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1 Introduction

The global challenge of reducing greenhouse gas emissions has become increasingly important in recent
years. To meet this goal, policymakers, companies, and individuals worldwide have contributed to the de-
velopment of renewable energy systems, with a global investment in these new technologies of over $300
billion in 2019.1 Solar photovoltaic (PV) is one of the leading technologies among renewables, experiencing
a remarkable growth in recent years. Total solar power capacity worldwide grew from around 40 GWp in
2010 to over 627 GWp at the end of 2019, and now 3% of the world’s electricity demand is covered by
PV.2 To encourage adoptions of solar panels, regulators have relied on various incentives. First, installa-
tion subsidies reduce the upfront investment cost. Second, feed-in tariffs guarantee solar energy producers
remuneration above market price for any electricity supplied to the grid. Third, self-consumption policies
allow solar energy producers to consume the electricity they produce, saving on the cost of electricity pro-
curement, the marginal grid price, and electricity taxes.3 Self-consumption policies have gained traction in
recent years, as they reduce the financial burden for the government and the grid integration cost of solar
panels, incentivising the timing overlap of electricity consumption and production.

While the widespread adoption of solar panels and self-consumption policies are desirable from an en-
vironmental perspective, this trend comes at a cost for utilities worldwide (MIT, 2011; The Economist,
2017). The growing number of PV adoptions poses two main challenges to regulators. First, households
with PV installations still require network energy, leaving the fixed grid maintenance costs unchanged, or
even increasing operation costs (Joskow, 2012).4 However, as they produce and consume their own energy,
these households contribute less to covering grid costs, because these are mostly paid with revenues from
consumption-based marginal prices in a standard two-part tariff. This is likely to make the sustainability
of network financing problematic (Borenstein, 2012; Bushnell, 2015), leading to a ‘death spiral’ of rising
prices. Second, households that can afford to install a solar panel are usually richer, which can generate
a regressive redistributive effect in green energy incentives. This is both because subsidies mostly benefit
richer households, and because households without solar panels, which are likelier to be poorer, may end up
paying a larger share to finance the distribution grid. In the absence of equity and environmental considera-
tions, efficiency arguments would require recovery of increasing grid costs through a higher fixed access fee
instead of via marginal prices, ensuring that solar panel owners fully contribute to grid financing. However,
such a change in tariffs would erode incentives to install solar panels and potentially have regressive effects,
since it would increase grid expenditure relatively more for low-consumption households. This opens the
question of how policymakers should design two-part tariffs and subsidies in order to achieve solar adoption
targets, while balancing efficiency and equity, and recovering fixed network costs (Borenstein, 2016).

This paper proposes a tariff design that addresses the challenges of network financing and vertical equity,
1Source: Renewable Energy Policy Network for the 21st Century (REN21), Renewables 2020 Global Status Report.
2Source: International Energy Agency, 2020 Snapshot of Global Photovoltaic Markets (Report IEA-PVPS T1-37:2020).
3In the US, energy providers commonly employ ‘net metering’, meaning that electricity bills are based on energy consumption

net of solar panel production, which corresponds to a self-consumption percentage of 100%.
4As reported by a study commissioned by the Swiss Federal Office of Energy titled Energieszenarien für die Schweiz bis 2050

(Energy Scenarios for Switzerland until 2050), the Swiss government expects a total CHF 6 billion (equivalent to around USD 6
billion) additional grid costs from 2011-2035 from decentralised production of electricity. Borenstein (2008) argues that the costs
of adopting the PV technology exceed its market benefits, as solar panels increase the costs of energy transmission and distribution.
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developing a structural framework for households’ static electricity demand and dynamic PV adoption, and
modelling regulators’ optimisation problem when setting two-part tariffs and subsidies. While Feldstein
(1972) derived the optimal two-part tariff combining equity and efficiency considerations, we contribute
to the literature on public utility pricing by adding a third dimension, namely renewable energy targets to
address environmental concerns. Moreover, in contrast to earlier work on solar panel adoption (Burr 2016;
De Groote and Verboven 2019; Langer and Lemoine 2018), our paper is the first to study optimal design of
both two-part tariff and subsidy in a setting where households can consume the solar energy they produce,
and to investigate the distributional effects of policies to stimulate PV adoption.

More specifically, our tariff design involves marginal prices, fixed fees, and installation subsidies. Our
model allows us to quantify the trade-offs that these three instruments generate, when the regulator aims
to achieve a predefined solar energy target, while guaranteeing the recovery of network costs based on
efficiency and equity motives. First, fixed fees can serve to recover grid costs, but are regressive and do
not encourage PV adoption. Second, marginal prices can instead incentivise solar panel installations, and
are also useful to finance the grid in a progressive way, as high-income households tend to consume more
electricity and be less price sensitive. Last, installation cost subsidies foster adoptions, but must be financed
via higher fixed fees or marginal prices. These trade-offs highlight the importance of modelling not only PV
installation, but also households’ electricity consumption, as the latter can serve to measure how changes in
fees and marginal prices affect the recovery of network costs and the solar energy target, defined as the ratio
of solar energy produced to total electricity consumption.5 Our findings highlight that relying on marginal
prices to finance the energy grid is a cost-efficient and progressive way to incentivise PV adoptions, but
generates a larger aggregate welfare loss relative to installation cost subsidies.

Similar challenges are common in other markets where the adoption of a new technology helps to achieve
environmental targets, but erodes the revenue to finance infrastructure network costs, and is incentivised
with government schemes that mainly benefit higher income adopters. For example, the spread of electric
vehicles, mostly purchased by wealthy households due to their high prices, and often subject to generous
government incentives, contributes to a decline in revenues from fossil fuel taxes used for road maintenance
and development (Davis and Sallee, 2020). This calls for a redesign of motoring taxation that, as in the
context of our paper, incorporates not only environmental objectives, but also distributional effects and the
recovery of infrastructure costs.6 More generally, these challenges also apply to government incentives for
building renovations or firms’ investments that improve energy efficiency. These are beneficial from an
environmental perspective, but mostly target landlords and home or building owners, and can result in lower
revenues for electricity and gas utilities that face large fixed network costs.

We use a unique matched panel dataset with yearly information on electricity consumption, prices, in-
come, wealth, solar panel installations, and building characteristics for around 165,000 households in the
Canton of Bern (Switzerland) in 2008-2014. These data combine information from four different sources.
First, the three main energy providers in the Canton gave us data on households’ electricity consumption
and expenditures, electricity prices, and households’ PV adoptions. Having access to household level elec-

5Most regulators set these green energy targets in terms of percentage of electricity consumed coming from renewable sources,
such as the EU’s Renewable Energy Directive 2008/28/EC.

6The UK government could lose up to £28 billion revenues from fuel duties if it reaches its target of zero vehicles’ net emissions
by 2050 (Institute for Fiscal Studies’ publication “A road map for motoring taxation” by Adam, Stroud, 4 October 2019).
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tricity consumption data is crucial to estimate the elasticity of electricity demand, and to incorporate in our
structural framework the impact of marginal prices on electricity consumption, welfare, and grid financing.
It also allows to accurately model the impact of marginal prices on solar panel adoption, because the revenue
from installing a PV is a function of the share of electricity produced by a solar panel that each individual
household can consume. Moreover, it is necessary to measure the distributional effects of alternative tariff
designs. Second, the Tax Office of the Canton of Bern gave us yearly information on each household’s in-
come, wealth, tax payments, and demographics, including location. To our knowledge, this is the first paper
that is able to match households’ energy consumption with exact income, wealth, and PV ownership data.
Third, the Swiss Federal Statistical Office gave us access to cross-sectional information on each household’s
building characteristics, including number of rooms, house or apartment surface, heating and water systems,
and building construction period, all key determinants of households’ energy consumption. Last, we have
information on installation costs, and a Swiss online advisory platform for solar energy systems simulated
for us a novel dataset on potential energy production and self-consumption shares of solar panels on each
building in our data, based on the respective building and household characteristics.

We use this data to estimate a structural model of energy demand and PV installation. We let households
be forward looking and solve a dynamic problem in their solar panel adoption decision, and estimate the
parameters of their energy demand function using a geographical boundary regression discontinuity design.
This approach exploits price variation at spatial discontinuities between electricity providers and allows us
to address the endogeneity of energy prices and fees. The electricity consumption and PV adoption model
allows us to simulate the effects of energy tariffs and subsidies on PV adoption, welfare, and redistribution.

In our counterfactuals, we specify the regulator’s constrained optimisation problem that allows us to
find the optimal combinations of marginal prices, fixed fees, and PV installation cost subsidies to achieve
various solar energy targets over a five-year horizon, while guaranteeing network financing. We find that
the cheapest way to reach the solar target relies on raising marginal prices, which simultaneously serve as
an incentive to adopt, and as a financing tool for network costs. This has a regressive effect across adopting
and non-adopting households, but overall, a stronger progressive effect due to the larger grid contribution of
richer non-adopting households. Accounting for equity considerations in the regulator’s cost minimisation
makes grid financing more expensive, and relies on small changes in marginal prices and fixed fees to
finance the installation subsidies. This strategy uniformly distributes the additional cost of transitioning
to more solar energy across household income distribution. On the other hand, a regulator preference for
achieving the solar energy target while maximising households’ welfare would require a different approach.
This would entail high installation cost subsidies to stimulate PV adoptions; a drastic reduction in marginal
prices, as these negatively affect household surpluses; and a high fixed fee to cover network costs. Last,
accounting for both welfare and equity motives leads to a less pronounced reduction in marginal prices and
a lower subsidy. Overall, our approach can be easily generalised to any household’s or firm’s technology
adoption decision that affects network costs and vertical equity within the system.

Related Literature. Our paper contributes to various strands in the literature. First, our modelling ap-
proach and counterfactuals, together with a rich and unique dataset, bring a novel contribution to the recent
literature on the distributional and efficiency effects of environmental policies in energy markets (Boren-
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stein, 2017).7 Our regulator’s tariff design approach is close to Wolak (2016), who focuses on the nonlinear
price schedule design for water utilities to balance revenue and conservation goals, while preserving vertical
equity. Relative to this literature, we are the first to develop a structural model of both electricity consump-
tion and PV installation to quantify the distributional effect of current policies, and to offer alternative tariffs
that incentivise adoption while recovering network costs, trading off efficiency, welfare, and vertical equity
motives. Our approach could be directly used by policymakers, who generally have access to the same data
that we use, to set their tariffs and subsidies. It could also be applied in other settings, such as adoption of
electric vehicles, or energy efficient renovations of buildings.

Connected to this literature, we rely on various contributions in public finance to motivate the vertical
equity concern of a policymaker in the design of energy tariffs. While Atkinson and Stiglitz (1976) argue
that redistribution should only be achieved via income tax, Stiglitz (1982) and Naito (1999) support the use
of a second instrument to achieve income redistribution, and a number of papers promotes the redistributive
role of public utility pricing.8 This literature on public utility pricing commonly assumes that the regulator is
constrained in the design of income taxation, one of the reasons being the political cost of changing income
taxes. This provides an argument for vertical equity that is particularly relevant in Switzerland, where direct
democracy implies that changes in income tax can only be achieved via national referenda. Based on this
principle, Switzerland and other European countries (UK and Italy, for example) have separate budgets for
energy versus other types of government spending, avoiding cross-subsidisation between different areas.9

Second, we contribute to the growing literature on structural models of households’ solar panel adoption
(Burr, 2016; Hughes and Podolefsky; 2015, De Groote and Verboven; 2019; Langer and Lemoine, 2018).
While all these papers exclusively model households’ dynamic adoption decisions, by focusing on the ef-
fect of subsidies and feed-in tariffs, we are able instead to estimate a model that encompasses households’
PV installation and electricity consumption decisions, quantifying the extent to which marginal prices can
incentivise adoption. This allows us to study two-part tariff and subsidy design under a self-consumption
policy, where households directly consume the electricity produced by their solar panel, reducing their en-
ergy bills. In addition, we analyse tariff and subsidy design from a regulator’s perspective, guaranteeing
that the network and subsidy costs are recovered through electricity bills, while also achieving predefined
solar energy targets. Finally, our exact income match at the household level and our counterfactual simula-
tions allow us to correctly identify the distributional effects of both tariff and subsidy schemes, a topic that
none of the above papers considers. These novel contributions are possible because we are the first to be
able to match detailed data on households’ electricity consumption, prices, expenditures, incomes, building
characteristics, and PV adoption status.

Last, our paper is part of a large literature estimating price elasticities of residential electricity demand
(Reiss and White, 2005; Ito, 2014).10 A common feature of these papers, as with others in the literature, is
that they can only imperfectly match households’ electricity consumption with income census data, using
aggregate zip code information. Our dataset has two fundamental advantages compared to the data used

7Several papers have analysed the distributional consequences of environmental policies (Bento, 2013), ranging from gasoline
taxes (Bento et al., 2009), US clean energy tax credits (Borenstein and Davis, 2016), fuel economy standards (Davis and Knittel,
2019), solar panel adoption (Eid et al., 2014), and US energy market (Reguant, 2019).

8See, for instance, Feldstein (1972a); Feldstein (1972b); Munk (1977); Saez (2002).
9We explore the adequacy of energy policy for redistribution in detail in a follow-up paper (Feger and Radulescu, 2020).

10Other relevant papers are Maddock et al., (1992); Kamerschen and Porter (2004); Alberini et al. (2011).
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by the existing literature. First, it covers almost the whole population of the Canton of Bern, the second-
largest canton in Switzerland, as opposed to previous papers only having access to a representative sample of
households. Second, it provides an exact match of households’ yearly electricity consumption to their annual
incomes and wealth, as well as to detailed building characteristics, and potential PV costs and production.

Our paper is structured as follows. Section 2 introduces the institutional features of the Swiss energy
market and describes the data. In Section 3, we present the model, and in Section 4, we describe the
estimation strategy and the identification. Section 5 shows the results, Section 6 presents the counterfactuals,
and Section 7 concludes.

2 Swiss Electricity Market and Data

Switzerland is a federal state, divided into 26 cantons and roughly 3,000 municipalities. The Swiss elec-
tricity market is optimally suited to study a regulator’s optimisation problem, because energy providers are
local monopolists when it comes to households’ electricity provision, and need to follow the requirements of
the regulator, ElCom, when setting prices. This also means that residential customers are assigned different
energy providers depending on their locations, and cannot choose their preferred suppliers.

Switzerland is a successful example in terms of solar power incentives and adoptions. Between 2006
and 2017, the total capacity of solar panels in Switzerland increased by 66 times, from 29 MW to 1.9 GW
(Swissolar, 2017), as reported on the left panel of Figure I.9 in Appendix I (in MW), matching the overall
global growth presented on the right panel of Figure I.9 in Appendix I (figures shown in GW). According to
recent reports by the International Energy Agency,11 in 2019, Switzerland reached 4.2% of PV contribution
to national electricity demand, close to the average EU level of 4.9%, and above the 3% world average.
Moreover, despite its large share of mountainous terrain, Switzerland has an average sun irradiation index of
950 kWh/kW, at the same level as other European countries that are leading in the PV adoption process, such
as Germany and Belgium. Last, when considering installed PV capacity per habitant in 2019, Switzerland
reached a level of 242W, compared to 548W in Germany, 191W in the US, and 126W in China.

A key driver of the growth of solar panels in Switzerland was the introduction in 2008 of the feed-in
tariff remuneration system known as ‘KEV’.12 Households that entered the programme were entitled to a
time-invariant feed-in tariff for any electricity produced over the following 25 years. Since 2008, the com-
pensation for new adoptions has been progressively reduced, both because the pre-determined budget could
not match the large number of incentive requests, and because of the sharp decline in PV installation costs.
In 2014, the Swiss regulator switched from a subsidised feed-in tariff system to a self-consumption-based
system. Since then, small panels (<10 kW) receive a one-time subsidy amounting to 30% of PV instal-
lation cost, instead of a guaranteed feed-in tariff for their production. Simultaneously, the new legislation
mandated energy providers to allow households to consume directly the electricity they produced.

Figure 1 illustrates the trade-off that households faced between declining feed-in tariffs and declining
installation costs, which motivates our use of a dynamic framework to model households’ PV adoption
decisions. It summarises the expected production revenue and the installation costs for households in the

11See Trends in Photovoltaic Applications 2019 (Report IEA PVPS T1-36:2019), and Snapshot of Global Photovoltaic Markets
2020 (Report IEA PVPS T1-37:2020).

12An abbreviation for Kostendeckende Einspeisevergütung in German, which means cost-covering feed-in remuneration.

6



Canton of Bern across time and solar panel size in kWp.13 The left panel depicts production revenue under
two different policies: subsidised feed-in tariffs, active between 2008 and 2013; and self-consumption, from
2014 onwards. The subsidised feed-in tariff was well above the electricity market price and was adjusted
annually for new adopters, but once a household adopted a solar panel, the tariff was fixed at the installation
date and guaranteed for the following 25 years. Since 2014, households instead receive a one-time subsidy
that reduces their installation costs. Under this policy, for each kilowatt fed into the grid, households are
remunerated by their energy provider at the market price for electricity. However, for each kilowatt of solar
production that households directly consume (i.e. self-consumption), they additionally save on taxes and the
marginal grid price. The right panel of Figure 1 depicts the declining trend in cost, excluding subsidies, of
a PV installation in Switzerland from 2008 to 2014.

