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rigidities are commonly used to generate negative output effects of uncertainty shocks. We assess
whether this theoretical model channel is consistent with the data. We use a New Keynesian model
as a business cycle accounting device to construct aggregate markups from the data. Time-series
techniques are employed to study the conditional comovement between markups and uncertainty.
Consistent with precautionary wage setting, we find that wage markups increase after uncertainty
shocks. The impulse responses of price markups, on the other hand, are largely inconsistent with
the standard model, both at the aggregate as well as at the industry level, regardless of whether it
is measured along the intensive labor or the intermediate input margin. The only exception is the
extensive labor margin, where price markups tend to increase, indicating the potential for search-
and-matching models to deliver data-consistent responses to uncertainty shocks.
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1 Introduction

Since the seminal paper by Bloom (2009), many studies have focused on the effects of
uncertainty shocks on economic fluctuations (see Castelnuovo 2019, for a survey). While
time-series approaches regularly find negative effects of uncertainty shocks on output (Baker,
Bloom, and Davis 2016; Jurado, Ludvigson, and Ng 2015; Bachmann, Elstner, and Sims
2013, and numerous others),1 it has proven surprisingly difficult to generate negative output
effects after uncertainty shocks in representative-agent models as uncertainty shocks are
expansionary in the standard RBC model. As shown by Fernández-Villaverde, Guerrón-
Quintana, Kuester, and Rubio-Ramírez (2015), Born and Pfeifer (2014a), and Basu and
Bundick (2017) and used in various papers, countercyclical aggregate markups of the form
present in standard New Keynesian (NK) models are key to match the empirical evidence.
Many recent representative-agent DSGE studies rely on this countercyclical movement of
price and/or wage markups conditional on uncertainty shocks.2 However, direct empirical
evidence on the presence of this transmission channel is limited.3

We therefore assess whether this so-called “markup channel” is consistent with the data.
To this end, we build an NK DSGE model with time-varying price and wage markups that
serves two purposes. First, the dynamic dimension of the model is used to generate predictions
on the effects of uncertainty shocks on price and wage markups that can be empirically tested.
In the model, an increase in uncertainty leads to an increase in both price and wage markups
and a decline in output, whereas without nominal rigidities the precautionary labor supply
motive dominates and output increases. Second, the intratemporal first-order conditions can
be used as a Chari, Kehoe, and McGrattan (2007)-type business cycle accounting framework
to construct aggregate price and wage markups from the data.

Time-series techniques are then used to identify uncertainty shocks in the data and to
study whether the conditional comovement between markups and output is consistent with
the one implied by the model. Overall, we find that in the data, wage markups consistently
increase after identified uncertainty shocks as the model predicts. This finding is robust across

1See Berger, Dew-Becker, and Giglio (2020) for a countervailing viewpoint that it is only realized volatility
and not future uncertainty that matters.

2E.g. Fernández-Villaverde et al. (2015), Born and Pfeifer (2014a), Basu and Bundick (2017), Başkaya,
Hülagü, and Küşük (2013), Mumtaz and Zanetti (2013), Plante and Traum (2012), Cesa-Bianchi and
Fernandez-Corugedo (2018), Carriero, Mumtaz, Theodoridis, and Theophilopoulou (2015), Alessandri and
Mumtaz (2019), Castelnuovo and Pellegrino (2018), Johannsen (2014), and Leduc and Liu (2016). The latter
two rely on the existence of the ZLB and a frictional labor market, respectively, to amplify the effects of
aggregate uncertainty. Notable exceptions that do not rely on countercyclical markups are Christiano, Motto,
and Rostagno (2014) and Chugh (2016), who embed uncertainty in a financial accelerator mechanism.

3Fernández-Villaverde et al. (2015) provide some tentative evidence. However, their finding of an increase
in the price markup critically relies on estimating volatility shocks based on an exogenous process, but
subsequently treating these exogenous shocks as endogenous variables in an unrestricted VAR.
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different identification schemes as well as uncertainty and wage markup measures. In contrast,
the impulse responses of price markups are largely inconsistent with the standard model. We
do not find robust evidence for a strong increase in price markups, neither at the aggregate
nor at the industry level, regardless of whether markups are measured along the intensive
labor or the intermediate input margin. The only exception is the extensive labor margin,
where price markups tend to increase. This latter finding suggests that recent modeling efforts
combining search-and-matching models with uncertainty shocks are particularly promising
for obtaining data-consistent responses (Leduc and Liu 2016; Freund and Rendahl 2020).

Our findings come with obvious caveats. There is no consensus on how to measure
markups, neither at the aggregate nor the individual level.4 The same applies to measuring
uncertainty and identifying uncertainty shocks. To alleviate these concerns, we show that
our results are robust to employing various uncertainty measures, identification schemes,
and assumptions for measuring markups. Nevertheless, results will always rely on modeling
assumptions. Despite this drawback, we consider theory-driven studies of markups useful as
they may inform us on both the likely validity of the underlying model’s assumptions and
the measurement approach itself.

Our investigation of the price and wage markups is related to Nekarda and Ramey (2013)
and Karabarbounis (2014), respectively.5 Nekarda and Ramey (2013) argue that aggregate
price markups are pro- to acyclical unconditionally and also regularly do not show the
conditional movement after shocks predicted by standard NK models. However, they do not
consider uncertainty shocks and only focus on the price markup, while the main effect might
work through wage markups. When we measure price markups with the Nekarda and Ramey
(2013)-approach using average hourly earnings, price markups tend to fall after uncertainty
shocks. However, Basu and House (2016) and Bils, Klenow, and Malin (2018) (BKM in
the following) have recently argued that measured average hourly earnings often are not
allocative due to the presence of implicit contracts and composition effects. For that reason,
we also investigate the effect of uncertainty shocks on the annual price markup series of BKM,
which are measured for self-employed and along the intermediate input margin. Here, we
find more mixed evidence. Price markups tend to show a delayed increase after aggregate
uncertainty shocks, but its significance very much depends on the exact specification. Lastly,
we turn to the extensive margin wedge of BKM that focuses on measures for the cost of

4See e.g. the discussions in Nekarda and Ramey (2013), Anderson, Rebelo, and Wong (2019), and De
Loecker, Eeckhout, and Unger (2020).

5See also Shimer (2010). Our paper is also related to earlier papers studying the (unconditional) cyclical
movement of (price) markups (e.g. Rotemberg and Woodford 1991; Bils 1987), surveyed in Rotemberg and
Woodford (1999), as well as “business cycle accounting” studies like Chari et al. (2007), Parkin (1988), and
Hall (1997). Galí, Gertler, and López-Salido (2007) is an influential study that decomposes the labor wedge
into a firm and a household component to study the welfare implications of labor-wedge fluctuations.
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forming a new job match. Price markups measured along this margin tend to indeed increase
after uncertainty shocks.

It is important to stress that the markup channel provides predictions only for aggre-
gate markups implied by aggregate equilibrium conditions (what BKM have called the
representative-agent labor wedge).6 Strictly speaking it is silent on what happens at a
disaggregated level.7 We nevertheless turn to disaggregated industry-level evidence and
investigate whether the model-predicted price markup response may i) simply be hidden by
heterogeneity in price stickiness at the industry level or ii) measuring price markups along the
labor margin instead of the potentially more flexible intermediate input margin. Qualitatively,
the industry-level results look very similar to the aggregate evidence, i.e. only weak evidence
for the price markup channel. This conclusion is also robust when estimating markups along
the intermediate input instead of the intensive labor input margin.

To measure aggregate uncertainty, we use a variety of measures and approaches. The
first uncertainty proxy is a model-consistent measure derived from the particle smoother
used to parameterize the model. We also employ the general macroeconomic uncertainty
measure of Jurado et al. (2015) (JLN) and identify exogenous shocks via a recursive ordering.8

Given that many uncertainty measures are available at monthly frequency while we only have
quarterly or annual markup data, we will employ two different approaches to deal with this
mixed-frequency problem: a two-step frequentist procedure following Kilian (2009) and Born,
Breuer, and Elstner (2018), which relies on local projections (Jordà 2005), and a Bayesian
mixed-frequency VAR following Eraker, Chiu, Foerster, Kim, and Seoane (2015).

Section 2 provides a detailed exposition on the mechanism embedded in NK models that
gives rise to contractionary uncertainty effects. Section 3 presents a baseline NK DSGE with
time-varying wage and price markups and documents the predicted conditional comovement
of output and markups following uncertainty shocks. The intratemporal first-order conditions
of the model also provide an accounting framework, which is used to construct markups from
the data. Section 4 then identifies uncertainty shocks from the data, studies whether the
conditional comovement between markups and output is consistent with the one implied by
the model, and provides robustness checks. Section 5 investigates the price markup response
at the industry level. Section 6 concludes.

6The present paper also is not concerned with heterogeneous agent models with non-convex adjustment
costs and idiosyncratic uncertainty like Bloom (2009), Bloom, Floetotto, Jaimovich, Saporta-Eksten, and
Terry (2018), and Bachmann and Bayer (2013), where real options effects are responsible for the negative
effects of uncertainty.

7These representative agent markups are therefore only loosely related to the average markups of De
Loecker et al. (2020). Due to Jensen’s Inequality, one cannot easily move from the average markup over firms
to the markup of the average firm.

8Our results are robust to using different uncertainty proxies such as the Baker et al. (2016)-economic
policy uncertainty proxy, the VIX, the Carriero, Clark, and Marcellino (2018) uncertainty measure, and
different identification schemes.
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2 Precautionary pricing: a stylized model

As shown by Basu and Bundick (2017), the reason that uncertainty is expansionary in the
standard RBC model is the presence of a “precautionary labor supply” motive. When faced
by higher uncertainty, the household does not only self-insure by consuming less and investing
more, but also by working more. From the neoclassical production function, where TFP
is unaffected by uncertainty and capital is predetermined, it follows that this increase in
labor results in an output expansion that fuels higher savings. The solution to generate
contractionary effects of uncertainty is to break this tight link between labor supply and
production. This can be achieved by introducing monopolistic competition in labor and goods
markets, which gives rise to time-varying markups (see also Fernández-Villaverde et al. 2015;
Born and Pfeifer 2014a). In the presence of sticky prices and wages, firms and households
in their price- and wage-setting decisions face a convex marginal revenue product. This
gives rise to inverse Oi (1961)-Hartman (1972)-Abel (1983)-effects and precautionary pricing
when faced with uncertainty about future economic variables. Price-setters face the following
choice: If prices are set too low, more units need to be sold at too low a price, which is bad
for the firm. In contrast, if prices are set too high, the higher price compensates for being
able to sell fewer units. Due to this asymmetric, nonlinear effect, price setters prefer to err
on the side of too high prices and increase their markups. It is instructive to consider the
case of perfect competition. If the price is just an epsilon below marginal costs, the firm will
have to satisfy all demand at a loss, leading to (potentially) unbounded losses. In contrast, if
the price is just an epsilon too high, the firm will face zero demand. Hence, the worst case if
the price is too high is zero profits. If this increase in markups after uncertainty shocks is
strong enough, it dampens demand and decreases output.

