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1. Introduction

Macroeconomists and policy analysts are routinely required to answer questions of the

form: “If, for the next few quarters, variable x were to follow alternative paths, how would

the forecasts of other variables change?” Uses of these conditional forecasts include assessing

the impact of alternative paths for policy instruments, incorporating external information

into model forecasts, and “stress testing” asset prices or bank profits against the onset of an

economic downturn. In practice, researchers often face a choice between taking a stand on

the details of a fully-fledged DSGE model (see Del Negro and Schorfheide, 2013) or relying

on reduced-form conditional forecasts from vector autoregression (VAR) models, as proposed

by Doan et al. (1986) and Waggoner and Zha (1999). A limitation of the latter approach is

that it relies on the empirical correlations among the variables in the system, and is therefore

silent about the underlying causal mechanisms behind the results. This can often severely

confound the interpretation of conditional forecasts.

This paper develops a unified and transparent treatment of both conditional forecasting

and structural scenario analysis with structural VAR (SVAR) models. We define a structural

scenario as a combination of a path for one or more variables in the system, and a restriction

that only a chosen subset of structural shocks can deviate from their unconditional distribution.

This exercise requires identifying economically meaningful shocks. We provide closed-form

solutions for the distribution of the variables and the underlying shocks under the restrictions.

In addition, we demonstrate the equivalence of our formulae to the entropic tilting method

popularized by Robertson et al. (2005). Another contribution, which follows naturally from

the connection to entropic tilting, is to propose a metric based on the Kullback-Leibler

divergence to assess the plausibility of a given scenario. Generalizing the “modest policy

interventions” of Leeper and Zha (2003), it quantifies the degree to which a scenario involves

a moderate deviation from the unconditional distribution of the shocks, in which case the

results of the analysis are likely to be reliable. In this way, we follow the tradition of Sims

(1986) in wanting to provide practical tools for macroeconomic analysis whenever one does

not want to commit to a particular DSGE model, while retaining a healthy dose of skepticism

about the limits of structural scenarios using linear models, as stressed by Lucas (1976).
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Illustrative example. To highlight the importance of specifying the structural shocks driving

a particular scenario, consider an SVAR including output growth, inflation, and the fed funds

rate, which will be analyzed in detail in our empirical application. Figure 1 compares the

different answers that arise from the classic conditional forecasting question (“What is the

likely path of output and inflation, given that the fed funds rate is reduced to 1% and kept

there for two years?”) and an alternative one, which we call a structural scenario: “What is

the likely path of output and inflation, if monetary policy shocks lower the fed funds rate to

1% and keep it there for two years?” In the latter case, only the policy shocks are allowed to

deviate from their unconditional distribution to match the desired interest rate path. As we

can see, for the exact same path of the interest rate, inflation and output are lower than in

the unconditional forecast in the first exercise, but higher in the second one.

The differences are not surprising once we recognize that the bulk of the movements

in the fed funds rate represents the systematic reaction of the Fed to output and inflation

developments (see Leeper et al., 1996). The classic conditional forecasting question is really

asking: “What is the most likely set of circumstances under which the Fed might keep the

fed funds rate at zero for two years?” The answer is “subdued output growth and inflation.”

If communicated to the public as forward guidance, this is the kind of exercise that Campbell

et al. (2012) call “Delphic”: it provides a forecast of macroeconomic outcomes and likely policy

actions based on the policymaker’s potentially superior information about future economic

fundamentals. The structural scenario exercise is instead “Odyssean” in the sense that it does

not reveal any information about future fundamentals, but rather can be interpreted as an

intention to keep the policy rate constant whatever the fundamentals happen to be. Clearly,

in order to produce the latter we will need to identify, at least, the monetary policy shock,

and the results will depend on the identification scheme used. On the contrary, identification

was not necessary for the Delphic exercise.

Relation to the literature. Classic conditional forecasts and counterfactual analyses with VARs

have a long tradition in macroeconomics, going back at least to Doan et al. (1986). Working in

the reduced-form setting, Clarida and Coyle (1984) propose an implementation based on the

Kalman filter, whereas Waggoner and Zha (1999) provide well-known methods for computing

3



Figure 1: Answers to Two Alternative Questions

(a) Conditional Forecast (‘Most likely path for output and inflation given path for FF rate’)
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(b) Structural Scenario (‘Most likely path for output and inflation if monetary policy shocks drive path for FF rate’)
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Note: For each panel, the solid black lines represent actual data, the solid red line is the conditioning
assumption on the fed funds rate, the solid blue line is the median forecast for the remaining variables and
periods, and the blue shaded areas denote the 40 and 68% pointwise credible sets around the forecasts. The
dotted gray lines represent the median unconditional forecast.

conditional density forecasts with VAR models. Their results have been extended to large

systems (Banbura et al., 2015) and uncertainty about the paths of the conditioning variables

(Andersson et al., 2010). The use of conditional forecasts has increased dramatically after the

2008-09 financial crisis, with a variety of applications including assessing structural change

(Aastveit et al., 2017; Giannone et al., 2019), evaluating of non-standard monetary policies

(Giannone et al., 2012; Altavilla et al., 2016), nowcasting and forecasting (Giannone et al.,

2014; Tallman and Zaman, 2018), and evaluating of macro-prudential policies (Conti et al.,
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2018). We stress that all of this recent wave of research is reduced-form in nature, conditioning

exclusively on the path of observable variables, even when a structural interpretation is at

times intended. Our suggestion is that scenarios should be instead constructed on the basis

of economically meaningful shocks.

There is also a strand of the literature that works with identified SVARs to analyze

monetary policy alternatives (Leeper and Zha, 2003) or the impact of oil supply shocks

(Baumeister and Kilian, 2014). In a similar spirit, counterfactual analysis exercises were

carried out by Bernanke et al. (1997), Hamilton and Herrera (2004) and Kilian and Lewis

(2011), among others. Relative to existing approaches, our proposal carries several innovations.

First, we provide closed-form solutions that are valid for an arbitrary number of conditions.

Second, our definition of scenario avoids the need to elicit a priori conditions on the values of

(unobserved) structural shocks. Instead, we specify conditions on observable variables, and

select which shock(s) are driving the forecasts. We believe our approach is much more intuitive

and will greatly facilitate practical application. Finally, we provide for a more complete

treatment of uncertainty. Specifically, our methods allow us to recognize the uncertainty

about the values of the “non-driving” shocks as well as the conditioning paths for the variables

themselves, which the existing approaches have tended to shut down.2 As we will see in our

empirical applications, ignoring these sources of uncertainty may lead to excessively narrow

confidence bands around forecasts. The increasing usage of density forecasts and fan charts

for policy communication and macreoconomic analysis, as well as the recent emphasis on

macroeconomic risk management (see Kilian and Manganelli, 2008), makes the treatment of

uncertainty a first-order concern.

Organization of the paper. The rest of this paper is organized as follows. Section 2 presents the

general econometric framework and formalizes the concept of structural scenarios. Section 3

2Additionally, by extending the existing Bayesian methods to set and partially identified SVARs, we
also consider uncertainty originating both from the estimation of the reduced-form parameters and from the
identification restrictions. The existing procedures, such as Baumeister and Kilian (2014) and Clark and
McCracken (2014), usually ignored parameter uncertainty. Waggoner and Zha (1999) stress that ignoring
parameter uncertainty can potentially result in misleading conditional forecasts. Of course, our methods
can be applied as well to exactly and fully identified SVARs, where the latter source of uncertainty is not a
concern.

5



introduces a measure of the plausibility of the different scenarios. Section 4 describes

algorithms to implement our techniques. Sections 5 and 6 illustrate our techniques using two

examples. First, we further develop the monetary example above and explore the effects of

forward guidance and average inflation targeting. Second, we consider a larger SVAR with

macro and financial variables, and carry out a “stress testing” exercise to assess the response

of asset prices and bank profitability to an economic recession.

2. Econometric framework

We work with the SVAR, written compactly

y′tA0 = x′tA+ + ε′t for 1 ≤ t ≤ T, (1)

with A′+ =
[
A′1 · · · A′p d′

]
, x′t =

[
y′t−1, . . . ,y

′
t−p, 1

]
, where yt is an n×1 vector of observables,

εt is an n× 1 vector of structural shocks, A` is an n× n matrix of parameters for 0 ≤ ` ≤ p

with A0 invertible, d is an 1×n vector of parameters, p is the lag length, and T is the sample

size. The vector of shocks εt, conditional on past information and the initial conditions

y0, ...,y1−p, is distributed N (0n×1, In), where 0n×1 is an n× 1 matrix of zeros and In is an

n× n identity matrix. The reduced-form representation implied by Equation (1) is

y′t = x′tB + u′t for 1 ≤ t ≤ T, (2)

where B = A+A−1
0 , u′t = ε′tA

−1
0 , and E [utu

′
t] = Σ = (A0A

′
0)−1. The matrices B and Σ are

the reduced-form parameters, while A0 and A+ are the structural parameters. Similarly, u′t

are the reduced-form innovations. While the shocks are orthogonal and have an economic

interpretation, the innovations may be correlated and do not have an interpretation.

As is well known, the model defined in Equation (1) has an identification problem. As

described in Rubio-Ramirez et al. (2010), one can reparameterize this model in terms of B

and Σ together with an n× n orthogonal rotation matrix Q, such that for a given B and Σ,

a choice of Q implies a particular, observationally equivalent choice of structural parameters.

To solve the identification problem, one often imposes restrictions on either the structural
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parameters or some function–such as the impulse response functions (IRFs)–thereof, pinning

down a particular Q (point identification) or narrowing down a set of Q’s (set identification).

2.1. Unconditional forecasting

Assume that we want to forecast the observables for h periods ahead using the VAR in

Equations (1)-(2). Given the history of observables yT =
(
y′1−p . . .y

′
T

)′
, the unconditional

forecast of the observables, i.e., y′T+1,T+h =
(
y′T+1 . . .y

′
T+h

)
can be written

yT+1,T+h = bT+1,T+h + M′εT+1,T+h, (3)

where ε′T+1,T+h =
(
ε′T+1 . . . ε

′
T+h

)
are the shocks over the forecasting horizon; we will refer to

these as the future shocks. The vector bT+1,T+h is predetermined, representing the dynamic

forecast in the absence of further shocks. It depends only on the history of observables and

the reduced-form parameters of the model. The vector M′εT+1,T+h is stochastic as it involves

the future shocks, and the matrix M depends on the structural parameters. Definitions of

bT+1,T+h and M′ are given in the online Appendix. Given Equation (3), the unconditional

forecast is distributed

yT+1,T+h ∼ N (bT+1,T+h,M
′M) . (4)

It is easy to show that while M depends on the structural parameters, i.e., on the choice of

Q, M′M only depends on the reduced-form parameters. Thus, one only needs the history

of observables and the reduced-form parameters to characterize the distribution of the

unconditional forecast. It is also easy to see that, irrespective of the choice of Q, the future

shocks are distributed according to their unconditional distribution εT+1,T+h ∼ N (0nh×1, Inh).

2.2. Conditional forecasts and structural scenarios: General framework

In general, linear restrictions on the path of future observables can be written as

CỹT+1,T+h ∼ N (fT+1,T+h,Ωf ) , (5)
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where ỹT+1,T+h is the restricted forecast of the observables, and C is a k × nh (full rank)

pre-specified matrix, where k is the number of restrictions. The k × 1 vector fT+1,T+h and

the k × k matrix Ωf are the mean and covariance matrix restrictions.3 Equation (5) implies

restrictions on the distribution of future shocks; combine Equations (3) and (5) to obtain

CỹT+1,T+h = CbT+1,T+h + Dε̃T+1,T+h ∼ N (fT+1,T+h,Ωf ) , (6)

where D = CM′. Let ε̃T+1,T+h, the restricted future shocks, be distributed

ε̃T+1,T+h ∼ N (µε,Σε) (7)

so that, defining Σε = Inh + Ψε, µε and Ψε are the deviation of the mean and covariance

matrix of ε̃T+1,T+h from their unconditional counterparts. Equation (6) implies the following

restrictions on µε and Ψε

CbT+1,T+h + Dµε = fT+1,T+h (8)

D (Inh + Ψε) D′ = Ωf . (9)

Depending on k, the number of restrictions, and nh, the length of ỹT+1,T+h, the systems of

Equations (8) and (9) may have multiple solutions (k < nh), one solution (k = nh), or no

solutions (k > nh).4 Following Penrose (1955, 1956) we will choose the following general

expression for µε and Ψε,

µε = D? (fT+1,T+h −CbT+1,T+h) (10)

Ψε = D?ΩfD
?′ −D?DD′D?′, (11)

3This formulation accommodates, in the special case where Ωf = 0k×k, the classic “hard” conditional
forecasting exercise, as defined in Waggoner and Zha (1999), as well as its generalization to density conditional
forecasts, as defined in Andersson et al. (2010).

4The presence of multiple solutions in Waggoner and Zha (1999) is highlighted by Jarociński (2010).
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where D? is the Moore-Penrose inverse of D. Because D is full rank, the Moore-Penrose

inverse always exists and is unique. From the definition of Ψε, Equation (11) implies

Σε = D?ΩfD
?′ + (Inh −D?DD′D?′) , (12)

a semidefinite positive matrix. Equations (10) and (12) make clear that linear restrictions on

the path of future observables restrict the distribution of the future shocks.5 Importantly, it

can be shown that, given the reduced-form parameters, the choice of Q affects µε and Σε.

When k ≤ nh, the system of Equations (8) and (9) is consistent, and Equations (10)

and (11) characterize the solution that minimizes the Frobenius norm of µε and Ψε. Therefore,

the Penrose solution is the one that envisages the smallest deviation of the mean and covariance

matrix of ε̃T+1,T+h from the mean and covariance matrix of εT+1,T+h. Clearly, if k = nh we

have that D? = D−1 and there is a unique solution, whereas when k > nh, the system is

inconsistent, i.e., there is no solution to the system defined by Equations (8) and (9) that

satisfies all the restrictions simultaneously. In this case Equations (10) and (11) are the best

approximated solutions (see Penrose, 1956), meaning that they minimize

‖CbT+1,T+h + Dµε − fT+1,T+h‖ and ‖D (Inh + Ψε) D′ −Ωf‖ ,

respectively, where we are using the Frobenius norm again.6

Let the restricted forecast of the observables be distributed ỹT+1,T+h ∼ N (µy,Σy). Then,

given that ỹT+1,T+h = bT+1,T+h + M′ε̃T+1,T+h, Equations (10) and (12) imply the following

5The reader should notice that the solutions in Equations (10) and (11) do not depend on our normality
assumption. In particular, if one had assumed Student-t distributions for the shocks, the restrictions will still
imply Equations (8) and (9) and, hence, the solutions in Equations (10) and (11) will still be valid.