Figure 1: FEED-IN REMUNERATION AND AVERAGE INSTALLATION COST

Note: The left panel shows remuneration fees for on-roof solar panels in Switzerland. The right panel depicts average installation costs in Switzer-
land, collected by an annual survey published by the company PhotovoltaikZentrum für Solarmarketing (http://www.photovoltaikzentrum.de/).
kWp means kilowatt peak, which is the capacity of a solar panel under standard test conditions. The values corresponding to the left vertical axis of
the right panel are calculated as follows: fixed installation costs divided by total production of the panel over 25 years (its life span), where 1 kWp
corresponds to slightly less than 1,000 kWh yearly, due to the panel’s degrade factor.

To address our research questions, we constructed a unique dataset for the Swiss Canton of Bern for
the years 2008 to 2014, which combines yearly household level electricity consumption, prices, income,
wealth, PV installations, and buildings’ characteristics. With an area of around 6,000 km2 and just over
1 million inhabitants, the Canton of Bern is the second-largest Swiss canton in terms of population. The
three main energy providers in the canton are BKW Energie AG (BKW), Energie Wasser Bern (EWB), and
Energie Thun (ET).14 These three main energy providers made available to us their data on household energy
consumption, household PV installations, and infrastructure network costs and tariffs. The map in Figure
B.2 in Appendix B shows the geographical distribution of households and the coverage of the respective
energy providers in the Canton of Bern, highlighting the clear spatial discontinuities between providers that
we will exploit to identify price elasticities.

13Installation costs include the cost of the solar panels, as well as the additional materials used during the installation process.
We do not have information on labour costs.

14BKW supplies over 7,500 GWh of energy to around 200,000 households in 400 municipalities. EWB supplies energy to around
70,000 households and is mainly responsible for the city of Bern, whereas ET serves only 20,000 households in the city of Thun.
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As in many other countries, and importantly in the context of our analysis, the energy providers in
the Canton of Bern recover the fixed cost of the energy grid partially through marginal grid prices. Table
1 reports the detailed price components for each company. The energy costs are divided into a fixed fee
to access the energy grid, and a variable price consisting of four major components. First is a variable
energy price defined by each supplier, reflecting the costs of internal production and of procurement of
electricity on the market. The procurement cost makes up only 50-60% of the total energy price. Second
is a variable price for grid usage, covering the energy distribution network costs and again varying across
providers. This is roughly 40% of the total variable price. Third is a uniform surcharge levied by the federal
state used to promote renewable energy. Fourth are taxes levied by the communal, cantonal, and federal
authorities. As opposed to Californian utilities, which usually resort to increasing marginal prices with the
level of consumption (also known as Increasing Block Pricing), Swiss utilities apply a constant price per
kWh irrespective of the amount of electricity consumed. However, some of the households in our data face
a dual tariff scheme, with prices differing between night and day, and with higher daytime price steering
consumption to off-peak hours.15 In the estimation and counterfactuals, we will use a constant variable
price and postpone the discussion of dual tariff customers to Section 4.

Table 1: ANNUAL ENERGY PRICES, NETWORK TARIFFS AND TAXES

BKW EWB ET
Mean Std Dev Mean Std Dev Mean Std Dev

Fixed Fee (CHF/year) 139 27 82 47 105 20
Marginal Price (Rp./kWh) 21 2.8 17.5 2.3 22.5 1.6

Energy Price 10.3 1.2 10 .8 11.5 .5
Grid Price 8.3 1.7 6.4 1.6 8.2 1.8
Municipality Tax 1.8 .3 .5 .3 2.3 1.6
KEV Tariff .5 .1 .5 .2 .5 .1

Note: The table shows average annual prices and standard deviation in the sample. KEV Tariff is the surcharge used to promote renewable energy.
Rp (Rappen) is one-hundredth of a Swiss franc (CHF). All prices include the value-added tax.

Households in the Canton of Bern receive their electricity bills once per year. From the energy providers,
we have access to the corresponding meter readings and construct household energy expenditures based on
the historical price lists. Table 2 presents descriptive statistics of households’ energy consumption and
annual expenditures , with a breakdown for the different components of the electricity bill. As displayed in
the first row of Table 2, the annual household energy consumption is on average 4,136 kWh. Rows 3-6 in
Table 2 display summary statistics for the different expenditure components of the electricity bill. Of the
average annual bill of CHF 928, roughly 44% consists of energy grid payments, which are a combination of

15While ET only offers a dual tariff to its customers, BKW and EWB assign either dual or uniform tariffs to each of their clients.
Both providers base this tariff assignment on building characteristics and expected consumption patterns. Customers with a dual
tariff meter have the option to switch to a uniform tariff, but for almost all households in our dataset, this would result in a higher
electricity bill. Switching from a uniform to a dual tariff scheme would instead require the household to install a costly dual tariff
meter. For these reasons, we observe in our data only 1.2% of households switching from uniform to dual tariffs, and only 0.8% of
households switching from dual to uniform tariffs. We exclude tariff switchers from the analysis. Table I.3 in Appendix I reports
the full breakdown of prices across uniform and dual tariffs.
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the fixed fee and marginal grid price expenditures.

Table 2: ANNUAL ENERGY CONSUMPTION AND EXPENDITURE

N Obs Mean Std Dev 5th Perc Median 95th Perc

Energy Consumption (kWh) 872,665 4,136 3,797 812 3,022 11,032
Energy Expenditure (CHF) 872,665 928 700 267 738 2,224
Energy Price Expenditure (CHF) 872,665 409 350 88 313 1,052
Grid Expenditure (CHF) 872,665 441 281 157 370 960
Tax Expenditure (CHF) 872,665 59 67 2 40 178
KEV Expenditure (CHF) 872,665 19 19 3 14 53

Note: The descriptive statistics are pooled over all companies and years. KEV Expenditure is the surcharge used to promote renewable energy.

Detailed yearly data on household income and wealth were provided by the Tax Office of the Canton
of Bern.16 These data are essential to understand the redistributive impact of the trend in PV adoptions and
of different tariff designs. Furthermore, they also provide many household characteristics important in the
estimation and the counterfactuals. Table 3 reports summary statistics for different measures of income and
household tax payments. Despite Switzerland being one of the richest countries in the world, it is still subject
to issues of income and wealth inequality. In particular, while it ranks close to large European countries
in terms of Gini coefficient of income inequality,17 its wealth inequality measured as the share of total
wealth owned by the top 1% has been the highest since the 1960s among countries with long time series of
wealth data. Among those countries, Switzerland is the only one that has experienced no reduction in wealth
inequality over the last century.18 This evidence makes redistribution an important concern for policymakers
in Switzerland when designing energy tariffs and subsidies. Finally, cross-sectional information on building
characteristics was obtained from the Swiss Federal Statistical Office.

Our data provide evidence that richer households are more likely to install a solar panel. In fact, the
percentage of solar panel owners monotonically increases with income quintiles, as reported in Table A.1 in
Appendix A, which presents a breakdown of PV adoption, energy consumption, and household character-
istics by income quintile. The data also shed light onto how incentives to install a solar panel differ across
income categories. First, higher income quintiles are more likely to be homeowners and live in buildings
with fewer apartments, both of which tend to be preconditions for installing a solar panel.19 In fact, among
households in the first income quintile, only 17% are home owners, whereas among households in the top
income quintile, 72% are home owners. Second, higher income quintiles tend to live in larger apartments
with larger roof sizes, which allows them to build larger solar panels and to profit from economies of scale
in installation costs. Third, high income quintiles are associated with higher marginal tax rates, and since
PV installation costs are tax deductible, richer households can achieve larger tax savings from adopting a

16We describe in detail in Appendix A the data-merging process that determined the final sample of around 165,000 households.
17Source: https://data.oecd.org/inequality/income-inequality.htm.
18Sources: Credit Swiss Global Wealth Report 2017; Data webpage for handbook chapter by Roine, J., Waldenström, D. (2015),

‘Long-run trends in the distribution of income and wealth’, In: Atkinson, A.B., and Bourguignon, F. (Eds.), Handbook of Income
Distribution, vol. 2A, North-Holland, Amsterdam.

19We do not have data on cases where a group of households collectively installs a solar panel.
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PV. Fourth, high-income households are more likely to be able to afford the installation costs. The model
we build in the next section will incorporate all of these incentives. Moreover, switching from a feed-in
tariff to a self-consumption setting adds an extra channel. Richer households tend to have higher electricity
consumption and more electric appliances, making them more likely to effectively match consumption to
the production of a PV. In fact, for a given size of solar panel, having 1 kWh higher annual consumption is
associated with 0.2 kWh of higher self-consumption. The higher the level of self-consumption, the more a
household saves on marginal grid prices and energy taxes.

Table 3: ANNUAL INCOME, WEALTH AND TAX PAYMENTS

N Obs Mean Std Dev 5th Perc Median 95th Perc

Total Income (CHF) 872,665 92,492 124,767 13,235 78,255 201,249
Taxable Income (CHF) 872,665 71,162 114,591 4,864 60,663 156,040
Total Wealth (CHF) 872,665 493,751 2032658 0 195,176 1570740
Cantonal Tax (CHF) 872,665 7,159 14,003 0 5,358 18,366
Municipal Tax (CHF) 872,665 3,683 6,846 0 2,807 9,349
Federal Tax (CHF) 872,665 1,654 9,148 0 454 5,845

Note: The table shows descriptive statistics for the sample pooled over all years. All variables are measured in Swiss francs (CHF). Taxable
income is defined as total income (in the form of labour income or income from self-employment) plus rental value of owner-occupied housing,
less mortgage interest payments, and commuting and living expenses. Given the federal structure of Switzerland, households are subject to three
different income taxes levied by the three different levels of government (cantonal, municipal, and federal).

In Table 4 we provide additional details on PV installations across the three providers, for which we have
information on the size of the solar panel, expected or actual production, and remuneration. In total, 1,544
households in our dataset owned PV systems by the end of the sample period, corresponding to 1.07% of
all households.20 Table 4 shows that households tend to install, on average, 7.7 kilowatt peak of production
capacity, which the Swiss regulator categorises as a ‘small installation’. Each kilowatt peak translates to
roughly 1,000 kWh of annual production. On average, PV energy production was remunerated at a rate
of 0.39 CHF/kWh. Last, electricity consumption of households owning a PV is on average 8,546 kWh,
which is more than double the average consumption across all households as reported in Table 2. While this
shows that high electricity consumption households are more likely to adopt a solar panel, most of these
installations were built under a feed-in tariff scheme, where the income generated by the solar panel was
independent of a household’s electricity consumption.

201,387 of them are customers of BKW, 118 of EWB, and 39 of Energie Thun.
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Table 4: ANNUAL PV ENERGY PRODUCTION AND REMUNERATION

Variables N Obs Mean Std Dev 5th Perc Median 95th Perc

PV Inverter Capacity (kVA) 3,988 7.7 5.2 2.5 6.5 19.3
PV Energy Production (kWh) 3,988 7,267 4,872 2,268 6,175 17,778
PV Remuneration (CHF) 3,988 4,095 2,664 1,649 3,332 9,275
Energy Consumption (kWh) 3,988 8,668 6,610 1,946 7,382 20,017

Note: The descriptive statistics are only for BKW and for solar panels installed from 2008 onwards. This is the subsample we use for the estimation
and counterfactuals, representing 90% of installations. PV Remuneration is constructed as the estimated production multiplied by the remuneration
fees of the respective year. The PV Inverter Capacity is measured in kilo-volt-ampere, a unit of apparent power that is very close to, or slightly
lower than, the kilowatt, therefore comparable to the kWp measure used in Table 5.

Finally, our analysis requires information on the potential production, revenue, and installation cost of a
solar panel for each household in our data. To address this need, we assembled a novel, simulated dataset
with the support of Eturnity AG, a Swiss startup company providing an advisory platform for solar energy
systems, which has developed software to forecast the potential production of rooftop solar panels, using
data on roof surface and local weather as proxies for potential sun exposure. The company used their soft-
ware to simulate the PV production capacity (in kWp) and energy production (in kWh) for each household
in our sample.21 The company’s computations assume that the expected size of an installed solar panel
is proportional to the household’s building surface, with each square meter of building surface translating
into roughly 0.080 kWp of installed solar capacity. In comparison, the effective kWp per square meter for
current owners amounts to 0.077, which is very similar in terms of magnitude. The annual production of a
solar panel is computed by multiplying each kWp by 1,000 kWh, where the number varies slightly based on
geographic location. Finally, given the importance of self-consumption policies within our analysis, Etur-
nity provided us with an estimate of the share of solar production a household can directly consume based
on its electricity consumption, estimated solar production, type of heating, and type of boiler.

Table 5: SIMULATED ANNUAL CAPACITY AND ENERGY PRODUCTION

N Obs Mean Std Dev 5th Perc Median 95th Perc

PV Production Capacity (kWp) 40,394 9.5 4.7 4.7 8.4 18.9
PV Energy Production (kWh) 40,394 9,687 5,586 4,708 8,355 19,116
Self-Consumption

% of Production 40,381 14.8 10.1 5.1 12.4 33.8
% of Consumption 40,394 20.3 8.1 11.8 18.6 33.4
in kWh 40,394 1,223 876 592 990 2,626

Note: The variables show simulated capacity and potential energy production for homeowners of single or double apartment buildings assigned to
BKW. This is the subset of households that, in our PV adoption model, will be allowed to choose whether to install a solar panel or not. Values
are simulated based on roof size, appliances, and geographic location. The number of observations equals the number of households. kWp means
kilowatt peak, which is the capacity of a solar panel under standard test conditions.

21See Appendix C for a template of the price and production quotes that Eturnity provides to a household, and Appendix D for a
description of the formulae, methods, and assumptions that were applied by Eturnity for the simulations provided to us.
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Table 5 summarises the simulated variables for potential PV adopters, which we classify as homeowners
of single or double apartment buildings.22 The simulated capacity and production are slightly higher than
the historical data in Table 4 because the simulations are based on more recent PV technology. Due to
the mismatch between time of production and time of consumption, on average only 14.8% of the energy
produced can be consumed by a household (‘Self-Consumption % of Production’ variable), while the rest
is fed into the grid. This implies that, on average, 20.3% of a household’s total energy demand will be
covered by its own solar panel, which corresponds to roughly 1,223 kWh, while the remaining 79.7% will
be sourced from the energy provider. With a marginal grid price of approximately 0.1 CHF/kWh, self-
consumption translates into CHF 120 annual grid cost savings. Throughout the rest of the paper we will
refer to the directly consumed electricity as ‘self-consumption’.

While the simulated self-consumption percentages include households using electric boilers or heating to
shift PV energy production across time, they do not include batteries. Batteries allow households to reach an
even higher percentage of self-consumption, but require additional investments. In Switzerland, installing
a 6 kWh lithium battery cost roughly CHF 9,000 in 2016.23 As a robustness check, we also consider
a scenario where batteries allow households to satisfy all of their energy demand through their own PV.
Besides providing an upper bound for the impact of self-consumption on grid financing, this scenario also
corresponds to ‘net metering’ billing, where households are billed based on the net difference in production
and consumption, irrespective of how much of the production they feed in.

3 The Model

We define a framework to model how households respond to fixed and variable energy charges, as well as
to subsidies for PV adoption, in their optimal electricity consumption and solar panel installation decisions.
We let households be forward-looking and solve a dynamic problem, in the spirit of Hendel and Nevo
(2006). Crucially, in contrast to a static model, our dynamic approach allows households to trade off present
and future solar panels’ costs and revenues, which exhibit substantial variation within our sample period as
shown in Figure 1. Estimating the structural parameters of this model allows us to simulate a counterfactual
scenario, in which the policymaker finds alternative tariff designs to achieve a renewable energy target, while
preserving network financing and trading off efficiency, equity, and welfare motives. We model the supply
side as a regulator’s constrained optimization problem, in which the model’s dynamics allow the regulator
to exploit the declining trend in solar panel costs. In the following, we describe the household’s problem,
and introduce the regulator’s problem in Section 6.

In our model, a household i = 1, ..., N decides every year t = 1, ...,∞ on the amount of electricity in
kWh to consume Cit, its consumption of an outside good Qit, and whether to install a solar panel PV it =

{0, 1}. We normalise the price of the outside good to 1. We assume that installing a PV is an absorbing state,
so if a household adopts one in year t, it cannot substitute it or install another one in the future.24 This makes

22Tenants have little incentive to bear the costly upfront investments because most solar panels are integrated into the roof.
Buildings with more than two parties are also less likely to install a solar panel, as it would require coordination among parties.
While solar panel co-ownerships are becoming increasingly popular, they are beyond the scope of our paper, due to lack of data.

