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I Introduction

The recent years have seen an increase in empirical analyses that provide so-called “suffi-

cient statistics”to give policy prescriptions that are easily implementable and relatively easy to

explain to the general public. As a compromise between reduced-form and structural anal-

yses, the approach based on sufficient statistics has applications in macroeconomics, labor

economics, development economics, industrial organization, political economy and in inter-

national trade (e.g., Chetty (2009), Hornstein et al. (2011), Arkolakis et al. (2012), Bierbrauer

and Boyer (2018)). In particular, optimal tax researchers rely extensively on empirically mean-

ingful sufficient statistics to express tax formulas (e.g., Saez (2001, 2002), Saez and Stantcheva

(2018), Costinot and Werning (2018) and references in Chetty (2009) and in Kleven (2018)). For

this reason, in the present paper, we select optimal tax policy as the field of choice to illustrate

a more general point regarding the use of sufficient statistics1. The endogeneity of sufficient

statistics to the policy is a well-known limitation: the values of sufficient statistics in the actual

economy where they are estimated differ from their values in the optimal economy where they

need to be computed to determine the optimal policy. We highlight a new source of endogene-

ity due to changes in the composition of the population at the different income levels when one

shifts from the actual to the optimal policy.

We call composition effects this new source of endogeneity, the rationale of which is as fol-

lows. Optimal tax policy is expressed as a function of weighted means of sufficient statistics,

the latter being computed at the individual level. Therefore, between the actual and the op-

timal economy, not only do the sufficient statistics of each agent vary, but so do the weights

used to compute the optimal policy. For instance, if the weights of taxpayers with relatively

high (low) values of a certain sufficient statistic decrease (increase) when one moves from the

actual to the optimal economy, then the weighted means of sufficient statistics decrease, which

impacts the optimal policy. We argue that ignoring these composition effects may lead to quan-

titatively important bias in the computation of optimal tax schedules. To understand how, we

focus on composition effects in the elasticity of earnings with respect to the marginal net-of-tax

rate and explain how they impact both linear and nonlinear tax schedules. We characterize in

which direction composition effects bias the optimal linear and nonlinear tax schedules. Under

maximin social preferences and quasilinear individual preferences, we analytically show that

composition effects exacerbate the difference between the actual and the optimal linear tax rate.

To sign the bias in the nonlinear case, we have to rely on a rather restrictive set of assumptions.

We therefore provide several numerical examples and show, under what we think to be very

plausible empirical assumptions, that the underestimation of optimal marginal tax rate at high

income levels can easily reach six percentage points. These findings have a crucial implication

for the empirical literature that provides sufficient statistics. One cannot simply rely on esti-

1In the optimal tax literature, the key sufficient statistics are (i) behavioral responses to tax reforms, (ii) the
income distribution and (iii) the social welfare weights which summarize the social preferences for redistribution
(see e.g., Diamond (1998) and Saez (2001)).
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mates of the means of sufficient statistics estimated in the actual economy. One needs instead

to estimate the joint distribution of sufficient statistics and income.

Composition effects play a role in a variety of applications of optimal taxation. For instance,

it may affect the design of optimal joint income taxation of couples if the labor supply elasticity

of wives is larger than that of husbands, which is empirically plausible (Bargain and Peichl,

2016). Among couples who earn the same total income, those where the wife earns relatively

more and the husband earns relatively less are characterized by a larger elasticity of taxable

income. When moving from the actual to the optimal economy, the share of such households

at each income level changes, which modifies the weighted mean elasticity of taxable income.

Neglecting composition effects then probably biases the optimal marginal tax rates of couples.

Another situation where composition effects most probably play a role occurs when taxpayers

earn both an income reported to the tax authority by a third party and self-reported income e.g.,

casual wages such as tips. Reasonably assuming that the earnings elasticity of self-reported in-

comes is larger than the one of third-party reported incomes (Kleven et al., 2011), the earning

elasticity of each taxpayer increases with the share of self-reported income in her total income.

Among taxpayers who earn the same total income, those whose self-reported income is larger

are characterized by a larger elasticity of taxable income. When moving from the actual to

the optimal economy, the share of such taxpayers at each income level may vary so that the

weighted mean elasticity of taxable income is likely to be impacted by composition effects.

Composition effects may also take place in countries like the U.S. with a comprehensive per-

sonal income tax, i.e. when a single tax schedule applies to the sum of different types of incomes

earned by a household (salaries, financial income, rents, etc). One expects that subjacent elas-

ticities are specific to each type of income. Therefore, as in the previous examples, the earning

elasticity of the total income of each taxpayer, at a given level of income, depends on the share

of her incomes with larger elasticities. When moving from the actual to the optimal economy,

at each income level, the weighted mean elasticity of taxable income is then likely affected by

composition effects.

We also contribute to the optimal tax literature by improving the tax perturbation approach

initiated by Piketty (1997) and Saez (2001). This approach consists in computing all responses

to small tax reforms, to sum them up and equate them to zero in order to obtain the optimal

tax schedule. The initial approach of Piketty (1997) and Saez (2001) is very intuitive but is only

heuristic since it relies on tax reforms that creates kinks for which effects are neglected. This

is the reason why Saez (2001) has to check the consistency of his tax formula with the one ob-

tained using the mechanism design approach of Mirrlees (1971). He, however, verifies this only

in the case where unobserved heterogeneity is one-dimensional which excludes the empirically

plausible case where taxpayers differ both in skills and behavioral responses. Other attempts

at extending the method of Saez (2001) to a richer class of tax reforms without kinks have been

made (e.g., Hendren (2019) and Sachs et al. (2019) for the most recent). However, they need to

assume that tax revenues are differentiable functions of tax reforms. In contrast, we show that
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income decisions are a differentiable functions of tax reforms by applying the implicit function

theorem. We then verify the conjecture of Saez (2001) that, under multidimensional hetero-

geneity, optimal marginal tax rates depend on the averages of sufficient statistics taken among

taxpayers who earn the same income.2 Last but not least, we show that our tax perturbation ap-

proach and the (first-order) mechanism design approach are the two faces of the same coin.3 In

the latter, one considers the effects of perturbations on allocations (within the class of incentive-

compatible differentiable and increasing allocations), while the tax perturbation considers the

effects of a tax reform that decentralizes these perturbations.

The paper is organized as follows. We introduce the framework in Section II. We begin

our analysis in Section III with the simple linear tax model to explain what composition effects

are and to illustrate the empirical bias they impose. In Section IV, we characterize the optimal

nonlinear tax using the tax perturbation method and we shed the light on composition effects

in that case. Section V numerically investigates the sensitivity of the optimal tax function to

composition effects. Section VI shows the equivalence between the mechanism design and tax

perturbation approaches. Section VII concludes.

II Model

Every worker derives utility from consumption c ∈ R+ and disutility from effort. Effort

captures the quantity as well as the intensity of labor supply. More effort implies higher pre-

tax income y ∈ R+ (for short, income hereafter). The government levies a tax T(.) which

depends on income y only. Consumption c is related to income y through the tax function T(y)

according to c = y− T(y). Individuals differ along their skill level w ∈ R∗+ and along some

characteristics denoted θ ∈ Θ. We call a group a subset of individuals with the same θ.4 We

assume that the set of groups Θ is measurable with a cumulative distribution function (CDF)

denoted µ(·). The set Θ can be finite or infinite and may be of any dimension. The distribution

µ(.) of the population across the different groups may be continuous, but it may also exhibit

mass points. Among individuals of the same group θ, skills are distributed according to the

conditional skill density f (·|θ) which is positive and differentiable over the support R∗+. The

conditional CDF is denoted F(w|θ) def≡
∫ w

0 f (x|θ)dx. We do not make any restriction on the

correlation between w or θ. We normalize to unity the total size of the population.

2Our method can easily be extended to include participation decisions (Saez, 2002, Kleven et al., 2009, Jacquet
et al., 2013), migration decisions (Lehmann et al., 2014, Blumkin et al., 2015) or sectoral decisions (Rothschild and
Scheuer, 2013, Scheuer, 2014, Gomes et al., 2018).

3The tax perturbation and mechanism design methods have been used separately to solve optimal income tax
problems. While the latter method is widely used in various fields in economics, the former is more specific to the
optimal taxation literature.

4Our definition of ”group” is identical to the one in Werning (2007, p.13).
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II.1 Individual choice

Individuals of type (w, θ) have a twice continuously differentiable utility function with re-

spect to c and y which is specified as U (c, y; w, θ) with Uc > 0 > Uy. We also assume that for

each type (w, θ), indifference curves associated to U (·, ·; w, θ) are strictly convex in the income-

consumption space. Earning a given income requires less effort to a more productive worker,

so Uw > 0. A worker of type (w, θ), facing y 7→ T(y), solves:

U(w, θ)
def≡ max

y
U (y− T(y), y; w, θ) . (1)

We call Y(w, θ) the solution to program (1), C(w, θ) = Y(w, θ)− T(Y(w, θ)) the consumption

of a worker of type (w, θ) and U(w, θ) her utility.5 When the tax function is differentiable, the

first-order condition associated to (1) implies that:

1− T′ (Y (w, θ)) = M (C (w, θ) , Y (w, θ) ; w, θ) (2)

where:

M (c, y; w, θ)
def≡ −

Uy(c, y; w, θ)

Uc(c, y; w, θ)
(3)

denotes the marginal rate of substitution between (pre-tax) income and consumption (after-tax

income). For a worker of a given type, the left-hand side of Equation (2) corresponds to the

marginal gain of income after taxation while the right-hand side corresponds to the marginal

cost of income in monetary terms.

We impose the single-crossing (Spence-Mirrlees) condition that, within each group of work-

ers endowed with the same θ, the marginal rate of substitution is a decreasing function of the

skill level, i.e. that higher-skilled workers find it less costly to increase their income y:

Assumption 1 (Within-group single-crossing condition). For each θ ∈ Θ, and each (c, y) ∈ R+ ×
R+, function w 7→M (c, y; w, θ) is differentiable with ∀w ∈ R∗+, Mw < 0.

Assumption 1 is for instance verified in the case where U (c, y; w, θ) is specified as:

U (c, y; w, θ) = c− θ

1 + θ
y1+ 1

θ w−
1
θ w ∈ R∗+, θ ∈ Θ. (4)

We henceforth refer to preferences’ specification (1) as the isoelastic ones. There θ stands for

the labor supply elasticity. The marginal rate of substitution equals M (c, y; w, θ) = y
1
θ w−

1
θ and

is decreasing in w from infinity to zero.

II.2 Government

The government’s budget constraint takes the form:∫∫
θ∈Θ,w∈R∗+

T (Y(w, θ)) f (w|θ)dw dµ(θ) = E (5)

5To ease the notations, we do not make explicit the dependence of Y(·, ·), C(·, ·), U(·, ·) on T(·).
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where E ≥ 0 is an exogenous amount of public expenditures. The objective of the planner is to

maximize a general social welfare function that sums over all types of individuals an increasing

transformation Φ(U; w, θ) of individuals’ utility levels U:∫∫
θ∈Θ,w∈R∗+

Φ (U(w, θ); w, θ) f (w|θ)dw dµ(θ). (6)

This welfarist specification allows Φ to vary with type (w, θ) which makes it very general.

