problem consists in choosing a collection of side-a uniform

price schedules pa(·|xb), one for each side-b location xb 2 [0, 1], along with a collection of side-b price

schedules ⇢b(·|xa;xb), one for each pair (xa, xb) 2 [0, 1]2, that jointly maximize its profits, which can

be conveniently expressed as

R 1
0

R f
x
b (xb)

0 D̄a (p0a(q|xb)|xb) p0a(q|xb)dqdxb

+
R 1
0

R 1
0

R
f
x
a (xa)

0 Db (⇢0b(q|xa;xb)|xa;xb) ⇢0b(q|xa;xb)dqdxadxb,

subject to the feasibility constraint (3).
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For any xb, q  f
x

b
(xb), and p

0
a(q|xb), let

v̂xb

�
p
0
a|xa

�
=

8
>>>>>>>>><

>>>>>>>>>:

va s.t. ua(va, |xa � xb|) = p
0
a if p0a 2 [ua(va, |xa � xb|), ua(v̄a, |xa � xb|)]

va if p0a < ua(va, |xa � xb|)

v̄a if p0a > ua(v̄a, |xa � xb|).

(34)

Given the above definition, we have that the demand by the xa-agents for the q-th unit of the

xb-agents at the marginal price p
0
a(q|xb) is equal to

Da

�
p
0
a(q|xb)|xb;xa

�
=
h
1� F

v|x
a

�
v̂xb

�
p
0
a|xa

�
|xa

�i
f
x

a (xa).

Also, for any q  f
x

b
(xb), recall that v0b(q;xb) is the unique solution to

h
1� F

v|x
b

(v0
b
(q;xb)|xb)

i
f
x

b
(xb) =

q. Reciprocity, along with optimality, implies that the most profitable way to deliver q units of xb-

agents to each xa-agent demanding to be matched to q units of xb-agents is to match the xa-agent

to every xb-agent whose vertical type exceeds v
0
b
(q;xb). In other words, the optimal tari↵s induce

matching demands with a threshold structure, as in the case where tari↵s are customized on both

sides of the market (cfr Lemma 1). Now for each xa, xb 2 [0, 1], each q  f
x

b
(xb), let

q̂b(q;xa;xb) ⌘ Da

�
p
0
a(q|xb)|xb;xa

�
.

Given p
0
a(q|xb), the platform thus optimally selects customized prices for the xb-agents for each

quantity q̂b(q;xa;xb) of the xa-agents equal to

⇢
0
b
(q̂b(q;xa;xb)|xa;xb) = ub(v

0
b
(q;xb), |xb � xa|). (35)

Such prices guarantee that, for each xa 2 [0, 1], Db (⇢0b(q̂b(q;xa;xb)|xa;xb)|xa;xb) = q, thus clearing

the market.

The function p
0
a(q|xb) : R ⇥ [0, 1] ! R thus uniquely defines the matching sets on both sides of

the market. Now, from the arguments in the proof of Lemma 1, we know that the maximal revenue

the platform receives from the side-b agents when each xb-agent with vertical type vb is assigned a

matching set equal to sb(vb, xb) is given by

Z

⇥b

(Z 1

0

(
ub (vb, |xb � xa|)�

1� F
v|x
b

(vb|xb)
f
v|x
b

(vb|xb)
· @ub
@v

(vb, |xb � xa|)
)
qxa(sb(vb, xb))dxa

)
dFb(✓b).

In turn, this means that the platform’s problem can be re-casted as choosing a function dpa
dq

(q|xb) :
R⇥ [0, 1] ! R that maximizes

Z 1

0

Z
f
x
b (xb)

0

�
D̄a

�
p
0
a(q|xb)|xb

�
p
0
a(q|xb)� C

⇥
p
0
a(q|xb)

⇤ 
dqdxb
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where, for each xb 2 [0, 1], each q  f
x

b
(xb), the function

C [p0a(q|xb)] ⌘

�
R 1
0

⇢
ub (v0b(q;xb), |xb � xa|)�

1�F
v|x
b (v0b(q;xb)|xb)

f
v|x
b (v0b(q;xb)|xb)

· @ub
@v

(v0
b
(q;xb), |xb � xa|)

�
Da (p0a(q|xb)|xb;xa) dxa

captures the “procurement costs” of clearing the matching demands of all side-a agents that demand

at least q matches with the xb-agents. This problem can be solved by point-wise maximization of

the above objective function, i.e., by selecting for each xb 2 [0, 1], q  f
x

b
(xb) (equivalently, for each

(xb, vb) 2 [0, 1]⇥ Vb), p0a(q|xb) so as to maximize

D̄a

�
p
0
a(q|xb)|xb

�
p
0
a(q|xl)� C

⇥
p
0
a(q|xb)

⇤
.

