
DISCUSSION PAPER SERIES

 

DP12300
  (v. 4)

MEASURING AGGREGATE ECONOMIC
ACTIVITY

Akos Valentinyi, Georg Duernecker and Berthold
Herrendorf

MACROECONOMICS AND GROWTH



ISSN 0265-8003

MEASURING AGGREGATE ECONOMIC ACTIVITY
Akos Valentinyi, Georg Duernecker and Berthold Herrendorf

Discussion Paper DP12300
  First Published 13 September 2017

  This Revision 06 May 2020

Centre for Economic Policy Research
  33 Great Sutton Street, London EC1V 0DX, UK

  Tel: +44 (0)20 7183 8801
  www.cepr.org

This Discussion Paper is issued under the auspices of the Centre’s research programmes:

Macroeconomics and Growth

Any opinions expressed here are those of the author(s) and not those of the Centre for Economic
Policy Research. Research disseminated by CEPR may include views on policy, but the Centre
itself takes no institutional policy positions.

The Centre for Economic Policy Research was established in 1983 as an educational charity, to
promote independent analysis and public discussion of open economies and the relations among
them. It is pluralist and non-partisan, bringing economic research to bear on the analysis of
medium- and long-run policy questions.

These Discussion Papers often represent preliminary or incomplete work, circulated to encourage
discussion and comment. Citation and use of such a paper should take account of its provisional
character.

Copyright: Akos Valentinyi, Georg Duernecker and Berthold Herrendorf



MEASURING AGGREGATE ECONOMIC ACTIVITY
 

Abstract

Popular ways of measuring aggregate economic activity include the Fisher index of GDP,
Weitzman's NDP in consumption units, and GDP in consumption units. We show that it matters
which measure is used, because their growth rates differed considerably in the postwar U.S. We
compare the properties of the measures in the two-sector growth model and show that the Fisher
index of GDP is the preferable measure to use. It has a welfare interpretation under mild
restrictions that allow the growth model to match the observed secular decline in the relative price
of investment and the observed productivity growth slowdown.

JEL Classification: O41, O47, O51

Keywords: Fisher Index, Productivity Growth Slowdown, Weitzman's NDP

Akos Valentinyi - valentinyi.a@gmail.com
University of Manchester, CERS-HAS and CEPR

Georg Duernecker - duernecker@em.uni-frankfurt.de
University of Frankfurt, IZA and CEPR

Berthold Herrendorf - berthold.herrendorf@asu.edu
Arizona State University

Acknowledgements
Previous versions of this paper were entitled ``Quantity Measurement, Balanced Growth, and Welfare in Multi-Sector Growth
Models''. For helpful comments and suggestions, we thank Timo Boppart, Ben Bridgman, Domenico Ferraro, Paul Gomme, Omar
Licandro, Richard Rogerson, Gustavo Ventura, and the audiences at the ASU Conference on ``Productivity: Past, Present, and
Future'', CEPR's European Summer Symposium in International Macroeconomics at Tarragona, European University Institute, the
International Comparison Conference at Groningen, McGill University, the SED in Mexico City, the Swiss Macro Workshop, the
Universities of Manchester, Munich, and Nottingham, and the Workshop on Structural Transformation and Macroeconomic
Dynamics in Cagliari. Valentinyi thanks the Hungarian National Research, Development and Innovation Office (Project KJS K
124808). All errors are our own.

Powered by TCPDF (www.tcpdf.org)



Measuring Aggregate Economic Activity∗

Georg Duernecker (University of Frankfurt, CEPR, and IZA)

Berthold Herrendorf (Arizona State University)
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1 Introduction

Assessing the performance of an economy requires a measure of aggregate economic activity.

The U.S. Bureau of Economic Analysis (“BEA”) uses real GDP calculated with the Fisher index

as its headline aggregate statistic. In contrast, Weitzman (1976) suggested to use the net do-

mestic product (“NDP”) in consumption units, that is, the difference between current GDP and

total depreciation, each expressed in units of current consumption. While NDP in consumption

units is most popular in environmental economics, it is also widely used in macroeconomics.1

Lastly, GDP in units of consumption is yet another measure of aggregate economic activity that

is used in growth and business cycle theory; see for example Greenwood et al. (1997).

The widespread use of different measures of aggregate economic activity raises the question

whether they give different assessments of economic performance. Table 1 documents for the

postwar U.S. that the average annual growth rates differed widely. In particular, the average

annual growth rate of GDP per worker measured with the Fisher index has been 0.41 and

0.35 percentage points higher than those of NDP and GDP in consumption units per worker,

respectively. Since over long horizons, the resulting cumulative level differences are sizeable,

it matters quantitatively which measure one uses. Moreover, as we will see below, while the

growth rates of all three measures of aggregate economic activity started to slow down in the

1970s, the growth slowdown was much milder for the Fisher index of GDP than it was for the

other two measures.

Table 1: Aggregate Economic Activity 1947–2018

Measure per worker Average annual growth rate Level after 70 years

Fischer index of GDP 1.68% 1.33
GDP in consumption units 1.33% 1.05
NDP in consumption units 1.27% 1.00

The sizeable differences among the annual growth rates of the three measures of aggregate

economic activity raise the question which one growth theorists should use when they bring

their models to the data. A common view in the literature is that GDP constructed with the

Fisher index is appropriate for productivity analysis whereas NDP in units of consumption is

1See Heal and Kristrom (2005) and Fenichel et al. (2018) for reviews of the related environmental literature
and Oulton (2004) and Bridgman (2018) for examples of the macro literature.
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appropriate for welfare analysis; see for example Hulten (1992) and Oulton (2004). In contrast,

the “hybrid” GDP in units of consumption plays a role mostly when constructing a balanced

growth path and analyzing its properties because GDP constructed with the Fisher index is too

cumbersome to work with theoretically. We assess the common view in the context of the

standard two-sector growth model, in which one sector produces consumption and the other

investment. The two-sector model is a natural starting point in our context because it captures

secular changes in the relative price of investment to consumption, and so the question in which

units to measure aggregate economic activity takes center stage. We use the discrete-time ver-

sion of the model because NIPA data comes in discrete time and we assume that the model

economy is closed because we focus on GDP and NDP.2

Our main contribution is to show that real GDP constructed with the Fisher index is the

preferable measure of aggregate economic activity when one seeks to bring the two-sector

growth model to the data. To arrive at that conclusion, we restrict the parameters so that the

two-sector growth model captures the behavior of the major long-run moments of the postwar

U.S. economy, including the marked productivity growth slowdown and the marked decline in

the relative price of investment that occurred since the 1970s. We show that under the required

parameter restrictions, real GDP measured with the Fisher index has a welfare interpretation

but Weitzman’s NDP in consumption units does not. We add the observation that GDP in

consumption units does not have a known welfare interpretation even though it is often a useful

concept when one seeks to theoretically analyze the two-sector model.

Turning now to the details of our analysis, we start with NDP in consumption units and

derive a discrete-time version of Weitzman’s (1976) result that the NDP in consumption units

is proportional to permanent income (i.e., the return on the present discounted sum of current

and future aggregate consumption). Proving the result in a growing economy requires constant

consumption growth and a constant real interest rate [Oulton (2004)]. We therefore first con-

struct a balanced growth path (“BGP”) of the two-sector model along which all growth rates

including those of NDP and GDP in consumption units are constant and the real interest rate

2To avoid confusion, note that Weitzman (1976) used the net national product (“NNP”), which acknowledges
that the U.S. economy is open. As subsequent work by Oulton (2004) or Bridgman (2018), we focus on NDP
because GDP is more commonly used than NDP and the numbers for NDP and GDP are very similar for the
postwar U.S. We also note that we focus on the question how to measure aggregate market activity, which implies
that we do not speak to the related question of how to measure non-market activity that takes place in the form of
home production or public-goods provision.
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is constant too. Afterwards, we derive the discrete-time version of Weitzman’s result along the

BGP, which establishes that NDP, not GDP, in consumption units has a welfare interpretation.

Despite its simplicity and intuitive appeal, there are important limitations of using NDP

in consumption units as a measure of aggregate economic activity. To begin with, as with all

money metrics, it is a cardinal welfare measure and it does not necessarily rank alternative

equilibrium paths in the same way as the present discounted value of period utility would [Das-

gupta (2009)]. Moreover, and perhaps more importantly in our context, deriving Weitzman’s

result requires that the growth rates of NDP and GDP in consumption units and of the relative

price are all constant. We establish that these requirements are counterfactual for the postwar

U.S.: starting in the 1970s, the growth rate of NDP and GDP in consumption units showed a

marked slowdown; starting in the 1980s, the growth rate of the relative price of investment to

consumption fell more and more strongly.

Next, we show that the counterfactual requirements can be avoided when we measure ag-

gregate economic activity with real GDP constructed with the Fisher index.3 We show that if the

economy is on an equilibrium path, then the Fisher index approximates an ordinal welfare mea-

sure in discrete time, irrespective of whether or not the equilibrium path is a BGP. The welfare

result is an adoption of the result of Diewert (1976) on superlative indexes to the two-sector

growth model. Durán and Licandro (2017) were the first to do that for the continuous-time

version. We provide a new proof for discrete time, which provides separate first-order approxi-

mations for the Laspeyres and the Paasche indexes.