To see this more clearly, consider the following stylized partial equilibrium example. A
firm i of a continuum of identical, monopolistically competitive firms chooses its optimal
price pi,t−1 subject to a Dixit-Stiglitz-type demand function yi,t =

(
pi,t−1
pt

)−θp
yt, where yt

is aggregate demand, θp is the demand elasticity, and pt the aggregate price level. For
the mechanism to be as transparent as possible, we assume the firm is subject to a Taylor
(1980)-type pricing friction in that it has to set its price one period in advance.9 Its output
is produced using a constant returns to scale production function that is linear in labor:
yi,t = li,t. The labor market is assumed to be competitive, with the economy-wide wage being

9A similar mechanism is also present in the Rotemberg price adjustment cost framework used in the
medium-scale NK model below as well as in Calvo- and Menu Cost-models. In these settings, marginal profits
are still convex in the price (see, e.g., Fernández-Villaverde et al. 2015; Balleer, Hristov, and Menno 2017).
While the logic in a symmetric Rotemberg equilibrium is a bit more involved (see Oh forthcoming), the
underlying upward pressure on markups resulting from the nonlinear Phillips Curve is still crucial.
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Figure 1: Stylized pricing example. Notes: period profit (left panel) and expected profit of
the firm (right panel) as function of the price pi,t−1. The black dashed line indicates
the maximum of the respective function. Red dashed line: mean preserving spread
to the optimal price that the firm faces. Blue dash-dotted line: profits when
choosing the mean optimal price of 1.

denoted by wt. Real firm profits are then given by

π =
[
pi,t−1

pt
− wt
pt

](
pi,t−1

pt

)−θp
yt . (2.1)

Without loss of generality, assuming for the aggregate variables that yt = 1 and wt
pt

=
(θp − 1)/θp, this simplifies to

π =
[
pi,t−1

pt
− θp − 1

θp

](
pi,t−1

pt

)−θp
. (2.2)

Expression (2.2) shows that there are two different channels through which prices affect
profits. First, a higher price pi,t−1 has an immediate price impact on the revenue, while leaving
the marginal costs unaffected. But second, there is an additional impact on the quantity
sold. The left panel of Figure 1 shows the profit function for θp = 11. As is well-known, in
the absence of uncertainty the firm will optimally charge a gross markup θp

θp−1 over marginal
costs, resulting in a profit-maximizing price of pi,t−1 = 1.

Assume now that the firm faces uncertainty about the optimal price, because the aggregate
price level is with probability 1/2 either pt = 1/1.05 or pt = 1/0.95, so that in the absence of
pricing frictions, either pi,t = 0.95 or pi,t = 1.05 is optimal. Thus, compared to the previous
situation, the optimal price is subject to a mean-preserving spread.10 Setting the price at the

10For ease of exposition we consider a mean-preserving spread to the endogenous variable. The same effect
would arise following a mean-preserving spread to aggregate price pt, but in this case an additional Jensen’s
Inequality effect would complicate matters due to the price level entering in the denominator.
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expected optimal pi,t−1 = 1 is suboptimal, because it would lead to lower expected profits
due to the marginal profit being convex in the price. Rather, the optimal price in this case is
slightly higher at pi,t−1 = 1.02. This can be seen in the expected profit schedule as a function
of pi,t−1 shown in the right panel of Figure 1. A formal proof can be found in Appendix E.

The same mechanism is at work in the household sector where the households have to
maximize utility by setting a nominal wage subject to an equivalent demand function for
their labor services.11

We close this section by pointing out that the empirical test of the markup channel has
implications beyond the precautionary pricing mechanism outlined above. Even in models
where precautionary pricing is shut off by linearizing the New Keynesian Phillips Curves,
countercyclical markups due to nominal rigidities are key because they are instrumental in
amplifying “run-of-the-mill” demand effects (see the excellent discussion in Freund and Ren-
dahl 2020). A case in point is the work of Leduc and Liu (2016), whose search-and-matching
framework generates negative output effects even in a flex-price model via nonlinearities in
the wage setting equation. However, even in their setting, price rigidities and the associated
countercyclical price markup are used in the final model to provide key amplification (up to
a factor of 20).

3 Model

In this section we construct a prototypical New Keynesian DSGE model that embeds the
previously outlined mechanism on the firm and household side. The model serves two
purposes. First, the dynamic dimension of the model can be used to generate predictions
on the effects of uncertainty shocks on price and wage markups. Second, the intratemporal
first-order conditions can be used as a Chari et al. (2007)-type business cycle accounting
framework to construct aggregate price and wage markups from the data.

The model economy is populated by a continuum of intermediate good firms producing
differentiated intermediate goods using bundled labor services and capital, and a final good
firm bundling intermediate goods to a final good. A continuum of households j ∈ [0, 1] sells
differentiated labor services to a labor bundler. In addition, the model features a government
sector that finances government spending with distortionary taxation and transfers, and a

11The asymmetry of the profit function comes from the isoelastic Dixit-Stiglitz demand function paired with
the assumption that demand always has to be satisfied. For small to moderate shocks, the latter assumption
can be justified by contractual obligations and reputational concerns. Firms tend to not close shop if their
posted price turns out to be too low, while workers cannot stay at home when asked to work overtime, even
if their marginal rate of substitution turns out to be high. However, these considerations also suggest that
firms can more easily avoid having to satisfy demand by “being out of stock”. This potential violation of a
crucial model assumption may be one reason why we find less evidence of a precautionary pricing for firms.
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monetary authority, which sets the nominal interest rate according to an interest rate rule.
The full set of model equations is relegated to Appendix A.1.

3.1 Firms

The final good Yt is assembled from a continuum of differentiated intermediate inputs Yt(i),
i ∈ [0, 1], using the constant returns to scale Dixit-Stiglitz-technology

Yt =
[∫ 1

0
Yt(i)

θp−1
θp di

] θp
θp−1

, (3.1)

where θp > 0 is the elasticity of substitution between intermediate goods. Standard cost
minimization yields the demand for good i:

Yt(i) =
[
Pt(i)
Pt

]−θp
Yt , (3.2)

where Pt is the aggregate price level.
The monopolistically competitive intermediate good firms produce Yt(i) using capital

Kt(i) and a hired composite labor bundle Nt(i) according to a CES production function

Yt(i) = Y norm

α
[
Kt (i)

]ψ−1
ψ

+ (1− α)
[
Zt (Nt (i)−N o)

]ψ−1
ψ


ψ
ψ−1

− Φ .

Here, 0 ≤ α ≤ 1 parameterizes the labor share and Y norm is a normalization factor that
makes output equal to one in steady state.12 ψ is the elasticity of substitution between capital
and labor, with ψ = 1 being the Cobb-Douglas case. The fixed cost of production Φ reduces
economic profits to zero in steady state, thereby ruling out entry or exit (see, e.g., Christiano,
Eichenbaum, and Evans 2005). N o = φoN , where N denotes steady-state labor, is overhead
labor used in the production of goods.13 Zt denotes a stationary, labor-augmenting technology
process specified below. Each intermediate good firm owns its capital stock, whose law of
motion is given by

Kt+1(i) = (1− δ)Kt(i) +
1− φK

2

(
It(i)
It−1(i) − 1

)2
 It(i) , φK ≥ 0 , (3.3)

12Note that both parameters are not structural parameters as they depend on the units of measurement of
the input factors. For more details on how to deal with such dimensional constants, see Cantore and Levine
(2012).

13Overhead labor, apart from being an empirically realistic feature, allows the marginal wage in the economy
to differ from the average wage. This is important, because it makes the price markup more countercyclical
than would be inferred from the rather a-cyclical total labor share alone (see, e.g., Rotemberg and Woodford
1999). See Ratto, Roeger, and ’t Veld (2009) for one of the earliest DSGE models with overhead labor.
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where δ denotes the quarterly depreciation rate of the capital stock. Equation (3.3) includes
investment adjustment costs at the firm level of the form popularized by Christiano et al.
(2005).

Intermediate good producers are owned by households and therefore use the households’
stochastic discount factor for discounting. They maximize the present discounted value of
per period profits subject to the law of motion for capital and the demand from the final
good producer: [

Pt(i)
Pt

]1−θp

Yt −
Wt

Pt
Nt(i)− It(i)−

φp
2

(
Pt(i)
Pt−1(i) − Π

)2

Yt(i) , (3.4)

where Nt(i) is hired in a competitive rental market at given wage rate Wt. The last term
denotes price adjustment costs as in Rotemberg (1982) and Fernández-Villaverde et al. (2015),
where Π is steady-state inflation. From the firms’ cost minimization problem follows the
first-order condition for labor inputs as

Ξp,t
Wt

Pt
= MPLt , (3.5)

where Ξp,t is the gross price markup over marginal costs. Due to monopolistic competition,
Ξp,t will generally not be equal to 1 as firms set a markup over marginal costs. Time-variation
in this markup is a central element of shock transmission in the NK model.

3.2 Households

Following Erceg, Henderson, and Levin (2000), we assume that the economy is populated
by a continuum of monopolistically competitive households, supplying differentiated labor
Nt(j) at wage Wt(j) to a labor bundler who then supplies the composite labor input to the
intermediate good producers. Formally, the aggregation technology follows a Dixit-Stiglitz
form

Nt =
[∫ 1

0
Nt(j)

θw−1
θw dj

] θw
θw−1

, θw > 0 . (3.6)

Expenditure minimization yields the optimal demand for household j’s labor as

Nt(j) =
[
Wt(j)
Wt

]−θw
Nt ∀ j . (3.7)

Household j has preferences

Vt =
∞∑
h=0

βh
[(Ct+h(j))η(1−Nt+h(j))1−η]1−σ − 1

1− σ , (3.8)
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where the parameter σ ≥ 0 measures the risk aversion, 0 < β < 1 is the discount rate,
and 0 < η < 1 denotes the share of the consumption good in the consumption-leisure
Cobb-Douglas bundle.

The household faces the budget constraint

(1 + τ ct )Ct(j) + Bt(j)
Pt
≤(1− τnt )Wt(j)

Pt
Nt(j) +Rt−1

Bt−1(j)
Pt

+Dt(j)

− φw
2

(
Π−1 Wt(j)

Wt−1(j) − 1
)2

Yt + Tt ,

(3.9)

where the household earns income from supplying differentiated labor, which is taxed at
rate τnt . In addition, it receives real dividends Dt(j) from owning a share of the firms in the
economy and a real gross return Rt−1(Bt−1(j)/Pt) from investing in a zero net supply riskless
nominal bond. The household spends its income on consumption Ct(j), taxed at rate τ ct , real
savings in the private bond Bt(j)/Pt, and to cover the costs of adjusting its wage (the second
to last term on the right hand side). Finally, Tt denotes transfers/lump-sum taxes.

The optimization problem of the household involves maximizing (3.8) subject to the
budget constraint (3.9) and the demand for the household’s differentiated labor input (3.7).
The first-order condition for labor supply implies that a gross markup over the after-tax
marginal rate of substitution Ξw,t is chosen such that

Wt

Pt
= Ξw,t

1 + τ ct
1− τnt

(−1)VN,t
VC,t

,

where VN and VC are the partial derivatives of the utility function with respect to labor and
consumption, respectively.

3.3 Government Sector

The government’s budget constraint is given by

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt , (3.10)

where Gt is exogenous government consumption and where we have suppressed aggregation
over households j for notational convenience.

The model is closed by assuming that the central bank follows a Taylor rule that reacts
to inflation and output:

Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (3.11)
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Here, 0 ≤ ρR ≤ 1 is a smoothing parameter introduced to capture the empirical evidence of
gradual movements in interest rates, Π is the target inflation rate set by the central bank,
and the parameters φRπ and φRy capture the responsiveness of the nominal interest rate
to deviations of inflation from its steady-state value and output from its model-consistent
Hodrick and Prescott (HP) filter trend Y HP

t , respectively.14

3.4 Exogenous shock processes

The two exogenous processes for government spending and TFP follow AR(1)-processes with
stochastic volatility:

Ẑt = ρzẐt−1 + σzt ε
z
t (3.12)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (3.13)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (3.14)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t , (3.15)

where the εit, i ∈ {z, g, σz, σg} are standard normally distributed i.i.d. shock processes, hats
denote percentage deviations from trend, and φgy governs the output feedback to government
spending. σzt and σgt are our proxies for supply and demand uncertainty, respectively, with
εσ

z

t and εσzt being the corresponding uncertainty shocks.

3.5 Equilibrium

The use of Rotemberg price and wage adjustment costs implies the existence of a representative
firm and a representative household. We consider a symmetric equilibrium in which all
intermediate good firms charge the same price and choose the same labor input and capital
stock. Similarly, all households set the same wage, supply the same amount of labor, and
will choose the same consumption and savings.