The first-order conditions for such a problem are given by

p
0
a(q|xb)

@D̄a (p0a(q|xb)|xb)
@ (p0a)


1� 1

"̄a (p0a(q|xb)|xb)

�
� C0 ⇥

p
0
a(qa|xb)

⇤
= 0,

where

C0 [p0a(qa|xb)]

= �
R 1
0

⇢
ub (v0b(q;xb), |xb � xa|)�

1�F
v|x
b (v0b(q;xb)|xb)

f
v|x
b (v0b(q;xb)|xb)

· @ub
@v

(v0
b
(q;xb), |xb � xa|)

�
@Da(p0a(q|xb)|xb;xa)

@(p0a)
dxa.

Now observe that (35) implies that

ub (v0b(q;xb), |xb � xa|)�
1�F

v|x
b (v0b(q;xb)|xb)

f
v|x
b (v0b(q;xb)|xb)

· @ub
@v

(v0
b
(q;xb), |xb � xa|)

= ⇢
0
b
(q̂b(q;xa;xb)|xa;xb)

✓
1� 1

"b(⇢0b(q̂b(q;xa;xb)|xa;xb)|xa;xb)

◆
.

This means that the above first-order conditions can be rewritten as

p
0
a(q|xb)

h
1� 1

"̄a(p0a(q|xb)|xb)

i

+EH(x̃a|xb,p
0
a(q|xb))


⇢
0
b
(q̂b(q; x̃a;xb)|x̃a;xb)

✓
1� 1

"b(⇢0b(q̂b(q;x̃a;xb)|x̃a;xb)|x̃a;xb)

◆�
= 0,

where H(xa|xb, q) is the distribution over Xa = [0, 1] whose density is given by

ha

�
xa|xb, p0a(q|xb)

�
⌘

@Da(p0a(q|xb)|xb;xa)
@(p0a)

@D̄a(p0a(q|xb)|xb)
@(p0a)

.

The above properties imply the result in the proposition. Q.E.D.
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Proof of Proposition 4. As explained in the main text, the proof below is for the more general

case in which the side-b preferences may depend on the locations.

Fix ✓b = (vb, xb) and let q = f
x

b
(xb) [1� F

v

b
(vb)]. The result in Proposition 3 implies that, under

uniform pricing on side a and customized pricing on side b, for any xa 2 Xa such that t
u

b
(✓b, xa) 2

Int[Va], tub (✓b, xa) is such that

ua(tub (✓b, xa), |xb � xa|)� EH(x̃a|xb,p
u
a
0)


1�F

v|x
a (v̂xb (p

u
a
0|x̃a))

f
v|x
a (v̂xb (pua 0|x̃a))

· @ua
@v

(v̂xb (p
u
a
0|x̃a) , |x̃a � xb|)

�

+EH(x̃a|xb,p
u
a
0) ['b (✓b, (v̂xb (p

u
a
0|x̃a) , x̃a))] = 0,

(36)

where H (xa|xb, pua 0) is the distribution over Xa = [0, 1] whose density is given by

h
�
xa|xb, pua 0

�
⌘

@Da(pua
0|xb;xa)

@(pua
0)

@D̄a(pua
0|xb)

@(pua
0)

,

and where p
u
a
0 is a shortcut for pua

0(q|xb) with the latter equal to p
u
a
0(q|xb) = ua(tub (✓b, xa), |xa � xb|).

Note that, to arrive at (36), we used the result in Proposition 3 along with the property in (18) and

the fact that, for any xa such that v̂xb (p
u
a
0|xa) /2 Int[Va], h (xa|xb, pua 0) = 0, whereas for any xa such

that v̂xb (p
u
a
0|xa) 2 Int[Va],

p
u
a
0

"a (pua
0|xb;xa)

=
1� F

v|x
a (v̂xb (p

u
a
0|xa))

f
v|x
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u
a
0|xa))

· @ua
@v

�
v̂xb

�
p
u

a

0|xa
�
, |xa � xb|

�
.