To connect the two-sector model to the postwar U.S. economy, we construct an equilibrium

path that does not restrict the equilibrium growth rates of GDP and NDP in consumption units

and of the relative price of investment to be constant. Since changing growth rates violate the

equilibrium concept of BGP, we need a weaker equilibrium concept. We follow Kongsamut

et al. (2001) and use generalized balanced growth (“GBGP), which just requires that the real

interest rate be constant while other variables may or may not grow at constant rates. We restrict

the model parameters to match the observed constant trend TFP growth in the investment sector,

to match the constant average ratio of consumption to investment expenditure, and to match the

varying relative price of investment. We show that real GDP growth calculated with the Fisher

index then exhibits a growth slowdown along the GBGP just like it did in the data.
3Note that the Fisher index is approximately equal to other superlative indexes such as the Törnqvist index.

Therefore, the results we derive hold approximately also for Törnqvist index.
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Our results leave the practical question how to bring the growth model to the data. After all,

notwithstanding the attractive features that GDP constructed with the Fisher index has, there is

no debate about the fact that it is too cumbersome to work with theoretically. We advocate to

proceed in three steps: (i) construct a GBGP in the model that matches the changing growth rate

of the relative price of consumption; (ii) construct GDP with the Fisher index using the model

quantities and prices from the GBGP; (iii) compare the resulting measure of model GDP to

data GDP. This procedure has several advantages. To begin with, it implies that the measure of

aggregate economic activity – the Fisher index of GDP – is constructed in the same way in the

model and in the data. Moreover, the model can generate the productivity growth slowdown of

GDP per worker that is observed in the data. And lastly, the Fisher index of GDP is a measure

of aggregate economic activity that has a welfare interpretation also when there is no BGP.

The organization of the rest of the paper is as follows. We first lay out the two-sector growth

model and then study Weitzman’s proposal to measure aggregate economy activity by using the

NDP in consumption units. Afterwards, we study the BEA’s practice of measuring aggregate

economic activity by using the Fisher index of GDP. Lastly, we conclude. An Appendix con-

tains all proofs and some background material.

2 Two-sector growth model

The two-sector version of the growth model goes back to Uzawa (1963). More recently, it has

been developed in several directions by Greenwood et al. (1997), Gort et al. (1999), and Oulton

(2007), among others. For ease of exposition, we employ the most basic version of the two-

sector model with consumption and investment, noting that either one could be disaggregated

further.

2.1 Environment

The representative household is endowed with initial capital K0 > 0 and one unit of time in

each period. Capital Kt accumulates according to

Kt+1 = (1 − δ)Kt + Xt,
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where δ ∈ [0, 1] is the depreciation rate and Xt is investment.

The utility function is
∞∑

t=0

βt log(Ct),

where β ∈ (0, 1) is the discount factor and Ct is consumption.

The sectoral production functions for consumption and investment are:

Ct = Kθ
ct

(
ActLct

)1−θ
, (1a)

Xt = Kθ
xt

(
AxtLxt

)1−θ
, (1b)

where θ ∈ (0, 1) is the capital-share parameter; Kit and Lit are sectoral capital and labor; changes

in Ait reflect the exogenous, sector-specific, labor-augmenting technological progress. Having

the same θ across sectors has the advantage that the production side aggregates. Herrendorf et

al. (2015) established that having Cobb-Douglas production functions with equal capita-share

parameters nonetheless captures the key features of labor reallocation in the postwar U.S.

Capital and labor are freely mobile between the sectors. Feasibility requires:

Kct + Kxt ≤ Kt,

Lct + Lxt ≤ Lt = 1.

2.2 Competitive equilibrium

A competitive equilibrium is a sequence of prices and an allocation such that: given prices, the

allocation solves the household’s problem and the firms’ problems in each sector; markets clear.

Since the two-sector model is well known, we state the standard most equilibrium properties

without deriving them in detail. Herrendorf et al. (2014) provided the detailed steps of the

derivation.

The household maximizes its utility subject to the budget constraint and the feasibility con-
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straints:4

max
{Ct ,Kt+1,Bt+1}

∞
t=0

∞∑
t=0

βt log(Ct) (2)

s.t. pctCt + pktKt+1 + Bt+1 =
[
(1 − δk)pxt + rt

]
Kt + (1 + it)Bt + wt,

Ct,Kt+1 ≥ 0, Bt > −B > −∞, K0 > 0, B0 = 0.

The budget constraint is written in current dollars. Bt is the current-dollar value of the stock

of a one-period government bond in period t and it is the corresponding interest rate. rt and wt

denote the rental prices of capital and labor in current dollars. Lastly, pxt and pct denote the

prices of the sectoral outputs in current dollars.5

The first-order conditions imply the usual Euler equation and transversality condition:

pct+1Ct+1

pctCt
= β

pxt+1

pxt

(
1 − δ +

rt+1

pxt+1

)
, (3a)

pct+1Ct+1

pctCt
= β (1 + it) , (3b)

0 = lim
t→∞

βt pxtKt+1

pctCt
. (3c)

Profit maximization in each sector implies that the rental prices for capital and labor, rt and

wt, equal the marginal revenue products. For i ∈ {x, c}, this gives:

rt = pitθ

(
Kit

Lit

)θ−1

A1−θ
it , (4a)

wt = pit(1 − θ)
(

Kit

Lit

)θ
A1−θ

it . (4b)

Combining the first-order conditions gives the usual result that the capital–labor ratios are

4For the household problem to be well defined, the objective function must be finite. With log-period utility, a
sufficient condition is that consumption is bounded from above by a sequence that grows at a constant rate. That
will be the case along the equilibrium paths we analyze below; along the BGP of Subsection 3.1, consumption
itself grows at a constant rate; along the GBGP of Subsection 4.3, consumption will be bounded from above by a
sequence that grows at a constant rate.

5As usual in growth models, only relative prices matter and the units are arbitrary. While we think of pit as
being denominated in current dollars for now, below we will chose consumption as the numeraire in the analysis
of Weitzman’s NDP and investment as the numeraire in the analysis of the Fisher index because doing so is more
convenient.
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equalized:
Kxt

Lxt
=

Kct

Lct
= Kt, (5)

where the last equality follow from the fact that Lt = 1. The relative price of consumption to

investment is inversely related to relative sector TFPs:

pct

pxt
=

(
Axt

Act

)1−θ

. (6)

Panel a) of Figure 1 shows that the relative price of consumption to investment increased in the

postwar U.S. We will therefore focus on the case Âxt > Âct, where a “hat” denotes a growth

factor. For example,

Âxt+1 ≡
Axt+1

Axt
.

Panel b) of the figure shows that the growth rate of the relative price started to accelerate in the

1980s. This feature of the relative price will turn out to be a crucial force behind the productivity

growth slowdown.

In Figure 1, and all data work that follows, Xt is all investment including the purchases of

consumer durables. In contrast, the BEA treats purchases of consumer durables as personal con-

sumption expenditures, instead of investment expenditure. The BEA’s practice is problematic

because conceptually purchases of consumer durables are investment expenditures that ought to

be capitalized. Capitalizing consumer durables is particularly important in our context because

they importantly contribute to the decline of the relative price of investment, which takes center

stage in our analysis. We therefore follow the methodology of Cooley and Prescott (1995) and

modify the BEA’s published NIPA data in two ways: (i) we reassign the flow of purchases of

consumer durables from consumption to investment; (ii) we add an imputed service flow from

the stock of consumer durables to consumption expenditure. Appendix A derives the imputa-

tion formula for the services flow from consumer durables in a more disaggregate version of

the growth model that explicitly has consumer durables.

Combining (5)–(6), equations (1) become:

Ct = Kθ
t A1−θ

ct Lct, (7a)

Xt = Kθ
t A1−θ

xt Lxt. (7b)
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Figure 1: The Price of Consumption relative to Investment in the Postwar U.S. (log scale, 1947=1)

a) Levels in log scale (1947=1)
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As usual with Cobb-Douglas production functions with equal share parameters, (6) and (7)

imply the usual result that the expenditure ratio equals the labor ratio:

pctCt

pxtXt
=

Lct

Lxt
.

Hence, we can restrict our attention to analyzing the properties of the expenditure ratio.

We are now ready to discuss how to measure aggregate economic activity in the model and

connect the result to NIPA data. The goal is to find a measure that does have a welfare inter-

pretation. We start with the suggestion of Weitzman (1976) to use the net domestic product in

consumption units. NDP is applied both in the environmental literature and the macro litera-

ture; see Heal and Kristrom (2005) and Fenichel et al. (2018) reviews of the former and Oulton

(2004) and Bridgman (2018) for examples of the latter. The idea of measuring aggregate eco-

nomic activity as GDP in units of consumption has also gained traction more broadly in the

macro literature; see for example Greenwood et al. (1997). While doing that may be helpful to

analyze the two-sector growth model theoretically, there is no known proof that GDP in con-

sumption units has a welfare interpretation. Therefore, we do not pursue this possibility further

in the main part of the paper.

3 Weitzman’s Net Domestic Product

Since Weitzman’s NDP is in consumption units, it is convenient to choose consumption as the

numeraire and set pct = 1 in this section. GDP in units of consumption is defined as:

YC
t ≡ Ct + pxtXt.

Using (6)–(7), we have that:

YC
t = Kθ

t A1−θ
ct . (8)
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The net domestic product (“NDP”) in consumption units results after subtracting depreciation

in consumption units:6

ZC
t ≡ YC

t − δpxtKt = Kθ
t A1−θ

ct − δpxtKt.

Weitzman argued that the NDP in consumption units is a measure of aggregate welfare. The

basic intuition behind his claim is that aggregate welfare surely depends on consumption, so

current consumption must obviously be part of any aggregate welfare measure. Net investment

must also be part of it because it increases future consumption. Weitzman (1976) also went

beyond the basic intuition and gave a formal justification for using NDP in consumption. In

particular, he showed in a continuous-time version of the growth model without TFP growth

that NDP in consumption units is proportional to the maximized value of current and future con-

sumption subject to feasibility. He also showed that one can reinterpret the result as implying

that NDP in consumption units is proportional to permanent income.