23Source: Swisssolar (2016) Merkblatt Photovoltaik Nr. 13.
24Within our sample period of seven years, we do not observe any household substituting or installing more than one PV.
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the framework a non-regenerative, optimal stopping problem. We let households’ decisions be subject to a
budget constraint, which implies that their yearly optimal energy and outside good expenditures should not
exceed their yearly net income. To summarise, the solution of the structural model requires each household
to make two decisions. First, it chooses electricity consumption conditional on PV adoption status based on
a static demand model, and second, it decides on PV adoption in a dynamic model, using the solutions of
the static model as inputs.

3.1 Static Energy Demand

In the first step, we assume that households solve a constrained static utility maximisation problem to choose
their optimal energy consumption. We specify a quasilinear utility function and a budget constraint25 that
give us the following energy demand function:

Cit(Λ) = P βiut e
α+X′itω+νit (1)

where Put is the electricity marginal price charged by energy utility u ∈ {BKW,EWB,ET} in year
t, Xit are household and building characteristics that are likely to determine energy consumption, such as
household size, home ownership, electric and water heating, house surface, and number of rooms. νit are
shocks to energy demand independently distributed across years and households, and Λ = {α, βi, ω} are
the parameters of the demand function that we want to recover. We allow the price elasticity of demand βi
to vary across the quintiles of the wealth distribution, to capture any heterogeneity in price sensitivity across
wealth groups. Since wealth is a stock variable, we view it as a more robust measure than income to capture
differences in households’ preferences. We use the estimates of the price elasticity of energy consumption
β̂i as well as observed consumption Cit to compute the indirect utility of each household without a PV in
year t:

vit(PV it = 0; Λ̂) = Ĩit − Fut −
1

β̂i + 1
PutCit, (2)

where Ĩit = Iit − T (Iit) is income net of income tax payments, and Fut is the fixed fee charged by
energy utility u in year t. A household that has installed a solar panel receives as additional utility the
annual revenue generated by its solar panelRit:

vit(PV it = 1; Λ̂) = Ĩit − Fut −
1

β̂i + 1
PutCit +Rit. (3)

Note that owning a solar panel does not change the consumption level of a household, but only enters as
an additional income stream. That is, we assume the adoption of a solar panel does not change the marginal
price a household faces.26 The annual revenue from the solar panel depends on the institutional setting, that

25In Appendix E we show the functional form of the utility function, deriving energy demand and indirect utilities.
26While carefully pinning down the potential impact of installing a PV on electricity consumption is an interesting empirical

question, we think it is beyond our analysis, and our data does not allow us to measure it accurately. If PV adoption would indeed
cause a reduction in households’ electricity consumption - and households would expect this when making their adoption decision -
we would be slightly overestimating the revenue that enter the PV adoption decision. However, revenue is not directly a function of
consumption, and only weakly increases through a higher self-consumption, which is simulated from Eturnity based on electricity
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is, whether production is sold entirely under a feed-in system, or partially sold and partially self-consumed.
We formalise these alternative revenues in the next section.

3.1.1 PV Revenue

As discussed in Section 2, the Swiss regulator relied on a subsidised feed-in scheme until 2013, but switched
to a self-consumption scheme from 2014 onwards. Under a subsidised feed-in tariff scheme, households feed
all produced electricity back into the grid and receive remuneration τit per kilowatt-hour. Even if households
could potentially have directly consumed part of their production during this period, they would have had
no incentive to do so, since the subsidised feed-in tariff was well above the total electricity price. In the
Swiss case, the subsidised feed-in tariff was limited to 25 years, and after this period, the household was
remunerated as in the self-consumption setting. We now formalise how, within the context of our model, the
total expected discounted revenue that a PV generates over its lifetime Rit changes depending on whether
there is a feed-in tariff (FT) or a self-consumption (SC) setting.

Under a subsidised feed-in scheme this would be:

RFTit =

Feed-in period︷ ︸︸ ︷
t+24∑
s=t

ρs−t(1− ζ)s−t · τit · Yi +

Post feed-in period︷ ︸︸ ︷
ρ25RSCt+25 , (4)

where ρ is the discount factor, and ζ is the panel’s degrade factor.27 RSCt+25 is the net present value of
all additional PV revenue after the feed-in period. Note that the remuneration rate τit is set at the time of
installation and is fixed for the next 25 years.

In a self-consumption setting, a household has the incentive to directly consume its produced electricity.
For each kWh a household directly consumes, it saves on the total electricity price Put. The remaining
produced electricity is fed into the grid and remunerated by the energy utility at electricity procurement
price P eut, which is roughly half the total electricity price, the difference being comprised of the marginal
grid price and taxes. Each household can directly consume a fixed share SCi of its electricity production
Yi, calculated by Eturnity as a function of the household’s average level of electricity consumption, its
appliances, and the total production of the PV.28 The total revenue under a self-consumption scenario reads
as:

consumption before adoption. As an additional imprecision, it would be slightly easier for the regulator to reach the solar energy
target for a given set of tariffs, if the consumption of households were to be lower after adoption. This effect again is minor as PV
adoption rates remain low.

27We set the degrade factor to 3% for the first year and 0.7% for the following years. We take these values from the guide-
lines of a popular European panel manufacturer at: http://www.kiotosolar.com/de/assets/media/downloads/
produktdatenblaetter/strom/power60/KIOTO_SOLAR_DB_POWER60_DE_250416.pdf.

28This is the variable labelled as ‘Self-Consumption % of Production’ in Table 5. We assume that SCi is time-invariant and
does not change with actual consumption Cit in the counterfactuals, for three reasons. First, as described in Appendix D, Eturnity
only produced a single cross-section of this self-consumption variable based on each household’s heating system, hot water system,
and consumption decile. Second, unless households have a battery, it would be hard to calculate how the percentage of production
that can be consumed varies as their consumption changes, because of the mismatch between time of production and time of
consumption. Due to this mismatch, explicitly modeling SCi would require a more complex consumption model that allows not
only for consumption choice, but also for timing of consumption, something we do not observe in our data. Third, the calculation
provided by Eturnity for this variable already incorporates an estimated adjustment in consumption caused by the PV adoption.
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RSCit =

∞∑
s=t

ρs−t(1− ζ)s−t · Yi · [SCi · E[Put] + (1− SCi) · E[P eut]] , (5)

where the self-consumed part of electricity shows up here as a revenue to cancel out part of the consump-
tion costs incurred in equation (3). This function shows how revenue under a self-consumption scenario is
increasing in panel production Yi and in self-consumption share SCi. As for a given household SCi de-
clines with a larger panel size, equation (5) captures the decline in the marginal value of the subsidy for
self-consumption, intended as the difference between saving on a higher Put when consuming the electric-
ity produced by the panel, and earning a lower P eut when feeding to the grid the electricity produced by
the panel. We let households form expectations over future electricity prices Put, P eut, but given the trend
of relatively constant prices within our data as reported in Section 5.2, these expectations will result in fu-
ture expected prices remaining almost constant, which allows us to compute the infinite sum in (5) with a
geometric series.

3.2 Dynamic PV Adoption

In the second step, we define the PV adoption decision as a Bellman equation, using as inputs the static
consumption decision of household i in each year t:

Vi(Sit) = max
PVit

{
θvvit(PV it)+εit(PV it)+PV it

(
θvVit+θFiFit

)
+(1−PV it)ρE

[
Vi(Sit+1)|Sit

]}
, (6)

where Sit are the state variables of the dynamic problem, namely the total expected discounted value of
PV revenueRit and the installation costFit, and εit(PV it) are independently and identically distributed type
1 extreme value shocks to the solar panel adoption choice, a state variable unobserved by the econometrician.
We define Vit = E[

∑∞
s=t+1 ρ

s−tvis(1)] as the present discounted indirect utility under PV adoption for all
future years. The parameter θFi measures households’ sensitivity to solar panel installation costs Fit, and
similarly to the energy demand model is heterogenous across households’ wealth quintiles, while θv scales
the indirect utility, allowing for flexibility in the variance of εit(PV it).29 In estimating equation (6), we
aim to recover Θ = {θv, θFi}, since these capture the relative weight of the indirect utility from electricity
consumption and of the fixed installation cost in households’ adoption decisions.

The disutility of adopting a PV is a linear function of the fixed installation cost Fit. Based on data
availability, we construct gross fixed installation cost as:

Fit = (1− Ti) · kWpi · C
kWp
t , (7)

where kWpi is the size of the solar panel in kilowatt peak, which Eturnity simulated for us as a function
of the roof size of the dwelling, Ckwpt is the installation cost per kilowatt peak, and Ti is the household’s
marginal income tax. This tax credit further exacerbates the redistributive issues involved in the adoption
of solar panels, as richer households have larger income levels, hence higher marginal taxes and possibly

29We also experimented with adding a constant term to the function θvVit+θFiFit, to capture any non-monetary disutility from
adopting, but the effect is not statistically significant.
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larger homes, such that the amount of tax deduction from which they can benefit is larger than for low-
income households. In 2014, the Swiss regulator switched from a subsidised feed-in tariff to a lump sum
subsidy equivalent to 30% of the installation cost. This further reduced the fixed installation cost to Fit =

(1 − S)(1 − Ti) · kWpi · C
kWp
t , where S is the subsidy as share of installation costs. In the estimation we

include the subsidy for all observations in 2014.
Under conditional independence, we can write the following alternative specific expected value func-

tions, describing a non-regenerative optimal stopping problem:

EVi(Sit,PV it) =

{
θvvit(1) + θvVit + θFiFit if PV it = 1

θvvit(0) + ρ
∫
Sit+1

EVi(Sit+1)p1(Sit+1|Sit; δ̂) if PV it = 0,
(8)

where p1(Sit+1|Sit; δ̂) summarizes the transition probabilities of the state variables, described in Section
3.3. We normalize both alternative specific value functions by dropping the indirect utility components that
are choice independent, that is, Ĩit−Fut− 1

β̂i+1
PutCit. This normalisation highlights that we are not allowing

for a direct link between consumption Cit and adoption PV it, but only a connection between adoption and
self-consumption SCi in equation (5), and a direct effect of adoption on households’ revenue and indirect
utility. This leads to the following alternative specific value functions:

EVi(Sit,PV it) =

{
θvRit + θFiFit if PV it = 1

ρ
∫
Sit+1

EVi(Sit+1)p1(Sit+1|Sit; δ̂) if PV it = 0.
(9)

Given that ε follows a type 1 extreme value distribution, the probability of installing a solar panel reads:

Pr(PV it = 1|Sit; Θ) =
exp

[
θvRit + θFiFit

]
exp

[
θvRit + θFiFit

]
+ exp[ρ

∫
Sit+1

EVi(Sit+1)p1(Sit+1|Sit; δ̂)]
. (10)

We assume that households form expectations over the two aggregate variables in equation (9), the total
PV revenueRit and the installation cost Fit, as opposed to keeping track of all the variables that determine
Rit. The advantage of this approach is that it greatly reduces the dimensionality of the state space, making
the solution of the model more tractable. In the next section we discuss the transition process of both
variables.

3.3 Transition Probabilities

We define the transition probabilities of the state variables Sit = {Rit,Fit} with an autoregressive process
of order one for each. We further distinguish between two different processes for Rit depending on the
institutional setting in year t, that could be feed-in tariff FT or self-consumption SC. While in the FT
setting, the evolution of revenue is driven by the decline in feed-in tariffs, whereas in the SC setting, the
evolution of revenue is driven by overall electricity prices. The estimated parameters of the processes δ̂ =

{δ̂FT , δ̂SC , δ̂F} act as inputs to construct the transition matrix for the dynamic part of the model. As is
standard in the literature, we assume conditional independence between state variables observed by the
econometrician Sit and those unobserved by the econometrician εit. In practice, we specify the following
AR(1) processes:
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RFTit = δFTRFTit−1 + ηFTit , RSCit = δSCRSCit−1 + ηSCit , Fit = δFFit−1 + ηFit (11)

where ηFTit ∼ N(0, σFT ), ηSCit ∼ N(0, σSC), and ηFit ∼ N(0, σF ) are IID error terms. We estimate
each of the equations using ordinary least squares. Using the estimated coefficients, we also estimate the
standard deviation of the error terms σFT , σSC , σF which are used to construct the transition matrix.

3.4 Model Discussion

We build our framework as a discrete-continuous choice model where the current continuous decision,
energy consumption, does not impact any of the state variables that determine the discrete choice, PV adop-
tion. This implies that households solve a static optimisation problem when deciding on their optimal energy
consumption, but their solar panel installation decision is instead dynamic, depending on their expectations
over the evolution of revenues and costs of adoption. While there is a growing literature developing com-
putational methods for solving and estimating dynamic programming models with discrete and continuous
choice variables (Bajari et al., 2007; Iskhakov et al., 2017; Gautam 2018), we believe that the lack of a
relevant dynamic component in the energy consumption decision does not make those approaches the best
option for our case. Alternatively, we could simplify our framework by allowing households to make static
discrete-continuous decisions, which would reduce the computational complexity and allow us to rely on a
well-established literature (Dubin and McFadden 1984; Hanemann 1984). Despite its advantages, we think
that modelling PV technology adoption as a static decision would omit the benefit to households of waiting
for a decline in fixed cost over time, which we view as an important determinant in the adoption of a novel
technology, thus biasing one of the key parameters of our model and leading to inaccurate counterfactual
predictions.30

Both consumption and adoption decisions within our model have an important, albeit different, role
in the counterfactuals. The dynamic portion captures how marginal prices and installation cost subsidies
shape PV revenue and net installation costs, and thus adoption rates. The static electricity consumption
portion captures the impact of tariff design on aggregate consumption, which the regulator needs in order
to correctly assess solar energy targets, grid financing, and welfare. As discussed in Sections 3.1.1 and 3.2,
in our model, adopting a solar panel generates an extra revenue that increases households’ indirect utilities,
but does not directly impact their consumption decisions, which means that consumption and adoption
unobservables are assumed to be independent. This is reasonable, as a solar panel is mostly a production
unit that generates income from selling the electricity it produces, rather than an electric appliance that
directly affects a household’s consumption as in Dubin and McFadden (1984). Nevertheless, we do link
consumption and adoption in the self-consumption setting through an exogenously given household’s self-
consumption level.31

30We have experimented with estimating a static PV adoption model, finding an installation cost sensitivity around 30% smaller
in absolute value relative to the dynamic one.

31PV adoption could impact households’ consumption via another channel. If the extra revenue from solar energy production
substantially increases a household’s wealth, this can move it to the next wealth quintile, changing its price elasticity βi. However,
this is unlikely to happen in our sample, as the annual PV revenue is relatively small as compared to the difference in wealth
between wealth quintiles.
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With regard to the size of the installed solar panel, we assume that each household only considers the size
of a PV simulated by Eturnity, which is approximately the maximum available size given the rooftop area.
Three reasons underly this assumption. First, households have the incentive to install the largest possible
solar panel to benefit from economies of scale. Second, allowing households to choose between different
sizes would mean that we have to arbitrarily decide the minimum size of a PV for each household, which
can be hard to approximate. Third, to our knowledge, most households rely on their energy provider or on an
energy consulting firm to define the details of the PV installation, in which case they are likely to base their
decision to adopt on a standard offer similar to the one we are using for our simulation. Even if households
were not actually considering the optimal size as suggested by Eturnity, but instead something smaller, this
would simply imply that the regulator needs to provide stronger incentives to reach a given target, relative
to our suggested ones.

Last, we omit from the model the possibility of savings. While households could be reducing their
electricity consumption to save for the future purchase of a solar panel, such savings would be relatively
small compared to PV installation costs in our setting. Hence, the role of savings represents at most a
second-order effect, not justifying the additional complexity that including it in the model would generate.

4 Estimation

We estimate the parameters of the energy demand function using a geographical boundary regression dis-
continuity design, the parameters determining the PV adoption decision by maximum likelihood, and the
parameters of the state variables’ transition processes with a linear autoregressive model.