6Specialized formulae for the three cases are given in the online Appendix. For inconsistent systems the
Penrose solution gives the same weight to all the constraints. If a researcher wanted to give different weight
to the different restrictions, the solution can be easily amended (see Ben-israel and Greville, 2001, p.117).
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expressions for µy and Σy

µy = bT+1,T+h + M′D?(fT+1,T+h −CbT+1,T+h) (13)

Σy = M′M + M′D?(Ωf −DD′)D?′M. (14)

It can be shown that the distribution of the restricted forecast of the observables, given by

Equations (13) and (14), only depends on the history of observables and the reduced-form

parameters, unless C depends on Q (see Waggoner and Zha, 1999, Proposition 1).

Equations (13) and (14) highlight that the unconditional forecast is updated in order to

incorporate the information contained in the restrictions.7 The update is affected by how

fT+1,T+h and Ωf deviate from their unconditional mean and variance, CbT+1,T+h and DD′

respectively. Importantly, Equation (14) also highlights that choosing Ωf = DD′ leads to

Σy = M′M, i.e., the variance of the unconditional forecast is preserved. This is a natural

choice when one wants to restrict the mean of the forecast without affecting its variance. As

we will see in the empirical examples, preserving the variance is of great importance if one is

going to use the model for density forecasting and risk assessment.

Relation to entropic tilting. Finally, we provide a proof, in the Gaussian case, of the equivalence

between the above framework and the method of entropic forecast tilting, popularized in the

macroeconomic literature by Robertson et al. (2005) (see also Giacomini and Ragusa, 2014).

The equivalence unifies two approaches that have evolved separately and at times have been

regarded as alternatives. Entropic forecast tilting finds the forecast distribution subject to

some linear restrictions that minimizes the relative entropy with the unconditional forecast,

as measured by the Kullback-Leibler (KL) divergence. Define the KL divergence from Q to

P as DKL(P‖Q) =
∫
X
p log(p

q
) dµ, where P and Q are probability distributions over a set X

and µ is any measure on X for which p = dP
dµ

and q = dQ
dµ

exist (meaning that p and q are

absolutely continuous with respect to µ). We formally establish the following:

7Banbura et al. (2015) propose an alternative formulation of Equations (13) and (14) that uses the Kalman
filter and smoother, which we extend to the structural scenario case in the online Appendix. The formulas in
Equations (13) and (14) will be computationally more efficient than the Kalman filter implementation for the
majority of practical cases, except when the forecast horizon, h, is very large.

10



Proposition 1. Denote with NUF the distribution of the unconditional forecast represented

by Equation (4). Then µy and Σy, given by Equations (13) and (14), are the solution to the

following relative entropy problem

min
µ,Σ

DKL (N (µ,Σ) ||NUF )

subject to Cµ = fT+1,T+h and CΣC′ = Ωf .

Proof 1. See the online Appendix.

The following corollary establishes the connection between the conditional forecasting solution

and the entropic tilting problem that matches only the mean of the target distribution.

Corollary 1. The conditional forecasting solution when Ωf = DD′ is the solution to the

relative entropy problem subject to the constraint Cµ = fT+1,T+h.

In other words, conditional forecasting is equivalent to entropic tilting of the mean only

when the uncertainty around the conditioning path is set to the unconditional variance, as

discussed above. The close connection between conditional forecasting and entropic tilting

motivates the use of the KL divergence to assess the plausibility of structural scenarios, an

issue to which we return in Section 3.

2.3. Special Case 1: Conditional-on-observables forecasting

We now analyze three special cases of the framework presented above. The first is the

classic conditional forecasting exercise, as first introduced by Doan et al. (1986) and extended

by Waggoner and Zha (1999) and Andersson et al. (2010). It restricts the path of a subset of

future observables and computes the forecast of the remaining observables.

Let C be a ko×nh (full rank) pre-specified selection matrix formed by ones and zeros, with

ko denoting the number of restrictions. Conditional-on-observables restrictions are written as

CỹT+1,T+h = fT+1,T+h (see Waggoner and Zha, 1999) or more generally as density restrictions

CỹT+1,T+h ∼ N
(
fT+1,T+h,Ωf

)
(see Andersson et al., 2010). These types of restrictions are

trivially expressed in terms of Equation (5), by making k = k0, C = C, fT+1,T+h = fT+1,T+h
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and Ωf = Ωf and, hence, the expressions for µε, Σε, µy, and Σy can be obtained using

Equations (10), (12), (13), and (14) respectively.

Observe that in this case the selection matrix C does not depend on the parameters

of the model and that, hence, the distribution of ỹT+1,T+h only depends on the history of

observables and the reduced-form parameters. However, it is still the case that Q affects the

distribution of the restricted future shocks. Given a particular Q, one could back out such

a distribution using Equations (10) and (12) and attach an economic interpretation to the

conditional-on-observables forecast.

2.4. Special Case 2: Conditional-on-shocks forecasting

An alternative approach is to construct forecasts of observables restricting the path of a

subset of shocks over the forecasting horizon.8 Let Ξ be a ks × nh (full rank) pre-specified

selection matrix formed by ones and zeros, with ks denoting the number of restrictions.

Restrictions on the shocks can generally be written as Ξε̃T+1,T+h ∼ N (gT+1,T+h,Ωg), where

the ks × 1 vector gT+1,T+h and the conformable matrix Ωg are the mean and covariance

matrix restrictions to Ξε̃T+1,T+h.
9 Provided that the VAR is invertible (see Fernández-

Villaverde et al., 2007), the shocks can always be expressed as a function of observed variables,

given the structural parameters of the model: ε̃t+1,t+h = (M′)−1ỹt+1,t+h − (M′)−1bt+1,t+h.

Therefore, restrictions on future shocks can be written as linear restrictions on the path of

future observables; specifically the restriction implies CỹT+1,T+h ∼ N
(
fT+1,T+h,Ωf

)
where

C = Ξ(M′)−1, fT+1,T+h = CbT+1,T+h + gT+1,T+h and Ωf = Ωg. Thus, conditional-on-

shocks forecasting can be expressed in terms of Equation (5) by making k = ks, C = C,

fT+1,T+h = fT+1,T+h and Ωf = Ωf and, hence, the expressions for µε, Σε, µy, and Σy can be

obtained using Equations (10), (12), (13), and (14) respectively. The crucial point is that

the matrix C now depends on M, which in turn depends on Q. The intuition is clear; in

order to impose restrictions upon their future path, we need to identify the shocks.10

8Baumeister and Kilian (2014) use an SVAR of the oil market to analyze the impact of a hypothetical oil
supply shock. This practice is also used within DSGE models (see Del Negro and Schorfheide, 2013).

9Exact restrictions as in Baumeister and Kilian (2014) can be implemented fixing Ωg = 0ks×ks
.

10It is easy to show that, since the shocks are independent, the future shocks that are not part of the
conditioning exercise retain their unconditional distribution.
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2.5. Special Case 3: Structural scenario analysis

Conditional-on-shocks forecasting has the unappealing feature that, since the shocks are

unobserved, it is difficult to elicit a priori restrictions on their future paths.11 Here we show

how the results of Sections 2.3 and 2.4 can be combined to approach this problem in a single

step, which we call structural scenario analysis. A structural scenario is defined by combining

restrictions on the path of future observables with a restriction that only a subset of the

future shocks –the driving shocks– can deviate from their unconditional distribution over

the forecasting horizon. Unlike in the conditional-on-observables case, the remaining future

shocks –the non-driving shocks– are restricted to retain their unconditional distribution.

Let C be a ko × nh (full rank) pre-specified selection matrix formed by ones and zeros,

with ko denoting the number of restrictions on the observables. Let Ξ be a ks × nh (full

rank) pre-specified selection matrix formed by ones and zeros that selects the ks non-driving

shocks and whose distribution is going to be restricted to be the same as their unconditional

one. As in Section 2.3, the restriction on the path of future observables is implemented

by imposing CỹT+1,T+h ∼ N (fT+1,T+h,Ωf ) ., whereas as in Section 2.4, we impose that

Ξε̃T+1,T+h ∼ N (0ks×1, Iks) . The latter, in turn, implies CỹT+1,T+h ∼ N (CbT+1,T+h, Iks),

where C = Ξ(M′)−1. Thus, the restrictions embedded in a structural scenario can also be

expressed in terms of linear restrictions on the path of future observables

ĈyT+1,T+h ∼ N


 fT+1,T+h

CbT+1,T+h


︸ ︷︷ ︸

f̂T+1,T+h

,

 Ωf 0ko×ks

0ks×ko Iks


︸ ︷︷ ︸

Ω̂f

 , (15)

with Ĉ′ = [C
′
,C′]. Observe that Equation (15) stacks the two sets of restrictions considered

in previous subsections. The upper block states that a selection of variables must follow the

path fT+1,T+h in expectation; the second block states that the non-driving shocks must retain

11In practice, the papers that use that method calibrate the value of the shocks to generate the desired
impact on a particular observable, or iterate between the shocks and the observables until achieving that
result (see Baumeister and Kilian, 2014; Clark and McCracken, 2014).
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their unconditional distribution. For the same reasons explained in Section 2.4, the structural

scenario depends on the choice of identification scheme, given that the matrix Ĉ depends on

M, which in turn depends on Q. The types of restrictions expressed in Equation (15) are

again a special case of Equation (5), by making k = ko + ks, C = Ĉ, fT+1,T+h = f̂T+1,T+h

and Ωf = Ω̂f and, hence, the expressions for µε, Σε, µy, and Σy can be obtained using

Equations (10), (12), (13), and (14) respectively.

The structural scenario analysis presented here is reminiscent of the counterfactual analysis

often employed in the SVAR literature to report the impact of a particular structural shock

assuming a specific path of a policy variable.12 These counterfactuals correspond to particular

structural scenarios where one variable and all shocks but one are restricted for the entire

forecast horizon. Thus, the counterfactuals impose ko + ks = nh. The framework above is a

generalization of such exercises, providing closed-form solutions for cases in which ko+ks 6= nh.

Moreover, the previous literature has always considered the case with no uncertainty around

the scenario, i.e., Ω̂f = 0(ko+ks)×(ko+ks), whereas the above framework generalizes to uncertain

scenarios.13 Finally, observe that in the specific case in which the restricted observable is a

policy instrument and the only structural shock driving the scenario is the associated policy

shock, our procedure is equivalent to the “modest policy interventions” analyzed by Leeper

and Zha (2003). We expand on this point in the next subsection.

3. How plausible is the structural scenario?

When analyzing a structural scenario using SVARs, one should be careful that the implied

shocks are not so “unusual” that the analysis risks falling into the criticism put forward by

Lucas (1976). We previously highlighted how a structural scenario is associated with a distri-

bution of the future driving shocks that deviates from its unconditional counterpart. When

12The objective of counterfactual analysis is to answer “what if” questions. For instance, Bernanke et al.
(1997), Hamilton and Herrera (2004) and Kilian and Lewis (2011) analyze the impact of an oil price shock
under the assumption that the Fed does not respond.

13The previous literature typically imposes Ω̂f = 0k and, therefore, misrepresents the uncertainty in the

scenarios. There are two types of uncertainty related to the fact that Ω̂f 6= 0k. By setting Ωf 6= 0ko
we are

considering uncertainty surrounding the restrictions on the observables. By setting the covariance matrix of
Ξε̃T+1,T+h to Iks

instead of to 0ks
we are considering uncertainty surrounding the non-driving future shocks.
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this deviation is large, we deem the scenario implausible. Moreover, Proposition 1 established

that Equations (13) and (14) are the solution that minimizes the relative entropy from the

unconditional forecast to the structural scenario, or equivalently, from the unconditional

distribution of the future shocks to their distribution under the scenario.14 We therefore

propose to use the KL divergence as a measure of how plausible a scenario is.

Specifically, denote with NSS the distribution of the shocks compatible with the structural

scenario and NUF their unconditional distribution. Remember that NUF is the standard

normal distribution, so we have that the KL divergence from NUF to NSS is

DKL(NSS‖NUF ) =
1

2
(tr (Σε) + µ′εµε − nh− ln(det Σε)) (16)

where µε and Σε are given by Equations (10) and (12).

While it is straightforward to compute DKL(NSS‖NUF ) using Equation (16), it is difficult

to grasp whether any value for the KL divergence is large or small. In other words, the KL

divergence can be easily used to rank scenarios but it is hard to understand how far away they

are from the unconditional forecast. To ease the interpretation of the KL divergence, we adapt

an idea of McCulloch (1989), who proposes “calibrating” the KL divergence from Q to P , two

generic distributions, using the KL divergence between two easily interpretable distributions.

In particular we suggest comparing DKL(NSS‖NUF ) with the divergence between two binomial

distributions, one with probability q and the other with probability 1/2.15 Let B(m, p) denote

the binomial distribution that runs m independent experiments, each of them with probability

p of success. Here m = nh represents the number of independent realizations of the shocks

over the scenario. We suggest calibrating the KL divergence from NUF to NSS to a parameter

q that would solve the following equation DKL(B(nh, 0.5)‖B(nh, q)) = DKL(NSS‖NUF ). The

14The KL divergence, DKL, is invariant to linear transformations, and hence it is equivalent to consider
DKL related to observables or shocks, since these are linearly related.