The resource constraint then implies that output is used for consumption, investment,
government spending, and to pay for price and wage adjustment costs:

Yt = Ct + It +Gt + φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + φp
2

(
Π−1 Pt

Pt−1
− 1

)2

Yt . (3.16)

14This specification follows Born and Pfeifer (2014a). The HP filtered output gap is embedded into the
dynamic rational expectations model following the approach of Cúrdia, Ferrero, Ng, and Tambalotti (2015).

10



Table 1: Model Parametrization

Parameter Description Value Target
α Capital share 0.094 Capital share of 1/3
β Discount factor 0.995 2% annualized interest rate
δ Depreciation rate 0.025 10% per year
σ Risk aversion 2 standard value
φk Inv. adj. costs 2.5 Christiano, Eichenbaum, and Evans (2005)
φp Price adj. costs 59 Implied average duration of 3 quarters
φw Wage adj. costs 371 Implied average duration of 3 quarters
θw Labor subst. ela. 11 10% steady-state markup
θp Goods subst. ela. 11 10% steady-state markup
η Leisure share 0.468 Frisch elasticity of 1
φo Overh. lab. share 0.11 Nekarda and Ramey (2013)
ψ Subst. ela. CES 0.5 Chirinko (2008)
Φ Fixed costs 0.019 0 Steady-state profits
Π Ss gross inflation 1 Zero inflation
ρr Interest smoothing 0.75 Standard value
φRπ Inflation feedback 1.35 Standard value
φRy Output feedback 0.125 Standard value
τ c Cons. tax rate 0.094 Sample mean
τn Labor tax rate 0.220 Sample mean
G/Y G/Y share 0.206 Sample mean
Y norm Output normalization 1.351 Output of 1

3.6 Parametrization

Table 1 displays the parametrization of our quarterly model for the US economy from 1964Q1
to 2015Q4. The capital share α is set to one third and the depreciation rate δ to imply an
annual depreciation rate of 10 percent. The discount factor β = 0.995 implies an annualized
interest rate of 2% in steady state. The investment adjustment cost parameter φk is set to
2.5, the value estimated in Christiano et al. (2005).

The price adjustment cost parameter φp is chosen to imply the same slope of the linear
New Keynesian Phillips Curve as a Calvo model with an average price duration of 3 quarters
(see e.g. Keen and Wang 2007). While this value is in the range of typical estimates based on
micro data (e.g. Nakamura and Steinsson 2008), it is slightly lower than the typical value of 4
quarters used in the uncertainty literature (e.g. Leduc and Liu 2016; Basu and Bundick 2017;
Fernández-Villaverde et al. 2015). Similarly, the wage adjustment cost parameter is chosen to
imply an average wage contract duration of 3 quarters (see Born and Pfeifer forthcoming). We
will explore the robustness to these choices below. The two substitution elasticity parameters
θp and θw are set to 11, which implies a steady-state markup of 10%.
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We consider a zero-inflation steady state, i.e. Π = 1. The Taylor rule parameters are
standard values in the literature with a moderate degree of interest smoothing and output
feedback.15 The risk aversion parameter is set to σ = 2. The leisure share in the Cobb-Douglas
utility bundle η is set to imply a Frisch elasticity of 1.16 We set the share of overhead labor
to 11%, following the evidence of Levitt, List, and Syverson (2013) that adding a second shift
in car manufacturing plants increases labor by 80%. Given that automobile plants run two
shifts most of the time, this means overhead labor accounts for 20/180 = 0.11 (see Nekarda
and Ramey 2013). The fixed costs Φ are set to imply 0 profits in steady state, thereby ruling
out entry and exit.17 The substitution elasticity between capital and labor is set to ψ = 0.5,
the midpoint of the estimates surveyed in Chirinko (2008) and in line with Chirinko and
Mallick (2017) and Oberfield and Raval (2019).18 The fiscal parameters are set to their mean
over the sample 1964Q1 to 2015Q4. The tax rates are computed as average effective tax rates
following Jones (2002).19

Finally, the exogenous processes are estimated via Bayesian techniques using sequential
Monte Carlo Methods on a quarterly US sample from 1964Q1 to 2015Q4.20 We employ a
Sequential Importance Resampling (SIR) filter (Gordon, Salmond, and Smith 1993) with
20,000 particles to construct the likelihood of the stochastic volatility processes. Draws from
the posterior are generated using the Metropolis-Hastings algorithm. We generate a Monte
Carlo Markov Chain with 205,000 draws of which 5000 are used as a burn-in. As the proposal
density, we use a multivariate normal distribution with the identity matrix as the covariance
matrix, scaled to achieve an acceptance rate of about 25 percent. Smoothed objects are
constructed using the backward-smoothing routine of Godsill, Doucet, and West (2004) with
20,000 particles for the smoother. To construct output, government spending, and TFP
deviations from trend, a one-sided HP-filter (λ = 1600) is used. For TFP, we cumulate the
utilization-adjusted TFP series constructed by Fernald (2012).21 Table 2 displays the prior

15It should be noted that the choice of monetary policy is not completely innocuous. If the central bank
puts relatively little weight on current inflation, it will tolerate large deviations of sticky prices from their
optimal target. Firms will anticipate this and react with strong precautionary pricing. For the parameter
ranges typically found in the literature, we experienced quantitative differences, but the qualitative effect we
are investigating in this paper remained unaffected.

16See Appendix A.2.1.
17Note that in contrast to e.g. Smets and Wouters (2007), these fixed costs are non-labor related fixed

costs as the latter are captured in the overhead labor share.
18We verified that our results are robust to variations in the substitution elasticity; see Section 4.5 below.
19While we allow tax rates to vary in the empirical analysis, we keep them fixed at their steady-state value

for the model analysis. See Appendix C for details on the construction of tax rates.
20Our approach is described in more detail in Appendix B of Born and Pfeifer (2014a).
21See Appendix C.1 for details on the data construction. The vintage of TFP data used already incorporates

recent methodological changes in the computation of utilization (see Kurmann and Sims forthcoming).

12



Table 2: Prior and Posterior Distributions of the Shock Processes

Parameter Prior distribution Posterior distribution
Distribution Mean Std. Dev. Mean 5 % 95 %

G process
ρσg Beta* 0.90 0.100 0.513 0.313 0.708
ρg Beta* 0.90 0.100 0.945 0.883 0.999
ησg Gamma 0.50 0.100 0.003 0.002 0.004
σg Uniform 0.05 0.014 0.008 0.007 0.009
φgy Normal 0.00 1.000 0.028 -0.026 0.083

TFP process
ρσz Beta* 0.90 0.100 0.517 0.312 0.722
ρz Beta* 0.90 0.100 0.773 0.692 0.855
ησz Gamma 0.50 0.100 0.002 0.002 0.003
σz Uniform 0.05 0.014 0.007 0.006 0.008

Note: Beta* indicates that the parameter divided by 0.999 follows a beta
distribution. The sample ranges from 1964Q1 to 2015Q4 (N=208).

and posterior distributions, while Figure A.1 shows the smoothed volatilities.22

3.7 Dynamic effects of uncertainty shocks

As outlined in Section 2, precautionary price and wage setting in response to an increase in
uncertainty lead to an increase in both price and wage markups. Thinking about a stylized
labor market as depicted in the schematic diagram shown in Figure 2, this should cause both
the labor demand and supply curves to shift to the left, resulting in an overall decrease in
hours worked and a reduction in aggregate output.

We can now feed uncertainty shocks into our general-equilibrium model to study the
effects on markups and real activity in a richer model environment.23 We solve the model
using third-order approximation around the deterministic steady state, using Dynare 4.5.3
(Adjemian et al., 2011) with the pruning algorithm of Andreasen, Fernández-Villaverde, and
Rubio-Ramírez (2018). IRFs are generalized impulse response functions, shown as percentage
deviations from the stochastic steady state (for details, see the appendix to Born and Pfeifer
2014b). We use two-standard deviation uncertainty shocks.24

22Section A.5 in the Appendix provides Geweke (1992) convergence diagnostics.
23Figure A.5 displays the IRFs to level shocks. They look as expected and square well with the empirical

literature like Blanchard and Perotti (2002), Galí, López-Salido, and Vallés (2007), or Galí (1999).
24The empirical literature (see e.g. Bloom 2009; Jurado et al. 2015) often uses four-standard deviations

because it this is roughyl the increase in uncertainty proxies during the Great Recession. As the size of the
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Figure 2: Uncertainty shocks ins a stylized labor market. Notes: Labor supply is character-
ized by the condition that the log marginal rate of substitution (mrs) is equal to
the log real wage, while the labor supply curve is characterized by the log marginal
product of labor (mpl) being equal to the log real wage. The point SSeff denotes
the efficient steady state where mrs and mpl are equal. The presence of a wage
and price markup (ξw and ξp) drives a wedge between the two curves and the
real wage.

Figure 3 displays the impulse responses to a two-standard deviation technology (i.e. supply)
uncertainty shock (top panel) and to a two-standard deviation government spending (i.e.
demand) uncertainty shock (bottom panel). We see that, indeed, an increase in uncertainty
leads to an increase in both price and wage markups and a decline in output.25 When the
shock dies out, the markups converge back to their pre-shock values as does output. We do
not show here the response of the real wage, which increases. As the labor market diagram in
Figure 2 makes clear, its theoretical response is ambiguous, depending on whether the wage
or price markup response is stronger, increasing for the former and falling for the latter.

A necessary ingredient for the negative response of output to an uncertainty shock is the
presence of at least one type of nominal rigidity. Figures A.2 and A.3 in the appendix show
the IRFs with only price and wage rigidity, respectively. In both cases, there is a drop in
output, which is even more pronounced in the case of price stickiness only. That indicates a
significant interaction effect between both types of rigidity as wage stickiness limits the firms’
cost risk. Finally, A.4 shows the IRFs in the model without nominal rigidities. In this case
the precautionary labor supply motive dominates and output increases.

model IRFs scales roughly linearly in the size of uncertainty shocks, this would imply a doubling of the effects.
25Output is plotted net of price and wage adjustment costs.
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Figure 3: Model IRFs to two-standard deviation technology uncertainty (Panel a) and
government spending uncertainty (Panel b) shocks. Notes: IRFs measured in
percentage deviations from the stochastic steady state.

3.8 Dissecting the quantitative output response

While the previous subsection discussed the qualitative effects of uncertainty shocks on
markups and output, in this subsection we will investigate the quantitatively small output
response after an uncertainty shock. We will focus on TFP uncertainty here, but all results
also hold for the government spending uncertainty shock.

In our baseline parameterization, output falls by about 0.0035 percent on impact after a
two-standard deviation uncertainty shock. As Figure 4 demonstrates (red dashed line), this
number can be almost doubled by introducing an additional precautionary motive for firms.
Specifically, we allow for a higher risk aversion of σ = 20 in the stochastic discount factor
the firm uses in its price setting decision and which strengthens their precautionary pricing
motive. This higher risk aversion choice may reflect the preferences of owners of closely held
firms that are not diversified.26

To increase the output response further, we (on top of the first change) decrease real
and increase nominal rigidities. In particular, we set the costs of adjusting investment to
φk = 0.75, the implied average price and wage duration to four quarters, and the price and
wage demand elasticities to imply steady-state markups of 5 percent.27 These parameter

26We thank the editor for this idea.
27Larger steady state markups as in the baseline are more consistent with micro studies, while the 5% steady

state markup is consistent with macro estimates in Kuester (2010) and Altig, Christiano, Eichenbaum, and
Lindé (2011). Similarly, micro pricing studies find average price durations closer to 2-3 quarters (e.g. Nakamura
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Figure 4: Model IRFs to a two-standard deviation technology uncertainty shock using our
estimated TFP process (left panel) and the TFP process estimated in Leduc and
Liu (2016) (right panel). The left panel displays the output response for the
baseline calibration (blue solid line), the baseline calibration with higher firm
risk aversion (red dashed line), and the latter calibration with lower real and
higher nominal rigidities as in Fernández-Villaverde, Guerrón-Quintana, Kuester,
and Rubio-Ramírez (2015) (orange dotted line). The right panel combines the
last calibration with the Leduc and Liu (2016) TFP process. See the main text
for details. Notes: IRFs measured in percentage deviations from the stochastic
steady state.

values are used in Fernández-Villaverde et al. (2015). As we discuss in more detail in Born
and Pfeifer (2014a), especially the higher demand elasticities lead to larger output effects due
to them increasing the convexity of the marginal profit function and hence the precautionary
pricing effect. Overall, we get another 40 percent increase in the impact output response
(orange dotted line).