4.1 Energy Demand

The energy demand part of the model is estimated to recover the parameters Λ = {α, βi, ω} in equation (1).
The limited price variation over time and the small number of utilities in our sample represent a challenge for
the identification of the price elasticity of demand βi, a key parameter to capture the reaction of household
consumption to changes in tariffs. Specifically, our data consist of three utilities and six years, with the
utilities adjusting prices only once per year. For this reason, we refrain from estimating a model with
household fixed effects, which would absorb most of the identifying variation in prices, and decide to tailor
the estimation approach to exploit the rich cross-sectional variation in our data. We estimate the following
regression model:

ln(Cit) = α+ βi ln(Put) +X ′itω + µt + ν̄it︸ ︷︷ ︸
νit

, (12)

where X ′it are various household characteristics, and µt are year fixed effects. The year fixed effects
address any upwards bias that can be expected from a positive correlation over time between prices and
demand shocks. As an example, severe weather conditions could increase households’ energy consumption
and lead utilities to import more energy, or increase production through their marginal (more expensive)
power plants, driving up prices. However, given the limited variation in prices over time documented in
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Figure 1, this is a minor concern in our setting. Another potential source of bias we face is systematic dif-
ferences across households served by different providers. In fact, EWB and ET households are all located
in cities, whereas BKW households are mostly in rural areas. Providers serving systematically larger house-
holds, or areas with systematically colder weather, will experience higher energy demand and therefore set
higher prices, causing an upward bias in price elasticities. The limited times series variation prevents us from
including utility-year fixed effects to address this. We instead use our rich set of household and building
characteristics to control for any differences across households. Moreover, in our preferred specification, we
further address this concern implementing a geographical boundary regression discontinuity design (RDD),
in the spirit of Black (1999) and Ito (2014). This restricts the estimation sample to all households within 1
km of the city borders and adds border point fixed effects to the estimation.32 This leads to the following
regression equation:

ln(Cit) = α+ βi ln(Put) +X ′itω + ξb + µt + ν̃it︸ ︷︷ ︸
νit

, (13)

where ξb are fixed effects for each border point b. Potential sorting at the border, which may be problem-
atic with a RDD (Lee and Lemieux, 2010), is unlikely to affect our design, as households are not allowed
to choose their energy provider, and energy prices are a negligible factor in location choice. For robustness,
we provide a statistical test of whether households and houses are similar at the boundary discontinuity, in
line with Bayer et al. (2007). The last column of Table I.4 in Appendix I reports the results of a test of
differences for several variables across the two sides of the border. The test is conducted for the sample of
households within 1 km from each border point. We regress each variable listed in the first column on a
dummy equal to one if the provider is BKW, plus border point and year fixed effects. We find no significant
differences in household and house characteristics across the two sides of the border.

One additional challenge we face is understanding the price that households actually respond to. House-
holds in the Canton of Bern face simpler tariff schemes as compared to US examples. In fact, two providers,
BKW and EWB, offer uniform tariffs with a single price for any level or timing of consumption. However,
all providers also offer a dual tariff, with different marginal prices between day and night time. Dual tariff
customers face a non-linear pricing scheme, where the non-linearity lies in the timing of consumption. We
assume that these customers respond to a weighted marginal price, where the weights are based on day and
night time consumption shares. However, since the households’ actual consumption shares might be cor-
related with the level of consumption, we predict the consumption shares for customers under a dual tariff
scheme based on household characteristics, as described in detail in Appendix F.

An additional bias potentially arises from BKW and EWB assigning their customers to uniform or
dual tariffs based on households’ energy consumption and appliances. For example, households having an
electric heat pump are assigned to a dual tariff due to their high consumption. Consequently, dual tariff
households tend to have a higher rate of energy consumption and pay lower marginal prices. Moreover, all

32We experimented with alternative distances (e.g., 250 meters, 500 meters, 1.5 km), finding similar results. The maps in
Appendix B represent respectively the cities of Bern and Thun and their surroundings, and highlight the border areas illustrative for
our geographical RDD design. We identify 19 and six border points for Bern and Thun, respectively. Only considering households
within 1 km from the border reduces observations of BKW to roughly one-sixth of the full sample, EWB to one-third, and ET to
one-fifth.
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ET customers are billed under the dual tariff scheme, implying that ET households have, on average, a lower
energy consumption relative to dual tariff customers of one of the other two companies. We address this
by including in our model a dummy variable for dual tariff customers of BKW and EWB, and a separate
dummy variable for all ET customers. We do not expect selection bias to be an issue in comparing dual
and uniform tariff households, as dual tariff households face lower prices so have no incentive to switch to
a uniform tariff, and uniform tariff households need to invest in a costly new meter to access the dual tariff.
The data contains only a handful of households that change tariff schemes, mostly after relocating, and we
drop them from the sample when estimating elasticities.

Lastly, in contrast to US households, Swiss households receive their final energy bill once a year, which
includes their total energy consumption and all variable and fixed tariff components (e.g., energy, grid,
taxes).33 We focus on the sum of all variable tariff components as the relevant marginal price, and based on
billing time and previous literature, we use lagged prices in the estimation.34

4.2 PV Adoption and Transition Probabilities

In the dynamic PV adoption part of the model, the parameters of interest Θ = {θv, θFi} describe the impact
on PV adoption of the indirect utility from PV revenue and of the fixed installation cost. We recover the
parameters that maximise the following log-likelihood function:

L(Θ) =
∑
i

∑
t

log
[

Pr(PV it|Sit; Θ)
]
. (14)

Following Rust (1987), we discretise the state space to obtain the numerical solution to the Bellman
equation through value function iteration. We discretise Rit and Fit around [50, 50] length intervals, cor-
responding respectively to [9,271, 4,902] CHF, and create the state space as all possible combinations.35

To define the transition matrix of the discretised state space, we follow Tauchen (1986), who provides a
procedure to calculate for each state the probability distribution over all possible states in the next period.
Finally, the estimation procedure consists of an inner loop and an outer loop. In the inner loop, given a set
of parameters Θ, we use a nested fixed-point algorithm to calculate the expected value of each state, using

33BKW and ET customers all receive their bill at the end of each year. EWB customers receive their bill yearly but at a customer-
specific time, based on when their meter is read by EWB.

34Similarly to Ito (2014), we test whether households respond to current or lagged prices, including both in our regression
model, and find that, while the coefficients of lagged prices are highly statistically significant and of large magnitude, those of
current prices are very weakly statistically significant with very small economic magnitude, about 5% the size of the elasticities of
lagged prices. We infer from this that households mostly respond to lagged prices. This implies a mild time inconsistency with
respect to the model described in Section 3, where we assumed that households respond to current prices in their consumption
decisions. However, given the limited time series variation in prices in our sample, this inconsistency is rather innocuous for our
results. Hence, for consistency with the model in Section 3, we keep Put and Fut in our notation, despite actually using the lagged
values.

35We considered using an adaptive grid method to improve the numerical solution of our model, which requires narrower intervals
between nodes in the discretisation where our state variables’ distribution has a higher density, as opposed to the current equally
spaced nodes. We did not follow this approach for two reasons. First, even increasing the interval space between equally spaced
nodes compared to the current intervals did not affect our estimates. Second, most portions of the state variables’ distribution,
where intervals between nodes could be less narrow, were the parts where the counterfactual solution would end up, so we opted
for keeping equally spaced nodes, both in the estimation and in the counterfactuals.
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the value of adoption θvRit + θFiFit and the transition matrix as inputs. In the outer loop, we search over
the parameters Θ, where we assign to each household the probability to adopt based on its position in the
state space and equation (9). Appendix H provides additional details on the estimation procedure.

The identification of θv and θFi relies on both time series and cross-sectional variation. The aggregate
trend in PV adoptions is driven by time series variation, and is induced on the cost side by the decline in
installation costs over time, and on the production side by the decline in production revenues over time. Both
of these trends are depicted in Figure 1. An interpretation of the coefficients in the dynamic model is that
they capture the relative weight of those two trends in the household’s decision. Cross-sectional variation
identifies the distribution of PV adoptions across household types, along three dimensions. First, differences
in available roof space lead to varying economies of scale in installation costs. Second, differences in income
determine different marginal tax rates, and thus different net installation costs. Third, different households’
locations imply different sun exposure, affecting electricity production per installed production capacity
measure.

Besides this variation, two key modelling choices impact identification. First, we only allow home
owners to install a solar panel. Since almost all solar panels are integrated into the roof of a particular house,
there is little incentive for tenants to invest in one. The evidence from our data is consistent with this, as
roughly 90% of PV owners are also home owners. Home owners are associated with different characteristics
than tenants (e.g., are typically richer), which helps to better capture the cross-sectional distribution of PV
adoptions. Second, between 2013 and 2014, there was a shift in the institutional setting, where the Swiss
regulator switched from a feed-in tariff scheme to an installation cost subsidy with self-consumption.36 We
assume this change was unexpected from a household’s perspective.

To create the transition matrix of the state space, we estimate AR(1) processes for the revenue side of the
indirect utility from installing (δFT , δSC) and the cost side of the indirect utility from installing (δF ). The
identification of these parameters relies on time variation in the installation cost per kWp and the revenue
per kWh, where both variables are available only on an annual basis. We estimate these parameters using
the full sample of households in the PV estimation.37 The parameters are the basis to estimate the standard
deviation of the error terms σFT , σSC , σF , which are needed to generate the transition matrix.

5 Results

5.1 Energy Demand Model

We report in column (1) of Table 6 the regression results for the full sample, corresponding to equation
(12), and in column (2), the results when using the subsample of households located at the border between
energy utilities, corresponding to equation (13). In both specifications, we control for apartment or building
characteristics, such as the number of rooms and the apartment’s surface, also including fixed effects for
the number of apartments in the building and the building’s construction date. We further add fixed effects
for whether a household’s dwelling uses electricity, a heat pump, or other sources (e.g., oil, gas, wood)
for its heating system or for hot water heating. Additionally, we control for household size, the age of the

36Given this change in institutional setting, we estimated the model without 2014 as robustness check and found similar results.
37We thereby assume that households have perfect foresight across the sample period.
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household head, and home ownership.
Table 6 shows that the price elasticity of demand is negative and significant, ranging between -0.06 and

-0.22 across all wealth quintiles and specifications. We find that wealthier households are less price elastic,
as shown by the positive price interactions increasing across quintiles. We also find that larger households,
home owners, and households using electricity for heating or hot water consume more energy. More recent
buildings consume less, as these are likely to have more efficient insulation.

Table 6: ENERGY PRICE ELASTICITIES

Variables (1) (2)
Price -0.166∗∗∗ -0.224∗∗∗

(0.014) (0.030)
Price Interactions

2nd Wealth Quintile 0.063∗∗∗ 0.072∗∗∗

(0.003) (0.005)
3rd Wealth Quintile 0.092∗∗∗ 0.099∗∗∗

(0.003) (0.005)
4th Wealth Quintile 0.103∗∗∗ 0.129∗∗∗

(0.003) (0.006)
5th Wealth Quintile 0.085∗∗∗ 0.115∗∗∗

(0.003) (0.007)
Double Tariff BKW/EWB 0.457∗∗∗ 0.433∗∗∗

(0.004) (0.010)
Double Tariff ET 0.155∗∗∗ 0.267∗∗∗

(0.005) (0.019)
Household Controls Yes Yes
Heating System FE Yes Yes
Water System FE Yes Yes
Construction Period FE Yes Yes
Year FE Yes Yes
Border FE No Yes
N Obs 618,226 132,715
R2 0.547 0.539

Note: Standard errors in parentheses are clustered at the household level to account for serial correlation. One star denotes significance at the 10%
level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. Log of total yearly energy consumption
is used as a dependent variable. Price is in logs. Household controls include number of rooms, apartment’s surface, fixed effects for number of
apartments in the building, dummies for energy source of heating and hot water system (e.g., electricity, heat pump, oil, gas, wood), household size,
age of household head, and home ownership. Column (2) shows the results for the RDD model. The number of observations for columns (1) is
lower than reported in the descriptive statistics in Section 2, mostly because we use lagged prices (i.e., we lose one out of seven years of data).

Our RDD estimates display lower price elasticities in absolute terms compared to other papers in the
literature. For example, Reiss and White (2005) estimate the distribution of electricity price elasticities for
a sample of households in California, finding it to be centred at -0.39. There are three main differences
between our setting and theirs, as well as with other papers in the field. First, Reiss and White (2005)
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derive this result for a sample of 1,307 households over two years, whereas our dataset covers around
165,000 households over 7 years, a far larger sample than that of most of the papers estimating energy
demand elasticities in the literature. Second, households in Switzerland face a simpler pricing structure,
mostly determined by a uniform or dual tariff and a fixed fee, whereas US households are offered a more
complicated Increasing Block Pricing schedule, where marginal prices increase with consumption. Third,
because of the more complicated non-linear pricing applied in the US, Reiss and White (2005) need to
rely on a more complex estimation method, relative to ours, that takes into account households’ selection
into different levels of marginal prices. The difference in pricing schemes between the US and Switzerland
can also provide an economic interpretation for the difference in price elasticities. In the US setting of
Reiss and White (2005), prices are adjusted monthly and are non-linear in terms of the quantity consumed,
while in Switzerland, they are adjusted yearly and are linear in terms of the quantity consumed. The more
frequent price adjustment and the non-linear variation can generate more price salience for US households,
which, according to the literature on price salience, is likely to determine a greater response to price changes
(Sexton, 2015; Blake et al., 2021).

5.2 Transition Processes

In Table 7 we present the estimates of the AR(1) processes of the state variables, which are used to construct
the transition matrix. We find that both the revenue in the FT setting and the fixed installation cost are
declining over time, however at different rates, as is shown by their coefficients δFT of 0.873 and δF of
0.774. The revenue under a self-consumption setting evolves with a positive trend, as shown by δSC of
1.016, which is due to electricity prices slightly increasing over time. The last line of Table 7 summarizes the
estimate of the standard deviation of the error term of each AR(1) process, which determines the variability
of the transition matrix.

Table 7: AR(1) ESTIMATES

(1) (2) (3)

δFT 0.873∗∗∗

(0.000)
δSC 1.016∗∗∗

(0.000)
δF 0.774∗∗∗

(0.000)

N Obs 204,979 204,979 204,979
R2 0.965 0.994 0.950

σ̂ 0.390 0.039 0.444

Note: The estimations of the parameters of the AR(1) processes are based on the counterfactual sample of potential solar panel adopters, with
204,979 observations. However, the feed-in tariffs that drive variation for δFT , the energy prices that drive variation for δSC , and the installation
costs that drive variation for δF , are only available on a yearly basis and for several installation size categories. The resulting standard errors for
these two parameters are thus artificially low. Standard errors are clustered at the household level to account for serial correlation. One star denotes
significance at the 10% level, two stars denote significance at the 5% level, and three stars denote significance at the 1% level. The magnitude of σ̂
reflects the rescaling of the three dependent variables, which have been divided by CHF 10,000, as described in Section 5.3.
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5.3 PV Adoption Model

To estimate the PV adoption portion of the model, we restrict the sample to the main energy provider
(BKW), which covers 94% of the solar panels installed,38 and to single family houses or buildings with at
most two apartments, for which it is more likely that a single household is making the installation decision.
We calibrate the discount factor to ρ = 0.8788, the value estimated by De Groote and Verboven (2019)
for PV adoption decisions of Belgian households. Unfortunately, we do not have the same rich time series
variation in feed-in tariffs that these authors have to identify the discount factor in our setting, hence we
assume that time preferences of Swiss households for PV installation are similar to Belgian ones.39

Table 8: PV ADOPTION RESULTS

Parameters (1) (2) (3)

θv 0.231∗∗∗ 0.213∗∗∗ 0.214∗∗∗

(0.020) (0.019) (0.019)
θF -0.452∗∗∗ -0.569∗∗∗ -0.702∗∗∗

(0.020) (0.040) (0.058)
Fixed Cost Interactions

2nd Wealth Quintile 0.067 0.148
(0.094) (0.108)

3rd Wealth Quintile 0.044 0.125
(0.068) (0.082)

4th Wealth Quintile 0.150∗∗∗ 0.251∗∗∗

(0.048) (0.064)
5th Wealth Quintile 0.239∗∗∗ 0.357∗∗∗

(0.049) (0.066)
Year 2010 -1.096∗∗∗

(0.153)
Mid-Age Household Head 0.310∗∗∗

(0.050)
Rural Area 0.210∗∗∗

(0.053)

N Obs 204,979 204,979 204,979
LR Test Statistic 263.9 351.6 506.0

Note: Bootstrapped standard errors in parentheses. One star denotes significance at the 10% level, two stars denote significance at the 5% level, and
three stars denote significance at the 1% level. The details of the bootstrapping are summarised in Appendix H. The variables used in the estimation
are expressed in CHF 10,000s. The null hypothesis for the LR Test Statistic is that all parameters are equal to zero.

Table 8 reports the results of the coefficients of the indirect utilities and installation costs θv, θFi. We
provide three alternative specifications. In column (1), we only include fixed installation cost (without

38PV systems are more likely to be adopted in non-urban areas, which are those served by BKW.
39We conducted robustness checks varying the value of the discount factor between 0.85 and 0.9 for a simplified version of our

model, and found that our calibrated value delivers the highest goodness of fit based on the likelihood ratio test statistic.
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heterogeneity across wealth quintiles) and indirect utility from electricity consumption, and find that the
former has a negative effect on adoption, while the latter has a positive impact. The underlying variables are
measured in CHF 10,000, that is, each CHF 10,000 increases the scale utility by the respective coefficient.
The estimated coefficients show that CHF 1 reduction in installation costs weights roughly twice as much
as CHF 1 increase in PV revenue. Similarly to the results in Table 6, in column (2) we let households’
sensitivity to installation costs vary across wealth quintiles. As expected, top wealth quintiles are the least
sensitive to installation costs. In column (3), we include three indicator variables to further improve the
goodness of fit of the model. First, we add a dummy for the year 2010, during which there was a bureaucratic
delay in the allocation of feed-in subsidies that negatively affected installations. Second, we include a
dummy for a middle-aged household head, that is between 40 and 65 years of age, which has a positive and
significant effect on adoption decision. Third, we add an indicator for rural households, defined as those
living in areas with 400 or fewer households within a 500-meter radius, who are more likely to adopt.