15McCulloch’s (1989) original approach employed instead a comparison between two Bernouilli distributions.
The drawback of that approach in our setting is that the probability q is not invariant to the dimension of
the scenario, given by nh, the number of variables times the maximum forecast horizon. Specifically, one can
show that, for any µε 6= 0nh×1 and Σε 6= Inh, the KL divergence from NUF to NSS increases linearly with
nh. Thus q → 1 for any structural scenarios with either n, the number of variables, or h, the forecast horizon,
big enough. The use of the binomial distribution retains the original interpretation but is scale invariant.
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solution to the equation is q = 1
2

(
1 +

√
1− e− 2z

nh

)
where z = DKL(NSS‖NUF ). In line

with McCulloch’s (1989) original idea, any value for the KL divergence is translated into a

comparison between the flip of a fair and a biased coin. For example, a value of q = 0.501

suggests that the distribution of the shocks under the scenario considered is not at all far

from its unconditional counterpart, and the scenario considered is quite realistic. With a

value of q = 0.99 the restrictions imply a substantial deviation of the future shocks from their

unconditional distribution, suggesting that the scenario is quite unlikely.

Our measure of plausibility is in the spirit of the concept of “modest intervention” used

in Leeper and Zha (2003). Their measure reports how unusual is the path for policy shocks

needed to achieve some conditional forecast, relative to the typical size of the shocks. If the

scenario implies a sequence of shocks close to their typical size, the intervention is considered

modest, and the results of the analysis are likely to be reliable. If instead the scenario involves

an unlikely sequence of shocks, Leeper and Zha (2003) argue that economic agents may alter

their behavior in meaningful ways and the analysis is deemed implausible.

Our metric compares the entire distribution rather than the path of the policy shocks,

and generalizes to scenarios other than those involving a single policy instrument and a single

policy shock.16 Moreover, an appealing feature of a metric based on the KL divergence is

that it provides an information-theoretical interpretation of the scenario, in terms of how

much information is added by the restrictions. If a scenario involves meaningful distortions

of the probability distribution of the underlying shocks, we should deem it as implausible

and the metric calls for caution about the use of the SVAR for this particular task.

4. Algorithms for implementation

In this section we briefly sketch a Bayesian algorithm for implementation of the gen-

eral framework above, which includes conditional-on-observables, conditional-on-shocks and

structural scenarios as special cases. In the interest of space, we describe the main features

here, relegating the technical details to the online Appendix. It should be clear that our

16That Leeper and Zha (2003) compare the path of the policy shocks is a consequence of the fact that
they set all other shocks to zero.
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objective is to draw from the following joint posterior p(ỹT+1,T+h,A0,A+|yT , IR,SR) where

IR are the structural identification restrictions, and SR are the restrictions on the path of

future variables, shocks, or both. As explained by Waggoner and Zha (1999), drawing from

this posterior distribution is a challenging task. It is tempting, in a first step, to draw the

structural parameters from their distribution conditional on yT and on IR, and in a second

step to draw ỹT+1,T+h conditional on yT , on SR and on the structural parameters using

Equations (13) and (14). However, this procedure ignores the restrictions in Equation (15)

when drawing the structural parameters and, hence, would not lead to a draw from the desired

joint posterior. Instead, to draw from the joint distribution of interest, a Gibbs sampler

procedure must be constructed that iterates between draws from the described conditional

distributions of the structural parameters and ỹT+1,T+h in the following way

Algorithm 1. Initialize yT+h,(0) = [yT , ỹ
(0)
T+1,T+h], e.g., at the mean unconditional forecast

1. Conditioning on yT+h,(i−1) = [yT , ỹ
(i−1)
T+1,T+h], use any valid algorithm to produce one

draw from the structural parameters, (A
(i)
0 ,A

(i)
+ ) satisfying IR.

2. Conditioning on (A
(i)
0 ,A

(i)
+ ) and yT , draw ỹ

(i)
T+1,T+h ∼ N (µy,Σy) satisfying SR using

Equations (13) and (14).

3. Return to Step 1 until the convergence and a sufficient number of draws have been

obtained.

The algorithm above extends the one developed by Waggoner and Zha (1999), with the key

difference that we now need to identify the SVAR. For example, in the case of the traditional

recursive zero restrictions, Step 1 could draw the reduced-form coefficients and obtain A0

from the Cholesky decomposition of Σ. In the case of sign restrictions, Step 1 may be any of

the algorithms in Rubio-Ramirez et al. (2010) or Baumeister and Hamilton (2015). In the

cases of narrative sign restrictions (NSR) as in Antolin-Diaz and Rubio-Ramirez (2018) and

traditional sign and zero restrictions as in Arias et al. (2018), an importance-sampling step is

required to draw from the posterior of (A0,A+), which needs to be done at the end of Step 1.
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4.1. The importance of using all available identification restrictions

When we use restrictions that set identify the model, the results of the structural scenario

analysis will be valid across a set of structural models that satisfy the restrictions. This

attractive feature will come at the cost of possibly wide confidence bands around the forecast.

Most importantly, there is the risk of including many models with implausible implications

for elasticities, structural parameters, shock realizations and historical decompositions.17 For

instance, in the applications with monetary policy shocks that we present below, we find that

a strategy based exclusively on traditional sign restrictions on IRFs often leads to implausibly

large elasticities of observable variables to a monetary policy shock, mirroring the results

of Kilian and Murphy (2012).18 In the examples, we will propose using a combination of

traditional sign and zero restrictions at various horizons, as in Arias et al. (2016), bounds on

elasticities, and the recently proposed NSR of Antolin-Diaz and Rubio-Ramirez (2018) to

narrow down the set of admissible structural parameters and obtain meaningful scenarios.

5. Application 1: Monetary policy and the power of forward guidance

Our first application concerns the effects of communicating future monetary policy shocks.

We provide new empirical estimates of the effects of anticipated monetary policy shocks,

compare alternative structural scenarios to the ones obtained with DSGE models, and evaluate

the potential of “makeup” strategies for inflation targeting.

Setup and identification. We work with the data set of Smets and Wouters (2007) (SW07),

which contains seven key US macroeconomic time series at quarterly frequency: real output,

consumption, investment, wages and hours worked per capita, inflation and the fed funds

rate. Their data set starts in Q1 1966; we update it through Q4 2019. In order to identify

anticipated monetary policy shocks, we will need a variable capturing changes in expectations

of future interest rates. We follow an approach similar to that of Campbell et al. (2012) and

17This point has been forcefully argued by Kilian and Murphy (2012), Ahmadi and Uhlig (2015), Arias
et al. (2016), Ludvigson et al. (2017) and Antolin-Diaz and Rubio-Ramirez (2018).

18These elasticities are much larger than the upper bound reported in Ramey’s (2016) literature review.
These translate into explosive forecasts of the variables even for modest deviations of the conditioned variable
from its unconditional path.
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use expectations from the Survey of Professional Forecasters (SPF), available for the first

four quarters. Specifically, define as ESPF
t [it+h] the mean SPF expectation at time t of the

short-term interest rate h quarters ahead. Then, the variable St,h ≡ ESPF
t [it+h]− ESPF

t−1 [it+h]

for h = 0, . . . , 3 measures the surprise to expectations, i.e., the change in the information

set, from t− 1 to t. Campbell et al. (2012) point out that surprises across horizons h exhibit

a strong factor structure, so we take the average across horizons, S̄t ≡ 1/4
∑3

h=0 St,h as a

measure of the surprises to the average expected interest rate for the next year.19. After

appending S̄t to the SW07 data set, we estimate an SVAR with p = 4 lags and an informative

“Minnesota” prior (Doan et al., 1986; Sims, 1993) over the reduced-form parameters.20 We

identify two orthogonal monetary policy shocks by means of the following restrictions.

Identification Restriction 1: (Unanticipated Monetary Policy Shocks) The unanticipated

monetary policy shock increases the fed funds rate on impact, decreases output, inflation,

consumption, investment, hours and wages on impact, and has zero impact on the level of

GDP in the long run, and a negative long-run impact on the price level. Moreover, it takes a

positive value in Q4 1979 and is the single largest contributor to the unexpected movement

in the fed funds rate in the same quarter. Finally, we restrict the maximum peak to trough

response of output to a 100bp monetary policy shock to 10 pp.

The traditional sign and zero restrictions are satisfied by standard New Keynesian models

such as Christiano et al. (1999) or SW07. The NSR follows Antolin-Diaz and Rubio-Ramirez

(2018) and is motivated by the historical account of the Volcker tightening. The bound on

the elasticity, set to twice the maximum amount reported by Ramey (2016), rules out models

in which very small changes in the interest rate lead to massive declines in output.

19Using instead the first principal component yields essentially identical results. In the online Appendix,
we show that inclusion of this variable among the observables in a DSGE model featuring anticipated shocks
is enough to guarantee invertibility of the VAR representation, and thus the ability to recover the structural
shocks from the reduced-form innovations (see Fernández-Villaverde et al., 2007)

20See the online Appendix for exact definitions of the variables and prior.
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Identification Restriction 2: (Anticipated Monetary Policy Shocks) The anticipated

monetary policy shock has the same sign effects on impact, zero long-run effects, and elastic-

ity bounds as the unanticipated shock. Additionally, the effect on the fed funds rate is positive

for the first three quarters, and it increases the surprise variable S̄t on impact. Normalizing

for the size of the impact on the fed funds rate, the increase in S̄t is larger than the one

caused by the unanticipated monetary policy shock. Finally, the anticipated monetary policy

shock satisfies the NSR in Table 1.

Consistent with the evidence that policy surprises are correlated across horizons, we aim to

identify a shock that affects the level of the interest rate over the next year, without imposing

zero impact of the anticipated shock on the contemporaneous fed funds rate.21 We derive the

restrictions above from the ones implied by introducing an equivalently defined anticipated

monetary policy shock within the SW07 DSGE model.22 The NSR improve the identification

by bringing in information about announcements made by the Federal Reserve in 2003 and

2011-2012.23 Notice that we only impose the sign of the shocks because our reading of

these events indicates that contemporaneous news about growth and inflation may have also

influenced the announcements. We wish to stress that in general the surprise variable S̄t

is almost certainly affected in any quarter by many other shocks. Therefore, it would not

constitute a valid instrument for anticipated monetary policy shocks. The advantage of the

NSR approach in this context is that it allows us to incorporate the information that these

shocks were affecting expectations during specific events.

For the results that follow it will be useful to also identify an “aggregate demand” shock,

which generates positive co-movement between interest rates and business cycle variables.

21In our setting, an announcement of future actions with no contemporaneous change in the policy rate is
best thought of as a combination of anticipated and unanticipated shocks

22Specifically, we introduce an anticipated monetary policy shock to the central bank reaction function in
line with Campbell et al. (2012) and Campbell et al. (2017). The monetary policy ‘news’ shock obeys a simple
factor structure for the first four quarters that embodies the idea that forward guidance is characterized by
an announcement of a persistent deviation from the usual conduct of policy. Full details are available in the
online Appendix.

23A motivation based on FOMC statements, minutes and transcripts is provided in the online Appendix.
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Table 1: Summary of Forward Guidance FOMC Statement Language

Economic Conditions Language NSR
Growth Inflation

Q3 2003 “upside and downside risks [...] “risk of inflation becoming “policy accommodation can be maintained −
roughly equal” undesirably low” for a considerable period”

Q1 2004 “upside and downside risks [...] “probability of an unwelcome fall[...] “patient in removing +
roughly equal” almost equal to that of a rise” its policy accommodation”

Q2 2004 “upside and downside risks [...] “risks to [...] price stability “policy accommodation can be removed −
roughly equal” moved into balance” at a pace that is likely to be measured”

Q3 2011 “Considerably slower” “picked up” “low levels warranted at −
least through mid 2013”

Q1 2012 “expanding moderately” “at or below mandate” “low levels warranted at −
least through late 2014”

Q3 2012 “moderate pace” “subdued” “at least through mid 2015” −

Identification Restriction 3: (Aggregate Demand Shocks) The aggregate demand shock

has a positive effect on impact on output, consumption, investment, hours, wage, inflation

and the fed funds rate, and zero long-run impact on the level of GDP.

Figure 2 displays the IRFs of key variables to the two policy shocks.24 While the effects of the

two shocks are quite similar, normalizing for the peak effect on the fed funds rate, the impact

of the anticipated shock on output and inflation is somewhat larger and more persistent. The

SVAR results are in stark contrast to the results obtained in DSGE models, which typically

produce unrealistically large effects of anticipated shocks (the “forward guidance puzzle”), as

highlighted by Del Negro et al. (2012), and McKay et al. (2016). We will expand on this

comparison below.

Structural Scenario 1: Delphic vs. Odyssean forward guidance. The first of our exercises

considers the two alternative questions we referred to in the introduction, the results of

which we anticipated in Figure 1. In particular, we consider an exercise that might have

been contemplated by the FOMC at the end of 2019. After three consecutive 25-basis-point

cuts in previous meetings, the FOMC decided to keep the fed funds rate at a range of 1.5

24The IRFs of the remaining variables and shocks are displayed in the online Appendix.
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Figure 2: Monetary Policy: Impulse Response Functions to anticipated vs unanticipated
shocks
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Note: The blue (lighter) shaded area represents the 68% (point-wise) HPD credible sets for the IRFs and the
blue dotted lines are the median IRFs to a one standard deviation unanticipated monetary policy shock. The
red (darker) shaded areas and red solid lines display the equivalent quantities for the anticipated policy shock.

to 1.75%. What if the FOMC had at this point announced a further reduction to 1%, after

which the policy rate would be held constant for two years? In terms of our framework, this

“dovish” scenario can be implemented as a restriction on the path of future observables using

Equation (5). But whether we frame it in terms of a conditional-on-observables forecast

or a structural scenario will yield completely different answers. Figure 3 illustrates this

point by comparing the unconditional distribution of the three identified shocks in the first

period of the forecast to the one resulting from several conditional-on-observables forecast

and structural scenario exercises. As we can see in Panel (a), the conditional-on-observables

exercise involves contractionary demand shocks generating, through the systematic reaction

of the central bank, a positive co-movement between inflation and interest rates. As a result,

output and inflation are weak. In this sense the exercise is at least partially Delphic. There

are many occasions in which this setting may not be appropriate. For instance, in September

2012 the FOMC announced it expected to keep interest rates constant until mid-2015. The

minutes of the meeting make clear that
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Figure 3: Distribution of Shocks Underlying Different Exercises
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(b) An Odyssean Scenario

MP Shock

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
AMP Shock

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
AD Shock

-4 -2 0 2 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

(c) A Delphic Scenario
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Note: For each panel, the gray shaded area represents the probability density function (p.d.f.) of a standard
normal distribution, whereas the broken blue line is the p.d.f. of the different shocks at horizon h = 1 for
the three variants of the “dovish” scenario. MP stands for unanticipated monetary policy shocks, AMP for
anticipated monetary policy shocks, and AD for aggregate demand shocks.
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“[the] new language was meant to clarify that the maintenance of a very low fed

funds rate over that period did not reflect an expectation that the economy would

remain weak, but rather reflected the Committee’s intention to support a stronger

economic recovery.”25

We make this idea operational with a scenario in which all non-policy shocks are restricted

to retain their unconditional distributions. By doing so, we avoid inferring anything about

future demand and supply shocks from the lower path of interest rates. The results for the

path of output and inflation are visible in Panel (b) of Figure 1, and for the associated shocks

in Panel (b) of Figure 3. As we can see, there is a moderate boom in output, and inflation is

slightly above the unconditional forecast. In the conditional-on-observables forecast, monetary

policy shocks also played a role, reflecting the likelihood that at least some movements in

interest rates represent exogenous policy actions. In that sense it mixes Delphic and Odyssean

content. Can we construct a strictly Delphic scenario? The answer is yes. We create a

Delphic variant of the scenario by restricting the two policy shocks to their unconditional

distribution, leaving all other shocks unconstrained. The results can be seen in Figure 4 and

the associated distribution of first period shocks is in Panel (c) of Figure 3. Output and

inflation are now even lower than in the conditional-on-observables forecast, since we are

shutting down the possibility that expansionary monetary policy shocks play any role.