Weighted utilitarian preferences are obtained with Φ(U; w, θ) ≡ ϕ(w, θ) ·U with weights ϕ(w, θ)

depending on individual characteristics. The objective is utilitarist if ϕ(w, θ) is constant and

Φ(U; w, θ) ≡ U and it turns out to be maximin (or Rawlsian) if ϕ(w, θ) = 0 ∀w > 0. When

Φ(U; w, θ) does not vary with its two last arguments and is concave in individual utility (ΦUU ≤
0), we obtain a Bergson-Samuelson criterion which is a concave transformation of utility.

The government’s problem consists in finding the tax schedule T(·) that maximizes the

social welfare objective (6) subject to the budget constraint (5). Let λ > 0 denote the shadow

price of public funds. The Lagrangian (expressed in monetary terms) is:

L
def≡

∫∫
θ∈Θ,w∈R∗+

[
T(Y(w, θ)) +

Φ (U(w, θ); w, θ)

λ

]
f (w|θ)dw dµ(θ). (7)

We define the social marginal welfare weights associated with workers of type (w, θ) expressed

in terms of public funds by:

g (w, θ)
def≡ ΦU (U (w, θ) ; w, θ)Uc (C(w, θ), Y(w, θ); w, θ)

λ
. (8)

The government values giving one extra dollar to a worker (w, θ) as a gain of g(w, θ) dollar(s)

of public funds.

III Optimal linear tax and composition effects

In this section, we illustrate how composition effects bias the empirical implementation of

the optimal tax rate using the very simple case of linear taxation. The tax schedule is linear

with a tax rate denoted τ and a demogrant D so: T (y) = τ y− D. Let yM(w, θ; τ, D) denote

the Marshalian solution to the taxpayer’s program max
y

U ((1− τ)y + D, y; w, θ). The budget

constraint (5) can be rewritten as:

τ
∫∫

(w,θ)∈R∗+×Θ
yM(w, θ; τ, D) f (w|θ)dw dµ(θ)− D = E. (9)

Assuming leisure is a normal good, one has yM
D (w, θ; τ, D) ≤ 0, which ensures that the left

hand-side of the previous equation is decreasing in D. Hence, for each tax rate τ, there exists a

single demogrant denoted D̃(τ) that clears the budget constraint (9). We denote: ỹ(w, θ; τ)
def≡

yM (w, θ; τ, D̃(τ)
)
the pretax income of taxpayers of type (w, θ) when the tax rate is τ and the
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demogrant clears the budget constraint. The earnings elasticity of these taxpayers with respect

to the net-of-tax rat 1− τ is defined as:

ε̃(w, θ; τ)
def≡ − 1− τ

ỹ(w, θ; τ)

∂ỹ(w, θ; τ)

∂τ
.

Define aggregate earnings as the sum of all individual incomes:

Y(τ)
def≡
∫∫

(w,θ)∈R∗+×Θ
ỹ(w, θ; τ) f (w|θ)dw dµ(θ).

Following Piketty and Saez (2013), the optimal tax rate τL is such that (Appendix A):

τL =
1− g(τL)

1− g(τL) + e(τL)
, (10)

where the Lagrange multiplier verifies:6

λ =
∫∫

(w,θ)∈R∗+×Θ
ΦU 〈w, θ〉Uc 〈w, θ〉 f (w|θ)dw dµ(θ), (11)

where the mean social marginal welfare weight is given by:

g(τ)
def≡
∫∫

(w,θ)∈R∗+×Θ
g (w, θ)

ỹ(w, θ; τ)

Y(τ)
f (w|θ)dw dµ(θ), (12)

and the mean earnings elasticity e(τ) is defined as:

e(τ)
def≡ −1− τ

Y(τ)
∂Y
∂τ

=
∫∫

(w,θ)∈R∗+×Θ
ε̃(w, θ; τ)

ỹ(w, θ, τ)

Y(τ)
f (w|θ)dw dµ(θ). (13)

The following proposition explains why composition effects affect the implementation of the

optimal linear tax rate.

Proposition 1. In the optimal linear tax formula given by (10), the share of income from (w, θ)-

taxpayers in the aggregate earnings, ỹ(w, θ; τ) f (w|θ)/Y(τ) impacts the mean social marginal welfare

weight g(τ) in (12) and the mean earnings elasticity e(τ) in (13).

With a linear tax schedule, the optimal tax depends on a weighted mean of social welfare

weights and earnings elasticities, where the weights ỹ(w, θ; τ) f (w|θ)/Y(τ) are equal to the

shares of income from (w, θ)-taxpayers in aggregate earnings. We define composition effects

as the variations of the weighted means of welfare weights and earnings elasticities due to the

change in the weights ỹ(w, θ; τ) f (w|θ)/Y(τ) when one shifts from the actual economy (where

g(τ) and e(τ) are estimated) to the optimal economy. Hence, ignoring composition effects

typically biases the implementation of the optimal tax formula.

Importantly, the welfare weight g(w, θ) and the earnings elasticity ε̃(w, θ, τ) of each type of

taxpayers are also endogenous to the tax policy. So, to better isolate the direction of the bias

induced by composition effects, we now specify individual preferences and the social objec-

tive to make g(w, θ) and ε̃(w, θ, τ) exogenous. For this purpose, we assume the government’s

6The notation 〈w, θ〉 is a shortcut to indicate that the arguments are evaluated at the bundle chosen by taxpayers
of type (w, θ).
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objective is maximin which is equivalent to maximizing tax revenue τ · Y − E (Boadway and

Jacquet, 2008) with welfare weights equal to zero. Substituting g(τL) = 0 into (10), the tax rate

that maximizes tax revenue (or the Laffer rate) is:

τL =
1

1 + e(τL)
. (14)

Moreover, we assume individual preferences are isoelastic as in (4). This implies that income

are given by ỹ(w, θ; τ) = (1− τ)θ w, so that ε̃(w, θ; τ) = θ which is tax policy-invariant and

homogeneous within each group. The average earnings within group θ is then given by:

y(θ, τ)
def≡ (1− τ)θ

∫
w∈R∗+

w f (w| θ) dw.

and the aggregate earnings can be rewritten as:

Y(τ)
def≡
∫

θ∈Θ
y(θ, τ) dµ(θ) =

∫
θ∈Θ

(1− τ)θ
∫

w∈R+

w f (w|θ)dw dµ(θ).

Hence, the elasticity of aggregate earnings given by (13) thus takes the following simpler ex-

pression:

e(τ) =
∫

θ∈Θ
θ

y(θ, τ)

Y(τ)
dµ(θ). (15)

Let τ0 denote the tax rate in the actual economy. Intuitively, if one neglects composition

effects, one would implement the optimal tax formula (14) using e(τ0) instead of e(τL). If the

optimal tax rate is larger than the actual one, the rise from the actual to the optimal tax rate

decreases earnings in every group. This decrease is higher for groups with a larger θ since

their behavioral responses are larger than the ones of groups with a lower θ. Consequently,

the rise in the tax rate is going to decrease (increase) the weight of high (low) θ-groups in the

computation of the elasticity of aggregate earnings in (15) and we eventually get that e(τL) <

e(τ0). Therefore, neglecting composition effects leads to underestimate the optimal tax rate, as

proved in Appendix B and stated in the following proposition.

Proposition 2. If the optimal linear revenue maximizing tax rate is higher (lower) than the actual tax

rate, neglecting composition effects leads to a downward (upward) bias in the computation of the optimal

tax rate.

As a back-of-the-envelope numerical illustration, consider the case where the economy is

made of two groups, a high elasticity one with θH = 0.4 and a low elasticity one with θL =

0.1. Assume both groups are of equal size µ(θL) = µ(θH) = 0.5 and are characterized by

the same average income y(θ, τ) in the actual economy where the tax rate is assumed to be

τ0 = 0.25. Then, ignoring the heterogeneity in the elasticity of labor supply, one obtains a

revenue maximizing linear tax rate equal to 1/(1 + 0.25) = 80.0%. By contrast, taking into

account composition effects leads to a revenue maximizing linear tax rate which rises to 82.1%

from (14) and (15). With θH = 0.6, we obtain a larger discrepancy: the optimal linear tax rate

without composition effects is equal to 1/(1 + 0.35) ' 74.1%, while it rockets to 78.5% with

composition effects.
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IV Optimal nonlinear tax and composition effects

In this section, we study composition effects when the tax schedule is nonlinear. For this

purpose, we improve the tax perturbation method initiated by Piketty (1997) and Saez (2001).

In Subsection IV.1, we propose a tax perturbation method when individual characteristics are

multidimensional and state sufficient conditions for using it. We define empirically measurable

sufficient statistics (Subsection IV.2) that we use for characterizing desirable tax reforms and for

deriving the optimal tax formula (Subsection IV.3). We then tell the reader about composition

effects (Subsection IV.4).

IV.1 Sufficient conditions for the tax perturbation method

Define a reform of a tax schedule y 7→ T(y) with its direction, which is a differentiable

function y 7→ R(y) defined on R+, and with its algebraic magnitude m ∈ R. After a reform,

the tax schedule becomes y 7→ T(y)−m R(y) and the utility of an individuals of type (w, θ) is:

UR(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y), y; w, θ) . (16)

We denote by YR(m; w, θ) the income of workers of types (w, θ) after the reform and her con-

sumption becomes CR(m; w, θ) = YR(m; w, θ) − T(YR(m; w, θ)) + m R(YR(m; w, θ)). When

m = 0, we have YR(0; w, θ) = Y(w, θ) and CR(0; w, θ) = C(w, θ). Applying the envelope

theorem to (16), we get:

∂UR

∂m
(m; w, θ) = Uc

(
CR(m; w, θ), YR(m; w, θ); w, θ

)
R(y). (17)

Using (3), the first-order condition associated to (16) equalizes to zero the following expression:

Y R(y, m; w, θ)
def≡ 1− T′(y) + m R′(y)−M (y− T(y) + m R(y), y; w, θ) . (18)

For simplicity, we drop the superscript R and write Yy(Y(w, θ); w, θ) for Y R
y (Y(w, θ), 0; w, θ).7

We define behavioral responses to tax reforms of direction R by applying the implicit function

theorem at m = 0. For this purpose, we need the following assumptions:

Assumption 2. Sufficient conditions for the tax perturbation method.

i) The tax function T(·) is twice differentiable.

ii) For all (w, θ) ∈ R∗+ ×Θ, the second-order condition holds strictly: Yy (Y(w, θ); w, θ) < 0.

iii) For all (w, θ) ∈ R∗+ × Θ, the function y 7→ U (y− T(y), y; w, θ) admits a unique global maxi-

mum over R+.
7Indeed, at m = 0, Y R

y does no longer depend on the direction R of the tax reform.
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Part i) of Assumption 2 ensures that first-order condition (18) is differentiable.8 Part ii)

guarantees it is invertible in income y. Under i) and ii), one can apply the implicit function

theorem to (18) to describe how a local maximum of the individual maximization program (16)

changes after a tax reform. Part iii) ensures that after an incremental tax reform or change in

skill, the maximum remains global. Indeed since the tax function is nonlinear, the function

y 7→ U (y− T(y) + mR(y), y; w, θ) may in general admit several global maxima among which

individuals of type (w, θ) are indifferent. Any small tax reform may then lead to a jump in indi-

vidual’s choice from one maximum to another one (which is associated to a jump in the supply

of effort). Part iii) prevents this situation and ensures the allocation changes in a differentiable

way with the magnitude m of a tax reform.