5.4 PV Adoption Model Fit

We evaluate the model’s predictive performance based on two metrics, both highly relevant for the coun-
terfactuals. First, the model should capture the time trend in PV adoptions, as the counterfactual scenarios
provide out of sample predictions for five years beyond the end of our sample period. Second, the model
should capture the cross-sectional distribution of PV installations across wealth quintiles in order to infer
the correct distributional impact of an increase in PV adoptions.

Table 9: PREDICTION BASED ON PV ADOPTION MODEL

Year PV predicted (N) PV actual (N) Wealth PV predicted (N) PV actual (N)
2008 89 48 1st Quintile 169 157
2009 156 114 2nd Quintile 91 73
2010 73 74 3rd Quintile 202 152
2011 224 220 4th Quintile 381 344
2012 329 343 5th Quintile 608 651
2013 307 322
2014 276 256
Total 1,452 1,377 Total 1,451 1,377
2008-2014 χ2

6 52.61 All Quintiles χ2
4 28.62

2010-2014 χ2
4 2.92 1st & 5th Quintiles χ2

1 3.76

Note: ‘PV predicted’ refers to the predicted number of solar panels adopted based on the estimated coefficients, ‘PV actual’ refers to the number
of solar panels adopted in the data. The 5% and 1% critical values of the χ2 distribution for six degrees of freedom are 12.59 and 16.81, for four
degrees of freedom are 9.49 and 13.28, and for one degree of freedom are 3.84 and 6.63.

Hence, in Table 9 we compare our model’s predictions with the data along the time series and across
wealth quintiles. The left-hand section of the table shows the number of predicted and actual installed solar
panels each year, whereas the right-hand section shows by wealth quintile the predicted and actual number
of households that adopted a solar panel. The model captures relatively well both the trend in the number of
adoptions, as well as the increase in installations across the wealth distribution. We perform a χ2 test of fit
for both the yearly adoptions and the installations across wealth quintiles. While for the full sample period
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(2008-2014) we reject the null hypothesis that the distributions of predicted and actual adoptions across the
years are the same, we show that instead, the two distributions are the same for 2010-2014. We interpret
this as evidence that the first two years, with their low number of PV installations, are more challenging
to accurately predict. Our test of fit also shows that the model best predicts adoptions for the lowest and
highest wealth quintiles.

6 Counterfactuals

By 2014, Switzerland and most EU countries had introduced self-consumption policies and installation cost
subsidies for PV adoption (Pablo-Romero, 2013), allowing households to directly consume any electricity
that their solar panel produced. While self-consumption policies incentivise the spread of renewable energy
technologies, they also pose financing and distributional challenges for grid tariff design. Under the current
tariff scheme, where grid financing is mostly based on marginal grid prices, solar panel owners do not fully
bear the cost of their grid access.

In our counterfactuals, we study the optimal tariff and subsidy design for residential electricity markets
to address those challenges. We take the stand of a regulator who wants to achieve a solar energy target,
following the example of many policies around the world that mandate a certain share of renewable energy
in a country’s production mix. In our setting, we define the solar energy target as a mandated ratio of total
solar production over total electricity consumption. In our model, the regulator relies on the combination
of two instruments to stimulate PV adoption and achieve the target. The first is installation cost subsidies.
The second, marginal grid prices, indirectly incentivises PV adoption because households can forego these
charges by consuming electricity from their own solar panels. The need to generate sufficient revenues to
cover grid investment costs also constrain the regulator. To satisfy this network financing constraint, we
allow the regulator to rely on a fixed fee as a third instrument, a grid-access yearly lump-sum payment. This
fixed fee does not directly impact the probability of installing a solar panel, as its effect on households’
indirect utility is the same regardless of whether they adopt or not.

The optimal combination of a two-part tariff and subsidy requires the regulator to consider various ef-
fects. Installation cost subsidies are narrowly targeted to PV adopters and require an additional source of
financing. In contrast, a higher marginal grid price not only stimulates PV adoption, but can also generate
additional grid revenue, depending on households’ price elasticities, and so long as the number of PV own-
ers is sufficiently low. A higher marginal price can also curb total electricity consumption, the denominator
in the solar energy target. Subsidies and marginal grid prices can also have distributional consequences by
shifting grid expenditures from (high income) PV owners to (low income) non-PV owners. However, while
a high marginal price shifts grid expenditures from low- to high-consumption households, as the latter are
less price sensitive, increasing the fixed fee spreads costs more equally among households. Ultimately, the
impact of a given instrument mix on equity depends on how income and wealth affect electricity consump-
tion and PV adoption rates. Our detailed data and structural model allow us to precisely measure these
effects and to provide optimal tariff designs.40

40Policymakers and energy utilities worldwide also fear that the increasing adoption of solar panels is eroding grid revenues,
because households with a solar panel do not pay marginal prices when consuming their own electricity. Since subsequent increases
in marginal grid prices provide even higher incentives to install solar panels, this has also been characterised as a ‘death spiral’ of
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6.1 Regulator’s Constraints

In what follows, we describe the regulator’s constraints when choosing the optimal two-part tariff and sub-
sidy design. For all counterfactual scenarios, we divide the marginal price P into its energy component PE ,
its tax component PT , and its grid component PG, and only allow the last to vary. Moreover, we allow house-
holds with a PV to consume a share SCi (self-consumption) of the energy they produce Ỹit = Yi(1 − ζ)t

with their solar panel.41

6.1.1 Network Financing

The first constraint is the requirement for the regulator to generate sufficient revenue to cover grid costs. We
define each household’s expected contribution to grid costs as the following grid expenditure GEit:42

GEit(PGt, Ft) = Ft + PGt · [P β̂it eX
′
itω̂+ν̂it − SCi · Ỹit · Pr(PV it = 1|PGt, Ft, S)], (15)

where P β̂it e
X′itω̂+ν̂it is the electricity demand of household i, SCi · Ỹit is the household’s potential self-

consumption, and Pr(PV it = 1|PGt, Ft, S) is the probability of installing a solar panel as predicted by our
model. Energy providers in our setting are cost-plus regulated, and we assume they recover total grid costs
without making any additional profits. Total grid costs are the sum of a fixed component GC0, representing
the annual cost of maintaining the grid, of an additional cost to integrate decentralized renewable energy
production, and of the revenues needed to finance installation cost subsidies. We recover GC0 from BKW
at the end of our sample period in 2014.43 For two reasons, we incorporate an additional grid integration
cost for decentralised solar productions. First, solar panels produce intermittently at times of high demand,
requiring extra investments to increase the flexibility of the grid.44 Second, the Swiss regulator has budgeted
CHF 6 billion of additional grid costs to accommodate the increase in decentralised production of energy
from renewables until 2035, expecting the annual production from solar, wind, and geothermal to increase
by over 5,500 GWh.45 Based on these cost estimates of the Swiss regulator, the additional total cost per kWh
of decentralised production in 2035 implies an additional grid cost of CHF 0.055 per kWh of PV energy
production per year.46 This leads to the following network financing constraint:

rising grid prices. We conduct a simpler benchmark counterfactual in Appendix G to quantify the distributional effects of this ‘death
spiral’, imposing an exogenous solar panel adoption rate and allowing the regulator to increase marginal grid prices based only on
the missing grid revenue in the previous year.

41Simulated data on self-consumption, with an average self-consumption share of 14.8%, are reported in Table 5.
42As for the PV adoption model, in the counterfactuals we restrict the sample to the main energy provider (BKW), which covers

94% of the solar panels installed. For this reason we omit the u subscript from the model.
43Specifically, GC0 =

∑N
i=1GEi0(PG0, F0) = NF0+

∑N
i=1 Ci0PG0, whereN is the total number of households, Ci0 is each

household’s electricity consumption, and F0 and PG0 are fees and prices in the current tariff scheme.
44As reported by The Economist (2017), in South Australia the large number of solar panel adoptions has required grid upgrades

that have doubled network costs since 2008.
45Swiss Federal Office of Energy (Bundesamt für Enegie): 2017 report on ‘Development of network costs in Switzerland in

the light of current needs, the ES2050 and the electricity grids strategy’ (Entwicklung der Netzkosten in der Schweiz vor dem
Hintergrund des derzeitigen Bedarfs, der ES2050 und der Strategie Stromnetze); 2017 report on ‘Energy scenarios for Switzerland
until 2050’ (Energieszenarien für die Schweiz bis 2050).

46Dividing expected additional grid costs by the increase in annual renewable productions amounts to CHF 1.09 per kWh of
annual production. This cost is spread equally across the 20 years between 2015 and 2035.
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N∑
i=1

GEit(PGt, Ft)︸ ︷︷ ︸
Revenue

= GC0︸︷︷︸
Fixed grid cost

+
N∑
i=1

Pr(PV it = 1|PGt, Ft, S)
(

0.055(1− SCi)Ỹit + SFit
)

︸ ︷︷ ︸
Integration cost decentralized production + Subsidy financing

. (16)

We decided to compute this expected increase in fixed costs on the basis of the Swiss regulator’s budget
estimates, in order to best approximate how the Swiss idiosyncrasies, such as the large share of mountainous
terrain, impact grid investment costs. However, it is important to benchmark these expected extra costs with
evidence from the literature in other countries. For example, Gowrisankaran et al. (2016) compute the cost
of additional grid investment to integrate solar energy into the US network to be only $0.00078 per kWh,47

but also estimate the gross social costs of solar energy with a 10% penetration to be $0.1267 per kWh. While
our cost estimates mostly relate to the former concept, our higher value can be interpreted as also capturing
part of the social costs of PV for which the Swiss regulator is budgeting. Nonetheless, we included as a
robustness check an alternative version of our counterfactuals where we assume no grid integration costs.

6.1.2 Solar Energy Target

The second regulator’s constraint is a solar energy target (SET ), capturing policies set by the EU and other
countries to reach a target share of renewable energy by 2050 or earlier. Specifically, the regulator chooses
a two-part tariff and subsidy to reach a predefined share SET :

∑
i YiT Pr(PV iT = 1|PGT , FT , S)∑

i ĉiT (PV iT , PGT,FT )
≥ SET, (17)

where T is the year when the solar energy target is scheduled to be reached, YiT Pr(PV iT = 1|PGT , FT , S)

is solar energy production of household i, and
∑

i ĉiT (PV iT , PGT , FT ) is total energy consumption net of
self-consumption. Figure 2 provides some intuitive graphical evidence to quantify how marginal grid prices
and subsidies can contribute to achieving the solar energy target, based on simulations from our model. The
black lines in the left-hand panel denote various Solar Energy Targets (SET), while those in the right-hand
panel represent the total amount of solar energy produced in GWh. As these figures show, the share and
production of solar energy are increasing in both the subsidy and the marginal grid price, and the instruments
seem to complement one another. The flatter lines in the left-hand panel reflect the fact that marginal grid
prices also decrease overall electricity consumption, the denominator of the solar energy target.

47The decentralised production of energy may also reduce grid costs if it lowers grid energy demand during peak times.
Gowrisankaran et al. (2016) model the reduction of line losses as a potential benefit of decentralised production.
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Figure 2: SOLAR ENERGY INDUCED BY MARGINAL GRID PRICE AND SUBSIDY

Note: The left panel shows how the share of energy consumed from solar panels changes as we vary marginal grid price and subsidy to installation
cost. ‘SET’ is the Solar Energy Target in percentages. The right panel shows total solar electricity production in GWh as we vary both instruments.

Perhaps surprisingly, the share of residential solar energy only reaches slightly above 11% of total house-
holds’ consumption, even with subsidies close to 100% of installation costs and marginal grid prices reach-
ing five times the current levels. There are two reasons for this. First, we only allow home owners in one or
two apartment buildings to install a solar panel. Since only 25% of all households belong to this category of
potential adopters, there is a natural limit to the share of households adopting, even if incentives to install are
sufficient. If all home owners were to install a solar panel, the upper bound of potential solar energy share
would be roughly 70%. Second, even when installation costs net of subsidies are close to zero, a marginal
grid price of 0.5 CHF/kWh might still not provide a revenue sufficiently high to compel households to in-
stall, as they can benefit from waiting for a larger revenue shock in coming years. This implies that, to
stimulate PV adoptions beyond that 11%, increasing prices and subsidies might not be enough, potentially
requiring additional policies, such as incentives for solar panels’ co-ownership in multi-apartment buildings.

6.2 Tariff and Subsidy Designs

Our counterfactuals quantify the trade-offs that policymakers face when deciding how to achieve a solar
energy target. We assume the regulator wants to set a two-part tariff and a subsidy to achieve a solar energy
production target, while recovering network costs. We let the regulator solve a constrained optimisation
approach, in the spirit of Wolak (2016), to find the corresponding combinations of marginal grid prices PG,
fixed fees F , and subsidies S as a percentage of the installation cost. We use the estimated parameters of
the energy demand and PV adoption model, but modify some state variables in the latter component. We
assume that the regulator makes a five-year plan and sets the instruments PG, F, S as constant across these
years. This is motivated by our Swiss data evidence on installation cost subsidies being constant at 30%
since 2015, and on very limited time series variation in marginal grid prices and fixed fees.
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6.2.1 Regulator’s Problem

We consider four distinct policy goals, varying along two dimensions. First, we let the regulator base its
optimisation either on minimising households’ grid costs or on maximising households’ welfare. Second, we
allow the regulator to have a preference for redistribution (equity), which implies that it favours reaching the
solar energy target by avoiding a regressive effect of the changes in tariffs and subsidies across the income
distribution relative to the 2014 tariff level.48 If instead the regulator has no preference for redistribution, it
assigns an equal welfare weight to all households, optimising over the aggregate cost or welfare metric. As
common in the policy debate, we let the solar energy target be a medium term goal, allowing the regulator
to set tariffs and subsidies to achieve a certain share of solar energy within five years.49

We define the following regulator’s optimisation problem, where the regulator sets PG, F, S subject to
the network financing and solar energy target constraints:

Objective Functions:
No Equity Equity

Cost min
PG,F,S

∑
i

∑5
t=1GEit(PG, F ) min

PG,F,S

∑
i

[∑5
t=1(GEit(PG,F )−GEi0)

]2
Iit

Welfare max
PG,F,S

∑
i

∑5
t=1 vit(PG, F ) min

PG,F,S

∑
i

[∑5
t=1(vit(PG,F )−vi0)

]2
Iit

Constraints:

5∑
t=1

N∑
i=1

GEit(PG, F ) =

5∑
t=1

[
GC0 +

N∑
i=1

Pr(PVnew
it = 1|PG, F, S)

(
0.055(1− SCi)Ỹit + SFit

)]
(network financing)∑

i Yi5 Pr(PVi5 = 1|PG, F, S)∑
i ĉi5(PVi5, PG, F )

≥ SET (solar energy target)

(18)

where the cells in the top table show the four alternative objective functions that we consider, and
Pr(PVnewit = 1|PG, F, S) is the adoption probability of a household that has not installed prior to 2014.
Note that the SET constraint is only focussed on the fifth and last year, and requires that the ratio of the total
solar energy produced

∑
i Ỹi5 Pr(PV i5 = 1|PG, F, S) over the total energy consumed

∑
i ĉi5(PV i5, PG, F )

must be at or above the target. We only focus on consumers’ utility as the relevant welfare metric, because
energy providers in our setting are price regulated and supply energy at zero profit. In addition, we only
consider households’ utility over the regulator’s five-year horizon, and do not include any social benefits of
solar energy, assuming that these are already captured by the solar energy target.50

When solving for the optimal solutions, the regulator adjusts the three margins of PG, F, S, balancing its
48We define the 2014 level of household grid expenditure as GEi0 and of household welfare as vi0.
49This means that we do not allow the policymaker to set the instruments dynamically, trading-off the incentive to have subsidies

increase over time to inter-temporally price discriminate, or decrease over time to take advantage of decreasing installation costs.
For the analysis of dynamic PV adoption subsidies, we refer to Langer and Lemoine (2018). We differ from their approach,
not only because we let the regulator solve a static optimisation problem rather than a dynamic one, but also because we allow
marginal prices to incentivise adoptions, we consider potential increases in fixed grid costs with more adoptions, and we focus on
the trade-offs between cost, welfare, and equity.

50This implies an asymmetric treatment of the subsidies, because we fully include the subsidies’ cost in the households’ energy
bill, but only include cost savings from the corresponding increase in adoptions for the first five years. While we do not include
social benefits from solar panels, we allow for more solar energy to reduce households’ expenditure.
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objectives. We let installation costs decline according to the estimated AR(1) process, and keep electricity
prices (excluding marginal grid price and fixed fee) and households’ characteristics fixed at the 2014 level
across the five-year period considered. Note that without any adjustment in tariffs relative to 2014, we
predict a share of solar energy of 7.5% in 2019.51

6.2.2 Welfare Effects

In Table 10 we present the optimal tariff designs for two solar energy targets, where the lower target of
7.5% is the target we predict without any adjustments in tariffs (Status Quo), and the higher target of 9%
corresponds to the short-term energy target set by the Swiss regulator (Swiss Regulator).52 While we wish
we could provide simulations for higher targets, two main constraints prevent us from doing so. First, we are
concerned that a prediction that is too much out of sample would not be very reliable. Second, as reported
in Figure 2, even for benchmark levels of incentives, our model predicts that, at most, an 11.2% solar energy
target can be achieved.