The importance of quantifying uncertainty. In the scenarios above we fixed the path for

the fed funds rate with zero uncertainty, i.e., Ωf = 0ko×ko , as has been traditional in the

literature. As pointed out by Andersson et al. (2010), this will lead to a reduction in the

variance of the conditional forecast relative to the unconditional forecast. Instead, when one

wants to preserve the uncertainty present in the unconditional forecast, the variance around

the fed funds rate can be set to Ωf = DD′, as proposed in Section 2.2. In the monetary

policy example, this has an interesting economic interpretation. When fixing the policy

instrument to a particular path, the scenario can be interpreted as an ironclad commitment:

25Emphasis ours. See “Minutes of the Federal Open Market Committee” September 12-13, 2012 (Released
October 4, 2012). https://www.federalreserve.gov/monetarypolicy/fomcminutes20120913.htm

24



Figure 4: A Delphic Scenario
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Note: For each panel, the solid black lines represent actual data, the solid red line is the conditioning
assumption on the fed funds rate, the solid blue line is the median forecast for the remaining variables and
periods, and the blue shaded areas denote the 40 and 68% pointwise credible sets around the forecasts. The
dotted gray lines represent the median unconditional forecast.

the monetary policy will follow that path no matter what the realizations of the other shocks

are. If instead uncertainty about the fed funds path is recognized, the exercise acquires the

flavor of a “data dependent” commitment.

If one further imposed that the “non-driving” shocks are equal to zero, i.e., Ωg = 0ks ,

an even greater reduction in the variance of the forecast would result.26 Intuitively, this

assumption implies that the forecaster has knowledge that these shocks will not occur. As a

result, the forecast density produced will greatly underestimate the underlying uncertainty

about the future. Instead, by setting their distribution equal to the unconditional distribution,

i.e., Ωg = Iks we take the position of a forecaster who possesses no additional knowledge

(over the unconditional forecast) about the “non-driving” shocks. Ignoring these two sources

of uncertainty may make the results implausible and substantially less useful, particularly

if one is interested in density forecasting. To illustrate this point, Table 2 reports, for the

26This is the implicit assumption of existing methodologies, including Leeper and Zha (2003), Baumeister
and Kilian (2014), and Banbura et al. (2015). A figure displaying the consequences of the alternative
treaatments of uncertainty for the density forecasts for this exercise is available in the online Appendix.
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Table 2: Risk Assessment of Structural Scenarios

Calibrated KL g at Risk π at Risk p(low π, g) p(g < 0)

Unconditional 0.5 −1.2% −0.7% 6.5% 26%

“Dovish - Odyssean” no uncertainty 1 1.8% 0.8% 0.1% 0.4%

“Dovish - Odyssean” with uncertainty 0.83 −2.0% −1.5% 7.4% 26%

“Back to PL Target” with uncertainty 0.73 −2.4% −1.3% 5.0% 36%

Note: The first column reports the posterior mode across draws of the calibrated K metric. The next
columns report the growth-at-risk (g at Risk) and inflation-at-risk (π at Risk), defined respectively as the
values associated with the 5% lower percentile of the predictive distribution for four-quarter GDP growth
and inflation one year into the forecast horizon, as well as the probability of the average quarterly GDP
growth rate and inflation rate in the first two years of the forecast both being below 1%(p(low π, g)), and
the probability of negative average quarterly growth in the third year of the forecast (p(g < 0)). The first
row reports the results for the unconditional forecast, whereas the second row reports the case when the
uncertainty of both the conditioning variable and the non-driving shocks is set to zero, i.e., Ωf = 0ko×ko .
The last three columns report results for scenarios where uncertainty about both is allowed, i.e., Ωf = DD′.

Odyssean variant of Scenario 1, the plausibility metric from Section 3 and a number of risk

metrics, such as “value at risk” for growth and inflation as well as the probability of observing

a prolonged period of low growth and inflation with and without both sources of uncertainty.

Notice that the posterior mode of the plausibility metric is equal to 1 (a large distortion of

the distribution of shocks) and the risk metrics are considerably more sanguine than in the

unconditional forecast when uncertainty is ignored. Instead, when uncertainty about both

the conditioning variable and the non-driving shocks is recognized, the posterior mode of the

plausibility metric is 0.83 (an unlikely but not completely implausible scenario) and the risk

metrics are now an order of magnitude similar to the ones in the unconditional forecast.

A final observation relates to the fact that risks are generally deemed to be higher when

considering structural scenarios than in the unconditional forecast. This reflects uncertainty

stemming from the set identification of the structural parameters, which would be absent

in exactly-identified models. In other words, with set identification the researcher is more

uncertain about the causal impact of monetary policy shocks, whereas this uncertainty

cancels out in the unconditional forecast, which is based only on correlations. This additional

uncertainty needs to be taken into account when performing risk assessment exercises.
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Structural Scenario 2: Evaluating forward guidance in the time of Greenspan. Our next

exercise considers the difference between anticipated and unanticipated monetary shocks in

more detail, and compares the results of our approach to the ones that would be obtained

with the workhorse SW07 DSGE model. In particular, we examine the tightening cycle of

2004-2006, noteworthy for the fact that, in the prior year, the FOMC had been experimenting

with forward guidance about the future path of interest rates. To simulate a real-time exercise

we re-estimate our SVAR model using the vintage of data ending in Q4 2004, the original

data set used by SW07.27 For the DSGE model we fix the parameters to the posterior modal

estimates reported by Smets and Wouters and introduce an anticipated monetary policy shock

that is consistent with our identification strategy above and construct equivalent scenarios.28

In Q3 2004, the FOMC initiated a tightening sequence that increased the fed funds rate by

25-basis-points each meeting until reaching 5.25%. What if instead the FOMC had decided

to postpone that process by one year, keeping interest rates constant until then using policy

shocks? How would the results differ depending on whether such an action was communicated

in advance? Figure 5 compares the answers obtained using our SVAR and the DSGE model.

Panel (a) implements this scenario only through unanticipated shocks. As we can see, the

results of the SVAR are very similar to the point estimates from the DSGE model, though

the effect on inflation appears slightly more front loaded. As we can see in Panel (b), things

are more different in the case in which anticipated shocks are included. As highlighted by

Del Negro et al. (2012) and McKay et al. (2016), estimated New Keynesian models produce

responses to anticipated policy shocks that are unrealistically large, and become even larger

the longer the horizon of anticipation. The SVAR instead finds that the differences between

anticipated and unanticipated policies are relatively minor.29 In the present exercise, since

the horizon of anticipation spans only the first four quarters, we observe only a modest

27To identify the shocks, we only use the NSR up to Q2 2004.
28Since the SW07 model does not have a VAR representation, we cannot apply Equations (10)-(14) or

algorithm 1 directly to compute the scenarios for the DSGE model. However, conditioning on the parameters,
we can use the state-space representation of the model and the Kalman filter to compute the mean of the
scenario. For this reason we only report point estimates for the SW07 model.

29The plausibility metric is 0.84 in the case where anticipation is allowed, and 0.8 when it is not, indicating
that such exercises already imply a meaningful divergence from the unconditional distribution.
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forward guidance puzzle, and the results are similar to the ones obtained with the SVAR. For

scenarios that envision more drastic deviations from the unconditional forecast, or actions

expanding into more distant horizons, however, the differences can become very large. Our

empirical results provide a useful benchmark for any theoretical developments that aim to

solve the forward guidance puzzle. The exercise also highlights one of the main practical

motivations behind our paper: the scenarios conducted with DSGE models can be sensitive

to the details of the model assumptions, whereas the ones constructed with SVARs will be

consistent with a set of incompletely specified and not fully trusted models. When one is

uncertain about which underlying structural model to use, our methodology will constitute a

pragmatic alternative.

Structural Scenario 3: Returning to the price level target. Our final exercise considers a

different thought experiment. Since the FOMC announced a 2% inflation target in January

2012, the average rate of inflation as measured by the PCE deflator excluding food and energy

turned out to be 1.6%, resulting in a 4% cumulative shortfall relative to a hypothetical price

level target by the end of 2019. The possibility of adopting a “makeup” strategy that would

aim to revert the past shortfall has been widely discussed in policy circles in recent years.30

What distribution of policy shocks would be required going forward to return to the 2% price

level target, say, within 5 years? It is straightforward to implement this question using our

structural scenario framework where only the two policy shocks are allowed to deviate from

their unconditional distribution. Suppose that inflation is the i-th variable in the system

and that one wanted to eliminate a cumulative shortfall of π̂ over h periods. We can write

this restriction as 1/h
∑h

s=1 yi,t+s ∼ N (2+π̂/h, ωf ). The restriction states that the average

inflation over the forecast horizon needs to be, in expectation, above the 2% target by π̂/h

every period in order to eliminate the past accumulated inflation shortfall, with variance

ωf . Notice that our methodology is flexible enough that we do not need to input a specific

path of inflation. Our method will yield the distribution of future policy shocks that is

consistent with the smallest deviation from their unconditional distribution while satisfying

30See, e.g., Bernanke (2017). Those “makeup” strategies are also discussed within the Federal Reserve
“Review of Monetary Policy Strategy, Tools, and Communication Practices;” see, e.g., Clarida (2019).
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Figure 5: Comparison of SVAR and DSGE results
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(b) Anticipated and Unanticipated Shocks
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Note: For each panel, the solid black lines represent actual data. In the third column, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for the fed funds rate. In the first and second panels, the solid blue line and associated shaded
areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other variables given by
the SVAR. The dotted gray lines represent the median unconditional forecast from the SVAR. The broken
black lines represent instead the mean results obtained using the DSGE model of SW07.

the restriction on 1/h
∑h

s=1 yi,t+s. Moreover, the interest rate distribution we obtain will be

the one that “makes up” for the past inflation shortfall with the smallest deviation from the

usual policy rule. The results can be seen in Figure 6. Inflation needs to increase gradually,

peaking at 2.9% in mid-2023, before returning to the 2% target. In order to achieve the

inflation, the fed funds rate is cut to about 1.3%, after which it starts increasing rapidly, until

reaching 4% in 2023. This large tightening is required to cool down the boom in output and
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inflation triggered by the new policy and bring inflation back to target. The results for output

highlight a clear risk: while the price level successfully returns to the target, the subsequent

tightening implies meaningful probabilities (around 46%) of negative annual growth in the

fourth and fifth years of the sample. Interestingly, this scenario produces larger effects on

output and inflation than the apparently more aggressive interest rate cuts of Scenario 1.

The reason is that Scenario 3 involves a greater share of anticipated monetary policy shocks

relative to Scenario 1, which included a large unanticipated movement in the first period. As

reported in Table 2, the plausibility metric for this scenario has a posterior mode of 0.73,

suggesting it is a much more likely scenario than Scenario 1. Our results are consistent with

policy communication being an effective way to achieve the central bank’s objectives.31

6. Application 2: Stress-testing the response of asset prices to a recession

Our second application studies the impact of an economic recession on asset prices and

bank profitability. We highlight that the potential impact of a recessionary episode can be

very different depending on the shock driving it. Specifically, we will show how a recession

caused by financial shocks, like the one of 2007-09, can have a more damaging impact on

bank profitability (and other financial variables) than recessions driven by other types of

shocks.

We augment the macro data set from the previous application by adding the unemployment

rate, as well as a number of financial variables: the 3-month Treasury bill to 10-year government

bond yield spread, the quarterly change in the S&P 500 stock price index, the quarterly

change in the S&P Case-Shiller House Price Index, the real price of oil, the BAA credit

spread, the 3-month Treasury bill-eurodollar (TED) spread; and an indicator of profitability

in the banking system as a whole, the return on equity (ROE) of FDIC-insured institutions.32

Sample is from Q1 1966 to Q4 2019. We identify a single financial shock that resembles the

31An alternative scenario in which only unanticipated shocks is presented in the online Appendix. The
results indicate that a more volatile interest rate path would be required to achieve the same objective. The
fed funds rate would be cut to 1% by mid-2020 and then increased to 4.6% in 2023. During that year the
probability of negative annual GDP growth would exceed 50%.

32See the online Appendix for the definition of the variables and details of the model’s specification.
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Figure 6: Returning to the Price Level Target
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Note: For each panel, the solid black lines represent actual data. The solid blue lines and associated shaded
areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other variables given
such that the constraint that inflation returns to the price level target within a five-year horizon is satisfied.
The dotted gray lines represent the median unconditional forecast.

one at work during the last recession through the following combination of traditional and

narrative sign restrictions:

Identification Restriction 1: (Financial Shock) The financial shock has a negative impact

on stock prices and bank profitability, and increases the BAA and TED spreads. Moreover,

the financial shock for the observation corresponding to the fourth quarter of 2008 must be

of positive value and be the overwhelming driver of the unexpected movement in the TED

spread and credit spread.