Assumption 2 is automatically satisfied when the tax function T(y) is restricted to be linear

as the indifference curves associated to U (., .; w, θ) are assumed strictly convex. Similarly, As-

sumption 2 is also satisfied when the tax function T(y) is convex (y 7→ y− T(y) being concave,

Parts ii) and iii) are then verified). By continuity, Assumption 2 is also verified when y 7→ T(y)

is “not too concave”, more precisely when y 7→ y − T(y) is less convex than the indifference

curve with which it has a tangency point in the (y, x)-plane (so that Part ii) of Assumption 2

is satisfied) and when this indifference curve is strictly above y 7→ y− T(y) for all other y (so

that Part iii) of Assumption 2 is satisfied). In a nutshell, Assumption 2 is satisfied whenever the

marginal tax rate does not decrease too rapidly with income.9

Thanks to Assumption 2, we can apply the implicit function theorem to prove that income

is differentiable with respect to m after a tax reform in the direction R(·) (see Equation (19)

below). Conversely, Golosov et al. (2014) do assume that the income function is locally Lips-

chitz continuous in tax reforms, while Hendren (2019) do assume that aggregate tax revenue,∫∫
θ∈Θ,w∈R+

T(Y(w, θ)) f (w|θ)dw dµ(θ) varies smoothly in response to changes in the tax sched-

ule, which is rather ad-hoc since these responses are endogenous. The strength of our approach

is therefore to give micro-foundations to the property of smooth responses to tax reforms. In

contrast, Hendren (2019)’s assumption allows for discrete changes in individual behavior in

response to small tax changes, which is more general than our property of differentiable in-

come. We can also note that Assumption 2 bears on tax functions that are endogenous objects.

Considering only tax functions that verify this assumption is a restriction similar to consider-

ing only smooth allocations with no bunching, as done in the first-order mechanism design

approach introduced by Mirrlees (1971). We drop the “no jumping” restriction by assuming

Part iii) of Assumption 2 and verify ex-post in the simulations that the obtained tax schedule

does satisfy Assumption 2.

8In practice, most of real world tax schedules are piecewise linear. In theory, bunching should occur at convex
kink points and gaps in the income distribution should occur at concave kink points. In practice, bunching is very
rare (with the noticeable exception of Saez (2010)) and gaps as well. This discrepancy between theory and reality
can be due to the fact that taxpayers do not optimize with respect to the exact tax schedule but with respect to some
smooth approximation of it, which verifies i) of Assumption 2.

9As pointed out by a referee, if the compensated elasticity is not bounded from above, Assumption 2 becomes
verified only if the tax schedule is weakly convex.
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IV.2 Behavioral responses

We now define the behavioral responses to a tax reform. Applying the implicit function

theorem to Y R(y, m; w, θ) = 0 at m = 0 yields:

∂YR

∂m
(0; w, θ) = −Y R

m (Y(w, θ), 0; w, θ)

Yy(Y(w, θ), 0; w, θ)
(19)

where:

Y R
y (y, m; w, θ) = −T′′(y)−My(y− T(y) + m R(y), y; w, θ) (20a)

− M (y− T(y) + m R(y), y; w, θ) Mc(y− T(y) + m R(y), y; w, θ),

Y R
m (y, m; w, θ) = R′(y)− R(y) Mc(y− T(y) + m R(y), y; w, θ). (20b)

Checking out (20b), a tax reform affects individuals’ decisions either because of a change in

marginal tax rate (the term R′(y) in (20b)) or because of a change in tax liability (the term

proportional to R(y) in (20b)).

Along the nonlinear income tax schedule, we define the compensated elasticity of earnings

with respect to the marginal retention rate 1− T′(.) as the elasticity of earnings for individuals

of type (w, θ) to a change in the marginal tax rate, while leaving unchanged the level of tax at

y = Y(w, θ). This tax reform has direction R(y) = y− Y(w, θ) with R(Y(w, θ)) = 0 since the

tax level is not modified at y = Y(w, θ) and with R′(Y(w, θ)) = 1 since the marginal tax rate is

uniformly modified. Using (2) and (20b), the compensated elasticity of earnings is equal to:

ε(w, θ)
def≡ 1− T′ (Y(w, θ))

Y(w, θ)

∂Y
∂m

c
=

M (C(w, θ), Y(w, θ); w, θ)

−Y(w, θ) Yy(Y(w, θ); w, θ)
> 0 (21a)

which is positive due to Assumption 2 and where the superscript ”c” stands for “compen-

sated”.

Along the nonlinear income tax schedule, the income effect is defined as the behavioral re-

sponse to a lump-sum change m in tax liability with direction R(y) = 1. Plugging R(Y(w, θ)) =

1 and R′(Y(w, θ)) = 0 into (3) and (20b), the income effect is equal to:

η(w, θ)
def≡ ∂Y

∂m

i
=

Mc(C(w, θ), Y(w, θ); w, θ)

Yy(Y(w, θ); w, θ)
(21b)

where the superscript ”i” stands for ”income effect”. We have η(w, θ) < 0 if leisure is a normal

good, since then Mc > 0.

Combining (21a) and (21b) with (20b), the way income of individuals (w, θ) reacts to any

tax reform R(·) is given by:

∂Y
∂m

R
(0; w, θ)

∣∣∣∣∣
m=0

= ε(w, θ)
Y(w, θ)

1− T′(Y(w, θ))
R′(Y(w, θ)) + η(w, θ) R(Y(w, θ)). (21c)

Under Assumption 2, one can compute the elasticity α(w; θ) of earnings with respect to the

skill level:10

α(w, θ)
def≡ w

Y(w, θ)
Ẏ(w, θ) =

w Mw(C(w, θ), Y(w, θ); w, θ)

Y(w, θ) Yy(Y(w, θ); w, θ)
> 0. (21d)

10The dot above a variable stands for the partial derivative of this variable with respect to skill w.
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Assumption 1 ensures this elasticity is positive. Hence, bunching cannot occur under Assump-

tions 1 and 2. This might be surprising since Rochet and Choné (1998) shows that bunching is

generic in multidimensional screening problems. However, the reason why bunching occurs

in their multidimensional nonlinear pricing model is because of the interplay between partici-

pation and self-selection constraints. This argument does not apply in our optimal tax problem

without participation constraints.

It is worth stressing that ε(w, θ), η(w, θ) and α(w, θ) denote total responses of earnings since

they take into account the nonlinearity of the tax schedule as in Jacquet et al. (2013), see also

Scheuer and Werning (2017). In Appendix C, we make the link between total responses and

direct responses, the latter assuming a linear tax function (e.g. Saez (2001)).

Let h(y|θ) denote the conditional income density within group θ at income y and H(y|θ) def≡∫ y
0 h(z|θ)dz the corresponding conditional income CDF. According to (21d) and Assumption 1,

income Y(·, θ) is strictly increasing in skill within each group. We then have H (Y(w, θ)|θ) ≡
F(w|θ) for each skill level w. Differentiating both sides of this equality with respect to w and

using (21d), the two densities are linked by:

h (Y(w, θ)|θ) = f (w|θ)
Ẏ(w, θ)

⇔ Y(w, θ) h (Y(w, θ)|θ) = w f (w|θ)
α(w, θ)

. (22)

Let W(·, θ) denote the reciprocal of Y(·, θ) so that, within each group θ, individuals of type

(w = W(y, θ), θ) earn income y. According to Assumption 1, W(y, θ) is the unique skill level w

such that, for individuals in group θ, the first-order condition 1− T′(y) = M (y− T(y), y; w, θ)

is verified at income y. The unconditional income density is given by:

ĥ(y)
def≡
∫

θ∈Θ
h(y|θ) dµ(θ). (23a)

The mean total compensated elasticity at income level y is:

ε̂(y) =
∫

θ∈Θ
ε (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ). (23b)

where each within-group total elasticity is timed by the relative proportion h(y|θ)/ĥ(y) of in-

dividuals in the corresponding group among individuals who earn y. The mean total income

effect at income level y is:

η̂(y) =
∫

θ∈Θ
η (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ). (23c)

Finally, the mean marginal social welfare weight at income level y is:

ĝ(y) =
∫

θ∈Θ
g (W(y, θ), θ)

h(y|θ)
ĥ(y)

dµ(θ). (23d)
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IV.3 Tax perturbation and optimal tax formula

We now study when a tax reform is desirable. A tax reform with direction y 7→ R(y) affects

the tax liability of a (w, θ)-worker through mechanical and behavioral effects as follows:

∂T(YR(m; w, θ))−m R(YR(m; w, θ))

∂m

∣∣∣∣
m=0

= −R(Y(w, θ))︸ ︷︷ ︸
Mechanical

+ T′(Y(w, θ))
∂Y
∂m

R
(0; w, θ)︸ ︷︷ ︸

Behavioral

=

ε(w, θ)
T′(Y(w, θ))

1− T′(Y(w, θ))
Y(w, θ) R′(Y(w, θ))−

[
1− η(w, θ) T′(Y(w, θ))

]
R(Y(w, θ)). (24)

where the second equality is obtained using (21c). Combining Equations (8), (17) and (22)-(24)

and integrating by parts, we get (see Appendix D):

Lemma 1. Under Assumptions 1 and 2, reforming the tax schedule in the direction R(·) triggers first-

order effects on the Lagrangian (7) equal to:

∂L R

∂m

∣∣∣∣
m=0

=
∫ ∞

y=0

{[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y)− d

dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]}
R(y)dy (25)

+ lim
y 7→∞

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y)− lim
y 7→0

T′(y)
1− T′(y)

ε̂(y) y ĥ(y) R(y).

An important point to notice is that, in general, implementing a reform with direction R(·)
implies a budget surplus or deficit. A first-order approximation of this budget surplus (or

deficit) can be computed by putting social welfare weights ĝ(·) equal to zero in (25). One can

then define a balanced-budget tax reform with magnitude m and direction R(·) by combining it

with the lump-sum rebate required to bind the budget constraint. As stated in the next lemma,

Expression (25) allows one to characterize desirable tax reforms when λ is determined to verify:

1 =
∫ ∞

y=0

[
ĝ(y) + T′(y) η̂(y)

]
ĥ(y)dy = 0. (26)

Lemma 2. Under (26), a tax reform with direction R(·), combined with a lump-sum transfer to keep it

budget-balanced, is socially desirable if either ∂L R

∂m

∣∣∣
m=0

> 0 and m > 0 or ∂L R

∂m

∣∣∣
m=0

< 0 and m < 0.

The proof is in Appendix D. To obtain the optimal tax formula, we note that if the tax

schedule is optimal, any tax reform R(.) should have no first-order effect on the Lagrangian

(7), i.e. (25) should be nil for any direction R(·). This leads to the following proposition which

is proved in Appendix.