Our last experiment keeps the Fernández-Villaverde et al. (2015) parameter values fixed
and feeds in different processes for the level and the volatility of TFP. We take those from
Leduc and Liu (2016), who parameterize the level process to standard values in the RBC
literature (ρz = 0.95, σ̄z = 0.01) and the volatility process to match the VAR response of
uncertainty to an uncertainty shock (ρσz = 0.76, ησz = 0.005). The right panel of Figure
4 shows that this more volatile and persistent TFP process generates much larger output
effects of the uncertainty shock.

Overall, this investigation shows that the small effects of uncertainty shocks in our baseline
model are the result of two things. First, we employed a micro-estimate-based, conservative

and Steinsson 2013), while macro estimates like Richter and Throckmorton (2016) and Fernández-Villaverde
et al. (2015) find values around four quarters.

16



model parameterization not specifically tailored to generate large effects. Second and most
importantly, our driving processes estimated using full information techniques do not feature
large and persistent increases in uncertainty. This contrasts with studies like Leduc and
Liu (2016) or Bianchi, Kung, and Tirskikh (2019) that generate rather large effects of TFP
uncertainty shocks by, among other things, employing exogenous TFP driving processes that
were not restricted by actual TFP realizations.28 These processes can be rather interpreted
as subjective uncertainty about TFP as opposed to objective uncertainty used in rational
expectations modeling.

4 Aggregate evidence

In this section, we investigate the responses of aggregate price and wage markups to exogenous
uncertainty shocks. We first construct aggregate markups from the data and then start
with a model-consistent uncertainty measure in the form of smoothed uncertainty shocks
from the particle smoother (see Section 3.6) before turning to broader measures of aggregate
uncertainty.

4.1 Constructing aggregate markups

Our ultimate goal is to compare the theoretical model IRFs with their empirical counterparts.
To this end, we need to construct aggregate markups from the data.

Using the intratemporal first-order conditions of the model, empirical measures of both
price and wage markups can be constructed in a business cycle accounting-style exercise.
Using the Cobb-Douglas felicity function from Section 3, the wage markup over the marginal
rate of substitution satisfies

Ξw,t
1− η
η

Ct
1−Nt

= 1− τnt
1 + τ ct

Wt

Pt
. (4.1)

Expanding this fraction and taking logs, ξwt ≡ log(Ξw,t) can be computed from

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
, (4.2)

where the second term on the right is the labor share.
28Bianchi et al. (2019) estimate their full model using full information techniques and find TFP uncertainty

to contribute a large share to business cycle volatility. But they do not use TFP as an observable and estimate
a first-order autocorrelation of 0.67 for TFP growth, while it is close to iid in Fernald (2012)’s data. Moreover,
their uncertainty shock roughly increases TFP volatility by 50% and has an autocorrelation above 0.9.
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Figure 5: Cyclical component of the price markup ξpt (top panel) and of the wage markup
ξwt (bottom panel) over time. Notes: Blue solid line: respective markup; red
dashed line: GDP. Grey shaded areas denote NBER recessions.

The firm-side price markup ξpt ≡ log(Ξp,t) can be constructed using the CES-production
function (3.1) as (see Appendix B for details)

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (4.3)

To compute both price and wage markups, all that is needed are aggregate time series on
output, consumption, taxes, labor-augmenting technology, and various labor market variables
like hours worked and wages. Again, we use quarterly US data from 1964Q1 to 2015Q4.29 On
the household side we follow Karabarbounis (2014) and rely on broad, encompassing measure
of hours, employment, and population that takes the substantial U.S. military employment
into account (see Cociuba, Prescott, and Ueberfeldt 2012) when measuring the marginal rate
of substitution. On the firm side, it is crucial to correctly measure the marginal product
of labor. For this purpose, we follow Nekarda and Ramey (2013) and rely on data from
the private business sector, which distinguishes production from overhead workers. We use
Fernald (2012)’s utilization-adjusted TFP measure to back out labor-augmenting technology.

Figure 5 shows the HP-filtered (λ = 1600) markups over time. As already documented
29Appendix C describes the respective data sources used in detail.
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Figure 6: Correlation of the cyclical components of the price markup ξpt+j and the wage
markup ξwt+j with output yt. Notes: Price markup is shown for both utilization-
adjusted (blue line) and unadjusted (red dashed line) TFP measures.

in Nekarda and Ramey (2013), the price markup tends to have its trough during or shortly
after recessions, while its peak happens in the middle of expansions. In contrast, the wage
markup tends to peak during recessions. This finding is consistent with evidence presented by
Karabarbounis (2014), Shimer (2010), and Galí, Gertler, et al. (2007). The cyclical behavior
of the markups is confirmed by the cross-correlograms depicted in Figure 6. While the
baseline price markup (blue solid line) is acyclical, the correlation becomes negative for leads:
a drop in GDP today signals an increase in the price markup in the future. In contrast, the
wage markup shows a pronounced countercyclicality. The only exception is the price markup
when not adjusting TFP for variable factor utilization (red dashed line). In that case, the
price markup shows a pronounced counter-cyclicality that comes from ascribing differences in
factor utilization to technology. While this is not our preferred price markup measure, we
will show in Section 4.5 below that despite its unconditionally more “favorable” cyclicality,
there still is no evidence for an increase conditional on an identified uncertainty shock.

4.2 Model-consistent uncertainty measures

For our first approach, we use the median quarterly smoothed uncertainty shocks et ∈
{ε̂σzt , ε̂

σg
t } (where hats denote estimates from the smoother) from the estimated TFP and

government spending processes that drive our DSGE model (see Section 3.4). These shocks
are included in a local projection model (Jordà 2005) of the form

xt+h = αh + βht+ γhet + ηt,h . (4.4)
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Here, γh denotes the response of a particular variable xt+h at horizon h to an exogenous
variation in uncertainty at time t, et. In our baseline xt+h stands for either price or wage
markupor GDP. αh and βht are a constant and a linear time trend, respectively. The error
term ηt,h is assumed to have a zero mean and strictly positive variance. We estimate model
(4.4) using OLS where, in order to improve the efficiency of the estimates, we include the
residual of the local projection at t+ h− 1 as an additional regressor in the regression for
t+ h (see Jordà 2005).30

We view these local projections as first tentative evidence. The uncertainty shocks are
derived under the assumption that all heteroskedasticity in the residuals is the result of
exogenous uncertainty shocks. Insofar as there is endogenous uncertainty in these objects
(see e.g. Caldara, Fuentes-Albero, Gilchrist, and Zakrajšek 2016; Plante, Richter, and Throck-
morton 2018), we would be mis-measuring the shocks. We will turn to more sophisticated
identification schemes below. Figure 7 presents the IRFs to our model-consistent uncertainty
shocks. As expected, an increase in technological uncertainty is associated with a drop in
GDP. However, the conditional markup response in the data partially differs from the one
predicted by the model.31 On impact, the price markup falls. In contrast, the DSGE model
implies that the price markup quickly peaks and then declines back to its stochastic steady
state as the effect of price stickiness subsides over time. The movement of the wage markup
squares better with the model: it increases after an uncertainty shock and then slowly declines
back to steady state.

The evidence after a government spending uncertainty shock is not as conclusive, but also
does not lend strong support to the model mechanism.

4.3 Two-step approach using broad macro uncertainty measure

The first set of impulse responses from the model-consistent uncertainty measures tentatively
suggests that the conditional behavior of the price markup is not consistent with the model
prediction. However, the bands were relatively wide. This is not entirely surprising as TFP
measures are notoriously noisy and government spending shocks are hard to identify. Thus,
we would like to rely on an uncertainty proxy that is still closely linked to the model concept
of uncertainty, but at the same time has a better signal-to-noise ratio. A measure satisfying
this criterion has recently been proposed by Jurado et al. (2015, JLN henceforth). Their
measure is closely linked to the concept of forecast error uncertainty employed in business

30The estimated shocks are generated regressors in the second stage. However, the standard errors on the
generated regressors are asymptotically valid under the null hypothesis that the coefficient is zero (Pagan
1984).

31This conditional markup response is consistent with the conditional comovement Nekarda and Ramey
(2013) found after other types of shocks, which also contradicted the sticky price model.
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Figure 7: Local projection responses to model-consistent two-standard deviation uncertainty
shocks. Notes: Shaded areas denote 90% confidence intervals based on Newey-
West standard errors.

cycle models, but relies on a broad information set to extract the signal.32 We think that
this is currently the broadest and at the same time cleanest uncertainty measure available.33

We are ultimately interested in the dynamic response of markups to innovations, or
“shocks”, to uncertainty. Given that the JLN uncertainty measure is available at monthly
frequency while we only have quarterly markup data, we will employ a two-step procedure
following Kilian (2009) and Born et al. (2018). In the first step, to identify structural
uncertainty shocks, we follow Bloom (2009) and Jurado et al. (2015) and employ a Cholesky-
ordering within a monthly VAR framework. The structural shocks are then aggregated to

32JLN stress that in order to measure uncertainty, it is important to purge the predictable component of
volatility. They estimate a factor-based forecasting model on 279 monthly economic and financial time series.
Given their estimated factors, they then compute forecast errors for 132 of these variables and subsequently
use the forecast errors to construct an uncertainty time series for each variable based on the assumption that
these follow a stochastic volatility process. Their macroeconomic uncertainty measure is the common factor
of the uncertainty connected to the individual variables. We use their one-period ahead forecast measure (i.e.
h = 1, not to be confused with the forecast horizon in the local projection).

33Measures like the economic policy uncertainty index by Baker et al. (2016) have a very narrow focus,
while financial market-based measures like the VIX or realized (return) volatility are likely to be contaminated
by changes in risk aversion and financial market conditions (see e.g. Bekaert, Hoerova, and Duca 2013; Stock
and Watson 2012; Caldara et al. 2016). We will employ these alternative measures in the robustness section.
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quarterly frequency by averaging the monthly shocks and, in the second step, fed into a
local projection as in (4.4).34 We pursue this approach, because the monthly time horizon of
the VAR makes the recursive timing assumption underlying the identification scheme more
plausible than in a quarterly VAR.

Our sample ranges from 1964M1 to 2015M12. The variable vector Xt in our VAR contains
1) real industrial production, 2) total non-farm employment, 3) real personal consumption
expenditures, 4) the personal consumption expenditure deflator, 5) real new orders, 6) the
manufacturing real wage, 7) hours worked in manufacturing, 8) the Wu and Xia (2016)
shadow federal funds rate,35 9) the S&P 500 Index, 10) M2 money growth, and 11) the 1-step
ahead JLN uncertainty proxy.36 Formally, we estimate the following VAR using OLS

Xt = µ+ αt+ A(L)Xt−1 + νt , (4.5)

where and µ and αt are a constant and time trend, respectively, A(L) is a lag polynomial
of degree p=6, and νt

iid∼ (0,Σ). In terms of identification, we assume a lower-triangular
matrix B, which maps reduced-form innovations νt into structural shocks εt = Bνt. The
employed ordering follows JLN and relies on economic aggregates not reacting within the
month to an increase in macroeconomic uncertainty, while uncertainty itself may react to
other shocks. In Section 4.5 we confirm that our results are robust to ordering uncertainty
before macroeconomic aggregates.