Subsequent work by Weitzman (1997) and Oulton (2004) established that Weitzman’s result

holds as well if consumption grows at a constant rate as long as the real interest rate is constant.

Moreover, Oulton (2004) showed that Weitzman’s result holds as well if the real interest rate

fluctuates but TPF growth is zero. Going down that path, however, is not useful in our context

because, in at least one sector, TFP growth must be positive in order to match postwar U.S.

data. Lastly, Barro (2019) has recently offered a new take on how to measure welfare, in which

he also argues that current and future consumption is relevant for economic welfare.

Our goal is to establish Weitzman’s result in discrete time. We first characterize a balanced

growth path (“BGP”) of the two-sector model along which all variables grow at constant rates

(including zero). In particular, along the BGP, consumption grows at a constant rate and the

real interest rate is constant along the BGP. We then derive the relationship between NDP in

consumption units and permanent income along the BGP.

6NDP in consumption units is related to net national product (“NNP”). The difference is that NNP adjusts for
net income from abroad whereas NDP does not. We use NDP here because our model economy is closed.
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3.1 BGP with constant consumption growth

As above, we denote growth factors by hats. Moreover, given that consumption is the nu-

meraire, we define the real interest rate factor as:

Rt ≡ (1 + it)
Pct

Pct+1
.

We will use the real interest rate factor below to calculate the present discounted value of current

and future consumption, which is at the core of Weitzman’s idea.

Proposition 1 Suppose that Âx and Âc are constant. There is a BGP equilibrium along which
{Kt, Xt,Ct,YC

t ,Z
C
t }
∞
t=0 grow at the following constant rates:

K̂t = X̂t = Âx, (9a)

Ĉt = ŶC
t = ẐC

t = Âθ
xÂ1−θ

c . (9b)

In addition, if pct = 1, then

rt = θ

(
Kt

Act

)θ−1

, (9c)

wt = (1 − θ)
(

Kt

Act

)θ
, (9d)

Rt =

 Âc

Âx

 1−θ 1 − δ + θ

(
K0

Ax0

)θ−1 . (9e)

Rt is constant and {rt,wt, pxt}
∞
t=0 grow at the following constant rates:

r̂t = p̂xt =

 Âc

Âx

1−θ

, (9f)

ŵt = Âθ
xÂ1−θ

c . (9g)

Proof. See Appendix B.1.

We are now ready to derive a relationship between the present discounted sum of current

and future consumption and the initial NDP in consumption units along the previous BGP.
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3.2 Weitzman’s result in discrete time

We start by discussing the relationship between the allocations of two different problems: the

household problem of maximizing the present discounted value of the sum of current and fu-

ture utility subject to feasibility, which is stated in (2) with pct = 1; Weitzman’s problem of

maximizing the present discounted value of the sum of current and future consumption subject

to feasibility:

max
{Ct ,Kt+1}

∞
t=0

∞∑
t=0

Ct

Rt
s.t. pctCt + pktKt+1 =

[
(1 − δk)pxt + rt

]
Kt + wt, (10)

Ct,Kt+1 ≥ 0, K0 > 0, (11)

where Rt ≡ Πt
i=1Ri for ≥ 1 and R0 ≡ 1. The following Lemma links the two problems to each

other:7

Lemma 1 Suppose the {Rt}
∞
t=0 implied by the solution to Problem (2) are the discount factors in

Problem (10). {Ct,Kt+1}
∞
t=0 is part of the solution to Problem (2) if and only if it solves Problem

(10).

Proof. See Appendix B.2.

In what follows we will use the sequence {Rt}
∞
t=0 implied by the solution to Problem (2) as

the discount factors in Problem (10).8 Since, along the BGP, Rt = R constant and Ĉ = Â θ
x Â 1−θ

c ,

the previous lemma implies that the value of Problem (10) in period t is given by:

∞∑
s=t

Cs

Rs−t = Ct

∞∑
s=t

 Â θ
x Â 1−θ

c

R

s−t

.

The Euler equation from the BGP implies that:

Ĉ = Â θ
x Â 1−θ

c = βR < R. (12)

7Hulten (1992) states a similar result and cites Fisher (1930) for the basic idea of the proof.
8Note that the choice of the real interest factor with which future consumption is discounted is somewhat

arbitrary. As long as the real interest rate factor is constant, Weitzman’s result that NDP in consumption units is
proportional to permanent income holds for any real interest rate factor.
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Applying the formula of the geometric row and taking the limit for t → ∞ therefore gives:

∞∑
s=t

Cs

Rs−t =
R

R − Â θ
x Â 1−θ

c

Ct.

The feasibility constraint implies that along the BGP:

Ct = ZC
t − (pxtXt − δpxtKt) = ZC

t − pxt(Kt+1 − Kt) = ZC
t − (Âx − 1)pxtKt. (13)

Thus, we have shown that along the BGP:

R − 1
R

∞∑
s=t

Cs

Rs−t =
R − 1

R − Âθ
xÂ1−θ

c

[
ZC

t − (Âx − 1)pxtKt

]
. (14)

In words, along the BGP, the return on the present discounted sum of current and future con-

sumption (“permanent income”) is proportional to the difference between the initial NDP in

consumption units, ZC
t , and the additional term (Âx − 1)pxtKt also in consumption units. This

result is closely related to the original result of Weitzman (1976). In a steady state of the model

that Weitzman (1976) considered, Âx = 1 and Weitzman’s original result obtains that permanent

income equals the initial NDP in consumption units:

R − 1
R

∞∑
s=t

Cs

Rs−t = ZC
t .

While that is no longer the case when sectoral TFP grows, along the BGP of Proposition 1,
R−1

R

∑∞
s=t

Cs
Rs−t and ZC

t still grow at the same factor Âθ
xÂ1−θ

c .

Subsequent work in the continuous-time growth model generalized Weitzman’s initial result

to the case of constant TFP growth and showed that permanent income is still proportional to

the level of initial NDP in consumption units. Appendix C offers a proof of the generalization

in a continuous-time version of our model. While this has been proven before, our proof is

somewhat more direct than existing proofs. Unfortunately, it is not obvious how to establish

the corresponding result in discrete time with Âx > 0. We therefore leave it at equation (14).

While it does not establish that permanent income and initial NDP in consumption units are

proportional to each other, it does connect the two in discrete time.

13



3.3 Discussion

Despite its simplicity and intuitive appeal, NDP has important limitations. The first one is that

NDP is a cardinal welfare measure that just adds up period consumption without taking account

of curvature. One implication is that only in two special cases does NDP rank all consumption

paths in the same way as the present discounted sum of period utilities: the marginal period util-

ity is constant for all relevant consumption paths; the model economy is in steady equilibrium

in which consumption is constant.9 Along a BGP of our model, either one of these conditions

is violated and there is no guarantee that the NDP ranks consumption paths in the same way

as the present discounted sum of period utilities; see Oulton (2004) and Dasgupta (2009) for

further discussion.10

An second limitation of NDP is that to derive its relationship with permanent income we

needed to assume that consumption growth and the real interest rate are both constant. While

Proposition 1 shows it is possible to construct a BGP with these properties, along the BGP

p̂xt and ẐC
t are both constant. Figures 1 and 2 show that this is counterfactual. In particular,

relative price growth accelerated in the 1980s and NDP growth slowed down in the 1970s. If

one is interested in matching these prominent features of the data, then one must give up the

assumption that Âx and Âc are both constant. Unfortunately, that means that it is no longer

clear that ZC
t has a welfare interpretation, because known proofs all rest on the assumption of

constant level or a constant growth rate of consumption.

Given the limitations of NDP in consumption units, it is natural to consider an alternative

measure of aggregate economic activity. We are particularly interested in a measure that has a

welfare interpretation under more general conditions that allow for the slowdown in the growth

of aggregate economic activity and the acceleration of the decline of the relative price of invest-

ment. We now establish that we can satisfy these requirements for real GDP constructed with

the Fisher index.
9See Dasgupta and Mäler (2000) for further discussion.

10To avoid confusion, we should mention that Asheim and Weitzman (2001) showed that if utility is concave
and real NDP is constructed with a Divisia consumption price index, then welfare increases if and only if real NDP
in consumption units increases. While that means that welfare and NDP move in the same direction, it does not
mean that NDP ranks different consumption path in the same way as does the present discounted sum of period
utilities.
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Figure 2: NDP per Worker in Consumption Units in the Postwar U.S.

a) Levels in log scale (1947=1)
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b) Average annual growth rates over the preceding 20 years
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4 Measuring GDP with the Fisher Index

4.1 Introducing the Fisher index

For any two adjacent periods, the Fisher quantity index is defined as the geometric average of

the Laspeyres and Paasche (quantity) indexes:11

ŶF
t ≡

√
ŶL

t · ŶP
t ≡

√
pct−1Ct + pxt−1Xt

pct−1Ct−1 + pxt−1Xt−1
·

pctCt + pxtXt

pctCt−1 + pxtXt−1
. (15)

The definition immediately implies that GDP growth with the Fisher index is independent of

the numeraire. To see this, just pull out pct−1 and pct or pxt−1 and pxt from the numerators and

denominators of equation (15).

The GDP level in a particular year is obtained by choosing a reference year and then chain-

ing the annual growth rates calculated with the Fisher index between the reference year and the

year in question. For example, choosing year 0 as the reference year and denoting the nominal

GDP of period 0 by Y0 gives:

YF
t = Y0 · ŶF

1 · ... · Ŷ
F
t .