The NSR are based on the account in Bernanke (2015), which highlights how the collapse

of Lehman Brothers on September 13, 2008 caused “short-term lending markets to freeze

and increase the panicky hoarding of cash” (p. 268), “fanned the flames of the financial

panic” (p. 269), “directly touched off a run on money market funds” (p. 405), and “triggered
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a large increase in spreads” (p. 405). The construction of the scenarios borrows from the

Federal Reserve’s “2019 Supervisory Scenarios for Annual Stress Tests Required under the

Dodd-Frank Act Stress Testing Rules and the Capital Plan Rule.”33 We take the path of

GDP and the unemployment rate described in the Fed’s “adverse scenario.” It describes a

medium-sized recession in which output falls for five consecutive quarters and then recovers

gradually, whereas the unemployment rate increases until it reaches 7%. As before, we

consider uncertainty around the path of the conditioning variables by setting Ωf = DD′.

Conditional on the restrictions for GDP and unemployment, we consider two distinct scenarios.

In the first, the recession is caused by a financial shock. This is achieved by restricting all

shocks except the financial one to their unconditional distribution. The second scenario is a

recession not driven by the financial shock. To implement this, we restrict the financial shock

to retain its unconditional distribution, and allow all the other shocks to deviate from theirs.

Figures 7 and 8 compare the results. The financial recession has a much more severe

impact on stock prices, credit spreads and bank profitability. Moreover, the impact of the oil

price is of opposite sign, indicating that non-financial recessions are often associated with

increases in oil prices. As for the plausibility of the exercise, for the non-financial recession,

the posterior mode of the calibrated KL measure is 0.68, whereas for the financial recession it

is 0.86. We interpret this result as reflecting the fact that in the sample, financial recessions

are a relatively infrequent event, and most postwar recessions appear to have involved a

mixture of non-financial factors. Therefore, these results based on relatively infrequent events

should be interpreted with caution. The results of this section highlight that if the scenario

is driven by a financial shock, even mild contractions in economic activity can result in large

damage to banks’ balance-sheet variables.

7. Conclusion

We have provided a general and flexible framework to construct structural scenarios based

on minimalistically identified VARs, paying close attention to the uncertainty stemming from

33See https://www.federalreserve.gov/newsevents/pressreleases/files/bcreg20190213a1.pdf

downloaded on January, 31, 2020.
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Figure 7: A Stress Test Driven by a Financial Shock
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Note: For each panel, the solid black lines represent actual data. In the first two panels, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for GDP growth and the unemployment rate. In the remaining panels, the solid blue line and
associated shaded areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other
variables. The dotted gray lines represent the median unconditional forecast.

estimation, identification, and future shocks. While there will always be limits to the kinds

of experiments that can be performed on linear Gaussian models, we hope that our methods

facilitate a middle ground between relying on empirical models, which remain silent about

the underlying causal mechanisms, and committing to the specific details of a particular

structural model, which will give sharper, but surely misspecified answers.
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Figure 8: A Stress Test Driven by Non-Financial Shocks
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Note: For each panel, the solid black lines represent actual data. In the first two panels, the solid red line
and associated shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning
assumptions for GDP growth and the unemployment rate. In the remaining panels, the solid blue line and
associated shaded areas are the median, 40 and 68% pointwise credible sets around the forecasts of the other
variables. The dotted gray lines represent the median unconditional forecast.
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A Vector notation for VAR forecasts

Assume that we want to forecast the observables for some period ahead using the VAR in Equation

(1) of the paper. Then, we can write

y′t+h = b′t+h +
h∑
j=1

ε′t+jMh−j for all 1 < t < T and all h > 0,

where

b′t+h = cKh−1 +

p∑
`=1

y′t+1−`N
`
h

K0 = In

Ki = K0 +
i∑

j=1

Ki−jBj if i > 0

N`
1 = B`

N`
i =

i−1∑
j=1

N`
i−jBj + Bi+`−1 if i > 1

M0 = A−1
0

Mi =
i∑

j=1

Mi−jBj if i > 0

Bj = 0n×n if j > p.

Then

y′t+1,t+h = b′t+1,t+h + ε′t+1,t+hM for all 1 < t < T and all h > 0,

where y′t+1,t+h =
(
y′t+1 . . .y

′
t+h

)
, b′t+1,t+h =

(
b′t+1 . . .b

′
t+h

)
, ε′t+1,t+h =

(
ε′t+1 . . . ε

′
t+h

)
, and

M =


M0 M1 . . . Mh−1

0 M0 . . . Mh−2

...
...

. . .
...

0 0 . . . M0

 .
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It is easy to see that, given that B = A+A−1
0 , and Σ = (A0A

′
0)−1, M′M depends only on the

reduced-form parameters, B and Σ, even though M depends on the structural parameters, A0 and

A+. The vector b′t+1,t+h depends on the history of observables and the reduced-form parameters.

B Multiple Solutions for Conditional Forecasts

It is useful to examine what the general solution in Equations (10) and (12) imply for the three

possible cases (k < nh, k = nh and k > nh). When k ≤ nh, the system of Equations (8) and (9) is

consistent, and Equations (10) and (11) characterize the solution that minimizes the Frobenius norm

of µε and Ψε.
1 Therefore, the Penrose solution is the one that envisages the smallest deviation of

the mean and covariance matrix of ε̃T+1,T+h from the mean and covariance matrix of εT+1,T+h. In

this case, D? = D′ (DD′)−1 and Equations (10) and (12) become2

µε = D′
(
DD′

)−1
(fT+1,T+h −CbT+1,T+h) (B.1)

Σε = D′
(
DD′

)−1
Ωf

(
DD′

)−1
D +

(
Inh −D′

(
DD′

)−1
D
)
. (B.2)

Clearly, if k = nh we have that D? = D−1 and Equations (10) and (12) become

µε = D−1 (fT+1,T+h −CbT+1,T+h)

Σε = D−1Ωf

(
D−1

)′
.

When k > nh, the system is inconsistent, i.e., there is no solution to the system defined by Equations

(8) and (9). In other words, not all the restrictions can be satisfied simultaneously. In this case

Expressions (10) and (11) are best approximated solutions (see Penrose, 1956), meaning that they

minimize

‖CbT+1,T+h + Dµε − fT+1,T+h‖ and
∥∥D (Inh + Ψε) D′ −Ωf

∥∥ ,
respectively, where we are using the Frobenius norm again.3 In this case, D? = (D′D)−1 D′ and

1See Golub and Van Loan (1996), p. 55, for a definition of the Frobenius norm.
2It is worth noticing that Equations (10) and (12) are equivalent to the ones provided by Andersson et al. (2010),

although they only consider the classic conditional forecasting exercise in which conditions are placed on observables.
We thank an anonymous referee for suggesting to us this alternative and more straightforward derivation.

3For inconsistent systems the Penrose solution gives the same weight to all the constraints. If a researcher wanted
to give different weight to the different restrictions, the solution can be easily amended (see Ben-israel and Greville,
2001, p.117).
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Equations (10) and (12) become

µε =
(
D′D

)−1
D′ (fT+1,T+h −CbT+1,T+h)

Σε =
(
D′D

)−1
D′ΩfD

(
D′D

)−1
.

C Proof of Proposition 1

In this Appendix we provide a proof for Proposition 1 in the paper. Let the following minimization

problem be written

min
µ,Σ

DKL (N (µ,Σ) ||NUF )

subject to

Cµ = fT+1,T+h (C.1)

CΣC′ = Ωf . (C.2)

For the multivariate Normal case DKL (N (µ,Σ) ||NUF ) equals

1

2

{
tr
[(

M′M
)−1

Σ
]

+ (bT+1,T+h − µ)′
(
M′M

)−1
(bT+1,T+h − µ)− nh+ ln

[
det (M′M)

det (Σ)

]}

Solution for the mean The solution for the mean of the conditional forecast solves the

following FOCs

0k×1 = Cµ− fT+1,T+h, (C.3)

01×nh = (bT+1,T+h − µ)′
(
M′M

)−1 − λC (C.4)

where λ is a 1× k vector of Lagrangian multipliers associated with the mean constraints in (C.1).

Equation (C.4) implies that

λC = (bT+1,T+h − µ)′
(
M′M

)−1

λCM′ = (bT+1,T+h − µ)′M−1

λD = (bT+1,T+h − µ)′M−1

01×nh = (bT+1,T+h − µ)′M−1D̂
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where D̂ denotes the (nh × nh) annihilator matrix such that DD̂ = 0k×nh; therefore, D̂ =

Inh −D′ (DD′)
−1

D = Inh −D?D, where D? denotes the Moore-Penrose inverse of D and has the

following properties D̂′ = D̂ (since (D?D)′ = D?D) and D̂−1 = D̂. Therefore

D̂
(
M′)−1

µ = D̂
(
M′)−1

bT+1,T+h

substituting for the definition of the annihilator matrix the previous equation implies that

(
M′)−1

µ =
(
M′)−1

bT+1,T+h + D?D
(
M′)−1

(µ− bT+1,T+h)

µ = bT+1,T+h + M′D?D
(
M′)−1

(µ− bT+1,T+h)

= bT+1,T+h + M′D? (Cµ−CbT+1,T+h)

= bT+1,T+h + M′D? (fT+1,T+h −CbT+1,T+h)

which is equivalent to the solution for the mean of the conditional forecast in Equation (13) in

Section 2 of the paper.

Solution for the variance The solution for the variance of the conditional forecast solves

the following FOCs

0k×k = CΣC′ −Ωf , (C.5)

0nh×nh =
1

2

∂tr
[
(M′M)−1 Σ

]
∂Σ

− 1

2

∂ ln [det (Σ)]

∂Σ
+
∂tr [S (CΣC′ −Ωf )]

∂Σ
. (C.6)

where S is a square positive semidefinite matrix of Lagrangian multipliers associated with the

variance constraints in (C.2). Equation (C.6) implies that

(
M′M

)−1 −Σ−1 + 2C′S
′
C = 0nh×nh

Inh −MΣ−1M′ + 2D′S
′
D = 0nh×nh

where we have made use of the definition of D (= CM′), therefore

D′S
′
D =

1

2

(
MΣ−1M′ − Inh

)
(C.7)
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Equation (C.7) together with Equation (C.5) implies that

D′S
′
D =

1

2

(
MΣ−1M′ − Inh

)
S′ =

1

2
D?′ (MΣ−1M′ − Inh

)
D?

=
1

2
D?′

[
M
(
C∗ΩfC

∗′)−1
M′ − Inh

]
D?

=
1

2
D?′

[
MC′Ω−1

f CM′ − Inh

]
D?

=
1

2
D?′

[
D′Ω−1

f D′ − Inh

]
D?

=
1

2
(Ω−1

f −D?′D?)

therefore we can solve for the variance under the conditional forecast from Equation (C.7)

MΣ−1M′ = Inh + D′(Ω−1
f −D?′D?)D

MΣ−1M′ = D′Ω
−1
f D + (Inh −D′D?′D?D)

Σ−1 = M−1(D′Ω
−1
f D + D̂)

(
M′)−1

which implies that

Σ = M′(D′Ω
−1
f D + D̂)−1M

= M′(D?ΩfD
?′ + D̂)M

and is equivalent to the solution for the conditional forecast in Equation (14) in Section 2 of the

paper.4

D Details of the algorithm

In this section we develop algorithms to implement structural scenario analysis. Conditional-on-

variables and conditional-on-shocks forecasts can be implemented as special cases of the former.

The algorithms we present can be easily extended to any identification scheme provided that an

4To solve for the variance we have made use of the property that given two square matrices A and B,
(A + B)−1 = (A−1 + B−1) if AB−1A = BA−1B (see, e.g., Searle, 1982). The latter conditions in our case

are verified: D′Ω−1
f DD̂−1D′Ω−1

f D =D̂D?′ΩfD
?D̂ = 0nh×nh, since from the definition of the annihilator matrix

DD̂= 0, and D̂ = D̂′ and D̂−1 = D̂.
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algorithm is available to draw from the structural parameters. To simplify both the notation and

the exposition, when presenting the algorithm we focus on sign restrictions. Specifically, we extend

the Gibbs sampler algorithm in Waggoner and Zha (1999) to implement the structural scenario

analysis in set and partially identified SVARs.

In particular, we assume that if (A0,A+) satisfy the s sign restrictions, then

F(A0,A+) > 0s×1.

Before describing the algorithm, it should be clear that our objective is to draw from the following

joint posterior

p(ỹT+1,T+h,A0,A+|yT , IR (A0,A+) ,R (ỹT+1,T+h,A0,A+)), (D.1)

where IR (A0,A+) = {(A0,A+) : F(A0,A+) > 0s×1} are the identification restrictions and

R(ỹT+1,T+h,A0,A+) = {ỹT+1,T+h : ĈỹT+1,T+h ∼ N
(
f̂T+1,T+h, Ω̂f

)
} are the restrictions associ-

ated with the structural scenario. Note that R(ỹT+1,T+h,A0,A+) depends on (A0,A+) because

f̂T+1,T+h, Ĉ, and Ω̂f depend on (A0,A+).

As explained by Waggoner and Zha (1999), if one wants to take into account identification and

parameter uncertainty, as well as the uncertainty associated with the future path of the shocks

and, possibly, the conditional path of the restricted forecast, drawing the posterior distribution

described by Equation (D.1) becomes a challenging task. It is tempting, in a first step to, draw the

structural parameters from their distribution conditional on yT and the identification restrictions,

and in a second step to draw ỹT+1,T+h conditional on yT , the restrictions in Equation (15) of the

paper, and the structural parameters, using Equations (13) and (14) of the paper. However, this

procedure ignores the restrictions in Equation (15) when drawing the structural parameters and,

hence, would not lead to a draw from the desired joint posterior described in Equation (D.1). Instead,

to draw from the joint distribution of interest, a Gibbs sampler procedure can be constructed that

iterates between draws from the described conditional distributions of the structural parameters

and ỹT+1,T+h.5

In this appendix we present a particular implementation of Algorithm 1 that follows Faust

5The algorithm below is an extension of the one developed by Waggoner and Zha (1999), with the key difference
being that we now need to identify the SVAR.
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(1998), Uhlig (2005), and Canova and Nicolo (2002), and Rubio-Ramirez et al. (2010) and draw

from a conjugate uniform-normal-inverse-Wishart posterior over the orthogonal reduced-form

parameterization (B,Σ,Q) and transform the draws into the structural parameterization (A0,A+).