After averaging the monthly shocks and feeding them into the local projection model,
the resulting IRFs are plotted in Figure 8. They corroborate our previous finding. After an
uncertainty shock, the wage markup increases significantly, consistent with a precautionary
wage setting motive as in the model. The same does not apply to the price markup, which
tends to decline.

4.4 Mixed-frequency VAR

While the two-step approach does not impose cross-equation restrictions and is therefore
more flexible and robust than a VAR, it comes at the disadvantage of not making full use of
high-frequency information. As mentioned before, the constructed markups are only available
at quarterly frequency. To use all available monthly information on the other variables, we
assume that we cannot observe the monthly realizations of the markup measure and treat

34Using the average follows Kilian (2009). Readers worried about time aggregation are referred to the
mixed-frequency VAR below.

35We use this measure to alleviate concerns about the effective zero lower bound introducing a nonlinearity
the VAR is not being able to capture. Using the effective federal funds rate instead yields very similar results.

36See Appendix D.2 for a detailed description of the macro dataset and the transformations used for the
respective variables.
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Figure 8: Local projection responses to a JLN-based two-standard deviation uncertainty
shock in the two-step model. Notes: Shaded areas denote 90% confidence intervals
based on Newey-West standard errors.

these data as missing values. Following the Bayesian VAR framework outlined in Eraker
et al. (2015), we can then employ a Gibbs sampler to deal with these missing observations by
sampling the missing data from their conditional distribution.

Our sample again ranges from 1964M1 to 2015M12, on which we estimate the 11-variable
VAR in equation (4.5) with p = 6, but where we add our quarterly markup measures as an
additional twelfth variable observed every third month. Consistent with the model, we order
the markups after the respective uncertainty measure so that markups can react on impact.
We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karlsson
1997), where the mean and precision are derived from a Minnesota-type prior (Litterman
1986; Doan, Litterman, and Sims 1984).37 In the Gibbs sampler, we use 50,000 draws, of
which we discard the first 5,000 draws as a burn-in.38 We use 90% highest posterior density
intervals (HPDIs) based on 1000 random posterior draws after burn-in.

We estimate three separate mixed-frequency VARs, one including the price markup, one
including the wage markup, and one including the total markup or “labor wedge”, i.e. the
sum of the price and wage markup. Figure 9 presents the key impulse responses following a
two-standard deviation shock to macroeconomic uncertainty based on the three models.39 As
with the model-consistent measure and the two-step approach, wage markups increase after
an uncertainty shock but price markups fall.

The bottom right panel of Figure 9 displays the total markup or “labor wedge”, i.e. the
sum of the price and wage markup. During the first few months, it is dominated by the
price markup response and slightly falls, before it becomes dominated by the wage markup
and increases subsequently. As the figure shows, after an uncertainty shock the real wage

37See Appendix D.1 for details.
38The Raftery and Lewis (1992) convergence diagnostics with quantile q = 0.025, precision r = 0.01, and

probability of attaining this precision s = 0.95 suggests that this is sufficient for convergence.
39Appendix D.2 includes a full set of impulse responses of all three VARs.
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Figure 9: IRFs to JLN-based two-standard deviation uncertainty shock in the mixed-
frequency VAR. Notes: Bands are pointwise 90% HPDIs. The respective markups
are rotated into the VAR as the 12th variable. The macroeconomic uncertainty
index is measured in arbitrary units and has a mean of 0.65. The first row and
the price markup response are from a VAR including the price markup. The
responses of wage and total markup are from separate VARs (see text).

increases. This response, together with a fall in hours worked shown in the appendix, is
perfectly consistent with a situation where the wage markup increases while the price markup
stays flat (see the stylized labor market diagram in Figure 2).40 While the model does not
predict the same hump-shaped movement, it predicts the same countercyclical movement of
the wage markup. At least in that regard, the data is consistent with the markup channel
in NK models and the role of uncertainty shocks more generally. Empirically, most of the
movement in the labor wedge seems to come from this margin. However, from the vantage
point of the basic NK model with only sticky prices, the price markup response presents a
challenge.

We also compute the posterior unconditional forecast error variance share explained
by the identified uncertainty shock. Uncertainty shocks account for about 13% of output
fluctuations, 15% of the wage markup, but only 8% of the price markup. Taken together,
uncertainty shocks account for 11% of total labor wedge fluctuations (see Table D.5 in the
appendix).

40The model with only rigid wages also delivers an increase in the real wage and a drop in hours worked.
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(a) Price Markup
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Figure 10: IRFs to two-standard deviation uncertainty shocks measured via the VIX. Notes:
Blue solid line: mixed-frequency 11+1-VAR with VIX ordered second-to-last;
red dashed line: 8+1-Bloom (2009)-VAR with VIX ordered second (see text for
details). Bands are pointwise 90% HPDIs computed for the 11+1-VAR.

4.5 VAR-based robustness checks

While our results are robust across different time-series approaches, one might wonder whether
they depend on the ordering of variables in the VAR, the assumptions made to construct
markups, or the chosen uncertainty proxy. We will address these concerns in the following.

Bloom (2009) VAR

Bloom (2009) considers a different, 8-variable VAR where uncertainty is ordered second and
measured by stock market volatility via the VIX. The reasoning behind this ordering is that
uncertainty shocks instantaneously influence stock market volatility and other prices and
quantities, but that first moment shocks to stock-market levels are already controlled for
when investigating the response to uncertainty shocks. In a first step, we check whether using
the VIX instead of the JLN measure makes a difference in our VAR 11+1. The blue solid
lines in Figure 10 confirm that the results are robust to this change.

Next, we investigate the original Bloom 8-variable VAR with uncertainty, measured by
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Figure 11: Alternative price markup-IRFs to JLN-based two-standard deviation uncertainty
shocks in the mixed-frequency 11+1-VAR. Notes: See text for description of
measures. Bands are pointwise 90% HPDIs.

the VIX, ordered second. We add our markup measure as the ninth variable.41 Results from
the mixed-frequency estimation are included as red dashed lines in Figure 10. They are very
similar to the baseline results, indicating that the ordering of the uncertainty measure is not
crucial for our results.42

Alternative markup measurements

In our baseline price markup measure, we employ the utilization-adjusted TFP measure of
Fernald (2012), which results in an acyclical price markup. As a robustness check, we also
use Fernald’s utilization-unadjusted TFP measure. This results in a strongly countercyclical
price markup (see the red dashed line in the left panel of Figure 6), which, as Nekarda and
Ramey (2013) note, is very similar to the countercyclical markup measure constructed in
Galí, Gertler, et al. (2007). Estimating our mixed-frequency VAR including this alternative
price markup measure yields the IRFs reported in the upper left panel of Figure 11. The
drop in the price markup is less pronounced than in the baseline, but there is still no robust
evidence for an increase.

With respect to the price markup, one might also worry that the correction for overhead
41See Appendix D.3 for a detailed variable listing and Figure D.8 for a full set of IRFs.
42Figure D.9 shows that the IRFs when using the JLN-measure ordered second in the VAR are also similar.
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Figure 12: IRFs to JLN-based two-standard deviation uncertainty shocks in the mixed-
frequency 11+1-VAR using a variety of measured markups. Notes: Left panel:
price markups for range of EOS between capital and labor; right panel: wage
markup for different preference specifications (see text for details).

labor, fixed costs, and a CES production function might be overdoing things. Figure 11
therefore also reports the responses of three “conventional” markup measures based on a
setup with no fixed costs and a Cobb-Douglas production function. In this case, the aggregate
price markup corresponds to the inverse labor share. The upper right panel of Figure 11
displays the response of the price markup for the labor share based on total compensation in
the non-financial business sector (available from the NIPA tables). The lower left panel uses
the labor share of production and supervisory workers in the private business sector, while
the lower right panel is based on production workers only in the private business sector, i.e.
excludes overhead workers (both available from the BLS). In all three cases, the price markup
significantly drops after an uncertainty shock. The first two measures, which are based on all
workers, tend to recover somewhat more quickly than the third measure, which accounts for
the presence of overhead labor as in the baseline. But even for the first two measures, we do
not find a significant increase of the price markup within the first three years.

We also check whether our choice of the elasticity of substitution (EOS) between capital
and labor influences the dynamic response of the price markup. Unfortunately, the EOS
is difficult to measure in the data and estimates range from 0.5 - 0.7 (e.g., Chirinko 2008;
Oberfield and Raval 2019) to 1.25 and higher (e.g., Karabarbounis and Neiman 2014). We
therefore compute price markups for parameterizations of the EOS ranging from 0.5 to 1.5
and report the resulting IRFs to a two-standard-deviation uncertainty shock in the left panel
of Figure 12. While larger values of the EOS correlate with smaller drops in the price markup,
the general pattern of a fall in the price markup following an uncertainty shock stands.

We also check the robustness of the wage markup response with respect to the preference
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specification used (right panel of Figure 12). It first varies the functional form, keeping the
Frisch elasticity at its baseline value of 1. The blue solid line shows separable isoelastic
preferences of the type U = logCt − ψN1+1/η

t , while the red dashed line displays Greenwood,
Hercowitz, and Huffman (1988, GHH) preferences of the form U = log

(
Ct − ψN1+1/η

t

)
.43

Isoelastic preferences result in a wage markup that is more volatile over the business cycle (see
also Karabarbounis 2014), but that is otherwise similar to the baseline. The wage markup
response with GHH preferences is also very similar to the baseline. The yellow dotted and
the violet dashed dotted lines display the Cobb-Douglas and the isoelastic preferences with
external habits of 0.7, a common value in the literature. Habits cause a quicker and more
persistent increase in the wage markup. The next two lines display the effect of parameter
variations for the case of isoelastic preferences. The green solid line uses a higher risk aversion
parameter of σ = 2.5, while the cyan dashed line lowers the Frisch elasticity to 0.5. In
both cases, the response of the wage markup almost doubles, but is qualitatively still the
same. Finally, the burgundy dotted line combines a higher risk aversion of 1.4, a lower Frisch
elasticity of 0.5, and external habits of 0.71 as estimated for the US in Smets and Wouters
(2007). The response of the wage markup in this case combines the quick and drawn out
increase of the external habit case with the higher peak response of the high risk aversion/low
Frisch elasticity cases.

Other uncertainty measures

Recently Caldara et al. (2016) and Ludvigson, Ma, and Ng (forthcoming) have argued that it
is important to distinguish between macroeconomic and financial uncertainty, with the latter
driving the former. In Figure D.10 we therefore display the VAR-IRFs in response to the
Ludvigson et al. (forthcoming) financial uncertainty measure. The results are similar to the
ones of the JLN-macro uncertainty measure.

Carriero et al. (2018) also provide measures of macroeconomic and financial uncertainty.
Figures D.11 to D.14 display the results. Again, the wage markup increases while the price
markup tends to fall. The only slight exception is their financial uncertainty proxy for which
we see an initial, insignificant increase in the price markup before it drops again.