This is what the BEA calls real GDP in chained dollars.

4.2 The Fisher index as a measure of welfare changes

Our goal is to show that GDP constructed with the Fisher index is an ordinal welfare measure

which is invariant to monotonic transformations of utility and which applies on and off the

BGP equilibrium. The construction involves compensating expenditure and indifference be-

tween different allocations. Insisting on indifference is crucial because it is an ordinal, instead

of a cardinal, concept that is invariant under monotonic transformations of utility. The basic

underlying result is due to Diewert (1976), who showed that the Fisher index is a superlative

index, that is, it is capable of providing an approximation to an arbitrary twice-continuously-

differentiable utility function. The basic idea of how to apply this result in the dynamic context

of the growth model is due to Licandro et al. (2002) and Durán and Licandro (2017). Here, we

build on their results from continuous time and prove corresponding results in discrete-time ver-
11Fisher (1922) called it the ideal index. Triplett (1992) and Whelan (2002) offer detailed discussions of the

properties of the Fisher index.
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sion of the two-sector growth model. As in the previous case with Weitzman’s result, achieving

this presents some additional challenges.

We start by defining the expenditure functions and the indirect utility function needed to

construct compensating expenditure. We choose Xt as the numeraire and set pxt = 1. This

is convenient because we will construct an equilibrium path under the assumption that Âx is

constant but Âct is not. Reflecting the new choice of numeraire, we denote GDP in units of

investment as:

YX
t ≡ pctCt + Xt = Kθ

t A1−θ
xt . (16)

The last equality follows again from (6)–(7).

We begin by stating the household’s problem in recursive form. Denoting the value function

by V , we have:

V(Kt, Axt, Act) ≡ max
Ct ,Xt

{
log(Ct) + βV (Kt+1, Axt+1, Act+1)

s.t
Axt

Act
Ct + Xt ≤ Kθ

t A1−θ
xt ,

(Kt+1, Axt+1, Act+1) =
(
Xt + (1 − δ)Kt, ÂxAxt, ÂctAct

)}
,

where we used that Ait+1 = ÂitAit. We summarize the state variables by S t ≡ (Kt, Axt, Act) and

write V(S t) = V(Kt, Axt, Act). We define an indirect utility function as:12

v(pct,YX
t ; S t) ≡ max

Ct ,Xt

{
log(Ct) + βV (S t+1)

s.t pctCt + Xt ≤ YX
t ,

S t+1 = (Kt+1, Axt+1, Act+1) =
(
Xt + (1 − δ)Kt, ÂxAxt, ÂctAct

)}
.

The definition of the indirect utility function drops the constraints pct = Axt/Act and YX
t =

Kθ
t A1−θ

xt for period t, but leaves them in place for all subsequent periods. Hence, it implies the

12In dynamic contexts like ours there are two indirect utility functions: a period one and a present-value one.
Our indirect utility function is a recursive formulation of the present-value indirect utility function, that is, the
present value of the current and all future utilities that result under optimal behavior. In recursive formulation,
that present value is a function of current income, current prices, and the current realizations of the state variables.
To avoid confusion with the language used in Durán and Licandro (2017), we call their indirect value function an
indirect utility function.
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value of the program also for realizations of relative prices and income that are not consistent

with equilibrium in period t. Similarly, the minimum-expenditure function for reaching the

utility level v given prices pct is defined as:

e(pct, v; S t) = min
Ct ,Xt

{
pctCt + Xt

s.t. log(Ct) + βV (S t+1) ≥ v,

S t+1 =
(
Xt + (1 − δ)Kt, ÂxAxt, ÂctAct

)}
.

We now develop a measure of welfare changes that is based on compensating expenditure

differences. The basic idea goes back to Fisher and Shell (1972), who generalized existing

superlative indexes to situations in which preferences evolve over time. They emphasized that

since utility is an ordinal concept, one must not compare the utility levels from periods t−1 and

t. Instead, they calculated compensating expenditure levels by imposing indifference in terms

of the same indirect utility function.13 Durán and Licandro (2017) showed how to apply the true

quantity index of Fisher and Shell (1972) to the two-sector growth model with general recursive

preferences. The basic insight is that it does not matter whether the time dependence of v(·) and

e(·) arises from evolving preferences, as in Fisher and Shell’s model, or from evolving state

variables, as in the growth model.14 While Durán and Licandro (2017) used continuous time,

we develop a true quantity index for discrete time. Using discrete time is both more natural for

connecting model data to NIPA data and also is more cumbersome because it requires a careful

distinction between different reference periods. A novelty of our work is that this leads to two

perspectives: the backward-looking (forward-looking) perspective uses prices and realizations

of the state variables from “today” (“yesterday”).

The forward-looking perspective compares yesterday’s observed expenditure, YX
t−1, with the

compensating expenditure that the household needed yesterday to reach the same indirect utility

as it gets from today’s expenditure at today’s prices.15 Imposing indifference while keeping

yesterday’s state variables unchanged, this gives e
(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
. The following

13Although the original index of Fisher and Shell is a true cost-of-living index, it is straightforward to apply the
underlying principles to the construction of the corresponding true quantity index.

14Fisher and Shell dismissed the forward-looking perspective because yesterday’s tastes are no longer rele-
vant today. In contrast, the forward-looking perspective is meaningful when yesterday’s indirect utility function
represents past realizations of the state variables.

15The latter is closely related to equivalent variation in static micro theory.
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forward-looking true quantity index is:

F̂S t−1,t ≡
e
(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
YX

t−1

.

The backward-looking perspective compares today’s observed expenditure, YX
t , with the com-

pensating expenditure that the household needs today to reach the same indirect utility as it

gets from yesterday’s expenditure at yesterday’s prices.16 Imposing indifference while keeping

today’s state variables unchanged, this gives e
(
pct, v(pct−1,YX

t−1; S t); S t

)
. The backward-looking

true quantity index is:

F̂S t,t−1 ≡
YX

t

e
(
pct, v(pct−1,YX

t−1; S t); S t

) .
The Fisher-Shell true quantity index is the geometric average of the forward- and backward-

looking indexes:

F̂S t ≡

√
F̂S t−1,t · F̂S t,t−1.

The next proposition states our main results that the Fisher quantity index first-order ap-

proximates the Fisher-Shell true quantity index. While this result is a discrete-time version of

the one of Durán and Licandro (2017), we use a more direct method of proof that provides

additional first-order approximations for the Laspeyres and the Paasche indexes.

Proposition 2 Along an equilibrium path of the two-sector growth model,

F̂S t−1,t ≈ ŶL
t ,

F̂S t,t−1 ≈ Ŷ p
t ,

F̂S t ≈ ŶF
t .

Proof. See Appendix B.3

In sum, we have established that the Fisher index first-order approximates the change in the

Fisher-Shell index. We emphasize that this is an ordinal welfare measure that applies irrespec-

tive of whether the economy is on a BGP equilibrium. In particular, at no point in the above

derivations did we assume that GDP or NDP per worker grow at a constant rate, which was

essential for the proof of Weitzman’s result. This is important because the growth of GDP per
16The latter is closely related to compensating variation in static micro theory.
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worker as measured by the Fisher index slowed down since the 1970s; see Figure 3. In the next

subsection, we will construct an equilibrium path that captures the growth slowdown.

Figure 3: GDP per Worker Measured with the Fisher Index in the Postwar U.S.

a) Levels in log scale (1947=1)
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b) Average annual growth rates over the preceding 20 years
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4.3 A GBGP that captures the growth slowdown

We now establish that one can avoid the counterfactual implications of the previous BGP by

relaxing the assumption that Âct be constant. As long as Âx remains constant as before, one can

still construct an equilibrium path. The new equilibrium path does not have the counterfactual

features of the previous one, because it permits the growth rates of the relative price and of
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GDP measured in units of consumption (or in the Fisher index) to vary over time.

The new equilibrium path is not a BGP because only a subset of endogenous variables

grow at constant rates. We therefore adopt the less stringent equilibrium concept generalized

balanced growth path (“GBGP”), which goes back to Kongsamut et al. (2001):

Definition 1 A GBGP is an equilibrium path along which the real interest rate is constant.

Given that investment is the numeraire, the real interest rate factor now equals:

Rt ≡ (1 + it)
Pxt

Pxt+1
. (17)

Proposition 3 Suppose that Âx is constant. There is a GBGP equilibrium path along which
{Kt, Xt,Ct,YX

t ,Y
C
t ,Z

C
t }
∞
t=0 grow at the following rates:

K̂t = X̂t = ŶX
t = Âx, (18a)

Ĉt = ŶC
t = ẐC

t = Âθ
xÂ1−θ

ct . (18b)

In addition, if pxt = 1, then

rt = θ

(
Kt

Axt

)θ−1

, (18c)

wt = (1 − θ)
(

Kt

Axt

)θ
, (18d)

Rt = 1 − δ + θ

(
K0

Ax0

)θ−1

. (18e)

Lastly, rt and Rt are constant and {wt, pct}
∞
t=0 grow at the following rates:

ŵt = Âx, (18f)

p̂ct =

 Âx

Âct

1−θ

. (18g)

Proof. See Appendix B.4.

An important implication of Proposition 3 is that ŶC
t and ẐC

t are not necessarily constant

along the GBGP equilibrium, as they depend on Âct that no longer is restricted to be constant.

Moreover, it turns out that ŶC
t and ẐC

t may now slow down.
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Corollary 1 Suppose that Âct declines, Âx is constant, and Âct < Âx. Along the GBGP:

ŶC
t < ŶX; ŶC

t = ẐC
t declines; ŶX is constant.

Proof. See Appendix B.5.