Arias et al. (2018) show that this transformation induces a normal-generalized-normal posterior

over the structural parameterization, and highlight the useful properties of using conjugate prior

distributions. On the contrary, Baumeister and Hamilton (2015) prefer to use priors stated directly

over the structural parameterization, (A0,A+). Their argument is that since the implementation

of Arias et al. (2018) amounts to an implicit and informative prior over the objects of interest to

researchers, it is better to define it directly. Baumeister and Hamilton’s (2015) approach has an

advantage when at least some, if not all, the parameters have an economic interpretation, but could

be computationally challenging, especially in large systems. If one wanted to follow that route, our

algorithm could be easily modified to draw directly from (A0,A+).

Algorithm 1. Initialize yT+h,(0) = [yT , ỹ
(0)
T+1,T+h].

1. Conditioning on yT+h,(i−1) = [yT , ỹ
(i−1)
T+1,T+h], draw (B(i),Σ(i)) from the posterior distribution

of the reduced-form parameters.

2. Draw Q(i) independently from the uniform distribution over the set of orthogonal matrices.

3. Keep (B(i),Σ(i),Q(i)) if F(f−1
h (B(i),Σ(i),Q(i))) > 0s×1, otherwise return to Step 1.

4. Conditioning on (A
(i)
0 ,A

(i)
+ ) = fh(B(i),Σ(i),Q(i)) and yT , draw ỹ

(i)
T+1,T+h ∼ N (µy,Σy) using

Equations (10) and (12) of the paper.

5. Return to Step 1 until the required number of draws has been obtained.

The natural initialization of ỹ
(0)
T+1,T+h can be done at the mean of the unconditional forecast or a

random draw from its posterior. Steps 1 and 2 draw from posterior uniform-normal-inverse-Wishart

over the orthogonal reduced-form parameterization conditional on yT+h,(i−1). Step 3 checks the sign

restrictions, while Step 4 draws ỹ
(i)
T+1,T+h ∼ N (µy,Σy) using Equations (10) and (12) of the paper.

It is important to notice that because Steps 1 and 2 are conditional on ỹT+h,(i−1), the restriction in

Equation (15) is taken into account when drawing the structural parameters.

Clearly Steps 1-3 are an accept-reject algorithm to draw from the posterior of (A
(i)
0 ,A

(i)
+ )

conditional on the identification restrictions, as in Rubio-Ramirez et al. (2010), but taking into

account the restrictions on yT+h,(i−1). Step 4 draws ỹ
(i)
T+1,T+h conditional on (A

(i)
0 ,A

(i)
+ ) using

8



Equation (15). For the case in which the model is exactly identified, such as in the traditional

recursive ordering using the Cholesky decomposition (see Kilian and Lutkepohl, 2017), the algorithm

is trivially modified by choosing a function h that reflects the restrictions, setting Q = In in Step 2

and skipping Step 3. The algorithm can also be extended to implement the recently proposed

narrative sign restrictions as in Antolin-Diaz and Rubio-Ramirez (2018) and zero restrictions by

the methods described in Arias et al. (2018). In both cases, our algorithm requires an importance-

sampling step to draw from the posterior of (A0,A+), which needs to be done after Step 3. This

approach is known as Gibbs sampling by sampling-importance-resampling as described in Koch

(2007). In particular, the resampling step requires taking multiple draws of the triplet (B,Σ,Q)

by repeating Steps 1-3 above, which are then re-weighted using importance weights as described

in Antolin-Diaz and Rubio-Ramirez (2018) and Arias et al. (2018) respectively. Finally, a random

draw from the reweighted triplets (B,Σ,Q) is selected before proceeding to Step 4.

E Alternative implementation using Kalman filtering

Clarida and Coyle (1984) show that one can implement the Doan et al. (1986) conditional point

forecasts using the Kalman filter. Building on this insight, Banbura et al. (2015) suggest that

state-space methods can also be used to obtain conditional-on-observables forecasts as in Section 2.

We now show that this equivalent algorithm using the Kalman filter can also be applicable to the

structural scenario analysis as well. As we will see, however, the Kalman filter implementation will

be in most cases computationally less efficient than the general, closed-form solutions provided in

the paper. Moreover, it does not easily lend itself to implement more flexible linear restrictions such

as the “Back to the Price Level Target” exercise described in Section 5.

The state-space representation

We begin by outlining the state-space representation that allows the use of the Kalman filter to

compute conditional forecasts. Consider the following state-space form consistent with the model in

Section 2:

z′t = D + z′t−1F + ε′tG (E.1)

ỹ′t = Hz′t (E.2)
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The state vector z′t = [y′t, . . . ,y
′
t−p+1, ε

′
t] stacks the endogenous variables, their lags, and the

exogenous shocks, where yt is an n× 1 vector of variables at time t, and εt is an n× 1 vector of

structural shocks at time t. The measurement vector ỹ′t = [y′t, ε
′
t] stacks the endogenous variables

and the exogenous shocks. As we will see below, since the structural shocks are unobserved, the

measurement vector will contain missing observations corresponding to the entries of εt. The system

matrices D, F, G, and H are constructed from the SVAR parameters as shown below:

D =

 c

0
n·p×1

 , F =

 B̃
n·p×n·p

0
n·p×n

0
n×n·p

0
n×n

 , G =


h(Σ)Q−1

0
n·(p−1)×n

I
n×n

 , H =

 I
n×n

0
n×n·p

0
n×n·p

I
n×n

 ,

where B̃ is known as the companion matrix of the VAR and is defined as

B̃ =



B1 B2 . . . Bp

I 0

0 I
. . .

...
... I 0

0 . . . . . . 0 I


.

The SVAR representation in Equation 1 of the paper and the state-space representation in

Equations (E.1)-(E.2) described above are equivalent, and both can be used to compute conditional

forecasts. With the model in state-space one can use the simulation smoother (see, e.g., Durbin and

Koopman, 2012) to generate a draw of the state vector ỹ′t, conditional on the observations and the

parameters of the model. Therefore, as outlined by Banbura et al. (2015) for the reduced-form case,

one can treat the future path of conditioning variables as observed, while leaving the future path of

the remaining variables as missing observations.6

The same procedure can be adapted for the case of the structural scenario. Suppose that one

6To allow for missing observations, the standard Kalman filtering recursions must be modified. For this purpose,
a number of equivalent solutions have been proposed (see Durbin and Koopman (2012), p. 112, for a textbook
treatment). Here we follow the approach of Mariano and Murasawa (2003) and Camacho and Perez-Quiros (2010),
which essentially impose the condition that the Kalman gain associated with the missing observation is mechanically
zero. This implies that the Kalman filter ”skips” missing observations, effectively marginalizing the likelihood with
respect to the missing observations (see Brockwell and Davis (1991), Section 12.3, and Brockwell et al. (1990)).
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wants to produce forecasts for h time periods into the future. Denote with ? an observation for

which all data entries are missing, denote (ŷi,t, ?)
′ for T + 1 ≤ t ≤ T + h a post-sample observation

in which the value of endogenous variable i is assumed to be known and fixed, the rest being

missing data, and denote (ε̂j,t, ?)
′ for T + 1 ≤ t ≤ T + h a post-sample observation in which the

value of structural shocks j is constrained (for instance to reflect its unconditional standard normal

distribution), the observation for other shocks being missing data. All of the cases mentioned

above can be considered special cases of the state-space representation (E.1)-(E.2), in which the

measurement vector is constructed as ỹ′t in the following way:

ỹ′t = [y′t, ∗], for 1 ≤ t ≤ T, (E.3)

ỹ′t = [(ŷi,t, ∗)′, (∗, θt)′], for T + 1 ≤ t ≤ T + h, (E.4)

where θt denotes the vector of constrained structural shocks and is a 1 × n − 1 draw from the

unconditional distribution of εt, i.e., from an independent standard normal distribution. In other

words, n columns and h rows of missing observations are appended to the data set containing the

endogenous variables, the known future path for variable i for periods T + 1 to T + h is used to

fill the corresponding missing observations, and the missing observations for the structural shocks

other than the shock of interest are filled in with draws from their unconditional distribution.7 In

Step 4 of Algorithm 1, one can then draw y
(i)
T+1,T+h using the Kalman smoother, as opposed to

a multivariate Gaussian distribution with mean and variance given by Equations (10)-(12) of the

paper. These two procedures produce identical results.

Computational efficiency

Since the Kalman filtering-based procedure provides results identical to those of the algorithm

outlined in the paper, we now assess which of the two methods is more computationally efficient.

Equations (10)-(12) of the paper involve operations of high dimensional matrix objects which

modern computing langues are well suited to compute efficiently, whereas the procedure based on

the Kalman filter works recursively leading to a higher computational burden.

Table E.1 investigates which of the two procedures is more efficient numerically for different

7If one is interested in computing only point forecasts, filling them with zeros, the unconditional mean, is
appropriate.
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Table E.1: Computational efficiency of conditional forecast methods

p = 1 p = 6 p = 12 p = 24
Horizon Baseline KF Baseline KF Baseline KF Baseline KF

n=3

h=1 0.49 27.37 0.5 34.68 0.52 51.77 0.56 88.15
h=6 0.8 28.09 1.12 35.32 2.25 49.02 2.11 90.35
h=12 1.29 28.48 3.1 36.17 5.53 50.24 5.42 95.68
h=24 2.78 29.76 5.06 37.92 8.89 52.72 20.28 98.19
h=60 12.37 33.61 18.51 43.38 31.35 59.67 69.64 113.28

n=7

h=1 0.53 35.57 0.55 66.81 0.51 141.74 0.61 368.3
h=6 1.42 36.21 2.47 67.34 3.07 139.76 3.03 375.16
h=12 2.81 37.17 4 69.25 5.43 147.83 7.79 386.21
h=24 9.16 38.68 11.81 72.16 16.72 148.68 28.05 403.88
h=60 77.07 43.67 83.9 84.62 102.7 174.42 150.89 458.84

n=11

h=1 0.58 34.04 0.61 93.49 0.55 200.4 0.68 697.13
h=6 2.12 35.06 2.58 91.7 3 209.97 3.82 738.55
h=12 5.61 36.02 7.6 94.64 9.97 218.71 11.62 751.22
h=24 25.31 38.38 25.36 99.79 31.52 231.55 48.95 821.48
h=60 210.07 44.63 216.67 126.62 247.11 277.71 308.01 964.74

n=27

h=1 0.9 131.52 0.65 579.93 1.28 2241.43 0.99 12193.3
h=6 8.98 130.98 9.17 622.57 10.34 2314.67 12.88 12335.05
h=12 35.94 135.65 40.92 599.76 45.23 2351.54 52.18 12644.66
h=24 224.8 135.44 224.38 625.57 248.64 2461.27 285.89 13288.57
h=60 6301.38 158.01 3874.75 732.05 3980.7 2857.22 4089.79 15290.47

Note: The numbers denote the average time, in seconds (over 100 iterations), taken to calculate 1000 draws of
conditional forecasts. n denotes the number of variables in the VAR, h denotes the forecast horizon and p denotes the
number of lags in the VAR. The time of the fastest algorithm in each case is marked in boldface. These computations
were performed in Matlab 2015a on an HP Z230 SFF workstation with an Intel Core i7-4770 CPU 3.40GHz processor
and 7.74GB of usable RAM.

hypothetical problem settings.8 The baseline implementation of Algorithm 1 is faster in the majority

of cases, with the gains particularly large whenever the number of variables n or lags p is large.

Only whenever h increases a lot relative to the number of variables and lags is small, drawing the

conditional forecast using the Kalman smoother is more efficient.

F Details on the applications

Application 1: Monetary policy alternatives

Data

We work with the data set of Smets and Wouters (2007), which contains seven key US macroeconomic

time series at the quarterly frequency: real output, consumption, investment, wages and hours

8We use deJong’s (1988) implementation of the Kalman filter, as Banbura et al. (2015) show that this implemen-
tation is computationally faster than alternative implementations.
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worked per capita, inflation as measured by the GDP deflator and the federal funds rate.9 Their

data set starts in Q1 1966, and we update it through Q4 2019. For the comparison with the DSGE

model in Section 5, we use the original dataset in Smets and Wouters, downloaded from the AER

website. We verified that the original dataset corresponds to the vintage available in March 2005.

We make one modification to the dataset, which is to substitute the GDP deflator for the PCE

deflator excluding food and energy as an indicator for inflation. We use the data for the March

2005 vintage. The motivation for this change is to be consistent with the fact that the Federal

Reserve’s inflation objective is stated in terms of the PCE deflator, and in particular many of its

communications and internal documents refer to the less volatile ex-food and energy measure as an

more reliable indicator of future inflation tendencies. Over the sample considered, the core PCE

and the overal GDP deflator are 93% correlated.

For the applications updated through 2019, we udpate the dataset using data from Haver

Analytics and using the corresponding tickers:

1. Gross Domestic Product (GDV@USECON)

2. Gross Domestic Product - Implicit Price Deflator (JGDP@USECON)

3. Core PCE Deflator (LXEHL@USECON)

4. Personal Consumption Expenditures, Non-Durable Goods and Services (CS@USECON +

CN@USECON)

5. Fixed Private Investment + Consumer Durables (F@USECON + CD@USECON)

6. Total Economy Hours Worked (LXEHL@USECON)

7. Compensation of Employees (YCOMP@USECON)

8. Civilian Non-Institutional Population (LNN@USECON)

9. Federal Funds Rate (FFED@USECON)

Output, Consumption and Investment are divided by the GDP deflator and by population to obtain

real, per-capita series. Hours are divided by population. Compensation is divided by hours worked

and the GDP deflator to obtain real compensation per hour. To construct the measure of expect

9See the data appendix in Smets and Wouters (2007) for exact definitions of the variables.
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interest rates we use series from the Philadelphia Fed Survey of Professional Forecasters 3 month

T-bill expecations:

1. Current Quarter (ASAFC3T@SURVEYS)

2. 1 Quarter Ahead (ASAF13T@SURVEYS)

3. 2 Quarter Ahead (ASAF23T@SURVEYS)

4. 3 Quarter Ahead (ASAF33T@SURVEYS)

5. 4 Quarter Ahead (ASAF43T@SURVEYS)

Then, the variable

St,h ≡ ESPFt [it+h]− ESPFt−1 [it+h] (F.1)

for h = 0, . . . , 3 measures the surprise to expectations, i.e., the change in the information set, from

t− 1 to t. Campbell et al. (2012) point out that surprises across horizons h exhibit a strong factor

structure, so we take the average across horizons, S̄t ≡ 1/4
∑3

h=0 St,h as a measure of the surprises

to the average expected interest rate for the next year.