We also used the fact that, for any xa such that h (xa|xb, pua 0) > 0 (equivalently, v̂xb (p
u
a
0|xa) 2 Int[Va]),

⇢
0
b
(q̂b(q;xa;xb)|xa;xb)

✓
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"b(⇢0b(q̂b(q;xa;xb)|xa;xb)|xa;xb)

◆

= 'b (✓b, (v̂xb (p
u
a
0|xa) , xa)) ,

as shown in the proof of Proposition 3.

On the other hand, under customized pricing on both sides, for any such ✓b = (vb, xb), any

xa 2 Xa such that t⇤
b
(✓b, xa) 2 Int[Va], the threshold t

⇤
b
(✓b, xa) is such that

ua(t⇤b(✓b, xa), |xb � xa|)�
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It is then immediate that, for any xa such that
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(t⇤
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we have that tu
b
(✓b, xa) � t

⇤
b
(✓b, xa), whereas, for any xa such that

�EH(x̃a|xb,p
u
a
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1�F

v|x
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u
a
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f
v|x
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· @ua
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we have that tu
b
(✓b, xa)  t

⇤
b
(✓b, xa).

Also note that, by virtue of reciprocity, tu
b
(✓b, xa)  t

⇤
b
(✓b, xa) if and only if

t
u

a((t
⇤
b
(✓b, xa), xa), xb)  t

⇤
a((t

⇤
b
(✓b, xa), xa), xb)

and, likewise, tu
b
(✓b, xa) � t

⇤
b
(✓b, xa) if and only if

t
u

a((t
⇤
b
(✓b, xa), xa), xb) � t

⇤
a((t

⇤
b
(✓b, xa), xa), xb).

The above properties imply that uniform pricing (on side a) leads to more (alternatively, less)

targeting than customized pricing (on both sides), if, for any ✓b, the function

L(xa|✓b) ⌘ 'b (✓b, (t⇤b(✓b, xa), xa))�
1�F

v|x
a (t⇤b (✓b,xa)|xa)

f
v|x
a (t⇤b (✓b,xa)|xa)

· @ua
@v

(t⇤
b
(✓b, xa), |xa � xb|)

= ⇢
0
b

✓
1� 1

"b(⇢0b|xa;xb)

◆����
⇢
0
b=ub(vb,|xa�xb|)

� ⇢
0
a

"a(⇢0a|xb;xa)

���
⇢0a=ua(t⇤b (✓b,xa),|xa�xb|)

is non-decreasing (alternatively, non-increasing) in the distance |xa � xb|.
Fixing ✓b, the function L(xa|✓b) is nondecreasing in |xa � xb| when the side-a inverse-semi-

elasticities are decreasing in distance and in price and the side-b preferences are invariant to distance.

It is non-increasing in |xa � xb| when the side-a inverse-semi-elasticities are increasing in distance

and in price and the side-b preferences are invariant to distance, These properties establish the result

in Part 1 in the proposition. The result in Part 2 then follows from the result in Part 1 along with

the fact that the side-a inverse-semi-elasticities are decreasing (alternatively, increasing) in both dis-

tance and price when xa and va are independent, the hazard rate for F v
a is increasing in va, and ua

is submodular and concave in va (alternatively, xa and va are independent, the hazard rate for F v
a is

decreasing in va, and ua is supermodular and convex in va). Q.E.D.

Proof of Proposition 5. The proof follows from the combination of the results in Proposition 4 with

the results in Proposition 1 in Aguirre et al (2010). When the environment satisfies the conditions

in Part 1 of Proposition 4, starting from uniform pricing on side a, the introduction of customized
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pricing on side a leads to an increase in prices for nearby locations and a reduction in prices for

distant locations. Proposition 1 in Aguirre et al (2010), along with the fact that the environment

satisfies Condition NDR and that, for any xb and p
0
a, the convexity CDa (p0a|xb;xa) of the demands

by the xa-agents for the q-th unit of the xb-agents declines with the distance |xa � xb|, then implies

that welfare of the side-a agents is higher under uniform pricing. Likewise, under the conditions in

Part 2 of Proposition 4, that welfare of the side-a agents is higher under uniform pricing follows from

the fact that, starting from uniform pricing on side a, the introduction of customized pricing on side

a leads to an increase in prices for distant locations and a reduction in prices for nearby locations.

The welfare implications of such price adjustments then follow again from Proposition 1 in Aguirre

et al (2010), along with the fact that Condition NDR holds and that, for any xb and p
0
a, the convexity

CDa (p0a|xb;xa) of the demands by the xa-agents for the q-th unit of the xb-agents increases with the

distance |xb � xa|. Q.E.D.
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