The previous result implies that it is possible to construct an equilibrium path which features

a slowdown of both ŶC
t and ẐC

t . For connecting the model with the data, this result is not very

useful though because ẐC
t has a known welfare interpretation only when it grows at a constant

rate. GDP calculated with the Fisher index is more useful in this context, as it has a welfare

interpretation also if the economy is not on a BGP. To characterize its growth rate, we rearrange

the terms in (15) while using that ŶC
t = Ĉt and ŶX

t = X̂t along the GBGP:

ŶF
t = ŶC

t

√√√√√√√√√√ pxtXt

Ct

pxt−1

pxt
+ 1

pxt−1Xt−1

Ct−1

pxt

pxt−1
+ 1

= ŶX
t

√√√√√√√√√√ 1 +
pctCt

Xt

pct−1

pct

1 +
pct−1Ct−1

Xt−1

pct

pct−1

. (19)

Using equation (6) together with the assumption that Âx is constant and the fact that pxtXt/Ct

and pctCt/Xt are constant along the GBGP, we get that along the GBGP:

ŶF
t = Âθ

xÂ1−θ
ct

√√√√√√√√√√√√√√ pxX
C

Âx

Âct

+ 1

pxX
C

Âct

Âx

+ 1

= Âx

√√√√√√√√√√√√√√1 +
pcC
X

Âct

Âx

1 +
pcC
X

Âx

Âct

. (20)

Using these equations, we can show that:

Proposition 4 Suppose that Âct declines and 0 < Âct < Âx. Along the GBGP: ŶC
t < ŶF

t < ŶX
t ;

ŶF
t declines.

Proof. See Appendix B.6.

Proposition 4 raises the question of how large the differences between ŶC
t , ŶX

t , and ŶF
t are in

the data. Figure 4 shows that they are sizeable. This implies that it matters which measure we

use. It also implies that it is crucial to use the same measure of GDP in both model and data.

This point, of course, illustrates the importance of the more general principle that one must

measure things in the same way in the model and in the data.17 Figure 4 also shows that while
17Whelan (2003) emphasized this principle in the context of GDP measurement.
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Figure 4: Different Measures of U.S. GDP per Worker
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Source: NIPA, Bureau of Economic Analysis, own calculations.

GDP growth measured in the numeraire investment has a near constant long-run trend, GDP

growth measured with the Fisher index indeed slows down, but not as much as GDP growth

measured with the numeraire consumption.

Figure 5: Data versus model of GDP per worker measured with the Fisher index
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The question remains whether the GBGP can quantitatively generate the growth slowdown

of the Fisher index of GDP per worker. Figure 5 plots the Fisher index of GDP per worker.

The solid line represents the data whereas the dotted line represents the model along the GBGP,

where GDP along the GBGP is calculated by fixing Âxt and pctCt/Xt at their average values Âx

and pcC/X and by choosing Âct so as to match the p̂ct. Figure 5 shows that the GBGP of the

model does generate the entire growth slowdown. We note though that in the model the growth

slowdown starts about ten years later than in the data (that is, in the early 1980s versus the early
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1970s). The discrepancy in the timing comes from the fact that along the GBGP of the model

the sole driver of the growth slowdown in GDP per worker is the acceleration in the growth

rate of the relative price of consumption; see the second equality of expression (20). Panel b)

of Figure 1 shows that the acceleration starts in the early 1980s, which is about ten years after

the start of the productivity growth slowdown. The initial slowdown in GDP per worker in the

data is driven by additional low-frequency fluctuations in Âxt, which are noticeable in Figure 4

above. The GBGP misses them by construction because it requires Âx to be constant.

4.4 Related literature on Baumol’s cost disease

In the previous subsection, we have established that the two-sector growth model generates

the growth slowdown of GDP per worker measured with the Fisher index, but that it does

not get the timing exactly right because ÂX
t , and therefore ŶX

t , show important low-frequency

movements. The recent literature on structural change and Baumol’s cost disease suggests that

structural change may cause low-frequency movement in Âxt. The underlying reason is that at

a more disaggregate level, investment and consumption are composites of goods and services.

While the composition differs in that investment has a considerably higher goods share than

does consumption, the usual patterns of structural change apply to the investment sector as they

do to the consumption sector. In particular, as GDP increases, the share of value added from

the goods sector in total investment expenditures goes down and from services sector goes up.

As a result, the TFP of producing investment, Axt, endogenously depends on the TFPs in the

goods and services sectors. Since TFP growth is usually faster in the goods sector than in the

services sector, structural change can cause a decline in Âxt. Herrendorf et al. (2020) established

this claim analytically under the assumption that investment is a CES aggregator of goods and

services.

Herrendorf et al. (2020) also explore the effects of structural change on the relative price of

consumption and showed that a sizeable part of the accelerating increase in the relative price

of consumption to investment is due to the fact that consumption expenditure contain a much

larger share of services value added than investment expenditure. Faster TFP growth in the

goods sector then endogenously increases the relative price of consumption to investment.

The slowdown in GDP per worker is closely related to the observation of Baumol (1967)

that the costs of producing GDP increase and labor productivity decreases as the value-added

24



share of services increases. Several recent papers discussed this observation. Ngai and Pis-

sarides (2004) mentioned that Baumol’s Cost Disease can lead to a GDP growth slowdown

when GDP growth is calculated with constant relative prices. However, they did not pursue the

growth slowdown further but framed their entire analysis in terms of a balanced growth path

and constant GDP growth measured in a current numeraire. Moro (2015) provided an interest-

ing model in which Baumol’s Cost Disease reduces GDP measured with the Fisher index. His

analysis differs from our analysis because he focused on the role of differences in the sectoral

intermediate-input shares in a cross section of middle- and high-income countries. In indepen-

dent work, Leon-Ledesma and Moro (2017) asked to what extent structural change may lead

to violations of the Kaldor (1961) growth facts. In their simulation results, based on the model

of Boppart (2014), structural change leads to a growth slowdown of GDP measured with the

Fisher index. Lastly, Duernecker et al. (2017) study the natural follow up question whether

GDP growth will slow further in the coming years. A particular worry is that the slowest-

growing services industries could take over the economy. They find that substitutability within

the service sector prevents that from happening.

5 Conclusion

We have studied two popular measures of aggregate economic activity: Weitzman’s NDP in

consumption units and the BEA’s real GDP constructed with the Fisher index. We have estab-

lished for the postwar US that it matters quantitatively which one is used because their growth

rates differed substantially. We have compared their properties in a discrete-time version of the

standard two-sector growth model with consumption and investment. Both measures can be

given a welfare interpretation if the model is on an equilibrium path, but for the NDP the re-

quired parameter restrictions are so stringent that they rule out the observed productivity growth

slowdown that has happened during the last decades. In contrast, for real GDP constructed with

the Fisher index the required restrictions are less stringent and allow the model to generate the

observed GDP growth slowdown.

We have concluded from our results that measuring real GDP with the Fisher index is prefer-

able over using Weitzman’s NDP. We have advocated to proceed in three steps when connect-

ing aggregate economic activity in model to the data: (i) construct a GBGP in the model that
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matches the changing growth rate of the relative price of consumption; typically that will in-

volve choosing a numeraire and expressing GDP in it; (ii) construct GDP with the Fisher index

using the model quantities and prices from the GBGP; (iii) compare the resulting measures of

model and data GDP. This procedure implies that the measure of aggregate economic activity –

the Fisher index of GDP – is constructed in the same way in the model and in the data. More-

over, this procedure implies that the model can generate the productivity growth slowdown of

GDP per worker that is observed in the data. And lastly, the Fisher index of GDP is a measure

of aggregate economic activity that has a welfare interpretation.

Weitzman’s NDP and real GDP constructed with the Fisher index abstracts from several

relevant features of reality that affect welfare. Important examples are inequality, leisure, and

life expectancy. Jones and Klenow (2016) proposed a broader welfare measure that takes these

features into account and implemented it for a set of countries. Weitzman’s NDP and real GDP

constructed with the Fisher index also abstract from home production, which for many basic

services is a close substitute to market production. Bridgman et al. (2018) proposed a way to

impute the value of home production and they provided a broad measure of market and home

production for around 30 countries. We leave integrating these additional relevant features of

reality into the current framework is an important task for future research.
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Dasgupta, Parta and Karl-Göran Mäler, “Net National Product, Wealth, and Social Well-

being,” Environment and Development Economics, 2000, 5, 69–93.

Dasgupta, Partha, “The Welfare Economic Theory of Green National Accounts,” Environ-

mental and Resource Economics, 2009, 42, 3–38.

Diewert, W. Erwin, “Ecact and Superlative Index Numbers,” Journal of Econometrics, 1976,

4, 115–145.

Duernecker, Georg, Berthold Herrendorf, and Ákos Valentinyi, “Structural Change within
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Moro, Alessio, “Structural Change, Growth, and Volatility,” American Economic Journal:

Macroeconomics, 2015, 7, 259–294.

Ngai, L. Rachel and Christopher A. Pissarides, “Structural Change in a Multisector Model

of Growth,” Discussion Paper 4763, CEPR 2004.

Oulton, Nicholas, “Productivity versus Welfare: or GDP versus Weitzman’s NDP,” Review of

Income and Wealth, 2004, 50, 329–355.

, “Investment–specific Technological Change and Growth Accounting,” Journal of Mone-

tary Economics, 2007, 54, 1290–1299.

Triplett, Jack E., “Economic Theory and BEA’s Alternative Quantity and Price Indexes,” Sur-

vey of Current Business, April 1992, pp. 49–52.

Uzawa, Hirofumi, “On a Two–sector Model of Economic Growth II,” Review of Economic

Studies, 1963, 30, 105–118.