Proposition 3. Under Assumptions 1 and 2, the optimal tax schedule satisfies:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
1− Ĥ(y)

y ĥ(y)

1−

∫ ∞

y

[
ĝ(z) + η̂(z) T′(z)

]
ĥ(z)dz

1− Ĥ(y)

 (27)

If income effects were assumed away, Equation (26) would imply that the weighted sum of

social welfare weights is equal to 1. In the presence of income effects, a uniform increase in tax
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liability induces a change in tax revenue proportional to the marginal tax rate which explains

the presence of η̂(z) · T′(z).
The optimal tax rate given in Equation (27) generalizes the ABC terms described in Dia-

mond (1998) and Saez (2001): (a) the behavioral responses to taxes denoted by 1/ε̂(y), which,

in the vein of Ramsey (1927), is the inverse of the mean compensated elasticity; (b) the so-

cial preferences and income effects 1−
(∫ ∞

y

[
ĝ(z) + η̂(z) T′(z)

]
ĥ(z)dz

)
/ (1− Ĥ(y)), which

indicates the distributional benefits of increasing the tax liability by one unit for all workers

with incomes above y and (c) the shape of the income distribution measured by the inverse of

the local Pareto parameter (1− Ĥ(y))/(y ĥ(y)) of the income distribution. Shifting from the

model with one dimension of heterogeneity to the model with multiple dimensions leads to

replacing the marginal social welfare weight, the compensated elasticity and the income effect

by their means calculated at a given income level. It is the mean of the total (rather than direct)

compensated elasticity and income effect that must be computed.

IV.4 Composition effects

With a nonlinear tax schedule, the optimal tax depends at income y on weighted means

of compensated responses, incomes responses and welfare weights. Plugging Equations (23c)

and (23d) into (27) leads to:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
1− Ĥ(y)

y ĥ(y)

1−
∫∫

θ∈Θ,z≥y

[
g (W(z, θ), θ) + η (W(z, θ), θ) T′(z)

] h (W(z, θ)|θ)
1− Ĥ(y)

dz dµ(θ)


According to Equation (23b), the relevant weighted mean of compensated response ε̂(y) is

computed among taxpayers who earn y and the weights are equal to the relative proportion

h(y|θ)/ĥ(y) of taxpayers of group θ among taxpayers who earn income y. We define com-

position effects on mean compensated elasticities as the variation of ε̂(y) due to the change

in the weights h(y|θ)/ĥ(y), which gives the relative share of θ-taxpayers among those who

earn y, when one shifts from the actual economy where ε̂(y) is estimated to the optimal econ-

omy. We define composition effects on the mean of income responses η(w, θ) T′(Y(w, θ)) and

on the mean of welfare weights g(w, θ) as the variation due to the change in the weights

h (W(z, θ)|θ) /
(
1− Ĥ(y)

)
when one shifts from the actual economy where they are estimated

to the optimal economy. The means are computed among taxpayers who earn more than y. The

weights are equal to the relative proportion h (W(z, θ)|θ) /
(
1− Ĥ(y)

)
of taxpayers in group θ

who earn z among taxpayers who earn income higher than y. Hence, as with a linear tax,

ignoring composition effects typically biases the implementation of the optimal tax formula.

To study how composition effects impact the optimal tax rates, we consider maximin (to

shut down composition effects on welfare weights11) and quasilinear preferences (to shut down

11Cuff (2000), Boadway et al. (2002), Brett and Weymark (2003), Choné and Laroque (2010) and Lockwood and
Weinzierl (2015) introduce in the Mirrlees (1971) model an additional source of heterogeneity, typically preferences
for leisure, that matters only for the computation of social welfare weights. Introducing this additional source of
heterogeneity into our model would generate composition effects on welfare weights.
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composition effects on income responses). This allows one to rewrite (27) as:

T′ (y)
1− T′ (y)

=
1

ε̂(y)
1− Ĥ(y)

y ĥ(y)
=

1∫
θ∈Θ

ε (W(y, θ), θ)
h(y|θ)
ĥ(y)

dµ(θ)

1− Ĥ(y)
y ĥ(y)

. (28)

where the second equality follows (23b). Consider that marginal tax rates are larger at the

optimum than in the actual economy, which is very likely under maximin in the United States.

In this case, taxpayers respond to the rise of marginal tax rates from their actual to their optimal

levels by reducing their incomes. These responses are larger in groups where the compensated

elasticity ε(W(y, θ), θ) is larger. Consequently, the income densities h(y|θ) of groups with a high

compensated elasticity are much more shifted to the left than the income densities of groups

with a low compensated elasticity. If the relative proportion h(y|θ)/ĥ(y) of high elasticity

groups among income y earners is increased (decreased), these composition effects increase

(decrease) the mean compensated elasticity ε̂(y) at income y, which reduces (increases) optimal

marginal tax rate in (28).

However, there are two additional sources of endogeneity in (28). First, for each taxpayer,

the compensated elasticity ε (W(y, θ), θ) is endogenous to the tax policy. Second, the local

Pareto parameter of the income distribution y ĥ(y)/(1− Ĥ(y)) is also sensitive to the tax policy.

To better isolate the direction of composition effects, we now consider isoelastic preferences (4)

and we assume that each group-specific skill density is Pareto, with the same Pareto parameter

(i.e. the local Pareto parameter of each group-specific income density is constant across groups

and incomes). The latter assumption is obviously much more realistic for the upper part of the

income distribution. Under these specifications, we get:

Proposition 4. Assume isoelastic preferences (Equation (4)) and Pareto densities with identical Pareto

coefficient. If the nonlinear revenue maximizing marginal tax rate is higher (lower) than the actual

marginal tax rate, neglecting composition effects leads to a downward (upward) bias in the computation

of the optimal marginal tax rate.

This is formally shown in Appendix F. We now rely on numerical simulations to study

composition effects under more general specifications of group-specific skill densities.

V Numerical illustrations of composition effects

In this section, we illustrate, thanks to simulations, that even in the case with only a second

dimension of heterogeneity –the labor supply elasticity– the derived optimal tax schedule is

significantly distinct from the one obtained when ignoring these effects.

V.1 Calibration

We first describe how we calibrate the model, i.e. how we select social preferences, individ-

ual preferences and the distribution of types.
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To focus on composition effects that take place through compensated elasticities, we con-

sider a maximin social objective, so there is no heterogeneity in social welfare weights g(w, θ).

We also assume away income effects by specifying individual preferences to be quasilinear (see

Equation (4)).

The meta-analysis of Bargain and Peichl (2016) shows that the elasticity along the intensive

margin is lower for men than for women. We thus consider two groups of taxpayers, women

with a high elasticity denoted by θH and men with a low elasticity denoted by θL. We select

the values of θL and θH with two objectives in mind. First, we want the mean elasticity com-

puted over the whole population to take a plausible value given the literature that estimates

elasticities of taxable income (Saez et al., 2012). Second, we want the ratio of male over fe-

male elasticities to be realistic. Based on German data, Hermle and Peichl (2018) show that

income responses to taxes differ substantially by gender. Based on Swedish data, Blomquist

and Selin (2010) find that the labor earnings elasticity of women is five times larger than the

one of men. Bargain and Peichl (2016) finds that women elasticity is two to six times larger than

the one of men. Given this, we take θL = 0.1 for men and θH = 0.4 for women. This leads to

a mean elasticity computed over the whole population equal to 0.237, which lies in the range

[0.12, 0.40] that correspond to the best available estimates for the long-run elasticity according

to the meta-analysis of Saez et al. (2012).

We use CPS 2016 to calibrate the distribution of types. To avoid labor supply interactions

within couples and to consider taxpayers facing the same tax schedule, we only consider sin-

gles without dependents. The fraction of women is µ(θL) = 0.459. For each earning obser-

vation, we infer the corresponding skill level by inverting taxpayers’ first-order condition (2),

using the gender of the corresponding observation (thereby the corresponding θ) and an ap-

proximation of the US tax schedule (see Appendix G). We then estimate each gender-specific

type density f (·|θ) thanks to the Silverman kernel density estimator. Earnings in CPS are top-

coded, so, the kernel estimation is not valid for the upper part of each gender-specific skill

distribution. Diamond (1998) and Saez (2001) emphasize that the upper part of these densities

are well approximated by a Pareto, and this leads to a positive asymptotic optimal tax rate,

implying that the zero-top tax rate result of Sadka (1976) and Seade (1977) is a very local result.

We therefore choose to extend the kernel density estimations by Pareto distributions. A Pareto

density k y−1−p is characterized by a scale k parameter and a Pareto parameter p. Using an

estimate for p, we determine k and the skill level where the extension takes place to ensure

identical left- and right-derivatives at the extension as well as continuity. We finally normalize

the obtained density to get a total mass of 1.

According to Piketty and Saez (2013), the Pareto coefficient for top US incomes is p = 1.5.

However, Atkinson et al. (2018) find that the Pareto coefficient is lower for men than for women

in a set of OECD countries that, unfortunately, does not include the US. We therefore consider

two scenarios. In the first scenario, we take the same asymptotic Pareto parameter equal to 1.5

for men and women. In the second scenario, we take different Pareto parameters for men and
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women.

V.2 Scenario 1: Gender specific elasticities, same asymptotic Pareto parameter

The solid blue line in Figure 1 displays the optimal marginal tax rates with composition

effects which have the usual U-shaped pattern (Diamond, 1998). The numerical algorithm is

described in Appendix G. To quantify the magnitude of the composition effects, we compare

these optimal marginal tax rates with the ones obtained without composition effects.

To do so, we propose two different ways to figure out what optimal marginal tax rates

would have been without composition effects. A first benchmark without composition effects

consists in studying the workers as a single group with an homogeneous θ. One may, however,

object that assuming a fixed θ is not a fair way to ignore composition effects, because a sophis-

ticated calibration should use the information about differing elasticities for male and female

workers and about how the share of women varies with income. In this ”more sophisticated”

benchmark without composition effects, one calculates, under the actual tax schedule, the elas-

ticity at each income level as a weighted average of male and female elasticities where weights

are the densities of male and female workers.

No composition effects benchmark with a fixed mean elasticity

In the first benchmark without composition effects, optimal marginal tax rates are described

by the dashed red curve in Figure 1. In this benchmark, all taxpayers are assumed to belong

to the same group characterized by a fixed direct elasticity θ = θ defined as the mean direct

elasticity over the whole population, i.e.:

θ = µLθL + µHθH ' 0.238 (29)

As detailed in Appendix G, the skill density in this economy is calibrated in a way similar to

the calibration of both gender-specific skill densities in the economy with composition effects.
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Figure 1: Optimal marginal tax rates with composition effects (solid blue line), without compo-
sition effects and fixed θ (dashed red lines), without composition effects and varying θ (dash-
dotted pink lines)

We find that composition effects reduce marginal tax rates by as much as 1.5 percentage

points below an income threshold around $53, 000 and increase them above this threshold,
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with a difference that rises to 4.4 percentage points at y = $97, 000. This can be seen on Figure

1 when comparing the solid blue curve (marginal tax rates with composition effects) with the

dashed red curve (marginal tax rates without composition effects and fixed θ = θ). Intuitively,

marginal tax rates increase from the actual situation to the optimum. This induces taxpayers

to reduce their labor supply and these behavioral responses are much larger for women than

for men. Consequently, as described in Figure 2, both gender-specific income densities shift

leftwards from the actual schedule (where dashed lines are used for the densities) to the op-

timal economy (where solid lines are used for the densities), but the shift is much larger for

the income density of women (in blue) than for the one of men (in red). Figure 3 shows that

the share of women at each income level is dramatically affected: the share of women rockets

from 49% to 76% for the lowest income levels while it drops from 46% to 30% for the high-

est income levels. This pushes the mean compensated elasticities upwards (downwards) for

low (high) income levels, thereby decreasing (increasing) optimal marginal tax rates through

composition effects, as expected from Equation (28). This is illustrated in Figure 4 where the

mean direct12 elasticities with and without composition effects are displayed. The mean direct

elasticity without composition effects is constant at θ ' 0.238 while the mean direct elasticity

with composition effects markedly decreases with income.
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Figure 2: Gender-specific densities under the actual tax schedule (dashed red and blue lines)
and under the optimal tax schedule (solid red and blue lines) in the economy with composition
effects

We conduct sensitivity analysis. Differences between optimal marginal tax rates with and

without composition effects can rapidly be magnified. For instance, when the male elasticity is

θL = 0.1 and female elasticity is θH = 0.6 instead of 0.4, composition effects reduce marginal

tax rates by as much as 3 percentage points around $16, 000 (instead of 1.5 percentage points),

and increase them up to 8.1 percentage points at y = $97, 000 (instead of 4.4 percentage points).