Baker et al. (2016) have constructed an index of economic policy uncertainty. It is more
narrow than the JLN-uncertainty measure in that it only captures the political dimension
of uncertainty, but is at the same time broader in that it not only captures risk, but also
Knightian uncertainty. Despite these differences, the responses of the respective markups,
displayed in Figure D.15, show a familiar pattern: the wage markup increases while the price

43The labor disutility parameter ψ only affects the constant in our markup measure and therefore can be
set to 1 without loss of generality.
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Table 3: Short-run response of BKM annual price markup to aggregate macroeconomic
uncertainty shock

(1) (2) (3) (4) (5) (6) (7)
h=0 0.340 0.198 0.288 0.490*** -0.003 -0.241 -0.145

(0.482) (0.672) (0.393) (0.017) (0.314) (0.575) (0.310)
h=1 1.616*** 1.787*** 1.561 0.377 1.081* 1.220* 0.818

(0.561) (0.737) (1.015) (1.889) (0.651) (0.675) (1.394)
Hours All workers SE SE SE SE SE SE
MPN Agg. Agg. SE SE Uninc SE SE
Cons. PCE PCE PCE +CE Adj. PCE PCE PCE

Weight. Equal SE in CPS SE in CPS SE in CPS SE in CPS All in CPS Emp.
Notes: Responses are in percent. Regressions based on years 1987-1993 and 1996-2012. Newey-West standard
errors are in parentheses. ***, **, and * denote significance at the 1, 5, and 10 percent level, respectively.
Hours are weekly. MPN refers to how the marginal product is measured: “Agg.” denotes the NIPA labor
productivity measure, “SE” denotes self-employed income per hour, “Uninc” denotes unincorporated self-
employed income per hour. “Cons.” denotes the respective consumption measure. PCE: NIPA aggregate real
expenditures on nondurables and services. CE adjustment incorporates consumption for the self-employed
versus all persons from the Consumer Expenditure Surveys. Weighting schemes: “SE in CPS’ weights all
self-employed in the CPS equal, “All in CPS’ weights self-employed to achieve mirror industry structure of all
workers in the CPS, and “Emp.” reweights with the share of self-employed with employees (see BKM for
details).

markup falls.44

4.6 Price markup based on self-employed and new jobs formed

The previous analyses have relied on a measure of average hourly earnings, which would be
the appropriate measure of firms’ marginal cost of labor if transactions took place in perfectly
competitive spot markets. But due to implicit long-term contracts between firms and workers
this measure of earnings may not play an allocative role. For this reason, Bils et al. (2018,
BKM) have recently investigated the labor wedge of self-employed people along the intensive
margin. Arguably, no wage rigidities and labor market distortions affect their decision to
supply labor to their own business. In this case the wage markup is zero and the labor wedge
coincides with the price markup. The share of self-employed in nonagricultural industries is
roughly 10%. The BKM data is based on the Annual Social and Economic Supplements to
the CPS from 1987 to 2012 with a gap in 1994 and 1995 due to a CPS sample redesign. The
wedge construction assumes separable isoelastic preferences with a Frisch elasticity of unity
and an intertemporal elasticity of substitution of 0.5.

In Table 3, we investigate the effect of uncertainty shocks on the BKM annual intensive
44In this case, due to non-availability of the EPU measure, the sample only starts in 1985, potentially

explaining the non-significant drop in industrial production.
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margin labor wedges during the first two years after the shock. The aggregate uncertainty
shock is constructed as the annual average of the monthly uncertainty shocks estimated using
the VAR (4.5). The first column displays the results based on hours, labor productivity, and
consumption of all workers, not just the self-employed.45 The response therefore needs to
be interpreted as the total markup. Consistent with our previous findings based mostly on
quarterly NIPA data, it shows a delayed increase. The next columns subsequently replace the
aggregate components of the wedge computation by measures specific to the self-employed.
Most importantly, starting with the second column the total hours measure is replaced by
the one for the self-employed. The resulting wedge can therefore be interpreted as the price
markup. As the second column shows, we find a significant increase of the price markup after
one year, consistent with the markup channel. The third column then replaces the aggregate
labor productivity measure by one for the self-employed, that is business income divided by
hours. This change causes the price markup increase to become insignificant. The reason may
be that, as argued in BKM, this measure tends to understate the cyclicality of the labor wedge.
The fourth column adjusts the previously used aggregate consumption measure by a measure
of consumption for the self-employed derived from the CPS. Self-employed consumption is
more cyclical, which causes the estimated price markup to increase significantly on impact, but
revert more quickly. The fifth column again uses aggregate consumption, but considers only
non-incorporated businesses to avoid issues with reporting of business income as corporate
profits. We find a marginally significant increase in the price markup after one year. Finally,
columns (6) and (7) use a different weighting scheme. Column (6) reweights observations by
industry in order to achieve a weighting of self-employed by industry that mirrors the one of
all employees.46 This assures a similar aggregate cyclical exposure of the self-employed wedge
measure as for the whole worker population. This reweighting hardly makes a difference. We
still only find a marginally significant increase in the wedge after one year. Finally, column
(7) reweights observations by the share of self-employed with employees. The goal is to give
less weight to self-employed people that might just contract with one employer and are thus
quasi-employees with all associated rigidities. In this case, the price markup increase after
one year becomes insignificant.

Summarizing, estimating the response of the price markup based on an annual dataset of
self-employed persons yields some tentative evidence for the presence of the markup channel.
One year after the shock, the point estimate is consistently positive. However, the significance
of this increase in the price markup depends on the exact specification used.

45For details on the construction of the respective wedges, we refer the reader to BKM.
46For example, if self-employment is twice as likely in construction than overall, self-employed in construction

only receive a weight of one half.
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Finally, we turn to the extensive labor margin. Most representative agent models investi-
gating the effect of uncertainty shocks only feature an intensive margin of labor adjustment
and rely on a measure of average hourly earnings to represent the opportunity cost of firms
(e.g. the estimations in Born and Pfeifer 2014a; Fernández-Villaverde et al. 2015). In theory,
if this wage measure were allocative, e.g. if all workers were hired in spot markets, markups
based on it should return the same result as any other margin of adjustment available to the
firm. However, there are well-documented reasons like implicit long-term contract concerns
that may prevent wages of existing jobs from adjusting in a frictionless way (see e.g. Basu
and House 2016). We investigate whether our findings change if we consider the extensive
margin adjustment and analyze a firm’s decisions when forming new jobs.

For this purpose, we rely on two quarterly extensive margin price markups constructed
in BKM for the period from 1987 to 2012.47 Instead of relying on average hourly earnings
of all workers, the two measures follow Kudlyak (2014) and employ the wage of new hires
and the user cost of labor, respectively.48 Both cost measures are arguably more relevant for
the firm’s hiring decisions than average wages. BKM obtain these two measures based on
their respective semi-elasticities and the one of average hourly earnings with respect to the
unemployment rate. While average wages fall by 1.5% for each percentage point increase in
unemployment, wages of newly hired workers fall by 3% and the user cost by 4.5%. This
information allows constructing the wage of new hires and the user cost of labor by adjusting
average hourly earnings for the respective different comovement with respect to the observed
unemployment series.

The impulse responses of the two extensive margin price markups are shown in Figure 13.
The left panel shows the response of the price markup when using the wage of new hires as
the relevant firm cost measure. After an initial, insignificant drop, the price markup increases
significantly after about one year. The right panel displays the price markup based on the
user cost of labor. It also increases in a hump-shaped manner, but already becomes significant
after about 6 months and exhibits a larger peak. Thus, these tentative measures of extensive
margin price markups provide the strongest evidence yet for the presence of a markup channel.
The results suggest that recent modeling efforts combining search-and-matching models with
uncertainty shocks (Leduc and Liu 2016; Freund and Rendahl 2020) may be a particularly
promising avenue for obtaining data-consistent model responses to uncertainty shocks.

47We verified that our baseline intensive margin results are unaltered if we restrict our analysis to this
shorter sample period. For details on the construction of extensive margin price markups, we refer interested
readers to the original paper.

48Kudlyak (2014) defines the user cost as the expected difference between the present value of wages paid
to a worker hired in period t and that hired in t+ 1. If the labor market were a spot market, this difference
would simply be the wage.
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Figure 13: IRFs to JLN-based two-standard deviation uncertainty shocks in the mixed-
frequency 11+1-VAR using the BKM extensive margin price markups based
on the wage of new hires (left panel) and the user cost of labor (right panel).
Sample range: 1987M1:2012M12.

However, these findings come with two important caveats. First, while BKM were only
interested in the unconditional cyclicality of price markups, their mechanical unemployment-
based adjustment of average hourly earnings is problematic in our context of a conditional
analysis. It carries the risk of introducing a spurious effect of uncertainty shocks. Empiri-
cally, uncertainty shocks tend to exhibit a significant effect on unemployment, which – by
construction – will affect the measurement of new hire wages and the user cost of labor. For
this reason, we consider the evidence presented above to be tentative and pointing towards
the need for further investigation.

Second, and perhaps even more importantly, it needs to be pointed out that – in contrast
to the other markup measures considered in the present paper – constructing price markups
in a search-and-matching framework requires dynamic equilibrium conditions. Therefore,
results will strongly depend on the model assumptions and the employed empirical models to
infer expectations about future variables from the data. We leave an investigation of these
issues for future research.

5 Industry-level evidence

In the previous section, we have documented that there is only mixed empirical evidence for
price markup increases after uncertainty shocks at the aggregate level. In this section we dig
deeper and investigate whether the model-predicted price markup response may simply be
hidden by heterogeneity in price stickiness at the industry level. The results in this section
need to be interpreted with caution. First, the markup channel provides clear-cut predictions
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for aggregate markups based on aggregate equilibrium conditions, but is strictly speaking
silent on what happens at a more disaggregated level. Aggregation from the average markup
of firms or industries to the markup of the average firm is not trivial (see e.g. De Loecker
et al. 2020). However, we expect this issue to be less problematic if aggregation is at the
industry rather than the firm level.49 Second, input-output-relationships between sectors can
lead to non-trivial interactions with nominal rigidities (see e.g. Pasten, Schoenle, and Weber
2019). We abstract from this issue as it is beyond the scope of the present paper, but think it
deserves more future attention. Despite these limitations, we still consider the industry-level
analysis to be an additional useful piece of evidence.

5.1 Constructing industry-specific markups

Based on the NBER CES Manufacturing Industry Database (Becker, Gray, and Marvakov
2016; Bartelsman and Gray 1996) we construct price markups and output measures at the
four digit SIC-industry level (see Appendix C.5 for details). As we have argued before, a
robust result of representative agent models with convex adjustment costs is that negative
output effects of uncertainty are directly related to nominal stickiness. As a first pass at
the data, we therefore estimate the contemporaneous response of real output for each SIC4
industry and plot it against average price durations for these industries. To compute this
response, for each industry we regress the log of real output yt on the aggregate uncertainty
shock, a constant, and a linear time trend:

log(yt) = α0 + α1t+ α2ēt + εt . (5.1)

Again, the aggregate uncertainty shock ēt is the annual average of the monthly uncertainty
shocks estimated using the VAR (4.5). Implied average price durations are computed for SIC4
industries based on the estimated New Keynesian Phillips Curves in Petrella and Santoro
(2012).50 Figure 14 plots the resulting estimates α̂2 against average price durations. There
does not seem to be a linear relationship between price stickiness and the output effects of
uncertainty shocks. The regression line is flat and the slope coefficient is insignificant at the
5% level.

49The different level of aggregation is also the reason why BKM’s industry-level analysis does not reveal a
trend in the average markup, while De Loecker et al. (2020)’s firm-level analysis does.

50For that purpose, we translate their estimated slope of the New Keynesian Phillips Curve into a Calvo
price duration parameter, using β = 0.99.
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Figure 14: Implied average price duration at the SIC4 industry-level vs. output effects of
aggregate uncertainty shock. Notes: Implied average price durations are based
on Petrella and Santoro (2012); output effect estimates based on regression (5.1)
using mean annual JLN shocks from VAR-11.