Weitzman, Martin L., “On the Welfare Significance of National Product in a Dynamic Econ-

omy,” Quarterly Journal of Economics, 1976, 90, 156–162.

, “Sustainability and Technical Progress,” Scandinavian Journal of Economics, 1997, 99,

1–14.

Whelan, Karl, “A Guide to U.S. Chain–Aggregated NIPA Data,” Review of Income and Wealth,

2002, 48, 217–233.

, “A Two–Sector Approach to Modeling U.S. NIPA Data,” Journal of Money, Credit, and

Banking, 2003, 35, 627–656.

29



Appendix A: Imputing the Services Flow from the Stock of

Consumer Durables

Consider a more disaggregated multi-sector model with consumption goods Cgt, consumption

services Cst, capital Kt, and consumer durables Dt. Consumer durables are part of the capital

stock and generate a services flow utDt in units of consumption services. There is also a one-

period nominal bond. Bt denotes the current-dollar stock of the bonds and it denotes the interest

rate in period t.

The household in the modified model solves:

max
{Cgt ,Cst ,Dt+1,Kt+1,Bt+1}

∞
t=0

∞∑
t=0

βtu(Cgt,Cst + utDt)

s.t. pgtCgt + pstCst + pdtDt+1 + pxtKt+1 + Bt+1

= (1 − δd)pdtDt +
[
(1 − δk)pxt + rt

]
Kt + (1 + it)Bt + wt,

Cgt,Cst,Dt+1,Kt+1 ≥ 0, D0,K0, Bt > −B > −∞, B0 = 0.

Note that, as in the body of the paper, the budget constraint is written in current dollars.

The first-order conditions are:

Cgt : 0 = βt∂u(Cgt,Cst + utDt)
∂Cgt

− λt pgt,

Cst : 0 = βt∂u(Cgt,Cst + utDt)
∂Cst

− λt pst,

Dt+1 : 0 = −λt pdt + λt+1(1 − δd)pdt+1 + βt+1 ut+1

Ct+1
,

Kt+1 : 0 = −λt pxt + λt+1
[
(1 − δk)pxt+1 + rt+1

]
,

Bt+1 : 0 = −λt + λt+1
[
1 + it+1

]
.

Using the abbreviation:

u2t ≡
∂u(Cgt,Cst + utDt)

∂Cst
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and consolidating the first-order conditions gives:

pst+1

pst

u2t

u2t+1
= β

pdt+1

pdt

[
(1 − δd) +

ut+1 pst+1

pdt+1

]
, (21)

pst+1

pst

u2t

u2t+1
= β

pxt+1

pxt

[
(1 − δk) +

rt+1

pxt+1

]
, (22)

pst+1

pst

u2t

u2t+1
= β

[
1 + it+1

]
. (23)

Equating (21) and (23) gives:

pdt+1(1 − δd) + ut+1 pst+1 = pdt(1 + it+1). (24)

Note that this can be rewritten into the standard asset pricing formula in discrete time:

pdt =
ut+1 pst+1 + (1 − δd)pdt+1

1 + it+1
.

The price of durables today equals the discounted sum of the payoff plus the price of the un-

depreciated durables tomorrow. Since everything is in current dollars here, we use the nominal

interest rate to discount.

To obtain an equation for the imputation of the service flow from consumer durables in

period t, we solve the pricing equation (24) for the service flow and multiply the result with the

stock of durables, Dt:

pstutDt =
pdt−1

pdt
(1 + it)pdtDt − (1 − δd)pdtDt. (25)

The terms of the right-hand side of (25) are measurable. pdt/pdt−1 is the inflation factor of

durable goods, pdtDt is the current-cost net stock of durable goods, and δd pdtDt is the current-

cost depreciation of consumer durables. We calculate the interest rate using that equations (22)

and (23) imply:

1 + it =
pxt

pxt−1

[
1 +

rtKt+1 − δkKt

pxtKt

]
.

pxt/pxt−1 is the inflation factor of investment other than durables. We use the corporate accounts

of NIPA to calculate the remaining terms. rtKt+1 and δkKt are current-price capital income and
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current-price depreciation. pxtKt is the current-cost net stock of fixed assets in the corporate

sector. We use 3-year moving averages of pdt/pdt−1 and pxt/pxt−1 to capture the expectations of

future values.

Appendix B: Proofs of the Propositions

Appendix B.1: Proof of Proposition 1

We begin by eliminating prices and consolidating the equilibrium conditions so that the only

unknowns are equilibrium quantities:

1 =
Ct

Kθ
t A1−θ

ct
+

Xt

Kθ
t A1−θ

xt
, (26a)

K̂t+1 =
Xt

Kt
+ 1 − δ, (26b) Âxt+1

Âct+1

1−θ

Ĉt+1 = β

1 − δ + θ

(
Kt+1

Axt+1

)θ−1 , (26c)

0 = lim
t→∞

βt

(
Act

Axt

)1−θ Kt+1

Ct
. (26d)

We need to show that if Âx and Âc are constant, then an equilibrium path exists along which all

endogenous variables grow at constant rates. We do so by constructing a path for {Kt, Xt,Ct}
∞
t=0

that satisfies (26a)–(26d) and has these properties. In particular, the path satisfied (9a) and the

first part of (9b). We then show the additional claimed properties for {YC
t ,Z

C
t ,Rt,wt, rt, pxt}

∞
t=0,

that is, Rt is constant and the second part of (9b) as well as (9c)–(9g) hold.

To construct {Kt, Xt,Ct}
∞
t=1, we set K̂t = Âx. We define {X̂t}

∞
t=1 such that equation (26b) is

satisfied for all t > 0 if it is satisfied at t = 0. Since

Xt

Kt
= K̂t+1 − (1 − δ) = Âx − (1 − δ),

this implies Xt/Kt must be constant. Thus, we set X̂t = Âx. We define {Ĉt}
∞
t=1 such that (26a) is

satisfied for all t > 0 if it is satisfied at t = 0. Since K̂t = X̂t = Âx, (26a) implies that Ct/(Kθ
t A1−θ

ct )

must be constant. Hence, we set Ĉ = Âθ
xÂ1−θ

c .

Next, we set (K0, X0,C0) such that (26a)–(26b) hold at t = 0 and the Euler equation (26c)
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holds for all t ≥ 0. Together with the previous growth factors, this uniquely determines

{Kt, Xt,Ct}
∞
t=0. Using consumption growth and that Kt+1/Axt+1 = K0/Ax0, (26c) becomes:

Âx = β

1 − δ + θ

(
K0

Ax0

)θ−1 .
We choose the unique solution K0 > 0 given Ax0 > 0. Given K0, we set X0 ≡ [Âx − (1 − δ)]K0

to satisfy (26b) at t = 0. Given X0 and K0, we choose C0 to satisfy (26a) at t = 0:

C0 =

(
1 −

X0

Kθ
0A1−θ

x0

)
Kθ

0A1−θ
c0 .

To show that the transversality condition (26d) holds, we substitute the growth factors for Kt+1

and Ct into the right-hand side:

βt

(
Act

Axt

)1−θ Kt+1

Ct
= βt K0

C0
.

Since this converges to zero as t → ∞, we have constructed an equilibrium path.

This leaves to show the statements about {rt,wt,Rt, pxt,YC
t ,Z

C
t }
∞
t=0. The choice of numeraire,

pct = 1, and equations (4) and (5) imply that:

rt

pxt
= θKθ−1

t A1−θ
xt ,

wt = (1 − θ)Kθ
t A1−θ

ct .

The two Euler equations (3a) and (3b) imply that the real interest rate factor in units of con-

sumption is given by:

Rt =

 Âc

Âx

 1−θ 1 − δ + θ

(
Kt

Axt

)θ−1 ,
which is constant. To obtain equations (9f)–(9g), note that since K̂ = Âx along the equilibrium

path, the previous equations imply that ŵt = Âθ
xÂ1−θ

c and r̂t = p̂xt. Equation (6) together with

the assumption that the TFP growth rates are constant gives (9f).

Equation (8) and that K̂ = Âx imply that:

ŶC
t = Âθ

xÂ1−θ
c .
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Equation (6) together with together with the previous results for X̂t and ŶC
t give the remaining

equalities of (9b):

ẐC
t = YC

t − δpxtXt

∧
= Âθ

xÂ1−θ
c .

QED

Appendix B.2: Proof of Lemma 1

The current-value Lagrangian for Problem (10) is:

L =

∞∑
t=0

1
Rt

{
Ct + λt

[
A1−θ

ct Kθ
t + (1 − δ)PxtKt −Ct − PxtKt+1

]}
.

The first-order conditions are:

∂L

∂Ct
=

1
Rt

(1 − λt) = 0, (27a)

∂L

∂Kt+1
= −

1
Rt
λtPxt +

1
Rt+1

λt+1θA1−θ
ct+1Kθ−1

t+1 +
1
Rt+1

λt+1Pxt+1(1 − δ) = 0, (27b)

lim
t→∞

1
Rt
λtPxtKt+1 = 0. (27c)

Consolidating implies:

Rt+1 =

(
Axt

Act

)1−θ (1 − δ) (Act+1

Axt+1

)1−θ

+ θA1−θ
ct+1Kθ−1

t+1

 , (28a)

A1−θ
ct Kθ

t − δ

(
Act

Axt

)1−θ

Kt = Ct +

(
Act

Axt

)1−θ

(Kt+1 − Kt). (28b)

Since both problems have the same real interest rate, (28a) and (28b) are first-order for each

of the two problems. Hence, {Ct,Kt+1}
∞
t=0 is part of the solution to Problem (2) if and only if it

solves Problem (10). QED

Appendix B.3: Proof of Proposition 2

We prove the claims by establishing that the Laspeyres and Paasche quantity indexes are first-

order approximations to the forward-looking and backward-looking Fisher-Shell true quantity

34



indexes:

F̂S t−1,t ≈
Xt + pct−1Ct

YX
t−1

, F̂S t,t−1 ≈
YX

t

Xt−1 + pctCt−1
.