In the top portion of the table, we present the percentage increase in marginal grid price and fixed fee,
as well as the share of installation cost that the subsidy should cover in order to achieve each of the targets.
We also show the percentage change in marginal price, and the share of households installing a solar panel
under each scenario. In the second and third portions of the table, we show by income quintile the average
percentage change in households’ annual grid expenditures under the new tariff design. The third section of
the table depicts expenditure changes by solar panel ownership. The fourth portion calculates the aggregate
welfare change under each scenario. Last, the two bottom rows show the grid development costs required to
integrate the electricity fed in by solar panels, and the subsidy cost per kWh of solar electricity production.

The results show how tariff designs differ across the four alternative policy goals. We will focus on
the Status Quo columns, as the results for the Swiss Regulator have a similar qualitative interpretation, but
requires a larger subsidy to achieve a higher target. If the regulator is mainly concerned with minimising
overall grid expenditures (Cost column), the marginal grid price is the most effective instrument to achieve
the solar energy target, as it both contributes to grid financing and serves as an incentive to adopt. Moreover,
it can be used to finance the subsidy, which is costly and therefore set to the lowest level across the four
solutions. In contrast, a regulator with a preference for an equitable grid cost distribution (Cost/Equity
column) will opt for a small percentage reduction in the marginal grid price, and a slight increase in the fixed
fee, accompanied by a higher subsidy compared to the previous case. These small adjustments help to keep
grid expenditure close to the status quo for most households, avoiding the large progressive or regressive
effects of the other two tariff designs. The welfare maximising solution (Welf column) recommends almost
a 70% reduction in the marginal grid price, and therefore more reliance on the subsidy to reach the solar

51This prediction matches closely actual data on adoptions up to 2018, following our calculations based on information from the
Swiss Federal Office of Energy (Bundesamt für Enegie - BFE). The BFE in fact reports a 252% increase between 2013 and 2018 in
total PV capacity in Switzerland (both residential and commercial), and if this trend is the same for residential installations in the
Canton of Bern, then it would imply a 7.84% share of solar energy for our sample in 2018.

52According to the most recent Swiss energy law, by 2020 total annual electricity consumption must be reduced by 3% compared
to 2000, i.e,. to 50,801 GWh compared to 52,373 GWh in 2000 (Swiss Electricity Statistic, 2016). At the same time, the poli-
cymaker has set an annual renewable electricity production target of 4,400 GWh to be reached by 2020, excluding hydro energy.
Based on these targets, we consider a benchmark scenario of solar panels fully accounting for this increase in renewable production,
and households contributing according to their consumption share, which results in a solar energy target of approximately 9%.
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energy target, financing it mainly with an increased fixed fee. This solution relies less on marginal prices
because these distort consumption, reducing households’ welfare, while the fixed fee financing is welfare-
neutral. However, a small marginal price is still desirable, because it lowers aggregate consumption, helping
to reach the solar energy target by reducing the denominator on the left hand side of the SET constraint
in equation (18), without requiring the additional grid investment that new solar panels call for. Last, when
welfare is the relevant metric and the regulator is also concerned about redistribution (Welf/Equity column),
we have an intermediate case, where marginal grid prices are lower relative to the cost/equity case, but
still higher than in the welfare case without equity concerns. In this situation, the regulator trades off low
marginal grid prices to reduce consumption distortion and higher marginal grid prices to reach an equitable
distribution of welfare.

As the last two lines of Table 10 show, relying more on the marginal price to reach the solar energy target
has two positive effect on total costs. First, since a higher marginal grid price reduces total consumption,
less PV energy production is required to reach a given target, and hence grid integration costs are lower.
Second, leveraging marginal grid prices to stimulate adoption implies a lower subsidy cost per kWh.

6.2.3 Distributional Effects

Our four proposed policy scenarios imply different redistributive and welfare effects. The Cost solution
benefits low-income quintiles through lower fixed fees, and increases grid expenditure for high-income
quintiles due to the rise in marginal prices. Households adopting a PV face the largest reduction in grid
expenditure relative to the other solutions. The Cost/Equity solution instead uniformly distributes the ad-
ditional cost across income quintiles, and implies a smaller reduction in grid expenditure for PV adopters
relative to the Cost case. The Welfare solution generates a regressive effects on grid financing across the
income distribution, induced by the large increase in fixed fees. However, this reduces the gap between
higher grid expenditure across PV adopters and non-adopters. While the Welfare solution minimises house-
holds’ welfare losses from reaching the target, the Cost solution generates the worst welfare effects. Last,
the Welfare/Equity solution represents an intermediate case in terms of the aforementioned effects.53

53Note that the effects reported in the second and third panel of Table 10 are in terms of changes in grid expenditure only, which
could be caused both by changes in tariffs and changes in consumption. In order to take these two effects into account, Table I.5 in
Appendix I reports the outcomes of the second and third panel of Table 10 in terms of welfare. In particular, it shows the percentage
change by income quintile and PV ownership of household welfare, measured as of equations (2) and (3), net of income. Despite a
relatively inelastic electricity demand, we find large differences in the welfare effects both across income quintiles and alternative
tariff designs. In particular, we believe that comparing the cost-equity solution (second column of Table I.5) to the welfare solution
(third column of Table I.5) is the closest comparison to a two-part tariff vs a lump-sum tariff. The first is in fact very close to the
actual two-part tariff we observe in the data, while the second has the largest reduction in the marginal price component and the
largest increase in the fixed fee component, making it the closest tariff to a lump-sum among the four we simulate. Our results
show that, for all income quintiles other than the top one, the welfare drop in the cost-equity solution is more or less around half
that of the welfare solution. This suggests that a lump-sum tariff, relative to a two-part tariff, would imply that policymakers reach
the solar energy target with larger reductions in welfare for most income groups and a more regressive effect.
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Table 10: % CHANGE IN MARGINAL GRID PRICE, FEE, SUBSIDY, GRID EXPENDITURE, WELFARE

Solar Energy Target
Status Quo Swiss Regulator

(7.5%) (9.0%)
Cost Cost Welf Welf Cost Cost Welf Welf

Equity Equity Equity Equity

Instruments
% Grid Price (PG) Change 25.8 -4.4 -69.8 -13.2 34.6 -0.7 -30.8 -10.7
% Fixed Fee (f ) Change -96.3 10.8 257.3 42.7 -98.5 27.0 138.8 63.9
% Subsidy (s) as % Fi 20.8 29.0 50.0 31.5 83.3 91.0 98.3 93.5

% Marginal Price Change 11.5 -2.0 -31.2 -5.9 15.4 -0.3 -13.8 -4.8

PV adoption (%) 1.8 1.9 2.0 1.9 2.4 2.4 2.5 2.4

Percentage Change by Income Quintile
of Grid Expenditure (GEi)
1st Quintile -15.5 4.2 49.6 10.1 -11.0 12.4 33.2 19.3
2nd Quintile -12.0 3.9 40.9 8.7 -7.2 11.7 28.7 17.3
3rd Quintile -7.1 3.5 28.0 6.6 -1.8 10.8 22.1 14.5
4th Quintile -2.9 3.1 17.2 4.9 2.7 10.0 16.6 12.2
5th Quintile 1.8 2.6 5.0 2.9 7.8 9.0 10.3 9.4

Percentage Change by PV Ownership
of Grid Expenditure (GEi)
Non-PV HH 2.4 2.9 4.4 3.1 8.5 9.4 10.3 9.7
PV HH -19.5 -13.7 -0.8 -12.0 -14.9 -7.9 -1.7 -5.8

Agg. Welfare Change (M CHF) -12.16 -11.60 -11.02 -11.46 -14.76 -14.21 -13.93 -14.10

Grid Integr. Cost (M CHF) 2.24 2.34 2.62 2.37 3.29 3.44 3.59 3.49

Subsidy Cost (CHF per kWh) 0.09 0.13 0.24 0.15 0.45 0.50 0.55 0.51

Note: The table illustrates the change in marginal grid price PG, fixed fee F , subsidy S required to achieve 7.5%, 9% solar energy targets,
preserving grid financing and vertical equity. The baseline variable price PG is CHF 0.089, and the baseline fixed fee F is CHF 128. It also
presents the percentage change across scenarios of marginal price, which includes energy price, grid price, and taxes. It then presents the percentage
of households adopting a PV across scenarios. It also shows the percentage change in households’ annual grid expenditure across income quintiles
and across PV owners (PV HH) and non-PV owners (Non-PV HH) for each target. Aggregate welfare changes and grid integration costs are in
millions of CHF. The last row shows the average subsidy cost per kWh to stimulate production of renewable energy.

The impact of these alternative tariff designs on grid expenditure can be quite substantial for some
households, especially due to the recurring nature of grid expenditure, and the heterogeneity in electricity
consumption within and across income quintiles. This is particularly true for households in the lowest
income quintile, for which the welfare solution for the Status Quo target implies an additional CHF 755 of
grid expenditure over 5 years for the median household, equivalent to 3.3% of their annual income. There
is, however, a large degree of variation within that lowest income quintile, as some households face an even
larger increase in expenditure of up to CHF 1,278, or 5.5% of annual income, while others face a decrease of
a similar amount. On the other hand, for households in the highest income quintile, the welfare solution can
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lead to up to CHF 2,838 in grid savings over 5 years, which is equivalent to 2.1% of their annual income.54

Figure 3 provides graphical evidence of the distributional effects of alternative tariff designs, using as
an example all tariff combinations that achieve a 7.5% solar energy target. The left panel quantifies the
benefits of PV adoption, measured as the sum of installation cost subsidies and grid expenditure savings for
PV owners, across income quintiles. The figure shows that higher income quintiles benefit the most from
solar panel incentives, because they can install larger solar systems, on average. The figure also shows that
high-income households’ benefits increase with higher marginal prices and decrease with higher subsidies,
because richer adopters have, on average, higher energy consumption and therefore can save more from self-
consumption. The right-hand panel presents instead the share of grid expenditure across income quintiles
for all households, showing that the distribution of grid expenditure becomes more progressive when PV
adoptions are mostly incentivised via higher marginal grid prices rather than subsidies. This is the result
of two competing effects. On the one hand, high-income quintiles consume more electricity and are less
price-sensitive, so they will bear a larger share of total grid costs as marginal prices increase. On the other
hand, these households are also more likely to install a solar panel and thus forego part of the grid charges
through self-consumption. As the right-hand graph shows, the first effect clearly dominates.

Figure 3: DISTRIBUTIONAL IMPACTS OF DIFFERENT TARIFF DESIGNS (7.5% SOLAR ENERGY TARGET)

Note: The left-hand panel shows the distribution of solar benefits for PV adopters across income quintiles and alternative tariff combinations. Solar
benefits are the sum of installation cost subsidies and grid expenditure savings for PV owners. The right-hand panel shows the distribution of grid
expenditure for all households across income quintiles for the same tariff combinations.

To summarise, achieving the solar energy target by increasing marginal prices, as in the Cost case,
represents the most cost-effective and progressive solution, but with a high aggregate welfare loss. On the
other hand, reaching the target with a higher installation cost subsidy and fee, as in the Welfare case, leads
to a more costly and regressive strategy, but with lower aggregate welfare loss. The Equity solutions instead
mostly recommend small deviations from the baseline tariffs and subsidy, to minimise the distributional
effects of the costly transition to the target.

54These increases and decreases correspond to the 5th percentile and the 95th percentile, respectively, of the distribution expen-
diture change of households in the lowest income quintile. Annual income corresponds to the median annual income of the quintile,
which is CHF 23,063 for the first quintile and CHF 132,893 for the fifth quintile.
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6.2.4 Robustness Checks

We perform three robustness checks for these counterfactuals. First, we analyse the impact of lower grid
integration cost, assuming that these costs are negligible as in Gowrisankaran et al. (2016). We find that this
does not change our results much, simply lowering overall grid expenditure, but with no substantial impact
on the distributional effects of alternative tariffs. Second, we investigate the importance of the income tax
deduction of PV installation costs by eliminating this tax benefit. As expected, we find that in this case, the
regulator needs to employ a higher installation cost subsidy to achieve the same energy target. As income-
tax deductions increase with the marginal tax rate, which is higher for high income households, we find that
the installation cost subsidy tends to be less regressive than an income tax deduction, reducing differences
in adoption rates across income groups. Third, we study the potential impact of installing batteries for solar
panels, which can allow households to overcome the timing mismatch between PV electricity production
and electricity consumption, increasing the self-consumption share, and thus their grid cost savings. We find
that with batteries that allow for 100% self-consumption, the regulator should rely more on marginal grid
prices to stimulate PV adoptions.

7 Conclusion

In this paper, we quantify the distributional challenges of environmental policies for residential electricity
markets, focusing on the effect of an increasing penetration of PV installations and mostly fixed or increasing
network costs. Our analysis is based on a self-consumption setting, where grid tariffs provide incentives for
households to invest in solar panels, but the widespread adoption of solar panels erodes the energy providers’
revenue to finance the grid. We address this challenge by proposing alternative tariff designs, in terms of
variable and fixed charges together with PV installation cost subsidies, that a regulator can implement to
achieve a minimum solar energy target while guaranteeing network financing. We also consider the option
of a regulator being concerned about the regressive effects of these tariff designs. We find the optimal tariff
mix and calculate the corresponding distributional impact on grid expenditures across households, as well
as the cost per kWh of solar energy for different scenarios.

We base our analysis on a structural model of households’ energy demand and PV installation, using a
detailed dataset with 165,000 households in the Swiss Canton of Bern for the years 2008-2014. We adopt a
regression discontinuity design to identify price elasticities, and estimate a structural dynamic model of PV
adoption. Our estimates show that the price elasticity of energy demand is low and decreases with wealth.
Furthermore, households’ PV adoption rate reacts only weakly to changes in subsidies and marginal grid
prices. Consequently, even generous subsidies and high marginal prices only induce a share of residential
solar energy slightly over 11% of total households’ electricity consumption. An important factor that limits
the potential of PV adoption policies is that only 25% of all households in our sample are homeowners.

We use the estimates of our model for counterfactual simulations to find the optimal combination of
marginal prices, fixed fees, and subsidies to installation costs to achieve a 7.5% or 9% solar energy target
within 5 years, while guaranteeing network financing. We show that the cheapest way to achieve the target
is to rely on higher marginal grid prices, which simultaneously incentivise PV adoptions and generate extra
revenue to finance the grid. In contrast, to achieve the target maximising households’ welfare requires a
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drastic reduction in marginal prices to reduce consumption distortions, relying on high subsidies to stimulate
PV adoptions, and high fixed fees to finance the grid. If the regulator has a preference for redistribution, we
show that it should favor marginal grid prices to stimulate PV adoptions. While both marginal prices and
installation cost subsidies imply that high-income households enjoy the largest share of solar panel benefits,
marginal grid prices help to make the financing of these benefits more progressive. Last, we show that
stimulating PV adoptions is costly, ranging from 0.1 to 0.55 CHF per kWh of solar energy, that is up to 2.5
times the marginal price of electricity. However, with declining solar panel installation costs, subsidies to
PV installations are bound to decrease.

Our analysis provides important insights for tariff design in high fixed-network-cost markets that are
experiencing the introduction of a new technology. While shifting revenue recovery from marginal prices
to fixed access fees would guarantee that the adopters of the new technology fully contribute to recovering
network costs, we show that relying mostly on marginal prices is a cost-effective way to stimulate the
adoption of the new technology, and is more progressive across the income distribution.

Despite our results being constrained by the extent of our institutional setting and available data, they
open the door for various other relevant questions that we hope will be addressed in the near future. First, to
better characterise the direction towards which various residential electricity markets worldwide are evolv-
ing, our model could be adapted to the case of a competitive market for retail and distribution of electricity.
Second, through the lens of our model, a regulator interested in maximising production of solar energy
could consider heterogeneous subsidies for PV installation depending on buildings’ sun exposure, favouring
installations by households with the highest potential ‘solar power productivity’. Last, another potentially
useful application of our rich dataset could be to understand how well the regulator can achieve redistribu-
tion by observing only households’ grid expenditure or both grid expenditure and income, where in the first
case grid expenditure can be thought as an imprecise proxy for income. We regard each of these topics as
worthy of future research.
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For Online Publication - Appendix

A Constructing the Data

We obtained a list of grid connections (i.e. energy meters) with their respective energy usage, energy in-
fusion, customer information, and some other household-specific variables from all three energy providers
(BKW, Energie Wasser Bern, and Energie Thun). These data sets contain both households and businesses.
With the support of the Tax Office of the Canton of Bern, we were able to match the energy customer in-
formation with the tax data and the building characteristics data. This ultimately allowed us to create the
final data set, which combines energy, income, wealth data, and building information for each household.
The data provided by the tax administration also includes additional household level information, such as
household size, number of children, marital status, and whether the house is occupied by the owner.