5.2 Regression evidence

As price stickiness per se does not seem seem to be related to the output effects of uncertainty,
we now investigate the markup channel itself. Specifically, we run a panel version of the local
projection (4.4)

xi,t+h = αi,h + βi,ht+ γhēt + ηi,t+h . (5.2)

Again, γh denotes the response of a particular variable xt+h at horizon h to an exogenous
variation in uncertainty at time t, ēt, where xt+h is either the industry-specific price markup
or industry-specific real output. αi,h and βi,ht are industry-specific constant and time trend,
respectively. Given the short annual panel, we restrict ourself to h = 0 and h = 1. The
results of the pooled OLS regression are shown in Table 4. Standard errors are robust to
serial and cross-sectional correlation based on the approach by Driscoll and Kraay (1998).
Qualitatively, the results look quite similar to the aggregate evidence. Industry-level output
(first column) declines after a one-standard deviation uncertainty shock. While the price
markup based on a CES production function and production-worker compensation shows an
initial, marginally significant increase (which disappears after year), markups constructed
using all workers (column [2]) and a Cobb-Douglas production function (column [3]) fall
(insignificantly) on impact.
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Table 4: Short-run response of industry-level price markup to aggregate macroeconomic
uncertainty shock

Output Markup
[1] [2] [3] [4]

h=0 −1.45 1.61∗ −0.10 −0.45 −0.44
(1.73) (0.94) (0.36) (0.41) (0.37)

h=1 −3.13∗ 0.66 −0.31 −0.24 0.78
(1.20) (0.68) (0.24) (0.20) (0.67)

Sectors 459 451 458 458 60
Observations 21463 21197 21416 21416 1500

Notes: Responses, based on local projection (5.2), are in percent. Markup [1]: based on CES production
function and production-worker compensation; markup [2]: based on CES production function and all-worker
compensation; markup [3]: based on Cobb-Douglas production function and production-worker compensation;
markup [4]: markup based on BKM intermediates share. Driscoll-Kray standard errors in parentheses. ***,
**, and * denote significance at the 1, 5, and 10 percent level, respectively.

In a final robustness check, we use price markups constructed by BKM based on the share
of intermediate inputs. Arguably, the markup measured along the intermediate inputs margin
is less affected by the type of implicit contracting that may make wages not allocative.51

These markups, based on the KLEMS database, are available for 60 sectors, 42 of those
outside of manufacturing, on an annual basis from 1987 to 2012. The results are shown in
the last column of Table 4 and corroborate our earlier findings of no consistent evidence for a
price markup increase after uncertainty shocks.

51Following the evidence in BKM that their measured markup does not contain a trend, we do not include
a trend in the regression.
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6 Conclusion

The question of the markup channel as an empirically plausible transmission mechanism
of uncertainty shocks into the macroeconomy is highly relevant for the policy debate given
that the supposedly negative influence of policy uncertainty has become a recurring theme
in the political discourse. With much of the model-based evidence featuring this supposed
transmission mechanism, it is of paramount importance to subject it to a rigorous empirical
assessment.

We construct a DSGE model to measure markups and to generate theoretical markup
responses following uncertainty shocks. We then provide empirical evidence on the response
of markups to uncertainty shocks. Contrary to the model’s prediction, price markups do
not consistently increase. The only tentative evidence for an increase in price markups we
can find is for price markups measured along the extensive margin. However, wage markups
increase after uncertainty shocks, suggesting that sticky wages play a more important role in
the transmission of aggregate uncertainty shocks to economic variables than sticky prices.52

Of course it is important to understand why model-consistently measured price markups
do not increase as predicted by the model. We can think of at least three potential reasons.
First, the model assumes that any demand always has to be satisfied. In reality, firms might
avoid having to satisfy demand at disadvantageous prices by “being out of stock”. This
potential violation of a crucial model assumption may be one reason why we find less evidence
of a precautionary pricing for firms. Second, instead of hiking their prices, firms may care
about protecting their customer base and invest into market shares.53 However, while the
evidence in Gilchrist, Schoenle, Sim, and Zakrajšek (2017) is consistent with the relevance
of customer markets, it suggests that, together with empirically realistic financial frictions,
customer markets actually strengthen the countercyclical model behavior of markups.

Finally, average wages may not be allocative. When we tentatively analyze price markups
measured along the extensive margin, we find that they increase. The intensive margin-only
labor market structure in the spirit of Erceg et al. (2000) embedded in most medium-scale
NK models may therefore require to be augmented by an extensive margin. A crucial open
question in that regard is how to resolve the fundamental indeterminacy of wages within
the bargaining set. The exact type of wage setting mechanism employed is important for
understanding the effects of uncertainty shocks (see Freund and Rendahl 2020) and the
behavior of model-consistent wage and price markups. A rigorous analysis of this nexus must
be left for future research.

52See also Barattieri, Basu, and Gottschalk (2014), Daly and Hobijn (2014), and Galí (2011) on the
importance of sticky wages.

53We thank an anonymous referee for suggesting this possibility.
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A Theoretical model

A.1 Model equations

The model equations after imposing a symmetric equilibrium are given by:

1. Production function:

Yt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1

− Φ (A.1)

2. Firm FOC for renting Nt:
Ξp,t

Wt

Pt
= MPLt , (A.2)

3. Definition marginal product of labor

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α) (Zt (Nt −N o))

ψ−1
ψ

Nt −N o
,

(A.3)
which, in the presence of no overhead labor and fixed costs, simplifies to

MPLt = (1− α) (Zt)
ψ−1
ψ

(
Yt
Nt

) 1
ψ

4. Firm profits:
Dt = Yt −Nt

Wt

Pt
− It −

φP
2
(
Πt − Π̄

)2
Yt (A.4)

5. Firm FOC for renting Kt:
Ξp,tR

K
t = MPKt , (A.5)

6. Definition marginal product of capital

MPKt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1

αK
ψ−1
ψ

t

Kt

(A.6)

which, in the presence of no fixed costs, simplifies to

MPKt = α
(
Yt
Kt

) 1
ψ
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7. Firm FOC for Pt:

φp

[
Π−1 Pt

Pt−1
− 1

]
Π−1 Pt

Pt−1
= φP θp

2

(
Π−1 Pt

Pt−1
− 1

)2

+ (1− θp) + θpΞ−1
p,t

+ φpEt
{
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Yt

[
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Pt
− 1

] [
Π−1Pt+1

Pt

]}
,

(A.7)

where Mt is the stochastic discount factor defined below.

8. Firm FOC for capital:

qt = EtMt+1
(
Rk
t+1 + (1− δ) qt+1

)
(A.8)

9. Firm FOC for investment:

1 = qt

1− φk
2

(
It
It−1
− 1

)2

− φk
(
It
It−1
− 1

)
It
It−1


+ φkEtMt+1qt+1
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It
− 1

)(
It+1

It

)2
(A.9)

10. Definition value function:

Vt = (Cη
t (1−Nt)1−η)1−σ

1− σ + βEtVt+1 (A.10)

11. Partial derivative of lifetime utility with respect to consumption:

VC,t = η
1
Ct

(
Cη
t (1−Nt)1−η

)1−σ
(A.11)

12. FOC with respect to W:

0 = VNt(−θw)Nt + VC,t
1 + τ ct

[
(1− θw)(1− τnt )Nt

Wt

Pt
− φw

(
Π−1 Wt

Wt−1
− 1

)
Wt

ΠWt−1
Yt

]

+ β
VC,t+1

1 + τ ct+1

[
φw

(
Π−1Wt+1

Wt

− 1
)
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Wt

Yt+1

]
,

(A.12)

13. Partial derivative of lifetime utility with respect to labor:

VN,t = −(1− η) 1
1−Nt

(
Cη
t (1−Nt)1−η

)1−σ
(A.13)
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14. Definition stochastic discount factor:

Mt+1 ≡
∂Vt
∂Ct+1
∂V
∂Ct

1 + τ ct
1 + τ ct+1

= β
1 + τ ct

1 + τ ct+1

(
Cη
t+1(1−Nt+1)1−η

Cη
t (1−Nt)1−η

)1−σ (
Ct
Ct+1

)
(A.14)

15. Euler Equation
1 = RtEt

{
Mt+1Π−1

t+1

}
(A.15)

16. Taylor Rule:
Rt

R
=
(
Rt−1

R

)ρR (Πt

Π

)φRπ ( Yt
Y HP
t

)φRy1−ρR

. (A.16)

17. Law of motion for capital:

Kt+1 = Kt (1− δ) + It

1− φk
2

(
It
It−1
− 1

)2
 (A.17)

18. Definition of model-consistent HP-filter output gap:

Y HP
t (1 + 6× 1600) + Y HP

t−1 (−4× 1600) + EtY
HP
t+1 (−4× 1600) + Y HP

t−2 × 1600 + EtY
HP
t+2 1600

= Yt(6× 1600) + Yt−1(−4× 1600) + EtYt+1(−4× 1600) + Yt−11600 + EtYt+11600
(A.18)

19. Budget constraint household after imposing that Bt/Pt = 0 ∀ t:54

(1 + τ ct )Ct = (1− τnt )Wt

Pt
Nt + Ct −

φw
2

(
Π−1 Wt

Wt−1
− 1

)2

Yt + Tt +Dt (A.19)

20. Budget constraint government:

τ ctCt + τnt
Wt

Pt
Nt = Gt + Tt (A.20)

These 20 equations define the evolution of the following 20 variables: Ct, It, Kt,Dt, Mt,
MPLt, MPKt, Nt,Πt, qt, Rt, R

K
t , Tt, Vt, VC,t, VN,t,

Wt

Pt
,Ξp,t, Yt, Y

HP
t .

Finally, the exogenous processes for Ẑt, σzt , Ĝt, and σgt are given by

Ẑt = ρzẐt−1 + σzt ε
z
t (A.21)

Ĝt = ρgĜt−1 + φgyŶt−1 + σgt ε
g
t (A.22)

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + ησzε

σz

t (A.23)

σgt = (1− ρσg)σ̄g + ρσgσ
g
t−1 + ησgε

σg

t (A.24)
54Note that for the purpose of model simulations, we set τ ct = τ c and τnt = τn.
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A.2 Additional derivations for model calibration

A.2.1 Frisch elasticity

This section shows how to compute the Frisch elasticity of labor supply for our model. The
resulting expression will be used in steady-state computations to determine the weight of
leisure in the Cobb-Douglas felicity function, i.e. when determining η. As shown in e.g.
Domeij and Floden (2006), the Frisch elasticity ηλ can be computed from:

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

(A.25)

For the felicity function

U (C,N) =

(
Cη (1−N)1−η

)1−σ

1− σ = Cη(1−σ) (1−N)(1−η)(1−σ)

1− σ , (A.26)

we get

UN =− (1− η) (Cη)1−σ (1−N)(1−η)(1−σ)−1 = − (1− η) (1− σ) U (C,N)
(1−N) (A.27)

UNN = (1− η) (1− σ) ((1− η) (1− σ)− 1) U (C,N)
(1−N)2 (A.28)

UC =ηCη(1−σ)−1 (1−N)(1−η)(1−σ) = η (1− σ) U (C,N)
C

(A.29)

UCC =η (η (1− σ)− 1) (1− σ) U (C,N)
C2 (A.30)

UCN =− η (1− η) (1− σ)Cη(1−σ)−1 (1−N)(1−η)(1−σ)−1

=− η (1− η) (1− σ) (1− σ) U (C,N)
C (1−N) (A.31)

After a lot of tedious algebra, we get that

ηλ = UN (C,N)(
UNN (C,N)− U2

CN (C,N)
UCC

(C,N)
) 1
N

= 1− η (1− σ)
1− (1− σ)

1−N
N

(A.32)
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A.3 Steady state

The stochastic discount factor, equation (A.14), in steady state evaluates to

M = β , (A.33)

while the first-order condition for investment, equation (A.9), gives Tobin’s marginal q as

q = 1 . (A.34)

Plugging this into (A.8) yields
RK = 1

β
− (1− δ) (A.35)

and the pricing FOC (A.7) in steady state implies that

Ξt,p = θp
θp − 1 . (A.36)

The wage setting FOC (A.12) implies

VN = VC
1 + τ c

[
(θw − 1) (1− τnt )W

P
N
]
. (A.37)

Using the definition of marginal utility, (A.11),

VC = η

(
Cη (1−N)1−η

)1−σ

C
(A.38)

and the definition of VN , (A.13),

VN = −(1− η)

(
Cη (1−N)1−η

)1−σ

1−N , (A.39)

equation (A.37) reduces to

1− η
1−N θw = η

1 + τ c
1
C

[
(θw − 1) (1− τn)W

P

]
. (A.40)