Two identities are helpful:

∂e
(
pct, v(pct,YX

t ; S t); S t

)
∂v

∂v(pct,YX
t ; S t)

∂pct
= −Ct, (29)

∂e
(
pct, v(pct,YX

t ; S t); S t

)
∂v

∂v(pct,YX
t ; S t)

∂YX
t

= 1. (30)

(29) follows from Roy’s identity,

[
∂v(pct,YX

t ; S t)
∂YX

t

]−1
∂v(pct,YX

t ; S t)
∂pct

= −Ct,

and (30). (30) follows by taking the derivative of et(·) with respect to YX
t and rearranging.

We establish that F̂S t−1,t ≈ ŶL
t by showing that e

(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
≈ Xt + pct−1Ct.

Interpreting e
(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
as a function of (pct,YX

t ) and linearizing it around

(pct−1,YX
t−1) gives:

e
(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
≈ e

(
pct−1, v(pct−1,YX

t−1; S t−1); S t−1

)
+
∂e

(
pct−1, v(pct−1,YX

t−1; S t−1); S t−1

)
∂v

∂v(pct−1,YX
t−1; S t−1)

∂pct−1
(pct − pct−1)

+
∂e

(
pct−1, v(pct−1,YX

t−1; S t−1); S t−1

)
∂v

∂v(pct−1,YX
t−1; S t−1)

∂YX
t−1

(YX
t − YX

t−1).

Using (30)–(29) and that e
(
pct−1, v(pct−1,YX

t−1; S t−1); S t−1

)
= YX

t−1 gives:

e
(
pct−1, v(pct,YX

t ; S t−1); S t−1

)
≈ e

(
pct−1, v(pct−1,YX

t−1; S t−1); S t−1

)
−Ct−1(pct − pct−1) + (YX

t − YX
t−1)

= YX
t −Ct−1(pct − pct−1)

= Xt + pct−1Ct + (Ct −Ct−1)(pct − pct−1)

≈ Xt + pct−1Ct,

where the last step leaves out the second-order terms.
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We establish that F̂S t,t−1 ≈ Ŷ p
t by showing that e

(
pct, v(pct−1,YX

t−1; S t); S t

)
≈ Xt−1 + pctCt−1.

The proof follows by interpreting e
(
pct, v(pct−1,YX

t−1; S t); S t

)
as a function of (pct−1,YX

t−1), lin-

earizing it around (pct,YX
t ), and following the same steps as before:

e
(
pct, v(pct−1,YX

t−1; S t); S t

)
≈ e

(
pct, v(pct,YX

t ; S t); S t

)
+
∂e

(
pct, v(pct,YX

t ; S t); S t

)
∂v

∂v(pct,YX
t ; S t)

∂pct
(pct−1 − pct)

+
∂e

(
pct, v(pct,YX

t ; S t); S t

)
∂v

∂v(pct,YX
t ; S t)

∂YX
t

(YX
t−1 − YX

t )

= YX
t−1 −Ct(pct−1 − pct)

≈ Xt−1 + pctCt−1.

QED

Appendix B.4: Proof of Proposition 3

As in Proposition 1, we consolidate the equilibrium conditions so that the only unknowns are

equilibrium quantities:

1 =
Ct

Kθ
t A1−θ

ct
+

Xt

Kθ
t A1−θ

xt
, (31a)

K̂t+1 =
Xt

Kt
+ 1 − δ, (31b) Âxt+1

Âct+1

1−θ

Ĉt+1 = β

1 − δ + θ

(
Kt+1

Axt+1

)θ−1 , (31c)

0 = lim
t→∞

βt

(
Act

Axt

)1−θ Kt+1

Ct
. (31d)

We show that an equilibrium path exists by constructing a path {Kt, Xt,Ct}
∞
t=0 such that Xt and

Kt grow at constant factors, Lt = 1 is constant, and (31a)–(31d) are satisfied.

We first construct {Kt, Xt,Ct}
∞
t=1. Set K̂t = Âx, which is constant. We set {X̂t}

∞
t=1 such that

equation (31b) is satisfied for all t > 0 if it is satisfied at t = 0. Since

Xt

Kt
= K̂t+1 − (1 − δ) = Âx − (1 − δ),
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this implies Xt/Kt must be constant. Thus, we set X̂t = Âx. We set {Ĉt}
∞
t=1 such that (31a) is

satisfied for all t > 0 if it is satisfied at t = 0. Since K̂t = X̂t = Âx, (31a) implies that Ct/(Kθ
t A1−θ

ct )

must be constant. Hence, we set Ĉt = Âθ
xÂ1−θ

ct .

Next, we set (K0, X0,C0) such that (31b) holds at t = 0 and the Euler equation (31c) holds

for all t ≥ 0. Together with the previous growth factors, this uniquely determines {Kt, Xt,Ct}
∞
t=0.

Using consumption growth and that Kt+1/Axt+1 = K0/Ax0, (31c) becomes:

Âx = β

1 − δ + θ

(
K0

Ax0

)θ−1 .
We choose the unique solution K0 > 0 given Ax0 > 0. Given K0, we then set YX

0 ≡ Kθ
0A1−θ

x0 and

X0 ≡ [Âx − (1 − δ)]K0 to satisfy (31a) at t = 0. Given X0 and K0, we choose C0 to satisfy (31a)

at t = 0:

C0 =

(
1 −

X0

Kθ
0A1−θ

x0

)
Kθ

0A1−θ
c0 .

To show that the transversality condition (31d) holds, we substitute the growth factors for Kt+1

and Ct into the right-hand side:

βt

(
Act

Axt

)1−θ Kt+1

Ct
= βt K0

C0
.

Since this converges to zero as t → ∞, the transversality condition holds.

This leaves to show the statements about
{
YC

t ,Y
X
t , rt,wt, pct,

}∞
t=0

. Equations (8) and (16) and

the previous results imply that:

ŶC
t = Âθ

xÂ1−θ
ct ,

ŶX
t = Âx.

In addition, YC
t = p−1

ct YX
t and ZC

t = p−1
ct (YX

t − δKt). Since, ŶX
t = K̂t, we also have ŶC

t = ẐC
t .

If pct = 1, then equations (4) and (5) imply that:

rt = θ

(
Axt

Kt

)1−θ

,

wt = (1 − θ)Kθ
t A1−θ

xt .
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Since K̂t = Âx along the equilibrium path, ŵt = Âx and r̂t = 0. Hence, rt − δ constant. Lastly,

the statement about pct follows directly from pxt = 1 and equation (6). QED

Appendix B.5: Proof of Corollary 1

The first claim follows from the fact that along the GBGP:

ŶC
t = K̂θ

t Â1−θ
ct = Âθ

xÂ1−θ
ct < Âx = ŶX

t .

The second claim follows from the fact that along the GBGP ŶC
t = Âθ

xÂ1−θ
ct and the assumption

that Âx is constant and Âct declines. Thus, ŶC
t slows down. Since ŶC

t = ẐC
t , this means that ẐC

t

slows down too. The third claim follows from the fact that along the GBGP ŶX
t = Âx and Âx is

assumed constant. QED

Appendix B.6: Proof of Proposition 4

Given the assumptions, the first claim immediately follows from (20). Turning to the second

claim, ŶF
t slows down if and only if:

ŶF
t > ŶF

t+1.

Using that ŶX = ÂX, the second equation of (20) implies that this is equivalent to:

ÂX

√√√√√1 +
pcC
X

Âct

Âx

1 +
pcC
X

Âx

Âct

> ÂX

√√√√√1 +
pcC
X

Âct+1

Âx

1 +
pcC
X

Âx

Âct+1

.

Multiplying out gives:

(
XÂx + pcC Âct

)(
XÂctÂct+1 + pcCÂx Âct

)
>

(
XÂx + pcC Âct+1

)(
XÂctÂct+1 + pcCÂx Âct+1

)
.

The only difference between the left-hand and the right-hand side are in the second terms of the

respective sums, which are highlighted in boldface for convenience. On the left-hand side, they

contain Âct whereas on the right-hand side they contain Âct+1. Since all terms are positive on

both sides, this implies that the inequality holds if and only if Âct > Âct+1, which happens when
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Âct declines. QED

Appendix C: Derivation of Weitzman’s Result in Continuous

Time

In this appendix, we derive Weitzman’s result in continuous time. To this end, we briefly state

the key conditions of our two-sector in continuous time. We then derive the continuous-time

version of (14). Finally, we show that it is equivalent to how Weitzman stated his result in

continuous time.

Appendix C.1: Solving the household problem in continuous time

As in discrete time, the following equilibrium conditions hold in continuous time:

pxt =

(
Act

Axt

)1−θ

, (32)

Yt = A1−θ
ct Kθ

t , (33)

ZC
t = A1−θ

ct Kθ
t − δpxtKt. (34)

Weitzman had the household maximize the present discounted sum of consumption subject to

feasibility. In continuous time, this amounts to:18

max
∫ ∞

0
Cte−Rtdt s.t. K̇t pxt = A1−θ

ct Kθ
t − pxtδKt −Ct. (35)

Note that the equilibrium path differs from the ones studied in the main part of the paper be-

cause, in addition to using continuous time, the objective function in (35) now is the present

discounted value of all period consumption instead of utility.