12 “Direct”means ignoring the impact of the curvature of tax function on the size of behavioral responses as
detailed in Appendix C, i.e. substituting T′′ = 0 in the definitions of the compensated and mean compensated
elasticities.
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Figure 3: Share of women (in percentage) under the actual tax schedule (dash-dotted pink lines)
and under the optimal tax schedule (in blue) in the economy with composition effects
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Figure 4: Mean direct elasticities with composition effects (solid blue line), without composition
effects and fixed θ (dashed red lines), without composition effects and varying θ (dash-dotted
pink lines)

No composition effects benchmark with an elasticity that varies with income

We now compare the optimal tax schedule with composition effects to the one obtained

without composition effects but with θ varying along the income distribution. For this purpose,

we compute optimal marginal tax rates by assuming, at each income level, a single value for

the direct elasticity which depends on the share of women computed in our approximation of

the actual economy with the actual tax schedule. At each income level, the direct elasticity θ̃(y)

is then calculated as:

θ̃(y) = θL
h0(y|θL) µ(θL)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
+ θH

h0(y|θH) µ(θH)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
(30)

where subscript 0 corresponds to our approximation of the income distribution in the actual

economy. The share of women, h0(y|θH) µ(θH)/(h0(y|θL) µ(θL) + h0(y|θH) µ(θH)) , decreases

with income, as illustrated on Figure 3 (see the dash-dotted curve) so that the direct elasticity

θ̃(y) decreases with income. In Figure 4 where direct elasticities without composition effects

are displayed, one sees that the mean direct elasticities are larger (lower) with varying θ than

with fixed θ for low (high) incomes.

The optimal marginal tax rates for this second benchmark without composition effects are

described by the dash-dotted pink lines in Figure 1 (see Appendix G for the detailed calcula-
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tion). As expected from the way mean direct elasticities vary with income, optimal marginal

tax rates are lower (larger) with varying θ than with fixed θ and for low (high) incomes. Hence,

the differences between the optimal tax schedules with and without composition effects are

slightly attenuated with the varying θ compared to the fixed θ but remain non negligible. The

largest difference for low income is reduced to 1, 2 percentage point (instead of 1.5 percentage

points) around y = $18, 000, while the largest difference for high incomes is 4.3 percentage

points (instead of 4.4 percentage points) around income y = $93, 000.

V.3 Scenario 2: Gender specific elasticities and heterogeneous asymptotic Pareto
parameters

Atkinson et al. (2018) find that the upper parts of men and women income distributions

are characterized by different Pareto parameters in many OECD countries. For instance, they

obtain pθL ' 1.7 for men and pθH ' 2.1 for women in the UK (see their Figure 3(B)). To investi-

gate how our previous results are affected by the assumption of identical Pareto parameters for

men and women, we choose pθH = 1.8 for women and pθL = 1.4 for men. With these values,

Figure 5 indicates how the local Pareto parameter of the overall population varies with income.

It confirms that our choice of pθH = 1.8 and pθL = 1.4 is consistent with the estimation of 1.5 in

Piketty and Saez (2013).
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Figure 5: Local Pareto coefficient in our approximation of the actual economy with pθH = 1.8
and pθL = 1.4

Figure 6 displays the optimal marginal tax rates respectively with composition effects (solid

blue line), without composition effects and with fixed θ (dashed red lines) and without compo-

sition effects and with varying θ (dash-dotted pink lines). Since the Pareto parameter of women

is larger than the one of men, the share of women decreases with income and it tends to zero as

income goes to infinity in our approximation of the actual economy. Consequently, the direct

elasticity without composition effects but with varying θ decreases asymptotically to θL = 0.1

(see Equation (30)). Figure 7, however, shows this convergence is actually very slow. This de-

crease in the direct elasticity induces that the optimal marginal tax rate without composition

effects and with varying θ increases in income in the upper part of the distribution, while it

remains constant without composition effects and with fixed θ.
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Figure 6: Optimal marginal tax rates with composition effects (solid blue line), without compo-
sition effects and fixed θ (dashed red lines), without composition effects and varying θ (dash-
dotted pink lines)

The decrease in the share of women in the upper part of the distribution also affects the

shape of optimal marginal tax rates with composition effects. Although the local Pareto pa-

rameter of the overall distribution remains close to 1.5 (see Figure 5), the gender-specificity in

the Pareto parameters implies that the share of women is decreasing in income in the upper

part of the distribution. The optimal marginal tax rate with composition effects is thereby in-

creasing in income for high incomes. At income $200, 000, the optimal marginal tax rate with

composition effects is 4.3 percentage points higher than optimal marginal tax rate without com-

position effects and varying θ and 5.9 percentage points higher than the optimal marginal tax

rate without composition effects and fixed θ.
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Figure 7: Assuming gender specific Pareto parameters, mean direct elasticities with composi-
tion effects (solid blue line), without composition effects and fixed θ (dashed red lines), without
composition effects and varying θ (dash-dotted pink lines)

V.4 Optimal top marginal tax rates

Saez (2001) proposes two different approaches to compute optimal top marginal tax rates.

One method consists in implementing the optimal nonlinear tax formula at a sufficiently high

income level. We henceforth refer to the formula obtained in this way as the optimal nonlinear

top tax rates formula and call the resulting tax rates, optimal nonlinear top tax rates. Another
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method consists in equating to zero the sum of mechanical and behavioral responses to a tax

reform in which the marginal tax rate is increased by the same amount for all incomes above

a given sufficiently high income threshold. As this approach is close to the one used to derive

optimal linear tax rate, we say that it leads to the optimal linear top tax rates formula and

optimal linear top tax rates.13

Both methods are generally believed to provide similar quantitative predictions. We now

show that this equivalence does not necessarily hold true whenever unobserved heterogeneity

is multidimensional. More specifically, under isoelastic individual preferences (4), maximin

social preferences and group-specific skill densities that are Pareto with group-specific coef-

ficients denoted pθ , the optimal top tax rate increases with the weighted mean of the group-

specific products θpθ of the direct elasticity and Pareto coefficient, under both approaches.

However, the weights take distinct values in each approach, as shown in Appendix H.

This can be understood intuitively. The optimal nonlinear top tax rate formula can be ob-

tained by increasing marginal tax rate around a high income level y and increasing tax liability

by a uniform amount for all incomes above y. Consequently, group-specific products θpθ are

weighted by the proportion of θ-taxpayers within taxpayers who earn more than y. In contrast,

the optimal linear top tax rates formula consists in summing the responses when one increases

the (marginal) tax rate for all taxpayers with incomes above an income threshold y. In this case,

at income z larger than y, the tax liability varies in proportion to the difference z− y. There-

fore, group-specific products θpθ are weighted by the proportion of income above y earned by

θ-taxpayers.

When the Pareto coefficients are identical across groups, the weights do not vary with in-

come and are identical under both approaches. This is no longer true when Pareto coefficients

vary across groups. To illustrate, take again θL < θH and pθL < pθH . When the income level

at which the optimal top tax formulas are evaluated tends to infinity, only the group θL with

the lowest Pareto parameter prevails asymptotically since it is the group with the fatter income

density. From (28), the optimal tax formula at the very top tends to 1/(1 + θL pθL). With the

optimal linear top tax rates formula, the weight that multiplies θL pθL is, whatever the income

level, always closer to one than with the optimal nonlinear top tax rates formula. This is due

to the fact that the men skill distribution has a fatter tail. It implies that the proportion of in-

comes above y earned by men is larger than the proportion of men among taxpayers who earn

more than y. Hence, at any income level, the optimal linear top tax rate is higher and closer to

1/(1 + θL pθL) than the optimal nonlinear top tax rate.

As an illustration, Figure 8 compares optimal asymptotic tax rates under both approaches

using the calibration of the second scenario described in the preceding subsection, where in

particular θL = 0.1, θH = 0.4, pθL = 1.4 and pθH = 1.8. As expected, the convergence of

top tax rate towards 1/(1 + θL pθL) ' 87.7% is much faster when one uses the linear top tax

rates formula. One can note that top tax rates converge towards 1/(1 + θL pθL) under both

13In Saez (2001), Section 3 is devoted to the linear top tax formula and Section 4 develops the nonlinear formula.
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Figure 8: Top marginal tax rates calculated with the optimal nonlinear top tax rates formula vs
with the optimal linear top tax rates formula

approaches only for extremely high income levels, so it is a very local result.

VI On the equivalence of tax perturbation and mechanism design
methods

In this section, we show the equivalence between the tax perturbation approach (which

relies on the sufficient conditions in Assumption 2) and the mechanism design approach, as-

suming individual characteristics are multidimensional. This equivalence is established under

the within-group single-crossing condition (Assumption 1).

The mechanism design approach relies on the Taxation Principle (Hammond, 1979, Gues-

nerie, 1995) according to which it is equivalent for the government to select a nonlinear tax

schedule taking into account labor supply decisions such as those described in (1), or to di-

rectly select an allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) that verifies the incentive constraints:

∀w, θ, w′, θ′ ∈ (R∗+ ×Θ)2 U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
. (31)

According to (31), individuals of type (w, θ) are better off with the bundle (C(w, θ), Y(w, θ))

designed for them than with bundles (C(w′, θ′), Y(w′, θ′)) designed for individuals of any other

type (w′, θ′).

In the mechanism design approach, it is usual to assume that the government selects among

incentive-compatible allocations that are continuously differentiable (Salanié, 2005). Then, in-

centive constraints (31) imply the first-order incentive constraints, i.e.

∀(w, θ) ∈ R∗+ ×Θ U̇(w, θ) = Uw (C(w, θ), Y(w, θ); w, θ) . (32)

These first-order incentive constraints are necessary but not sufficient to verify the incentive

constraints (31). The allocation also has to verify a monotonicity constraint according to which

in each group, Y(·, θ) is nondecreasing in skill. We define smooth allocations as follows:

Definition 1. We say an allocation (w, θ) 7→ (C(w, θ), Y(w, θ)) is smooth if and only if it is continu-

ously differentiable, it verifies (31) and w 7→ Y(w, θ) admits a positive derivative for any group θ ∈ Θ

and at any skill level w ∈ R∗+ .
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We get the following connection between Assumption 2 required for the tax perturbation

approach and the smooth allocation assumed in the first-order mechanism design approach.

The proof is in Appendix I.

Proposition 5. Under Assumption 1,

i) Any tax schedule y 7→ T(·) verifying Assumption 2 (i.e. the conditions for the tax perturbation)

induces a smooth allocation.

ii) Any smooth allocation can be decentralized by a tax schedule that verifies Assumption 2.