Estimation settings

We estimate a VAR with p = 4 lags using Bayesian methods and an informative “Minnesota” prior

(Doan et al., 1986; Sims, 1993) over the reduced-form parameters. Also see Karlsson (2013) In order

to deal with the absence of data for the survey in the early part of the sample, we need to add an

additional step to Algorithm 1. We cast the model in state-space and, conditional on the previous

draw of the reduced-form parameters, we draw the missing observations using a simulation smoother

(e.g., Durbin and Koopman, 2012)

Application 2: Stress-testing

Data

In this section we report the definition and Haver mnemonics for the data used in Application 2,

which are appended to the dataset used in Application 1:

• 3-month Treasury bill rate (FTBS3@USECON)
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• unemployment rate (LR@USECON)

• 10-year yield (FCM10@USECON)

• S&P 500 index (SP500@USECON)

• house price index (USRSNHPM@USECON)

• oil price deflated by the core PCE deflator (PZTEXP@USECON/JCXFE@USECON)

• credit spread is the BAA credit spread minus the treasury long-term composite yield (FBAA@USECON-

FLTG@USECON)

• TED spread (C111FRED@OECDMEI - FTBS3@USECON)

• ROE for all FDIC Insured Institutions (USARQ@FDIC).

The data are quarterly from 1966 to 2019.

Estimation settings

The VAR is estimated with gour lags and the Minnesota prior implemented using dummy observations

(see Del Negro (2011) for details) over the reduced-form parameters.

G Anticipated Policy Shocks in the Smets-Wouters model

In the empirical section we compare the results from the VAR to the ones from a modified version

of the Smets and Wouters (SW) model. In this appendix we describe the main modifications of the

model and explain the use we make of it, in particular to inform us on the restrictions to impose for

the identification of the anticipated monetary policy shock and on the feasibility of the identification

of the structural shocks from the VAR.

The only modification of the model is the introduction of anticipated monetary policy shocks.

In particular, modify the policy rule in the original model and introduce news shocks as follows

rt = ρrt−1 + (1− ρ)[rππt + rY (yt − ypt )] + ρ∆y[(yt − ypt )− (yt−1 − ypt−1)] + εrt +
3∑
j=0

vrt−j,j (G.1)

where vrt−j,j is an anticipated monetary policy shock, which corresponds to deviations from the

normal conduct of policy revealed at time t − j yet affecting the interest rate with a delay of j
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Figure G.1: Federal Fund Surprises
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Note. The left chart reports St,h ≡ ESPF
t [it+h]−ESPF

t−1 [it+h], for h = 0, . . . , 3. The right panel of the figure
contrasts the cross sectional average of the surprises with their first principal component.

quarters. In order to capture that idea that forward guidance announcements affect the path of the

interest rate over multiple quarters, we assume that news shocks follow a simple MA(4) structure:

vrt−j,j = ηrt−j j = 0, . . . , 3 (G.2)

The way we enter anticipated monetary policy shocks into the model is in line with Campbell et

al. (2012). The simplifying assumption of a single factor structure in equation G.2 reflects the

observations that revisions in interest rate forecast at different quarters display a strong comovement

and roughly equal volatility, as highlighted in Figure G.1. Therefore the key difference between a

standard (unanticipated) monetary policy shock and a ’forward’ guidance shock is that the latter is

expected to affect the path of the interest rate for prolonged periods of time. In order to stay as

close possible to the original SW model we assume that the law of motion of ηrt follows an AR(1)

and fix the parameters of this to be the same as the one of the unanticipated monetary policy shock.

The first question that we ask from the model is whether a seven variables VAR – featuring the

original variables in the SW model – would able to recover an anticipated monetary policy shock, i.e.

more specifically whether the VAR is informationally sufficient or fundamental. Fernández-Villaverde

et al. (2007) put forward a simple metric, the ‘poor man invertibility condition’ (PMIC), which we

can check on the implied VAR solution in the theoretical model. Fixing the parameters estimates

to the modal estimate in SW, the PMIC shows that a 7 variables VAR is not fundamental in the

structural shocks. However, expanding the model so as to include the average forecast revisions in
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the short term interest rate suggests that a VAR augmented with a surprise variable calculated as

described in the text satisfies the invertibility requirement and is therefore informationally sufficient.

This is computed in line with the definition given in Section 5 of the paper (equation (F.1) above)

and with expectations computed under the assumption of rationality. However, we do not need the

survey expectations to be fully rational in order for the VAR to be fundamental and identification

to work.

We also use the model to derive plausible restrictions for the identification of the SVAR.

Simulations from the model suggest that an anticipated monetary policy shock is associated with

a pattern of signs of the IRFs which is consistent with the one of a traditional monetary policy

shock. An anticipated monetary policy shock is also associated with a movement in the interest rate

surprise variable, S̄t that goes in the same direction than the shock. When comparing the impact

of an unanticipated and an anticipated MP shock it is clear that, for a shock normalized to have

the same initial impact on the short term interest rate, the anticipated monetary policy shocks are

associated with larger average revisions in S̄t than in the unanticipated case.10 Figure G.2 compares

the impulse response function of the SVAR and the SW model for a monetary policy (MP) shock

and the anticipated monetary policy (AMP) shock. The SVAR model is associated with a more

persistent effect of both shocks, but otherwise the IRFs are remarkably similar despite the fact that

the shocks in the SVAR are estimated imposing only a limited number of identification restrictions.

10Intuitively, with policy rule (G.1) a shock to ηrt that rises the interest rate by 25bp increases the surprise variable
S̄t roughly 4 times more than a shock to εrt .
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Figure G.2: Impulse Responses: VAR vs. SW model
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Note. Impulse responses to a monetary policy shock (left column) and an anticipated monetary policy
shock (right column). Red continuous line corresponds to the IRFs from the SW model, whereas blue
dotted lines corresponds to the IRFs from the SVAR, the blue shaded area represents the 68% (point-wise)
HPD credible sets for the IRFs.
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H Comparison with Fed Staff Estimates in May 2006

In this section we compare results using our SVAR with internal exercises conducted by the Fed

Staff using the FRB/US model and available as part of declassified historical materials. We have

taken the results of the exercises published in the Bluebook dated May 5, 2006.11 We re-estimate

the model using the vintage of data available at that time. We also appended the unemployment

rate to the dataset used in the VAR in order to obtain a conditional forecast of this variable as well

that we can compare with the Fed staff estimates.

In this meeting, the FOMC was presented with two alternatives. The first is the Greenbook

baseline in which the fed funds rate is raised to 5% and then lowered below 4.75%. To shed

light on the implications of ending the process of policy firming, a second simulation considers

a policy trajectory in which the federal funds rate is held constant at its current level through

2010 rather than being raised to 5%. Figure H.1 shows the comparison of the two scenarios, with

the corresponding results published by the Fed staff. In the description of the Bluebook, the staff

mentions that “ monetary policy adjusts to hold core PCE inflation at about 2 percent” so we

condition on inflation being at 2% in expectation at the end of the horizon. They also state the

“assumption that this policy path is fully anticipated by financial market participants” which in our

framework is operationalized as allowing both anticipated and unanticipated shocks to deviate from

their unconditional distribution, and “the absence of any significant supply shocks or changes in

expectations”, which in our setting we model as all non-policy shocks to be at their unconditional

distribution.

It is interesting to note that while the median of the SVAR result is quite close to the FRB/US

result for the unemployment rate, inflation is projected to be higher with the SVAR than with the

FRB/US in both scenarios. This is a result of the federal funds rate staying persistently below the

SVAR unconditional forecast throughout the forecast horizon, reflecting a sequence of monetary

policy shocks which also drive up inflation above the 2% target. One interpretation of our results is

that the SVAR would have suggested that the Fed staff forecasts are too optimistic on the inflation

front, and that further interest rate increases would be required to stabilize inflation. In the event,

this is what happened, with the FOMC ultimately increasing the federal funds rate to 5.25% and

inflation stabilizing around 2%. The mode of the KL is 0.80 for both exercises. The reason the

11See https://www.federalreserve.gov/monetarypolicy/files/FOMC20060510bluebook20060505.pdf (Chart
5).
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scenario is deemed to be a relatively implausible one is because it embodies a highly persistent

deviation from the unconditional scenario at the end of the forecast horizon.
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Figure H.1: FOMC Monetary Policy Alternatives: May 2006
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(b) Lower near-term funds rate
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Note: For each panel, the solid black lines represent actual data. In the third column, the solid red line and associated
shaded areas are the median, 40 and 68% pointwise credible sets around the conditioning assumptions for the federal
funds rate. In the first and second panel, the solid blue line and associated shaded areas are the median, 40 and
68% pointwise credible sets around the forecasts of the other variables given by the SVAR. The dotted gray lines
represent the median unconditional forecast from the SVAR. The broken black lines represent instead the results of
the simulations from the FRB/US model as reported in the Fed Bluebook in May 2006.
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I Narrative Evidence of Fed forward guidance

In this appendix we provide evidence in support of the narrative identification restrictions used to

complement the sign restrictions in the paper. In particular we report extract of FOMC documents

in the periods 2003-2004 and 2011-2012 that justify our choices.

FOMC communication and forward guidance: 2003-2004

In order to enhance the communications with the public, since January 2000 the FOMC started to

issue a brief public statement after every FOMC meeting. The FOMC’s immediate announcement

has contained a summary rationale for its policy decision and encapsulate the Committee’s view of

future developments. On some occasions, the announcement has directly hinted at the likelihood of

changes in policy. The statement has been kept brief, partly to improve the predictability of the

market reaction. Unsurprisingly, from the very beginning the FOMC statements have attracted

considerable attention from the media and the markets, with the language closely watched with

regard both to the current decision and to clues about future policy settings. In particular, special

attention is paid to any changes in wording since the last statement. The first statements used

the “balance of risk” assessment as a way of conveying the most likely ‘tilt’ in future policy. This

practice had however at time come under intense scrutiny. In fact, “the meaning of the balance-of

risks sentence is somewhat vague, giving rise to differences of opinion even among FOMC members

and possibly leading to difficulties among outsiders in understanding its subtleties.” (p. 191).12

Governor Bernanke highlights the importance of giving more precise guidance on the policy

stance. In particular, for the August 12, 2003 meeting transcript Bernanke says (page 131):

“Our discussion yesterday and our experience of the past year have shown that effective commu-

nication is a big part of successful monetary policymaking. [. . . ] We can communicate to financial

markets how we expect to manage short-term interest rates in the future. If we then follow through

on our commitments, the power of our interest rate instrument is multiplied many times over. [. . . ]

Nevertheless, communication that is entirely qualitative in nature also risks misunderstanding. [. . . ]

In an environment of low inflation and low interest rates, we need to seek ever greater clarity of

communication to the markets and to the public.” In mid-2003 the FOMC starts to give a more

explicit reference to the future monetary policy path.

12See https://www.federalreserve.gov/monetarypolicy/files/FOMC20030624memo01.pdf
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The September 14, 2003 FOMC meeting is dedicated to the discussion of the FOMC communi-

cation policy and procedure around it. In this meeting Gov. Bernanke makes the point that explicit

communication in the FOMC statement should be used to convey information about the policy that

is not only about the FOMC view on the economy: “[. . . ] we shouldn’t be giving unconditional

information about our interest rate setting. We should be trying to guide the market by providing

conditional forecasts about which direction our policy may be going in light of our objectives, our

views, or the nature of our rule.”

August 12, 2003 FOMC Meeting: Negative anticipated monetary policy shock

FOMC Statement The Committee perceives that the upside and downside risks to the attainment

of sustainable growth for the next few quarters are roughly equal. In contrast, the probability, though

minor, of an unwelcome fall in inflation exceeds that of a rise in inflation from its already low level.

The Committee judges that, on balance, the risk of inflation becoming undesirably low is likely to be

the predominant concern for the foreseeable future. In these circumstances, the Committee believes

that policy accommodation can be maintained for a considerable period.

Minutes While the Committee could not commit itself to a particular policy course over

time, many of the members referred to the likelihood that the Committee would want to keep policy

accommodative for a longer period than had been the practice in past periods of accelerating economic

activity. Reasons for such an approach to policy stemmed from the need to encourage progress toward

closing the economy’s currently wide output gap and, with inflation already near the low end of

what some members regarded as an acceptable range, to resist significant further disinflation. [. . . ]

At the same time, maintaining an accommodative policy stance was seen as involving little risk

of inducing rising inflation so long as high levels of excess capacity and very competitive markets

continued to characterize economic conditions.

Additional support for the choice of this data as an example of forward guidance comes from

the Transcripts of the 28 Jan 2004 FOMC meeting. For instance, in his prepared remarks the

FOMC secretary Reinhart states: “At times over the past six months, members have chaffed at the

constraint imposed by the commitment to keep policy accommodative for a considerable period. But

by being explicit to the public about this self-imposed constraint, you did help limit the tendency of

market participants to build in unhelpfully aggressive expectations of policy firming, thereby keeping

financial conditions accommodative at a time when you might have been concerned about the efficacy
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of alternative monetary policy actions. In the event, the expansion of aggregate demand did not

falter, and there was no need to dig deeper into the toolkit of policymaking.”

In the same meeting Gov. Kohn makes the following remark: “The “considerable period” phrase

was inserted as a form of unconventional policy when we were concerned about deflation and the

lower nominal bound.”

Jan. 28, 2004 FOMC Meeting: Negative anticipated monetary policy shock

The Committee perceives that the upside and downside risks to the attainment of sustainable growth

for the next few quarters are roughly equal. The probability of an unwelcome fall in inflation has

diminished in recent months and now appears almost equal to that of a rise in inflation. With

inflation quite low and resource use slack, the Committee believes that it can be patient in removing

its policy accommodation.