The current-value Hamiltonian associated with the household problem is:

Ht ≡ Ct + λtK̇t = Ct + λt

(
A1−θ

ct Kθ
t

pxt
− δKt −

Ct

pxt

)
.

18In the discrete-time model in the body of the paper, we used rt and Rt to denote the rental price of capital and
the real interest rate factor, respectively. For lack of obvious intuitive alternatives, we use R to denote the real
interest rate in the continuous-time model. We trust that this does not lead to confusion.
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The first-order conditions are:

∂Ht

∂Ct
= 1 −

λt

pxt
= 0, (36a)

∂Ht

∂Kt
= λt

(
θA1−θ

ct Kθ−1
t

pxt
− δ

)
= −λ̇t + λtR, (36b)

lim
t→∞

e−RtλtKt = 0. (36c)

(36a) implies that the shadow price equals the relative price of investment in terms of consump-

tion: λt = pxt. Using this, we can write the equilibrium conditions as:

ZC
t = A1−θ

ct Kθ
t − δpxtKt = Ct + pxtK̇t, (37a)

θA1−θ
ct Kθ−1

t − δpxt = Rpxt − ṗxt, (37b)

lim
t→∞

e−Rt pxtKt = 0, (37c)

pxt =

(
Act

Axt

)1−θ

. (37d)

Appendix C.2: Constructing an equilibrium path in continuous time

From now on we focus on an equilibrium path along which the interest rate is constant. Equa-

tions (37b) and (37d) imply that:

R = θ

(
Axt

Kt

)1−θ

− δ + p̃xt = θ

(
Axt

Kt

)1−θ

− δ + (1 − θ)
(
Ãc − Ãx

)
, (38)

where “tildes” denote growth rates in continuous time. For example,

Ãi ≡
Ȧit

Ait
, i ∈ {c, x}.

As in the analysis in discrete time, we assume that both growth rates are constant. If the interest

rate is constant, then Axt/Kt is also constant and

K̃ = Ãx. (39)
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Note that together with (38), this means that given A0, we can choose K0 so that the real interest

rate equals any value, including the real interest rate that obtains along the BGP of the growth

model of the main part of the paper, in which the household maximizes the present discounted

value of utility instead of the present discounted value of consumption.

Equations (37a) and (37d) imply

(
Axt

Kt

)1−θ

− δ =

(
Axt

Act

)1−θ Ct

Kt
+ K̃. (40)

The left-hand side and K̃ are constant. Hence the first term on the right-hand side must also be

constant, which is the case if and only if

C̃ = θÃx + (1 − θ)Ãc. (41)

Finally, the law of motion for capital accumulation,

Kt+1 = Xt + (1 − δ)Kt,

implies that Xt/Kt is constant. Thus:

X̃ = Ãx. (42)

We are now ready to derive Weitzman’s result in continuous time. We start with a simple

direct derivation that follows the exact same steps of the discrete-time derivation in the body

of the paper. Abbreviating the constant growth rate of consumption in equation (41) by g, the

present discounted value of consumption along BGP can be written as:

∫ ∞

t
Cse−R(s−t)ds = Ct

∫ ∞

t
e−(R−g)(s−t)ds =

1
R − g

Ct, (43)

where we assumed that lims→∞ e−(R−g)s = 0, which is the case if R > g. Using (38)–(41), this is

equivalent to assuming that:

θ

(
Ax0

K0

)1−θ

− δ − Ãx > 0. (44)
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Multiplying both sides of (43) with r and recalling that

Ct = A1−θ
ct Kθ

t − (δ + Ãx)pxtKt = ZC
t − Ãx pxtKt,

we end up with:

R
∫ ∞

t
Cte−R(s−t)ds =

R
R − g

(
ZC

t − Ãx pxtKt

)
. (45)

(45) is the continuous-time equivalent of the discrete time result (14) from the main part of

the paper. In particular, on the left-hand side, it has permanent income, i.e., the return on the

present discounted value of consumption. Note that in continuous time, the interest payments

occur in the current period and therefore do not need to be discounted. On the right-hand side,

it has the NDP along with the additional term, that is, −Ãx pxtKt, which is the continuous-time

equivalent to −(Âx − 1)pxtKt.

Appendix C.3: Weitzman’s result in continuous time

We will now show that in continuous time (45) is equivalent to Weitzman’s result that permanent

income is proportional to the NDP in consumption units:

R
∫ ∞

t
Cse−R(s−t)ds ∝ ZC

t .

The first step is to derive the growth rate of the NDP along the BGP. The previous results

imply that:

ZC
t = A1−θ

ct Kθ
t − δpxtKt = Ct + pxtK̇t = Ct + pxtK̃tKt. (46)

Taking the time derivative yields:

ŻC
t = Ċt + ṗxtK̇t + pxt

˙̃KtKt + pxtK̃K̇t = CtC̃t + pxtK̇t

(
p̃xt + K̃t

)
, (47)

where we used that along the BGP K̃t = Ãx is constant and so ˙̃K = 0. Using that pxtK̇t = ZC
t −Ct,
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it follows that:

Z̃C
t =

Ct

ZC
t

C̃ +

(
1 −

Ct

ZC
t

) (
p̃x + K̃

)
=

(
p̃x + K̃

)
+

Ct

ZC
t

(
C̃ − p̃x − K̃

)
.

(37d), (39), and (41) imply that

p̃x + K̃ = C̃ = (1 − θ)Ãc + θÃx. (48)

Hence:

Z̃C
t = g = (1 − θ)Ãc + θÃx. (49)

The next step is to totally differentiate ZtC:

dZC
t

dt
=

d
(
A1−θ

ct Kθ
t − δpxtKt

)
dt

= (1 − θ)A−θct ȦctKθ
t + A1−θ

ct θKθ−1
t K̇t − δṖxtKt − δpxtK̇t

= (1 − θ)A1−θ
ct Kθ

t Ãct − δṖxtKt +
(
θA1−θ

Xt Kθ−1
t − δ

)
pxtK̇t.

Using (37d), (38), and (46), we get:

dZC
t

dt
= (1 − θ)

(
A1−θ

ct Kθ
t − δpxtKt

)
Ãct + (1 − θ)δpxtKtÃct − δpxtKt p̃xt + (R − p̃xt) pxtK̇t (50)

= (1 − θ)ZC
t Ãct + (1 − θ)δpxtKtÃxt − pxtK̇t p̃xt + R

(
ZC

t −Ct

)
=

(
(1 − θ)Ãct + (1 − θ)

δpxtKt

ZC
t

Ãxt −
pxtK̇t

ZC
t

p̃xt

)
ZC

t + R
(
ZC

t −Ct

)
.

It is helpful to define

κt ≡
δpxtKt

Zt
, (51)

γt ≡ (1 − θ)Ãc + κt(1 − θ)Ãx −
pxtKt

Zt
K̃t p̃xt. (52)

Along an BGP, κt = κ and γt = γ are both constant. The reason ist that (48) and (49) imply that

along an BGP pxtKt and ZC
t grow at the same rate g.
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Collecting the results from the previous paragraphs, we have:

dZC
t

dt
= γZC

t + R
(
ZC

t −Ct

)
.

Multiplying both sides by e−Rt and rearranging then gives:

d
(
ZC

t e−Rt
)

dt
=

dZC
t

dt
e−Rt − RZC

t e−Rt = γZC
t e−Rt − RCte−Rt. (53)

Integrating both sides, we obtain:

lim
s→∞

ZC
s e−Rs − ZC

t e−Rt = γ

∫ ∞

t
ZC

s e−Rsds − R
∫ ∞

t
Cse−Rsds.

Using that along an BGP lims→∞ ZC
s e−Rs = ZC

t lims→∞ e−(R−g)s = 0, this can be rewritten as:

ZC
t = −γZC

t

∫ ∞

t
e−(R−g)(s−t)ds + R

∫ ∞

t
Cse−R(s−t)ds = −

γ

R − g
ZC

t + R
∫ ∞

t
Cse−R(s−t)ds.

Hence, we have proven Weitzman’s result:

R
∫ ∞

t
Cse−R(s−t)ds =

R − g + γ

R − g
ZC

t . (54)

On the face of it, this version of Weitzman’s result differs from the previous version, (45). To

begin with, (45) has the additional term −Ãx pxtKt in parenthesis on the right-hand side, whereas

(54) has only the NDP as the second term on the right-hand side. Moreover, the proportionality

factors differ.

It turns out that (45) is nonetheless equivalent to (54) in continuous time:

R
R − g

(
ZC

t − Ãx pxtKt

)
=

R − g + γ

R − g
ZC

t .
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To establish this, we substitute the definitions of g and γ into the previous equation:

R
(
A1−θ

ct Kθ
t − (δ + Ãx)pxtKt

)
=

(
R − θÃx + κ(1 − θ)Ãx −

pxtK̇t

Zt
p̃xt

) (
A1−θ

ct Kθ
t − δpxtKt

)
⇐⇒ −RÃx pxtKt = −θÃx

(
A1−θ

ct Kθ
t − δpxtKt

)
+ δpxtKt(1 − θ)Ãx − pxtK̇t p̃xt

⇐⇒ RÃx pxtKt = θA1−θ
xt Kθ−1

t Ãx pxtKt − δÃx pxtKt + p̃xtÃx pxtKt

⇐⇒ R = θA1−θ
xt Kθ−1

t − δ + (1 − θ)
(
Ãc − Ãx

)
,

where we used (37d) and that K̃ = Ãx along BGP. The last equation is just a restatement of

the expression for the real interest rate, (38). Hence, in continuous time, (45) and (54) are the

same. QED
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