Intuitively, under Assumption 1 (which states the single-crossing condition within group),

elements of Assumption 2 and assuming a smooth allocation are equivalent. The fact that, for

each group θ, the second-order condition of the individual program (1) holds strictly (Part ii

of Assumption 2) is equivalent to Y(·, θ) admitting a strictly positive derivative in skill. In the

mechanism design approach, the latter condition is related to the second order incentive con-

straints. Moreover, the uniqueness of the global maximum from the individual maximization

program (1) (Part iii of Assumption 2) is equivalent to Y(·, θ) being continuous in skill.

Thanks to Proposition 5, first-order mechanism design and tax perturbation approaches are

analogous.14 The (first-order) mechanism design approach consists in choosing, among smooth

allocations, the one that maximizes the social objective (6) subject to the budget constraint (5).

It involves computing the first-order effect, on the Lagrangian (7), of a small perturbation of

the optimal allocation within the set of smooth and incentive compatible allocations. Since the

allocation after perturbation has to be smooth, it is decentralized by a tax schedule that has to

be smooth. Therefore, as stated in Proposition 5, the effects of a perturbation of the allocation

that preserves its smoothness are equivalent to the responses of the allocation to a perturbation

of the tax function that preserves smoothness. In other words, the mechanism design approach

focuses on the effects of an allocation perturbation whereas the tax perturbation approach fo-

cuses on the effects of the tax reform that decentralizes this perturbation of the allocation. For

this reason, the mechanism design approach and the tax perturbation approach are the two

faces of the same coin.

In the literature where the unobserved heterogeneity is unidimensional, the mechanism de-

sign approach can be developed without assuming smooth allocations. In particular, Lollivier

and Rochet (1983), Guesnerie and Laffont (1984), Ebert (1992), Boadway et al. (2000) study

the case where individuals endowed with different skill levels choose the same consumption-

income bundle. To decentralize such an allocation where bunching occurs, one would need a

kink in the tax function. This is excluded with the tax perturbation because of Assumption 2

but has been largely studied with the mechanism design approach. Note that the alternative

“pathology” where individuals may be indifferent between two levels of income appears much

14In Jacquet and Lehmann (2016), optimal tax formula (28) is obtained thanks to a mechanism design method. To
follow this method, one however needs to assume additive separable preferences.
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more plausible under twice continuously differentiable tax schedules. Surprisingly, this prob-

lem has attracted much less attention than bunching in the literature based on the mechanism

design approach, a noticeable exception being Hellwig (2010).

With one dimension of heterogeneity, it is highly plausible that the optimal tax schedule

does verify Assumption 2 or, equivalently, that the optimal allocation is smooth. With multi-

dimensional heterogeneity, the plausibility of smooth optimal allocations is an open question.

In our numerical calibrations, each group being characterized by a specific direct elasticity,

optimal tax schedules are far from violating Assumption 2. Note that if the elasticity were con-

tinuously distributed and unbounded from above, Assumption 2 part ii) would imply that the

marginal tax rate has to be nondecreasing, which would be an additional restriction on optimal

tax schedules.

VII Concluding Comments

In this paper, using a new tax perturbation method, we provide formulas to calculate suffi-

cient statistics in the presence of multidimensional individual heterogeneity. We also provide a

set of sufficient conditions that guarantee the equivalence between the tax perturbation method

and (first-order) mechanism design. Multidimensional heterogeneity generates a new channel

through which sufficient statistics differ in the optimal and actual economies. We call this addi-

tional channel “composition effects ”. These effects are due to the modification of the average

behavioral response at each income level. We emphasize the key role they play in the calcula-

tion of sufficient statistics. We determine the sign of the bias that ignoring composition effects

entails on the optimal linear and nonlinear tax schedules. We also run simulations to determine

the direction and the size of the bias on the U.S. optimal tax schedule.

Our results call for more empirical studies on labor supply elasticities and distribution pa-

rameters for different demographic groups (e.g., according to age, ethnicity and gender), dif-

ferent types of workers (e.g., self-employed and salary workers) and sectors of activity.

Additionally, we expect that composition effects play a crucial role in many other appli-

cations beyond optimal income taxation. One such situation is that of social unemployment

insurance (à la Baily (1978) and Chetty (2006)) when the job-search elasticities to unemploy-

ment benefits are heterogeneous. Another case is the optimal provision of public goods when

the marginal rates of substitution between private and public goods are heterogeneous and

endogenous. A final example is the regulation of a monopoly (à la Baron and Myerson (1982))

if uncertainty concerns not only the marginal cost but also the degree of convexity of the cost

function, which is highly plausible empirically. Studying other applications where composition

effects may play a role is part of our research agenda.
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A Derivation of Equation (10)

Given (9), the government’s program is:∫∫
(w,θ)∈R∗+×Θ

Φ
(

max
y

U
(
(1− τ)y + τ Y(τ)− E; w, θ

)
; w, θ

)
f (w|θ)dw dµ(θ).

The first-order condition is:

0 =
∫∫

(w,θ)∈R∗+×Θ
ΦU 〈w, θ〉 Uc 〈w, θ〉

[
−ỹ(w, θ; τ) + Y(τ) + τ

∂Y(τ)
∂τ

]
f (w|θ)dw dµ(θ).

Dividing this condition by λ Y(τ) and using (8), (11) and (13) leads to:∫∫
(w,θ)∈R∗+×Θ

g(w, θ)
ỹ(w, θ; τ)

Y(τ)
f (w|θ)dw dµ(θ) = 1− τ

1− τ
e(τ).

According to (12), the left-hand side is equal to g(τ). Rearranging terms leads to (10).

B Proof of Proposition 2

Combining y(θ, τ) = (1 − τ)θ
∫

w∈R∗+
w f (w| θ) dw and (15) the income-weighted average

elasticity is given by:

e(τ) =

∫
θ∈Θ

θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)∫
θ∈Θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

. (33)

We now show that e′(τ) < 0.

e′(τ) = −

∫
θ∈Θ

θ2
(

1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)− e(τ)
∫

θ∈Θ
θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

(1− τ)
∫

θ∈Θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

= −

∫
θ∈Θ

(θ − e(τ)) θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

(1− τ)
∫

θ∈Θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

.

If θ < e(τ), one has (θ − e(τ)) < 0, so that (θ − e(τ))θ > (θ − e(τ))e(τ). The latter inequality
also holds if θ > e(τ). Hence, we get:

e′(τ) < e(τ)

∫
θ∈Θ

(θ − e(τ))
(

1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

(1− τ)
∫

θ∈Θ

(
1− τ

1− τ0

)θ

y(θ, τ0) dµ(θ)

= 0.

In the absence of composition effects, there is a single group with an elasticity equal to e(τ0).
So, the optimal tax rate without composition effects is given by 1/(1 + e(τ0)) from (14). If the
linear revenue maximizing tax rate τL is higher (lower) than the actual tax rate τ0, one gets
e(τ0) > e(τL) (resp. e(τ0) > e(τL)), so that 1/(1+ e(τ0)) < 1/(1+ e(τL)) (resp. 1/(1+ e(τ0)) >
1/(1 + e(τL))). That is the optimal tax rate with compositions effects is larger (lower) than
without composition effects.
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C Total vs direct elasticities and income responses

The definitions of the behavioral responses given in (21a)-(21d) depend on the curvature of
the tax function as emphasized by the term T′′ (Y(w, θ)) in Equation (20a). Indeed, a circular
process (Saez, 2001) is encapsulated into these definitions since any small tax reform or change
in skill triggers a behavioral response that creates a change in marginal tax rate (whenever
T′′ (Y(w, θ)) 6= 0) that itself provokes a new behavioral response, etc. Behavioral responses
(21a)-(21d) are therefore called total. In contrast, when the tax schedule is linear, one obtains the
usual expressions for these responses that we call direct ones. Let ε?(w, θ), η?(w, θ) and α?(w, θ)
denote direct responses, i.e. (21a), (21b) and (21d) when T′′ = 0 in (20a). From the implicit
function theorem and Equation (19), for each type of behavioral response, the ratio of the total
to the direct behavioral response is equal to the ratio of the value of YY with T′′ (Y(w, θ)) set to
zero to the value YY, i.e.:

My +MMc

T′′ +My +MMc
=

1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)

where the second equality is obtained using (2), (3) and the definition of ε∗(w, θ) from (21a).
We therefore obtain, as in Jacquet et al. (2013) that direct responses are timed by the above
corrective term to obtain total responses as made explicit by the following equations:

ε(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
ε?(w, θ), (34a)

η(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
η?(w, θ), (34b)

α(w, θ) =
1− T′(Y(w, θ))

1− T′(Y(w, θ)) + Y(w, θ) T′′(Y(w, θ)) ε?(w, θ)
α?(w, θ). (34c)

D Proofs of Lemmas 1 and 2

Let L R be the Lagrangian that results from applying a reform with a direction R and mag-
nitude m on the Lagrangian (7):

L R(m)
def≡

∫∫
θ∈Θ,w∈R+

[
T(YR(m; w, θ))−m R(YR(m; w, θ)) +

Φ
(
UR(m; w, θ); w, θ

)
λ

]
f (w|θ)dw dµ(θ).

Combining Equations (8), (17) and (24), the contribution of a (w, θ)-agent to the Lagrangian
L R varies with the magnitude of the tax reform by:

∂

[
T(YR(m; w, θ))−m R(YR(m; w, θ)) +

Φ(UR(m; w, θ), w, θ)

λ

]
∂m

∣∣∣∣∣∣∣∣∣
m=0

= (35)

ε(w, θ)
T′(Y(w, θ))

1− T′(Y(w, θ))
Y(w, θ) R′(Y(w, θ)) +

[
g(w, θ)− 1 + η(w, θ) T′(Y(w, θ))

]
R(Y(w, θ)).
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Aggregating the latter expression over all types (w, θ), the partial (Gateaux) differential of the
Lagrangian with respect to m, at m = 0, is equal to:

∂L R

∂m

∣∣∣∣
m=0

=
∫∫

θ∈Θ,w∈R+

{
T′(Y(w, θ))

1− T′(Y(w, θ))
Y(w, θ) ε(w, θ) R′(Y(w, θ))

+
[
T′(Y(w, θ)) η(w, θ)− 1 + g(w, θ)

]
R(Y(w, θ))

}
f (w|θ)dw dµ(θ)

=
∫∫

θ∈Θ,y∈R+

{
T′(y)

1− T′(y)
y ε (W(y, θ), θ) R′(y)

+
[
T′(y) η (W(y, θ), θ)− 1 + g (W(y, θ), θ)

]
R(y)

}
h(y|θ)dy dµ(θ)

=
∫

y∈R+

{
T′(y)

1− T′(y)
y ε̂(y) R′(y) +

[
T′(y) η̂(y)− 1 + ĝ(y)

]
R(y)

}
h(y)dy.

We use (35) to obtain the first equality. We use (22) for the change of variable from skill w to
income y in the second equality. We use (23a)-(23d) for the third equality. Integrating by parts
the integral of T′(y)

1−T′(y)y ε̂(y) ĥ(y) R′(y) leads to (25).