Minutes “With regard to the wording of the Committee’s press statement to be released shortly

after the meeting, members discussed at some length the desirability of retaining a reference from

earlier statements to the prospect that an accommodative policy could be maintained “for a considerable

period.” [...] All the members agreed that a change in wording was desirable, not to signal a policy

tightening move in the near term, but rather to increase the Committee’s flexibility to take such an

action when it was deemed to be desirable and to underline that any such decision would be made on

the basis of evolving economic conditions. [...] A number of members commented that expectations

of sustained policy accommodation appeared to have contributed to valuations in financial markets

that left little room for downside risks, and the change in wording might prompt those markets to

adjust more appropriately to changing economic circumstances in the future. ”

A reading of the transcripts of the discussion in the FOMC highlights that the change in

wording in the statement it transpires that the statement is meant to highlight the FOMC different

assessment of state of the economy and therefore to align market expectations to the one of the

FOMC, which sees a future tightening of policy more likely than what the markets were predicting.

Transcripts “ That there remains considerable mass on the possibility of earlier tightening

embedded in financial market prices implies that there is a potential for the rally to be extended as

expectations correct more to the Greenbook baseline. Why market participants might still expect

earlier and more significant firming is evident in the bottom right panel: A survey of economists at

eight dealers indicates that their outlook for inflation is decidedly less subdued than the staff’s, even
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with a growth forecast that is less robust than the staff’s. A distinct possibility is that many in the

market have a gloomier view of the prospects for the growth of aggregate supply [...]”

“In the Bluebook, we suggested adopting the notion of “patience” that the Chairman introduced

in a recent speech, which market participants would probably take as implying that the Committee

viewed events as such that it could be gradual in firming policy.”

Chairman Greenspan speaking: “[...] I think today is the day we should adjust our press

statement and move to a reference to “patience.” I think the downside risks to that change are

small. I do think the market will react “negatively” as we used to say, but I’m not sure such a

reaction would have negative implications, quite frankly. [...] If we go to “patience,” we will have

full flexibility to sit for a year or to move in a couple of months. [...] ”

May 4, 2004 FOMC Meeting: Positive anticipated monetary policy shock

“The Committee perceives the upside and downside risks to the attainment of sustainable growth for

the next few quarters are roughly equal. Similarly, the risks to the goal of price stability have moved

into balance. At this juncture, with inflation low and resource use slack, the Committee believes that

policy accommodation can be removed at a pace that is likely to be measured.”

The keyword in the statement, as evident from the minutes and traspits of the discussion, is

”measured”. This is meant to convey the intention of moving toward a tighter policy, but with at a

pace that is slower than what market participants are expecting.

Minutes: The Committee also discussed at length the advantages and disadvantages of modifying

or dropping its statement in the announcement following the March meeting that ”With inflation

quite low and resource use slack, the Committee believes that it can be patient in removing its policy

accommodation.” All of the members agreed that, with policy tightening likely to begin sooner than

previously expected, the reference to patience was no longer warranted. The Committee focused

instead on a formulation that would emphasize that policy tightening, once it began, probably could

proceed at a pace that would be ”measured.” A number of policymakers were concerned that such

an assertion could unduly constrain future adjustments to the stance of policy should the evidence

emerging in coming months suggest that an appreciable firming would be appropriate. Others,

however, saw substantial benefits to inclusion of the proposed language. These members noted

that current economic circumstances made it likely that the process of returning policy to a more

neutral setting would be more gradual, once under way, than in past episodes when inflation was
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well above levels consistent with price stability. In addition, some policymakers observed that the

timing and magnitude of future policy adjustments would ultimately be determined by the Committee’s

interpretation of the incoming data on the economy and prices rather than by its current expectation

of those developments. On balance, all the members agreed that they could accept an indication

in the statement that ”. . . policy accommodation can be removed at a pace that is likely to be

measured.”

Transcripts In the Bluebook, we offered modified language that the “Committee believed that

policy accommodation can likely be removed at a measured pace” to emphasize that you see yourselves

entering a tightening phase but one that likely will not be as aggressive as in prior episodes. That

emphasis seemed important because, as in the table at the bottom left, market participants currently

anticipate about 200 basis points of firming in the next year. That is probably influenced by the

experience of the three prior tightening phases, in which the funds rate moved an average of 2 2/3

percentage points higher within the first year. But with inflation lower now than in those prior

episodes, you may see less need at this juncture for such firming, perhaps viewing as more likely

something on the order of the 100 basis point increase assumed by the staff. In the Greenbook, the

gradual realization by investors that you will not need to tighten as sharply as they now believe

imparts an accommodative offset to your policy firming. Without that offset, you may be concerned

that the swing of both monetary and fiscal policies toward more restraint may slow the growth of

spending next year even more than is built into the Greenbook.

FOMC Forward Guidance: 2011 - 2012

August 9, 2011 FOMC Meeting: Negative anticipated monetary policy shock

Statement. “The Committee currently anticipates that economic conditions–including low rates of

resource utilization and a subdued outlook for inflation over the medium run–are likely to warrant

exceptionally low levels for the federal funds rate at least through mid-2013. [. . . ] The Committee

discussed the range of policy tools available to promote a stronger economic recovery in a context of

price stability. It will continue to assess the economic outlook in light of incoming information and

is prepared to employ these tools as appropriate.”

Minutes. “In the discussion of monetary policy for the period ahead, most members agreed

that the economic outlook had deteriorated by enough to warrant a Committee response at this

meeting. While all felt that monetary policy could not completely address the various strains on the
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economy, most members thought that it could contribute importantly to better outcomes in terms of

the Committee’s dual mandate of maximum employment and price stability. In particular, some

members expressed the view that additional accommodation was warranted because they expected the

unemployment rate to remain well above, and inflation to be at or below, levels consistent with the

Committee’s mandate.”

From the transcripts it is clear that the statement chosen, over the various alternative considered

reflects the intention of providing additional stimulus to the economy. This for instance transpires by

the Secretary of the FOMC, Mr. English, description of the rationale for adopting the statement that

was eventually released. Specifically, he mentions “With the incoming data over the intermeeting

period suggesting an even weaker outlook for economic activity, some participants may feel that

it is now appropriate to provide additional accommodation, as in alternative A. [. . . ] Regarding

monetary policy, alternative A would include two steps to provide additional accommodation. First,

paragraph 3 would provide more-explicit forward guidance about the expected path for the federal

funds rate by specifying that exceptionally low levels were likely “at least through mid2013.” Second,

[. . . ] Although expectations may have moved in recent days, market participants would probably still

be surprised by the adoption of alternative A. Interest rates and the foreign exchange value of the

dollar would likely fall, and stock prices would probably increase.”

January 24-25, 2012 FOMC Meeting: Negative anticipated monetary policy shock

Statement. “To support a stronger economic recovery and to help ensure that inflation, over

time, is at levels consistent with the dual mandate, the Committee expects to maintain a highly

accommodative stance for monetary policy. In particular, the Committee decided today to keep the

target range for the federal funds rate at 0 to 1/4 percent and currently anticipates that economic

conditions–including low rates of resource utilization and a subdued outlook for inflation over the

medium run–are likely to warrant exceptionally low levels for the federal funds rate at least through

late 2014.”

Minutes. “With respect to the statement to be released following the meeting, members agreed

that only relatively small modifications to the first two paragraphs were needed to reflect the incoming

information and the modest changes to the economic outlook implied by the recent data. In light

of the economic outlook, almost all members agreed to indicate that the Committee expects to

maintain a highly accommodative stance for monetary policy and currently anticipates that economic
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conditions–including low rates of resource utilization and a subdued outlook for inflation over the

medium run–are likely to warrant exceptionally low levels for the federal funds rate at least through

late 2014, longer than had been indicated in recent FOMC statements. In particular, several members

said they anticipated that unemployment would still be well above their estimates of its longer-term

normal rate, and inflation would be at or below the Committee’s longer-run objective, in late 2014.

It was noted that extending the horizon of the Committee’s forward guidance would help provide

more accommodative financial conditions by shifting downward investors’ expectations regarding the

future path of the target federal funds rate. Some members underscored the conditional nature of the

Committee’s forward guidance and noted that it would be subject to revision in response to significant

changes in the economic outlook.”

From the transcripts it is clear that the statement chosen, over the various alternative considered

reflects the intention of providing additional stimulus to the economy. This for instance transpires by

the Secretary of the FOMC, Mr. English, description of the rationale for adopting the statement that

was eventually released. Specifically, he mentions “However, your SEP submissions suggest that you

see only modest economic growth over coming quarters, with the unemployment rate declining even

more slowly than you anticipated at the time of the November SEP. [...] With regard to inflation,

the SEP results suggest that most of you see inflation as likely to be subdued. Against this backdrop,

you may wish to ease financial conditions a bit further by providing forward guidance that pushes

out the expected date of the liftoff of the federal funds rate. You may also think it helpful to provide

clear guidance regarding the economic conditions that would warrant retaining the current very low

level of the federal funds rate. [...] Market participants see significant odds that the Committee

will raise the funds rate by the middle of 2014, and so specifying a date of “at least through late

2014” would likely push out somewhat expectations for the date of the first increase in the funds

rate. Longer-term interest rates would likely decline a little, equity prices could rise some, and the

foreign exchange value of the dollar might soften. ”

September 12-13, 2012 FOMC Meeting: Negative anticipated monetary policy shock

Statement. “ The Committee is concerned that, without further policy accommodation, economic

growth might not be strong enough to generate sustained improvement in labor market conditions.

Furthermore, strains in global financial markets continue to pose significant downside risks to the

economic outlook. The Committee also anticipates that inflation over the medium term likely would
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run at or below its 2 percent objective.[...] To support continued progress toward maximum employ-

ment and price stability, the Committee expects that a highly accommodative stance of monetary

policy will remain appropriate for a considerable time after the economic recovery strengthens. In

particular, the Committee also decided today to keep the target range for the federal funds rate at 0

to 1/4 percent and currently anticipates that exceptionally low levels for the federal funds rate are

likely to be warranted at least through mid-2015.”

Minutes. “Members generally judged that without additional policy accommodation, economic

growth might not be strong enough to generate sustained improvement in labor market conditions.

[...] Inflation had been subdued, even though the prices of some key commodities had increased

recently. Members generally continued to anticipate that, with longer-term inflation expectations

stable and given the existing slack in resource utilization, inflation over the medium term would run

at or below the Committee’s longer-run objective of 2 percent.

In their discussion of monetary policy for the period ahead, members generally expressed concerns

about the slow pace of improvement in labor market conditions and all members but one agreed

that the outlook for economic activity and inflation called for additional monetary accommodation.

Members agreed that such accommodation should be provided through both a strengthening of the

forward guidance regarding the federal funds rate and purchases of additional agency MBS at a pace

of $40 billion per month. [...] With regard to the forward guidance, the Committee agreed on an

extension through mid-2015, in conjunction with language in the statement indicating that it expects

that a highly accommodative stance of policy will remain appropriate for a considerable time after

the economic recovery strengthens. That new language was meant to clarify that the maintenance

of a very low federal funds rate over that period did not reflect an expectation that the economy

would remain weak, but rather reflected the Committee’s intention to support a stronger economic

recovery.”

The presentation material for this meeting associated with the alternative monetary policy

options, presents simulations which highlight how the adopted statement was meant to provide

additional stimulus to the economy. In fact, the secretary of the FOMC, Mr. English, states

“The black solid lines in the charts depict the experimental consensus forecast, which is conditioned

on unchanged policy. The red dashed lines show the results of a more accommodative policy, one

that’s consistent with an alternative B that shifts back the date in the forward guidance to mid-2015

and, in addition to $30 billion of MBS purchases a month and completion of the MEP this year,
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involves buying longer-term securities at a rate of $75 billion a month through the middle of next

year. [...]] So long as the public correctly anticipates that the Committee will follow this policy, the

result is a more rapid economic recovery that takes the unemployment rate to 6.3 percent by the

end of 2015, about 1/2 percentage point lower than in the consensus baseline; the inflation rate

(shown at the bottom right) is a bit higher but remains near your 2 percent longer-run objective. [...]

If, in reviewing the outlook under the unchanged policy, the Committee views the likely outcomes

for employment and inflation as inconsistent with its mandate, it might choose to ease policy by

strengthening the forward guidance in the statement and engaging in additional asset purchases.

Alternative B, on page 5, may offer the Committee an attractive approach to moving strongly in

that direction at this meeting, but without committing now to a large, discrete purchase program. ”
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Figure J.1: Comparison under Different Treatments of Uncertainty

(a) No Uncertainty (Ωf = 0,Ωg = 0)
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(b) Only Uncertainty about the Non-Driving Shocks (Ωf = 0,Ωg = I)

GDP per cap. growth

2016 2017 2018 2019 2020 2021
-2

-1

0

1

2

3

4

5

6

%
 p

.a
. (

4-
qu

ar
te

r 
av

er
ag

e)

Core PCE inflation

2016 2017 2018 2019 2020 2021
0

0.5

1

1.5

2

2.5

3

3.5

4

%
 p

.a
. (

4-
qu

ar
te

r 
av

er
ag

e)

Federal Funds Rate

2016 2017 2018 2019 2020 2021
0

0.5

1

1.5

2

2.5

3

3.5

4

%
 p

.a
.

(c) Full Uncertainty (Ωf = DD′,Ωg = I)
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Note: For each panel, the solid black lines represent actual data, the solid red line is the conditioning assumption on
the fed funds rate, the solid blue line is the median forecast for the remaining variables and periods, and the blue
shaded areas denote the 40 and 68% pointwise credible sets around the forecasts. The dotted gray lines represent the
median unconditional forecast.
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Figure J.2: Returning to the Price Level Target: Unanticipated Shocks Only
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Note: For each panel, the solid black lines represent actual data. The solid blue lines and associated shaded areas
are the median, 40 and 68% pointwise credible sets around the forecasts of the other variables given such that the
constraint that inflation returns to the price level target within a five-year horizon is satisfied. The dotted gray lines
represent the median unconditional forecast.
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