The original list provided by BKW contains data on about 316,000 annual meter readings from 2008 to
2014. Of these readings, we matched about 132,000 with tax information. The mismatches were mainly
due to data imprecision and the inclusion in the sample of businesses in addition to households. We then
aggregated readings by household and ended up with a sample of 130,000 households. As we only have
the current address for BKW customers, but historical personal information in the tax data, the matches
steadily decline in the earlier years, as some households relocated during that time period. For the city of
Bern, we used a list of about 97,000 readings from 2008 to 2014. Matching the data with tax information,
we produced a sample of 61,000 meter readings, which we assigned to 46,000 households. From BKW and
ET, we received annual consumption and infusion for each meter, though EWB reads different households’
meters at different times during the year, and bills accordingly. We excluded readings significantly longer or
shorter than a year as most households are checked on a regular, 365-day basis. As for the city of Thun, we
started with a list of about 28,000 grid connections per year between 2009 and 2014.55 After the matching
procedure, we ended up with 18,000 meters, which correspond to 17,000 households.

The combined sample for the three companies includes energy and tax data on 198,000 households. We
matched the sample with information on building characteristics provided by the Swiss Federal Statistical
Office. Doing so reduced the sample to 194,000 households, due to data imprecisions. The final estima-
tion and simulation sample included several additional adjustments. First, we excluded all observations
of households that relocated in the same year.56 This adjustment should guarantee that we measured con-
sumption for the full duration of 365 days. Second, we dropped observations for households that changed
tariff schemes. Tariff changes are rare and are usually accompanied by simultaneous changes in appliances.
Third, we dropped households with more than two meters. Fourth, we dropped observations with an annual
energy consumption below 500 kWh or over 40,000 kWh to make sure we did not include private firms or
farms. These adjustments ultimately reduced our sample to 165,000 households.

Table A.1 reports the average energy consumption, energy expenditure, and the share of taxable income
spent on energy by income quintile. For the first two variables, we report both mean and standard deviation
across the income distribution. The table also displays different household characteristics: the proportion
of owner-occupied housing, the proportion of married couples, the average age of the household head, the

55Unfortunately the data prior to 2009 is not available, due to a system change.
56Households were identified as relocating if they changed address in the tax data, or if they enter or leave the sample.
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average household size, as well as the share of households who own a PV installation. The following rows
report building or apartment characteristics relevant for energy consumption: whether electricity is used
for heating or hot water, the number of rooms, the apartment surface, and the number of apartments in the
building. The unconditional means in Table A.1 suggest that the annual average electricity consumption as
well as energy expenditures rise monotonically with income, and so does the standard deviation for both
variables. Households in the lowest income quintile consume on average 2,976 kWh per year, whereas
those in the highest one have an average yearly consumption of 5,779 kWh. The smaller annual electricity
consumption of lower income households also means that the fixed fee represents a higher portion of their
grid expenditure, which highlights the regressive impact compared to the status quo of shifting grid cost
to fixed fee financing. A more disaggregate version of the correlation between consumption and income is
presented in Figure A.1, which shows the average electricity consumption for each percentile of the income
distribution.

Figure A.1: ANNUAL ELECTRICITY CONSUMPTION BY INCOME

Note: Each dot corresponds to the average energy consumption for a percentile of the distribution of taxable income. The higher energy consumption
for the lowest percentiles could be a consequence of the definition of taxable income, as it is possible to reach an extraordinarily low income through
tax deductions. A similar picture emerges if we use household wealth instead of taxable income.
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Table A.1: ENERGY AND HOUSEHOLD CHARACTERISTICS BY INCOME QUINTILE

1st 2nd 3rd 4th 5th

Variables <36k 36k-54k 54k-72k 72k-99k >99k

Energy Consumption (kWh)
Mean 2,971 3,367 3,959 4,606 5,777
Standard Deviation 2,984 3,364 3,539 3,769 4,501

Energy Expenditure (CHF)
Mean 696 777 895 1,023 1,248
Standard Deviation 557 620 645 682 829

Energy Price Expenditure (CHF) 296 333 391 455 569
Grid Expenditure (CHF) 346 380 428 480 570

Share of Fixed Fee (%) 39.8 38.1 34.3 31.2 27.4
Income Share Energy (%) 3.9 2 1.7 1.4 1.1
Home Ownership (%) 17 29 40 54 72
Married (%) 16 31 53 70 80
Age HH Head 54.9 54.1 54.3 54.4 54.9
Householdsize 1.3 1.6 2 2.3 2.6
PV Installation (%) .08 .17 .33 .7 1.61
Heating System (%)

Electric 4 4 4 4 4
Heat Pump 2 3 5 7 9
Oil/Gas/Coal 94 93 91 89 87

Water Heating System (%)
Electric 38 39 41 43 45
Heat Pump 1 2 3 4 5
Oil/Gas/Coal 60 59 56 53 50

Number of Rooms 3.2 3.4 3.6 3.9 4.5
Apartment Surface (sqmt) 79 86 93 104 126
Apartm. in Building 2.7 2.6 2.5 2.3 2

N Obs 174,534 174,538 174,529 174,543 174,521

Note: The table displays the mean of each variable based on the pooled sample. However, for Energy Consumption and Energy Expenditure, we
report both the mean and standard deviation. Quintiles are measured in thousands of CHF, therefore ‘36k’ means CHF 36,000.
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B Maps - Bern, Thun and Surroundings

Figure B.2: MAP CANTON BERN (HOUSEHOLDS)

Note: The figure depicts the Canton of Bern and the coverage of the three main energy providers. The dark blue area represents the customers
of Energie Thun in the city of Thun. The blue area consists of the customers of Energie Wasser Bern in the city of Bern. The light blue area
corresponds to the customers of BKW, and therefore most of the canton outside of the two mentioned cities.

Figure B.3: MAP CITY BERN (HOUSEHOLDS)

Note: The figure shows a map of the city of Bern and its surroundings. The dark blue area consists of all households in the sample supplied by
EWB, while the light blue area shows BKW customers.
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Figure B.4: MAP CITY THUN (HOUSEHOLDS)

Note: The figure shows a map of the city of Thun and its surroundings. The dark blue area consists of all households in the sample supplied by
Energy Thun, while the light blue area shows the BKW customers. The white area adjacent to the coverage of Energy Thun, without any households,
shows the lake of Thun.
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C Example of Eturnity Offer

Erleben Sie Ihre Anlage interaktiv
offerte.eturnity.ch
Code: 456785

Egon Tanner
Feldweg 45
6440 GELTERKIRCHEN
Tel: 079 685 5555
egon.tanner@bluewin.ch

INDEPENDENCE AND 
OWN CONSUMPION

DEGREE OF 
INDEPENDENCE

OWN-
CONSUMPTION

>> Seite 2

IINVESTMENT COST 

One-time investment of

Your Heating System

>> Seite 5

21’960 CHF
incl. Solar panel
incl. battery 
incl. installation
incl. VAT
incl. subsidies

Heating: 
Warm Water: 
Consumption:

Alignment:
Solar Panel:
Battery:

PAYBACK PERIOD 

with battery

12,4 years
37%72%

FREDI GMBH
Reichsgasse 3
7000 Chur
Tel: 0800 00 00 00
info@fredigmbh.ch

annual revenue: 1’383 CHF 

without battery

14,7 years

Heating Pump 
Heating Pump 
9’600 kWh

180°
8,12 kWp
7 kWh

Annual Revenue: 7’955 kWh

>> Seite 3 >> Seite 3
annual revenue: 903 CHF

PERSONAL
OFFER

FREDI GMBH

(a) PV installation investment preview

INDEPENDENCE & 
OWN CONSUMPTION

2
S E I T E

WHERE DOES MY ENERGY COME FROM?

WHERE DOES MY ENERGY GO?

Why do I need energy from the grid?

Even if your solar pannel produces more 
energy in a year than your total annual 
consumption, and despite you battery, 
you might need to rely on energy from 

the grid during winter nights.

Why do I feed energy into the grid?

You  feed your energy, apart from what 
you use directly, into your battery. As soon 
as the battery is full excess energy will be 
automatically fed into the grid.

28% 44
%

Battery 28% Energy grid

Your total energy consumption
3716 kWh

16% 21
%

63% Battery
1273 kWh

Energy grid
5011 kWh

Direktverbrauch
1670 kWh

37%
Your Own Consumpton

How much of your solar energy can you use yourself?

Annual solar energy production

7955 kWh

1023 kWh 1023 kWh

Annual direct  PV consumption 
1670 kWh

72%
Your degree of independence

How much of your energy demand do you supply 
yourselfr?

(b) Description of where the PV energy comes from and
where it goes

PROFITA-
BILITY

INVESTMEN COSTS REVENUE

«SOLARENERGIE LOHNT 
 SICH FÜR SIE»

Solar panel 

Battery system 

VAT 8%

Total exkl. VAT

Total inkl.VAT 

Subsidy

Your Investment 

Expected tax deduction* 

Final costs

23’578 CHF

4’600 CHF

2’254 CHF

28’178 CHF
30’432 CHF

-8’472 CHF

21’960 CHF

-3’294 CHF

19’357 CHF

PRODUCTION COSTS
1 kWh solar energy from your roof costs:

15,7 Rappen
Without battery cost, during the life-time of the solar panel incl. 
capital costs, incl. Iinvestment and maitenance.

Total savings from own consumption and revenue from selling ennergy, 
minus maintenance costs during the life time of solar panel/battery. No 
capital costs.

Internal interest rate describes the average, yearly return of capital across 
the life-time of the PV, assuming the capital revenue is reinvested at the 
internal rate of interest.

INTEREST YIELD
Return of your capital/internal interest rate:

With battery

34’579 CHF
Without battery

22’579 CHF

FUNDAMENTALS
Energy provider: CKW 
Energy product: hydropower 
PV-life span: 25 years 
Inflation energy prices 2,1%
Maintenance PV: 1% Invest. 
p.a.

Capital cost: 1,0%
Maintenance battery 1.5% Invest.

3
S E I T E

* Assumption marginal tax rate 15% 

2,44%
Only solar with battery

1,03%

(c) Breakdown of PV installation costs and energy savings

CARBON 
FOOTPRINT

«EIN WICHTIGER BEITRAG
FÜR DIE UMWELT»

Your yearly CO2-savings of 1’000 kg are equivalent to

driving your car 8’132 km around 
the globe

reducing your carbon footprint by 15%

saving as much CO2 as 80 trees 
consume during a year

Berechnungsgrundlagen: Der dargestellte Vergleich basiert auf einem Schweizer «Egal-Strommix».
Quellen: ESU-Services / BAFU: Treibhausgas-Emissionen der Schweizer Strommixe, 2012

4
S E I T E

(d) Quantification of CO2 saving
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D Eturnity PV Simulation Method

 3 / 4 

1 Introduction 
This document describes the formulae, methods and assumptions that were applied to the PV-system 
simulations that were ran in order to provide a solid basis for the interpretation of the results (PV Adoption 
Research PLZ.xlsx, PV Adoption Research Simulation.xlsx). 

1.1 Consumption Profiles & Scaling 
The simulations were run with a number of different load profiles that differ from each other by the heating 
and hot water system. The following table gives an overview for the yearly consumption of the load profiles 
that were used for the simulation: 
 
Heating System Hot Water System Yearly Consumption (kWh) 
electric electric 18930.0 
electric heat pump 17649.3 
heat pump electric 11807.6 
heat pump heat pump 11188.8 
oil/gas/wood/coal electric 5136.0 
oil/gas/wood/coal heat pump 4041.0 
oil/gas/wood/coal oil/gas/wood/coal 3493.5 
 
During the simulation, these profiles were scaled linearly to fit the yearly consumption of the consumption 
deciles that were provided as input data. This method will give unrealistic values for the 
consumption_peak_power_kw results for consumption deciles that differ from the physically reasonable 
values. 

1.2 Heating System and Hot Water System 

While running the simulations, it was noticed that the data input contained samples with the following rather 
rare combinations of heating and hot water system: 
 

- Heating = Electric & HotWater = Oil/Gas/Wood/Coal 
- Heating = Heat Pump & HotWater = Oil/Gas/Wood/Coal 

 
Because these combinations are so rare, Eturnity does not have a validated load profile for such a 
combination. After having noticed that such combinations exist in the input data, we have tried to find out 
where they are coming from. We ended up with the best guess that probably “solar thermal systems” were 
classified under “Oil/Gas/Wood/Coal”. With this assumption, we have then used load profiles that we 
consider reasonably accurate for the purpose of the research project to complete the simulations: 
 
Original Combination  
(Heating system:Hot water system) 

Used Combination for the Simulation 
(Heating system:hot water system) 

electric:oil/gas/wood/coal electric:heat pump 
heat pump:oil/gas/wood/coal heat pump:heat pump 

1.3 Geo-Location 

To determine the geo-location of each zip code we used an Open-Street-Map-Service. The search was 
based on the zip code and the city. The following addresses could not be found in Open-Street-Map and 
their latitude/longitude was identified manually: 

- 3434 Obergoldbach 
- 3435 Ramsei 
- 3439 Ranflüh 
- 3513 Bigenthal 
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1.4 Number of Solar Panels From Building Surface 

The PV-simulation requires the number of panels, which had to be determined by the building surface that 
was given as input data.  
 
Definitions: 
building_surface A is defined by the floor plan of the building (see figure 1) 
obstacle_factor of  obstacle factor because of chimneys, etc. The obstacle factor was set to 0.9. This 

factor was determined by evaluating a larger number of roofs. 
gable_roof_factor grf  for simplicity, it was assumed that all roofs are gable roofs and that only one side 

of the gable roof can be covered with solar panels. This factor was set to 0.5. 
roof_slope rs 30° (as per specification), roof slope of south-facing side of the gable-roof 
panel_width pw 1m (as per specification) 
panel_length pl 1.65m (as per specification) 
number_of_panels p number of panels used for the simulation 
 
The following formula was used to approximate the number of panels: 
 

𝑝 =  
𝑜𝑓 ∙ 𝐴 ∙ 𝑔𝑟𝑓

𝑝𝑤 ∙ 𝑝𝑙 ∙ cos(30°)
 

 
 

 
Figure 1: Example building surface 

1.5 Determination of specific base yield for simulation 

In order to keep the number of simulations as low as possible (around 900 instead of 350’000), all the 
simulations were ran for exactly one location. In order to determine which location was most representative 
for all of the locations specified we’ve used the median value of the collection of specific yields (kWh/kWp) 
for all the locations specified by the input data. 
 
Median value: 1002 kWh/kWp 
Location chosen for simulation: 3047 Bremgarten bei Bern 
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E Utility and Indirect Utility

We assume that household i in year t maximises its utility from consuming electricity Cit and the outside
good Qit, subject to a budget constraint. We specify the following household’s constrained optimisation
problem, omitting the subscripts for convenience:

max
C,Q

u(C,Q,X)

s.t. PC +Q+ F ≤ I − T (I)
(E.1)

where I and X are respectively household’s income and other characteristics (e.g., wealth, size, etc.),
T (I) are income taxes, P is the energy price, and F is the fixed fee. We normalise the price of the outside
good to 1. We define the following functional form for households’ utility:

u(C,Q,X) = Q+
β

β + 1
C
β+1
β e

X′ω+ν
−β . (E.2)

The first order conditions lead us to the following energy demand function (C∗) and optimal consump-
tion of the outside good (Q∗):

C∗ = P βeX
′ω+ν

Q∗ = Ĩ − P β+1eX
′ω+ν .

(E.3)

where Ĩ = I − T (I) is income net of tax payments. Accordingly, the indirect utility function can be
expressed as:

v(P, Ĩ,X) = Ĩ − 1

β + 1
P β+1eX

′ω+ν = Ĩ − 1

β + 1
PC∗. (E.4)

In the structural model we distinguish between the two indirect utilities that a household derives depend-
ing on whether it has a solar panel on not. What differentiates the two indirect utilities is the income that a
household has under each case. With no solar panel, a household has an income of Ĩ − F , whereas with a
solar panel, a household has an income of Ĩ − F +R, with R being the annual revenue generated by the
solar panel. Hence, the indirect utility we use for the structural model will be the following:

v(P, Ĩ,X, F, τ, Y ) =

 Ĩ − F +R− 1
β+1P

β+1eX
′ω+ν if PV it = 1

Ĩ − F − 1
β+1P

β+1eX
′ω+ν if PV it = 0.