We now show that the first-order effect on the Lagrangian (7) of a reform with magnitude
m and direction R(·) is positively proportional to the first-order effect on the social objective
(6) of the reform denoted R̃(m). The latter is a tax reform in the direction R(·) with magnitude
m where the induced net budget surplus is rebated in a lump-sum way. Let `(m) denote this
budget surplus. Under the balanced-budget tax reform R̃(m) individuals solve:

UR̃(m; w, θ)
def≡ max

y
U (y− T(y) + m R(y) + `(m), y; w, θ) . (36)

Applying the envelope theorem to (36) at m = 0 yields:

∂UR̃

∂m
(0; w, θ) =

(
R(y) + `′(0)

)
Uc (C(w, θ), Y(w, θ); w, θ) . (37)

Applying the implicit function theorem on the first-order condition

1− T′ (y) + m R′ (y) = M (y− T (y) + m R (y) + `(m), y; w, θ) .

at y = YR̃(m; w, θ) and using (20b), (21b) and (21c) leads to:

∂YR̃

∂m
(0; w, θ) =

∂YR

∂m
(0; w, θ) + η(w, θ) `′(m). (38)

We now denote respectively BR(m), S R(m) and L R(m) the budget surplus, the social
objective and the Lagrangian when the tax function is perturbed in the direction R as a function
of the magnitude m with L R(m) = BR(m) + (1/λ)S R(m) . We symmetrically denote BR̃(m),
SWFR̃(m) and L R̃(m) the budget surplus, the social objective and the Lagrangian when the
tax function is perturbed by the balanced-budget tax reform in the direction R with magnitude
m. We get for all m that BR̃(m) = 0 with:

BR̃(m) =
∫∫

(w,θ)∈R∗+×Θ

{
T
(

YR̃(m; w, θ)
)
−m R

(
YR̃(m; w, θ)

)}
f (w|θ)dw dµ(θ)− `(m).
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We then obtain:

`′(0) =
∫∫

(w,θ)∈R∗+×Θ

{
T′ (Y(w, θ))

∂YR̃

∂m
(0; w, θ)− R (Y(w, θ))

}
f (w|θ)dw dµ(θ).

Using (38), we can then write:

`′(0) =
∂BR

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

so that:

`′(0) =
1

1−
∫∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0). (39)

Finally, using (37), we get:

∂S R̃

∂m
(0) =

∂S R

∂m
(0) + `′(0)

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

=
∂S R

∂m
(0) +

∫∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

∂BR

∂m
(0)

= λ
∂L R

∂m
(0) (40)

where the latter equality holds if and only if

λ =

∫
(w,θ)∈R∗+×Θ

Φ′u(U(w, θ); w, θ) Uc(C(w, θ), Y(w, θ); w, θ) f (w|θ)dw dµ(θ)

1−
∫

(w,θ)∈R∗+×Θ
T′(Y(w, θ)) η(w, θ) f (w|θ)dw dµ(θ)

(41)

which is equivalent to (26).

E Proof of Proposition 3

An optimal tax system implies that any tax reform R(.) does not yield any first-order effect
on the Lagrangian (7). That is (25) is nil at m = 0 for any direction R(·). This implies that
lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = lim

y 7→∞
T′(y)

1−T′(y) ε̂(y) y ĥ(y) = 0 and, for any income y, we have:

d
dy

[
T′(y)

1− T′(y)
ε̂(y) y ĥ(y)

]
=
[
ĝ(y)− 1 + T′(y) η̂(y)

]
ĥ(y).

Integrating the latter equality for all income z above y and using lim
y 7→∞

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0

yields (27). Making y tends to 0 in (27) and using lim
y 7→0

T′(y)
1−T′(y) ε̂(y) y ĥ(y) = 0 leads to (26).
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F Proof of Proposition 4

Assume individual preferences (4). In the optimal economy, the skill level of taxpayers in
group θ who earn income y is given by:

W(y, θ) = (1− T′(y))−θ y. (42)

Under maximin (ĝ(y) = g(w, θ) = 0) and using Equations (23a)-(23d) and (42), Equation (28)
can be rewritten as:

T′(y)
1− T′(y)

∫
θ∈Θ

ε(W(y, θ), θ)
y h(y|θ)

1− H(y|θ)dµ̂(y, θ) = 1 (43)

where µ̂ is the CDF of θ among taxpayers earning an income larger than y, i.e.:

µ̂(y, θ)
def≡

∫
θ′∈Θ,θ′≤θ

(
1− F

(
(1− T′(y))−θ′ y

∣∣∣ θ′
))

dµ(θ′)∫
θ′∈Θ

(1− F ( (1− T′(y))−θ′ y| θ′)) dµ(θ′)
(44)

so that dµ̂(y, θ) = 1−H(y|θ)
1−Ĥ(y)

dµ(θ). From (42), we have H(y|θ) ≡ F
(
(1− T′(y))−θ y

∣∣∣ θ
)

. Differ-
entiating both sides of this equality with respect to income y leads to:

h(y|θ) =

(
1 +

y T′′(y) θ

1− T′(y)

) (
1− T′(y)

)−θ f
((

1− T′(y)
)−θ y

∣∣∣ θ
)

y h(y|θ) =

(
1− T′(y) + y T′′(y) θ

1− T′(y)

)
W(y, θ) f (W(y, θ)| θ)

ε(y, θ) y h(y|θ) = θ W(y, θ) f (W(y, θ)| θ)

ε(y, θ)
y h(y|θ)

1− H(y|θ) = θ
W(y, θ) f (W(y, θ)|θ)

1− F(W(y, θ)|θ) = θ p (W(y, θ)|θ) (45)

where the third equality uses (34a) and ε?(y, θ) = θ (with preferenecs preferences (4)) and
the latest equality uses H(y|θ) = F(W(y, θ)|θ) and the following definition of the local Pareto
parameter of the skill distribution:

p(w|θ) = w f (w|θ)
1− F(w|θ) . (46)

Plugging (45) into (43) leads to:

T′(y)
1− T′(y)

=
1∫

θ∈Θ
θ p (W(y, θ)|θ) dµ̂(y, θ)

. (47)

Now assume that the conditional skill distribution in each group takes the form:

f (w|θ) = kθ p w−(1+p) and 1− F(w|θ) = kθ w−p if w > wθ . (48)

Therefore the local Pareto parameter p(w|θ) (in (46)) is equal to p, provided that the income
is high enough for W(y, θ) to remain above the positive lower bound of the skill distribution,
which we henceforth assume. Substituting (42) into (47) yields:

T′(y)
1− T′(y)

=

∫
θ∈Θ

kθ y−p (1− T′(y)
)p θ dµ(θ)

p
∫

θ∈Θ
θ kθ y−p (1− T′(y)

)p θ dµ(θ)
.
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Define the weighted average direct elasticity as

θ̂(ζ)
def≡

∫
θ∈Θ

θ kθ (1− ζ)p θ dµ(θ)∫
θ∈Θ

kθ (1− ζ)p θ dµ(θ)

where ζ is the marginal tax rate. Substituting the latter equation in the previous one, we di-
rectly see that the optimal marginal tax rate T′(y) is decreasing in the weighted-average direct
elasticity θ̂(T′(y)). In the absence of composition effects, there is a single group with an elas-
ticity equal to θ̂(T′0(y)) = θ. Consider, at a given level of income, that the optimal marginal
tax rate T′(y) is larger (lower) than the actual one T′0(y). In this case, θ̂(T′(y)) when compo-
sition effects prevail is lower (larger) than θ̂(T′0(y)) obtained without composition effects since
θ̂′(ζ) < 0 as we now show.

Proof The previous equation can be rewritten as:

θ̂′(ζ) = −

∫
θ∈Θ

p θ2 kθ (1− ζ)p θ−1 dµ(θ)− θ̂(ζ)
∫

θ∈Θ
p θ kθ (1− ζ)p θ−1 dµ(θ)∫

θ∈Θ
kθ (1− ζ)p θ dµ(θ)

= −p

∫
θ∈Θ

(
θ − θ̂(ζ)

)
θ kθ (1− ζ)p θ−1 dµ(θ)∫

θ∈Θ
kθ (1− ζ)p θ dµ(θ)

.

If θ < θ̂(ζ), then
(
θ − θ̂(ζ)

)
θ >

(
θ − θ̂(ζ)

)
θ̂(ζ). The same inequality holds when θ > θ̂(ζ). We

can conclude that:

θ̂′(ζ) < −p θ̂(ζ)

∫
θ∈Θ

(
θ − θ̂(ζ)

)
kθ (1− ζ)p θ−1 dµ(θ)∫

θ∈Θ
kθ (1− ζ)p θ dµ(θ)

= 0.

�
Combining the latter result (θ̂(T′(y)) is lower (larger) than θ̂(T′0(y))) with T′(y) decreasing with
θ̂(T′(y)), we can conclude that the optimal marginal tax rate with composition effect is higher
(lower) than the optimal one obtained when one neglects composition effects.

G Numerical algorithm

Rewriting Equation (27) taking into account the specifications we use for our empirical
exercise (maximin and isoelastic individual preferences) yields Equation (47) that we use for
the simulations. This equation is very convenient because it implicitly defines the optimal
marginal tax rate at income y independently of marginal tax rates at other incomes. It is a
quasi-closed form. For each income y, the numerical algorithm starts from the actual marginal
tax rate schedule and iterates the following steps until convergence:

1. Given T′(y), the algorithm finds the skill level that corresponds to each observed income
y, for each group θ using (42).

2. For each group θ, it finds the local Pareto parameter of the gender-specific skill distribu-
tion p(w|θ) using (46) and finds dµ̂(y, θ) using (44).

3. It updates the marginal tax rate using (47).
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One needs to distinguish these three steps because the non-parametric calibration of the gender-
specific skill densities prevents from numerically solving simultaneously (42), (44), (46) and
(47). We finally check that the obtained tax schedule does verify Assumption 2.

For the economy without composition effects and fixed θ, we use the same algorithm, except
that in Step 1, in (42), we use the mean direct elasticity θ = µ(θL) θL + µ(θH) θH in the whole
population instead of θ. As soon as each skill level is obtained from the income y found in
the data, the algorithm approximates the density by a kernel density approximation. It then
expands the latter density by a Pareto density with parameter 1.5 and rescales the obtained
function to ensure the total mass is 1. Another difference for the economy without composition
effects and fixed θ is that, in Step 3, we use:

T′(y)
1− T′(y)

=
1

θ p (W(y))

instead of (47).

For the economy without composition effects and varying θ, we first compute at each in-
come level the weighted mean of direct elasticities in the actual economy as follows:

θ̃(y) =
θL h0(y|θL) µ(θL) + θH h0(y|θH) µ(θH)

h0(y|θL) µ(θL) + h0(y|θH) µ(θH)
.

We then follow the same steps as in the economy with composition effects and fixed θ but use
θ̃(y) in Step 1 and

T′(y)
1− T′(y)

=
1

θ̃(y) p (W(y))
in Step 3. In particular, we approximate the direct elasticity in the optimal economy at a given
income level from the direct elasticity in the actual economy at the same income level. The skill
distribution is calibrated by inferring from observed income levels the corresponding skill level
from (42) using θ̃(y). As in the other economy without composition effects, we approximate
the density by a kernel density approximation, we expand the obtained density by a Pareto
density with parameter 1.5 and rescale the obtained function to ensure the total mass is 1.