(E.5)
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F High/Low Tariff Share Prediction

We assume the marginal price of a dual tariff household to be the weighted average of day and night con-
sumption shares. Consequently, low daytime consumption shares correspond to low prices. This weighting
allows for additional price variation in the elasticity estimation, but also introduces a potential endogeneity
bias, because the consumption pattern of a household might be closely related to its aggregate consumption.
For instance, households with a high total energy consumption might have more flexibility to shift part of
their consumption to nighttime. Similarly, the share of nighttime consumption is correlated with energy
intensive appliances, such as electric boilers. To address this potential bias, we use predicted consump-
tion shares instead of actual consumption shares to construct prices for dual-tariff households. Specifically,
we predict the consumption share of each dual-tariff household as a function of household and apartment
characteristics, estimating the following OLS regression:57

htshareit = η0 +Xs
itη1 + εsit. (F.6)

where htshareit is the actual high (i.e. daytime) tariff share of household i, and Xs
it are household and

apartment characteristics including income. We estimate the model separately for each provider for two
reasons. First, BKW defines daytime consumption over shorter intervals than EWB and ET.58 Second, by
allowing coefficients to vary across companies, we add heterogeneity to prices, which is based on observable
characteristics. Table F.2 presents the results for the share prediction.

57We assume a simple linear form of the share function. OLS performs well, as the predicted values closely resemble the actual
distribution of shares.

58Daytime consumption of BKW is from 7am to 9pm. Daytime consumption of EWB and ET is from 6am to 10pm.
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Table F.2: HIGH TARIFF SHARE PREDICTION

Variables (BKW) (EWB) (ET)
Home Owner -0.007∗∗∗ 0.035∗∗∗ -0.026∗∗∗

(0.001) (0.004) (0.002)
Number of Rooms 0.010∗∗∗ 0.010∗∗ 0.009∗∗∗

(0.002) (0.005) (0.003)
Number of Rooms Sq -0.001∗∗ -0.000 -0.000

(0.000) (0.001) (0.000)
Aparment Surface 0.011∗∗∗ 0.008 -0.014∗∗∗

(0.002) (0.007) (0.005)
Constant 0.226∗∗∗ 0.246∗∗∗ 0.332∗∗∗

(0.011) (0.035) (0.024)
Household Size FE Yes Yes Yes
Household Age FE Yes Yes Yes
Heating System FE Yes Yes Yes
Water System FE Yes Yes Yes
Construction Period FE Yes Yes Yes
Year FE Yes Yes Yes
N Obs 332,599 60,472 64,582
R2 0.185 0.238 0.292

Note: Standard errors in parentheses. Standard errors are clustered at the household level to account for serial correlation. Column (1) shows the
results for BKW, Column (2) for EWB, and Column (3) for ET.
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G Counterfactual on Distributional Effects of Death Spiral

This counterfactual aims at quantifying the utilities’ so-called ‘death spiral’, that is, the increase in grid
marginal prices required to compensate for the lack of revenues from more PV adoptions, under a scenario
of self-consumption and of rising grid costs due to more decentralised and intermittent production. We also
calculate whether this increase in prices would have any regressive effects, keeping in mind that this is a
partial equilibrium result, as we only allow prices to vary. Based on the estimates of our model, we simulate
the evolution of adoptions for the ten years after the end of our sample, that is until 2024. The main driver of
more adoptions is the decline in fixed installation costs, as measured by its AR(1) process that we estimated.
We assume that the installation cost subsidy is fixed at 30%, as it was set in 2015 and is still set in 2019; we
hold constant the fixed fee at its 2014 level, and allow only marginal grid prices PGt to change every year in
order to recover increasing grid costs as of equation (17).

In Figure G.7 we present the evolution of PV capacity, marginal grid prices, and grid expenditures. We
calculate the amount of grid expenditure that households with a PV can save through their self-consumption,
and distinguish between two scenarios. In the first scenario (Self-Consumption), a household can consume
on average 14.8% of its PV’s energy production, using the simulated self-consumption percentages pro-
vided by Eturnity. In the second scenario (Net-Metering), we allow instead for net metering, meaning that
households can subtract 100% of the solar energy they produced from their electricity bill.59 This scenario
is equivalent to the benchmark case where all households install a battery. The top, left-hand panel shows
an almost linear increase in installed solar capacity, which implies a constant annual adoption rate. Conse-
quently, the marginal grid prices increase linearly, as shown in the top, right-hand panel. Although rising
marginal prices increase the benefit of installing a solar panel, the effect is not strong enough to induce an
exponential adoption trend. As expected, both the increase in PV capacity and the increase in marginal
prices is higher under the Net-Metering scenario. The bottom two panels show the effects of more PV adop-
tions on households’ grid expenditure, for PV and non-PV owners, respectively, on the bottom left,60 and
by income quintile on the bottom right.

Overall, all households experience an increase in grid expenditures due to the rise in the number of adop-
tions, under both scenarios. However, PV owners enjoy a reduction of modest size in grid expenditures at the
adoption time in the Self-Consumption scenario (12% reduction), and of substantial size in the Net-Metering
scenario (74% reduction). This provides a measure of the potentially regressive effect of more adoptions, as
the burden of grid financing is shifted onto non-adopters, who are on average lower income households. On
the other hand, as presented in the bottom right figure, under both scenarios, high-income households expe-
rience a larger increase in grid expenditures relative to low-income ones. This measures instead a potentially
progressive effect of more adoptions, because richer households have higher average energy consumption
and are less price sensitive, which implies that their grid expenditures increase more than for low-income
households. Therefore, despite richer households being more likely to adopt and substantially reduce their
electricity bills, high income households contribute on average the most to compensate the missing rev-
enue for utilities, showing that the progressive effect dominates the regressive one. Interestingly, a higher

59We do not allow self-consumption to exceed total annual consumption of the household.
60The bottom left panel shows the expenditure change for a ‘representative’ household owning a solar panel and a ‘representative’

household not owning one, in the sense that each has the average characteristics of their respective groups within our data.

50



self-consumption percentage leads to a less progressive outcome.61

Figure G.7: FUTURE ADOPTION AND INCREASE IN MARGINAL PRICE

Note: The top, left-hand figure shows how solar capacity in MWp evolves over time. The top, right-hand figure illustrates the corresponding
increase in marginal prices to make up for the missing grid revenue of solar panel owners. The bottom panels depict the impact on household grid
expenditure, on the left hand by PV ownership, and on the right, by income quintile.

61Figure G.8 is a version of the bottom right panel of Figure G.7 in terms of household welfare, measured as of equations (2) and
(3), net of income. That figure leads to an equivalent conclusion in terms of progressive effects.
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Figure G.8: WELFARE CHANGE WITH MARGINAL GRID PRICE ADJUSTMENTS

Note: The graph depicts household welfare (i.e. households’ indirect utilities as of equations (2) and (3)) net of income, averaged by income
quintile. In the counterfactual outcomes the regulator increased marginal prices to recover network cost following the adoption of solar panels.
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H Estimation and Simulation Details

In this appendix, we provide additional details on the implementation of the PV estimation and the counter-
factual simulations.

Discretisation. To allow for numerical value function iteration we discretise the state variables. We start
by calculating R and F for each household and year. We let the discretised values of each variable range
from zero to its maximum over all households and years, with fifty steps in between. Note that the maximum
size of an installed PV is set to 30 kWp, to limit the size of the state space. To allow the installation cost
coefficients to vary across wealth quintiles, we allow for five wealth states, corresponding to the wealth
quintiles in our sample. The resulting total state space consists of 12,500 possible states.

Transition Matrix. Following Tauchen (1986) we calculate the probability of state variable s and position
i to reach position j in the next period as Pij = ϕ( s(j)−δ∗s(i)+step/2σ )−ϕ( s(j)−δ∗s(i)−step/2σ ), where δ is the
AR(1) coefficient of the state variables and σ is the standard deviation of the error term of the AR(1) process.
For the wealth quintile state, we assume that each household stays in the same quintile when transitioning to
the next period. Having 12,500 individual states would lead to a transition matrix of the size 12,500 x 12,500,
which is computationally infeasible. As an alternative, we keep only transition probabilities that are above
1%, such that for each state, we end up with roughly 10 potential transition states with varying probabilities.
Note that we slightly rescale the probability such that they add up to one, which is necessary since we
exclude a few small probabilities. We calculate a separate transition matrix for the self-consumption setting
(in year 2014), as the discounted value of revenue stays constant over time instead of declining. After
calculating the transition matrices, we add to the fixed installation costs in the state space matrix a labour
cost of CHF 6,000, which is constant over time and does not impact the transition process.

Probability to Adopt. For each state, we calculate the value of adopting a PV (V1), using the PV revenue
and installation cost of that state, and the coefficients Θ. Then, we find the value of non-adoption of each
state (V0) by value function iteration, using the value of adopting a PV as inputs. Having calculated both
the values of adopting and not adopting a PV for a given state, we calculate the probability to adopt as
P = eV1

eV1+eV0
. To compute the probability of a particular household installing a solar panel, we assign

the household to the corresponding state based on its PV revenue and installation cost, and assign to the
household the probability of that state. For the self-consumption setting (in year 2014) the value function
iteration is done separately, based on its respective transition matrix. Furthermore, the shift from feed-in
tariffs to a subsidy scheme with self-consumption impacts the assignment of households to the state space.
Based on the Swiss subsidy scheme, in 2014, households see a 25% reduction in their variable installation
costs and a 1,400 CHF reduction in the non-variable installation costs (which translates to roughly 30% in
reduction of total costs).

Bootstrapping. We employ a stratified bootstrapping procedure to estimate the standard errors for Θ,
the PV adoption coefficients. For each bootstrap iteration, we draw the same number of households with
replacement and include in the sample all observations of these households. In addition, due to the low
share of PV owners, we draw separately a bootstrapped sample of PV and non-PV households, keeping the
overall share of PV households constant. We calculate the standard errors based on the coefficients of 20
bootstrap draws.

Regulator’s Optimisation. We solve the regulator’s problem in four steps. First, we let the regulator
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define a bounded set of combinations of variable tariffs and subsidies (PG, S). Second, for each of these
combinations, we calculate the probability that each household will adopt a solar panel, the unique fixed
fee F necessary to satisfy the network financing constraint, the share of solar energy, and the regulator’s
objective function. Third, we choose the subset of combinations of instruments PG, S, F that satisfy the
solar energy target. Fourth, we choose the combination of the subset with the smallest or largest value for
the objective function, depending on whether the regulator is minimising or maximising. Knowing that the
current variable tariff is around 0.1 CHF/kWh, we consider as feasible range of variable tariffs those between
0 and 0.5 CHF/kWh, discretised at 0.001 intervals. The subsidies range between 0% and 100% of installation
costs, with 0.25% intervals. For each combination of variable tariff and subsidy, we calculate for the next
five years the state variables for each household. That is, we calculate PV revenue and consumption based on
the tariffs and let the installation cost evolve according to its AR(1) process. Based on the household’s new
position in the state space each year, we assign the probability that it will adopt a PV in that year, drawing
from a table with PV adoption probabilities for each state, which was calculated prior to the regulator’s
optimisation to save computational time. Next, we calculate total expected grid consumption, and infer the
unique fixed fee to satisfy the network financing constraint. Last, using the fixed fee, we calculate the grid
expenditure for each household and the objective function.

Death Spiral. Each year, we let installation costs evolve according to its AR(1) process, and together
with the volumetric grid charge, set by the regulator at the end of the prior year, we calculate the PV adoption
probability for each household. Based on these PV adoption probabilities, the regulator adjusts volumetric
grid charges to cover network financing in the next year. To create Figure G.7 in Appendix G, we keep track
of the expected revenue and PV production of each household for each year. We simulate PV ownership in
the last year using each household’s cumulative probability of installation. For each household, we average
over 1,000 draws.
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I Extra Figures and Graphs

Figure I.9: INSTALLED PV CAPACITY IN SWITZERLAND AND GLOBALLY

Note: The left-hand figure shows the evolution of installed photovoltaic electricity production capacity in Switzerland (in MW). The right figure
depicts the same metric globally (in GW). Sources: Swiss Electricity Statistic 2006-2017, Swiss Federal Office of Switzerland; IEA PVPS Trends
2017 in Photovoltaic Applications; IEA PVPS 2018 Snapshot of Global Photovoltaic Markets

Table I.3: ANNUAL ENERGY PRICES, NETWORK TARIFFS AND TAXES

BKW EWB ET
Mean Std Dev Mean Std Dev Mean Std Dev

Fixed Fee Uniform Tariff (CHF/year) 125 17 90 23
Price Uniform Tariff (Rp./kWh) 23.8 .6 18.2 1

Energy Price 11.4 .4 10.5 .4
Grid Price 10.2 1 6.8 .9
Municipality Tax 1.8 .2 .5 .2
KEV Tariff .4 .1 .4 .2

Fixed Fee Dual Tariff (CHF/year) 153 27 121 22 111 19
Price High Tariff (Rp./kWh) 24.4 .8 19.7 1 25.6 .6

Energy Price 11.8 .3 11.6 .4 12.4 .2
Grid Price 10.4 1 7.3 .8 10.9 1.7
Municipality Tax 1.8 .2 .4 .2 1.8 1.5
KEV Tariff .4 .1 .4 .2 .5 0

Price Low Tariff (Rp./kWh) 14 .8 10.3 .4 14.9 1.4
Energy Price 7.3 .2 7.4 .3 9.7 .2
Grid Price 4.5 .5 2 .4 2.9 .4
Municipality Tax 1.8 .2 .4 .2 1.8 1.5
KEV Tariff .4 .1 .4 .2 .5 0

Note: The table shows average annual prices and standard deviation in the sample. ‘High Tariff’ is day tariff, ‘Low Tariff’ is night tariff. KEV
Tariff is the surcharge used to promote renewable energy. Rp (Rappen) is one-hundredth of a Swiss franc (CHF). All prices include the value-added
tax.
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Table I.4: BOUNDARY COMPARISON

FULL SAMPLE SAMPLE WITHIN 1KM OF BOUNDARY

(N=872,665)

Boundary BKW EWB/ET Difference
Sample Side Side in Means: Test of

Standard (N=182,386): (N=103,140): (N=79,246): Col. 4 - Difference:
Mean Deviation Mean Mean Mean Col. 5 t-Statistic

(1) (2) (3) (4) (5) (6) (7)

Income (CHF) 71,162 114,591 76,161 78,042 73,714 4,328 .81
Wealth (CHF) 316,723 1844216 367,983 384,380 346,641 37,738 .77
Home Ownership (%) 42.39 49.42 34.57 36.94 31.5 5.44 .79
Married (%) 49.71 50 44.64 46.78 41.85 4.93 1.77
Household Size 1.97 1.1 1.89 1.93 1.85 .08 1.57
Fossile Heating System (%) 90.97 28.65 93.92 92.45 95.83 -3.38 -1.98
Fossile Water System (%) 55.68 49.68 62.48 62.5 62.46 .04 -1.32
Number of Rooms 3.71 1.14 3.55 3.62 3.45 .18 1.44
Appartm. Surface (sqmt) .98 .4 .93 .95 .9 .05 1.02
Appartm. in Building 2.4 .85 2.58 2.54 2.63 -.09 -1.55

Note: The table reports summary statistics for the key variables in the model for the full sample and the boundary sample respectively. The boundary
sample includes all households within a 1km radius of the defined border points. BKW side corresponds to the household that are supplied by energy
provider BKW. EWB/ET side corresponds to the households supplied either by energy provider EWB or ET. Column (7) presents the t-statistic for
a test of the hypothesis that the variable mean does not vary between households at the border served by different energy providers. The t-statistic
is calculated by regressing each of the variables in column (1) on a dummy variable for energy provider BKW, while controlling for boundary and
year fixed effects. Standard errors are clustered at the border point-year level.
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Table I.5: WELFARE CHANGE BY INCOME QUINTILE

Solar Energy Target
Status Quo Swiss Regulator

(7.5%) (9.0%)
Cost Cost Welf Welf Cost Cost Welf Welf

Equity Equity Equity Equity
Instruments
% Price (PG) Change 25.8 -4.4 -69.8 -13.2 34.6 -0.7 -30.8 -10.7
% Fixed Fee (f ) Change -96.3 10.8 257.3 42.7 -98.5 27.0 138.8 63.9
% Subsidy (s) as % Fi 20.8 29.0 50.0 31.5 83.3 91.0 98.3 93.5

Percentage Change by Income Quintile
of Welfare (vi − Ii)
1st Quintile -6.3 -16.9 -41.9 -20.1 -8.1 -20.7 -31.9 -24.4
2nd Quintile -7.5 -15.9 -35.7 -18.4 -9.5 -19.4 -28.4 -22.4
3rd Quintile -8.8 -14.1 -27.0 -15.7 -11.0 -17.3 -23.2 -19.2
4th Quintile -9.0 -11.9 -19.1 -12.7 -11.3 -14.7 -18.0 -15.8
5th Quintile -8.3 -8.5 -9.9 -8.7 -10.6 -11.0 -11.6 -11.2

Percentage Change by PV Ownership
of Welfare (vi − Ii)
Non-PV HH -4.5 -4.0 -3.5 -3.9 -7.4 -6.9 -6.7 -6.9
PV HH 178.2 176.4 171.8 175.9 176.0 173.7 171.7 173.1

Note: The table shows the percentage change in welfare (i.e., households’ indirect utilities as of equations (2) and (3)) net of income by income
quintile. Note that the installation costs of the solar panel are excluded from the welfare metric.
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