To calibrate the various skill densities, we approximate the tax schedule for singles without
dependents by the US federal Income tax schedule, as follows:

Income tax bracket Marginal tax rate
$0 to $9, 225 10%

$9, 225 to $37, 450 15%
$37, 450 to $90, 750 25%

$90, 750 to $189, 300 28%
$189, 300 to $411, 500 33%

Above $411, 500 35%

Table 1: Income tax schedule used for calibration

H Top tax rate with a linear versus a nonlinear tax schedule

When the group-specific skill distribution is Pareto, the group-specific skill density takes
the form:

f (w|θ) = kθ pθ w−(1+pθ) and 1− F(w|θ) = kθ w−pθ if w ≥ wθ .
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Hence, following (46), one has p(w|θ) = pθ whatever the income level. Assuming isoelas-
tic individual preferences (4) and maximin social objective, the optimal nonlinear income tax
schedule is given by (47), which given the assumption of Pareto group-specific skill distribu-
tion, simplifies to:

T′(y)
1− T′(y)

=
1∫

θ∈Θ
θ pθ dµ̂(y, θ)

.

The optimal nonlinear asymptotic marginal tax rate is therefore a weighted mean of θ pθ where,
according to (44), the weights are given by the fraction of taxpayers in group θ within taxpayers
who earn more than y.

Under the linear approach, one neglects the nonlinearity of the tax schedule for all incomes
above y and one considers reforms of direction z 7→ (z− y)1z≥y. Then, applying (35) with the
approximations ε(w, θ) = θ and T′(Y(w, θ)) = τ for all income above y, the optimal tax has to
verify:

τ

1− τ

∫
θ∈Θ

θ

[∫
w≥W(y,θ)

Y(w, θ) f (w|θ)dw
]

dµ(θ) =
∫

θ∈Θ

[∫
w≥W(y,θ)

(Y(w, θ)− y) f (w|θ)dw
]

dµ(θ)

Let ym(y, θ) denote the mean of income above y among taxpayers of group θ. One can
rewrite the preceding condition as:

τ

1− τ

∫
θ∈Θ

θ ym(y, θ) (1− F(W(y, θ)|θ))dµ(θ) =
∫

θ∈Θ
(ym(y, θ)− y) (1− F(W(y, θ)|θ))dµ(θ)

Under Pareto group-specific skill density, one has ym(y, θ) = y pθ/ (pθ − 1). Plugging this
equality in the latter optimal tax condition leads to:

τ

1− τ

∫
θ∈Θ

θ pθ
1− F(W(y, θ)|θ)

pθ − 1
dµ(θ) =

∫
θ∈Θ

1− F(W(y, θ)|θ)
pθ − 1

dµ(θ)

Using ym(y, θ) − y = y/ (pθ − 1), the sum of income above y earned by taxpayers in group
θ is equal to y (1− F(W(y, θ)|θ)) / (pθ − 1). Hence the linear optimal asymptotic tax rate is a
weighted mean of θ pθ where the weights are the shares of incomes above y earned by taxpayers
who belong to group θ.

I Proof of Proposition 5

Part i) of Proposition 5.

Let T(·) be an income tax schedule satisfying Assumption 2. We already know that under
Assumptions 1 and 2, one can apply the implicit function theorem to the first-order condition
associated to (1). This implies that Y(·, θ), thereby C(·, θ) is continuously differentiable in w
within each group θ. Moreover, Y(·, θ) admits a positive derivative according to (21d). Finally,
from (1) we get that:

∀w, θ, y′ ∈ R∗+ ×Θ×R+ U (C(w, θ), Y(w, θ); w, θ) ≥ U
(
y′ − T(y′), y′; w, θ

)
.

Taking y′ = Y(w′, θ′) leads to C(w′, θ′) = y′ − T(y′), so that the latter inequality leads to (31).
Therefore the allocation w 7→ (C(·, θ), Y(·, θ)) induced by T(·) verifies (31), thereby is smooth.

Part ii) of Proposition 5

Let (w, θ) 7→ (C(w, θ), Y(w, θ)) be a mapping defined over R∗+ × Θ which is smooth. Let
Y denote the set of incomes that are assigned to some individuals along this allocation. To

32



define the tax schedule that decentralizes this allocation, we first show that if two types (w, θ)
and (w′, θ′) of individuals earn the same income y = Y(w, θ) = Y(w′, θ′), then they have to
be assigned the same consumption C(w, θ) = C(w′, θ′). Otherwise, if by contradiction one
has: C(w, θ) < C(w′, θ′), then one would get that individuals of type (w, θ) would be better
off with the bundle (C(w′), Y(w′)) designed for individuals of type (w′, θ′), which would be in
contradiction with (31). A symmetric argument applies if C(w, θ) > C(w′, θ′) by inverting the
role of (w, θ) and of (w′, θ′). We can then unambiguously define the tax schedule denoted T(·)
that decentralizes this allocation by:

∀y ∈ Y T(y)
def≡ Y(w, θ)− C(w, θ) where (w, θ) are such that: y = Y(w, θ). (49)

Given this tax schedule, Program (1) of individuals of type (w, θ) is equivalent to:

max
(w′,θ′)∈R∗+×Θ

U
(
C(w′, θ′), Y(w′, θ′); w, θ

)
,

the solution of the latter is (w, θ) since (w, θ) 7→ (C(w, θ), Y(w, θ)) verifies the incentive con-
straints (31). Therefore, the tax schedule T(·) defined by (49) decentralizes the given alloca-
tion.15

We now need to show a mathematical result. For each group θ ∈ Θ, as Y(·, θ) is continu-
ously differentiable, it admits a reciprocal denoted Y−1(·, θ) which is also continuously differ-
entiable with a strictly positive derivative. Therefore the image of the (open) skill set R∗+ by
Y(·, θ) is an open set denoted Y(θ) ⊂ R+. Equation (49) can be rewritten on Y(θ) by:

T(y) = y− C
(

Y−1(y, θ), θ
)

. (50)

Moreover, we get that Y = ∪θ∈ΘY(θ) and is therefore an open set. Hence, for each income
y ∈ Y, there exists a group θ such that T(·) verifies (50) in the neighborhood of y.

To show that T(·) verifies Part i) of Assumption 2, note that from (50), T(·) is continuously
differentiable as Y−1(·, θ) and C(·, θ) are continuously differentiable. Moreover, from (2), we
have:

T′(y) = 1−M (y− T(y), y; Y−1(w, θ), θ).

As T(·) and Y−1(·, θ) are continuously differentiable in y, and M (·, ·; ·, θ) is continuously differ-
entiable in (c, y, w), y 7→M (y− T(y), y; Y−1(w, θ), θ) is continuously differentiable. Therefore,
T′(·) is continuously differentiable and T(·) verifies Part i) of Assumption 2.

To show that T(·) verifies Part ii) of Assumption 2, note that the first-order condition (18)
can be rewritten as Y (Y(w, θ); w, θ) ≡ 0 for all skill levels. Differentiating this equality with re-
spect to skill leads to: Yy (Y(w, θ); w, θ) Ẏ(w, θ)+Yw (Y(w, θ); w, θ) = 0. As Yw (Y(w, θ); w, θ) =
−Mw (C(w, θ), Y(w, θ); w, θ) which is positive from Assumption 1 and Ẏ(w, θ) > 0 since allo-
cations are assumed smooth, then one must have Yy (Y(w, θ); w, θ) < 0, which is Part ii) of
Assumption 2.

To show that T(·) verifies Part iii) of Assumption 2, we assume by contradiction that indi-
viduals of type (w∗, θ) are indifferent between earning income Y(w∗, θ) and earning an income
level denoted y′ ∈ Y. We show that in such a case, some individuals with skill w close to
w∗ are better of with the bundle (y′ − T(y′), y′) than with the bundle (C(w, θ), Y(w, θ)) de-
signed for them, a contradiction. For this purpose, we denote C (u, y; w, θ) the consumption
an individual of type (w, θ) should get to enjoy utility u while earning income y. Function
C (·, y; w, θ) is the reciprocal of function U (·, y; w, θ). We get: Cu = 1/Uc, Cy = −Uy/Uc = M
and Cw = −Uw/Uc. Let us denote:

Q(w)
def≡ C

(
U(w, θ), y′; w, θ

)
− y′ + T(y′).

15We have here followed Hammond (1979) very closely.
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To be indifferent between earning income Y(w, θ) and income y′, individuals of type (w, θ) have
to receive after-tax income C (U(w, θ), y′; w, θ) when they earn income y′. Therefore, Q(w) is
a measure in monetary units of the difference in well-being for individuals of type (w, θ) be-
tween the bundle (C(w, θ), Y(w, θ)) designed for them (from which they obtain utility U(w, θ))
and the utility they would get by earning income y′ and consuming y′ − T(y′). We have by
assumption Q(w∗) = 0. We obtain:

Q′(w) =
V (U(w, θ), Y(w, θ), w, θ)− V (U(w, θ), y′, w, θ)

Uc (C (U(w, θ), Y(w, θ); w, θ), Y(w, θ); w, θ)

where V (u, y; w, θ)
def≡ Uw (C (u, y; w, θ), y; w, θ) describes how Uw varies with income y along

the indifference curve of individuals of type (w, θ) with utility u. We get that Vy = −Uc Mw
which is strictly positive from Assumption 1. Therefore:

• If y′ > Y(w∗, θ), then Q′(w∗) < 0, which implies that for some skills w > w∗ above w∗

and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) < U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.

• If y′ < Y(w∗, θ), then Q′(w∗) > 0, which implies that for some skills w < w∗ below w∗

and sufficiently close to w∗, Q(w) < 0, i.e. U(w, θ) < U (y′ − T(y′), y′; w, θ). Therefore,
individuals of type (w, θ) strictly prefers the bundle (y′− T(y′), y′) rather than the bundle
(C(w, θ), Y(w, θ) designed for them, a contradiction.
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04, THEMA, Université de Cergy-Pontoise 2016.
, , and Bruno Van der Linden, “Optimal redistributive taxation with both extensive and
intensive responses,” Journal of Economic Theory, 2013, 148 (5), 1770–1805.

Kleven, Henrik J, “Sufficient Statistics Revisited,” mimeo 2018.
Kleven, Henrik Jacobsen, Claus Thustrup Kreiner, and Emmanuel Saez, “The Optimal In-

come Taxation of Couples,” Econometrica, 2009, 77 (2), 537–560.
, Martin B. Knudsen, Claus Thustrup Kreiner, Søren Pedersen, and Emmanuel Saez, “Un-
willing or unable to cheat? Evidence from a tax audit experiment in Denmark,” Econometrica,
2011, 79 (3), 651–692.

Lehmann, Etienne, Laurent Simula, and Alain Trannoy, “Tax Me If You Can! Optimal Non-
linear Income Tax between Competing Governments,” Quarterly Journal of Economics, 2014,
129 (4), 1995–2030.

35



Lockwood, Benjamin B. and Matthew Weinzierl, “De Gustibus non est Taxandum: Hetero-
geneity in Preferences and Optimal Redistribution,” Journal of Public Economics, 2015, 124,
74–80.

Lollivier, S. and J.-C. Rochet, “Bunching and Second-Order Conditions: A Note on Optimal
Tax Theory,” Journal of Economic Theory, 1983, 31, 392–400.

Mirrlees, J. A., “An Exploration in the Theory of Optimum Income Taxation,” The Review of
Economic Studies, 1971, 38, 175–208.

Piketty, Thomas, “La redistribution fiscale face au chômage,” Revue Française d’Economie, 1997,
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