With net output normalized to 1 by appropriately setting Y norm, which is determined
later, and the labor and capital share given by ℵ and 1− ℵ, respectively, we have

ℵ =
W
P
N

Y
=

W
P
N

1 ⇒ W/P = ℵ
N

(A.41)

and similarly
K = 1− ℵ

RK
. (A.42)
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Equation (A.42) can be used with (A.35) to directly compute K and via the law of motion
for capital, equation (A.17), also investment

I = δK . (A.43)

Next, substituting for the real wage in (A.40) from (A.41), one obtains

1− η
η

C

1−N = θw − 1
θw

1− τn
1 + τ c

ℵ
N

. (A.44)

Solving this equation for consumption yields

C = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

η

1− η . (A.45)

Consolidating the household and government budget constraints, equations (A.19) and
(A.20), and using equation (A.43) and the definition of firm dividends, equation (A.4), yields:

C + δK = Y = 1 . (A.46)

Plugging in from (A.45) for consumption yields

θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− η
η

+ δK = 1 , (A.47)

where K is already known from (A.42).
The Frisch elasticity ηλ is calibrated to 1. From (A.32) then follows that

η = θ

1− σ

[
1− ηλ

(
1− 1− σ

θ

)
N

1−N

]
(A.48)

Plugging (A.48) into (A.47), one obtains a nonlinear equation for N :

0 = θw − 1
θw

1− τn
1 + τ c

ℵ1−N
N

1− 1
1−σ

(
1− (1− 1− σ) N

1−N

)
1

1−σ

(
1− (1− 1− σ) N

1−N

) + δK − 1 . (A.49)

This equation is solved numerically for hours worked N . Consumption immediately follows
from (A.45), η from (A.48), the real wage from (A.41), and dividends from (A.4).

Up to this point, we have assumed that net output is normalized to 1. We are now in
a position to compute the variables and parameters of the production side of our model,
including the normalizing technology factor Y norm that allowed working with Y = 1.

Fixed costs Φ are set equal to steady-state profits, which are the difference between output
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and factor payments:

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
−KRK −WN . (A.50)

With technology being in steady state, i.e. Z = 1, the firm FOCs, equations (A.2)-(A.6),
imply:

RK = ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1 (A.51)

W

P
= ΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ
−1 (A.52)

so that (A.50) with N o = φoN becomes

Φ = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ

− ΞY norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

(1− α) (N −N o)
ψ−1
ψ

N

N −N o

= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) 1
ψ−1

1− Ξ
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ

t + (1− α) (Nt −N o)
ψ−1
ψ


(A.53)

In the absence of overhead labor, this reduces to

Φ = (1− Ξ)Y norm
(
αK

ψ−1
ψ + (1− α)N

ψ−1
ψ

) 1
ψ−1

. (A.54)

Net output Y is given by production minus fixed costs:

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1
− Φ

(A.53)= Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ 1

(1−φo)

αK
ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

,

(A.55)

which in the absence of overhead labor reduces to

Y = Y norm
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

.
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Equation (A.55) implies that the normalizing technology factor Y norm is given by

Y norm =


(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

Ξ

(
αK

ψ−1
ψ

t + (1− α) (N −N o)
ψ−1
ψ 1

(1−φo)

)
(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

)

−1

.

(A.56)
All the previous equations require knowledge of the labor share parameter α, which is not

a true structural parameter in the sense that it depends on the units of the model variables
(see Cantore and Levine 2012, for details). It can be computed from the actual labor share ℵ
using

1− ℵ = KRK

Y
=

KΞY norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1−1

αK
ψ−1
ψ
−1

Y norm

(
αK

ψ−1
ψ + (1− α) (N −N o)

ψ−1
ψ

) ψ
ψ−1

ΞαK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ 1

1−φo

αK
ψ−1
ψ +(1−α)(N−No)

ψ−1
ψ

= αK
ψ−1
ψ

αK
ψ−1
ψ + (1− α)

(
N − N̄ o

)ψ−1
ψ 1

1−φo

. (A.57)

Solving for α yields

α =
ℵ (N −N o)

ψ−1
ψ 1

1−φo

(1− ℵ)K
ψ−1
ψ + ℵ (N −N o)

ψ−1
ψ 1

1−φo

, (A.58)

allowing us to compute the normalizing technology factor Y norm from (A.56) and the fixed
costs Φ from (A.53).

We also need to compute the steady states of our auxiliary variables in the model. In
steady state, the wage markup between marginal rate of substitution is

MRS = 1− η
η

C

1−N , (A.59)

while the real wage is given by
Ξw = θw

θw − 1 . (A.60)
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A.4 Smoothed volatilities from the particle smoother
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(b) Government Spending Volatility

Figure A.1: Median smoothed volatilities from the particle smoother, based on 20,000
particles for the forward pass and 20,000 particles for the backward smoothing
routine. Shaded areas denote 90% highest posterior density intervals.
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A.5 Convergence diagnostics

Table A.1: Geweke (1992) convergence tests, based on means of draws 5001 to 45001 vs
105001 to 205000. p-values are for χ2-test for equality of means.

Parameter Mean Std No Taper 4% Taper 8% Taper 15% Taper

ρσz 0.5177 0.1242 0.0591 0.8851 0.8846 0.8869
ρz 0.7730 0.0498 0.0000 0.2467 0.2427 0.2611
ησz 0.0023 0.0003 0.2213 0.8546 0.8504 0.8503
σz 0.0070 0.0006 0.1086 0.5670 0.5420 0.5090

Table A.2: Geweke (1992) convergence tests, based on means of draws 5001 to 45001 vs
105001 to 205000. p-values are for χ2-test for equality of means.

Parameter Mean Std No Taper 4% Taper 8% Taper 15% Taper

ρσg 0.5041 0.1226 0.0000 0.1551 0.1687 0.1578
ρg 0.9380 0.0343 0.0000 0.4864 0.5655 0.6271
ησg 0.0030 0.0004 0.1448 0.8583 0.8514 0.8298
σg 0.0076 0.0007 0.1993 0.8189 0.8289 0.8423
φgy 0.0222 0.0343 0.0001 0.4009 0.4399 0.5008
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A.6 Additional model IRFs
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Figure A.2: Model IRFs with sticky prices and flexible wages. Notes: IRFs to a two-standard
deviation shock measured in percentage deviations from the stochastic steady
state.
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Figure A.3: Model IRFs with sticky wages and flexible prices. Notes: IRFs to a two-standard
deviation shock measured in percentage deviations from the stochastic steady
state.
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Figure A.4: Model IRFs with flexible prices and wages. Notes: IRFs to a two-standard
deviation shock measured in percentage deviations from the stochastic steady
state.
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Figure A.5: Model IRFs to level shocks with sticky prices and wages. Notes: IRFs to a
one-standard deviation shock, measured in percentage deviations or percentage
point deviations (annualized inflation and interest rates) from the stochastic
steady state. 57



B Marginal product of labor for markup computation

Given our production function, the marginal product of labor is equal to

MPLt = Y norm

[
αK

ψ−1
ψ

t + (1− α) (Zt (Nt −N o))
ψ−1
ψ

] ψ
ψ−1−1 (1− α)

(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.1)
This is equal to

MPLt =
Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1


1
ψ

× (Y norm)
ψ−1
ψ

(1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

Nt −N o
.

(B.2)

Using (A.1), we have that

Yt + Φ = Y norm

[
αK

ψ−1
ψ

t + (1− α)
(
eZt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

(B.3)

so that

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt + Φ
Nt −N o

) 1
ψ

. (B.4)

In case of no fixed costs and no overhead labor, this reduces to the familiar

MPLt = (1− α) (Y norm)
ψ−1
ψ

(
eZt
)ψ−1

ψ

(
Yt
Nt

) 1
ψ

. (B.5)

In logs, we have from (B.4)

log (MPLt) = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
log

(
eZt
)

+ 1
ψ

log
(
Yt + Φ
Nt −N o

)
, (B.6)

where the first term is a constant that depends on the units of measurement. For the second
term, we need a measure of labor-augmenting technology Zt. Thus, the price markup can be
computed as

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (4.3)

Technology movements are approximated using the Fernald (2012) utilization-adjusted
TFP measure. This TFP measure, based on growth accounting, originally assumes a unit
elasticity of output with respect to technology, which would correspond to Hicks-neutral
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technology growth. Starting from a general production function

Y = Y (K,L, TFP ) , (B.7)

the contribution of TFP to output growth is effectively computed via the total differential as
the part of output growth not accounted for by utilization adjusted factor growth:

dTFPt
TFPt

= dYt
Yt
− εK,t

dKt

Kt

− εN,t
dNt

Nt

, (B.8)

where ε denotes the respective output elasticities and where by construction εTFP,t = 1. Thus,
we need to transform this TFP measure to correspond to our measure of labor-augmenting
(Kaldor-neutral) technology At = eZt as

dTFPt
TFPt

= εA,t
dAt
At
⇒ logAt = 1

εA,t
log TFPt , (B.9)

where the integration constant has been set to 0. Thus, when knowing the elasticity of
TFP with respect to labor-augmenting technology, εA,t, the Fernald (2012) measure can be
transformed into our required technology measure.55 As εA,t is invariant to multiplicative
transformations of output, we first normalize output by steady state/balanced growth path
output Y to get gross deviations from steady state:56

Ŷ ≡ Yt
Y

=

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] ψ
ψ−1

− Φ
[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1
− Φ

, (B.10)

where A is a constant capturing the unknown level of labor-augmenting technology and all
other normalizations, e.g. the one introduced by using an index for output.

Noting that in steady state

Y = 1
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.11)

Φ = φfix
(1 + φfix)

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

(B.12)

55In the Cobb-Douglas case, we have Yt = Kα
t (AtLt)1−α = A1−α

t Kα
t L

1−α
t so that a one percent change in

labor-augmenting technology At moves measured TFP by εA,t = 1− α percent (up to first order).
56We suppress the assumed deterministic loglinear trend in A for notational convenience.
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equation (B.10) can be rewritten as

Ŷ =
(1 + φfix)

[
αK

ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

] 1
ψ

[
αK

ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

] ψ
ψ−1

− φfix . (B.13)

Using the corresponding firm first-order conditions

Wt

Pt
= Ξ

 (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Nt −N o

(B.14)

and

RK
t = Ξ

 αK
ψ−1
ψ

t

αK
ψ−1
ψ

t + (1− α)
(
AeẐt (Nt −N o)

)ψ−1
ψ

 Yt + Φ
Kt

, (B.15)

equation (B.13) becomes

Ŷ = (1 + φfix)

 αK
ψ−1
ψ

t

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ

+
(1− α)

(
AeẐt (Nt −N o)

)ψ−1
ψ

αK
ψ−1
ψ + (1− α) (A (N −N o))

ψ−1
ψ


ψ
ψ−1

− φfix

= (1 + φfix)

 1
Ξ

RKK

(Y + Φ)

(
Kt

K

)ψ−1
ψ

+ 1
Ξ
W

P

(N −N o)
(Y + Φ)

AeẐt (Nt −N o)
A (N −N o)


ψ−1
ψ


ψ
ψ−1

− φfix .

(B.16)

Defining the share of non-overhead labor compensation in output as

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

and noting that the prefactors in front of capital and labor sum up to 1, equation (B.13) can
be rewritten as

Ŷt = (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1

− φfix (B.18)

The elasticity of output with respect to technology At can then be computed by differentiating
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net output deviations from steady state with respect to Ẑt,

εA,t =∂(Ŷt − 1)
∂Ẑt

= (1 + φfix)
[(

1− ℵo

Ξ (1 + φfix)

)
K̂

ψ−1
ψ

t + ℵo

Ξ (1 + φfix)
(
eẐtN̂t

)ψ−1
ψ

] ψ
ψ−1−1

× 1
Ξ (1 + φfix)

ℵo
(
eẐtN̂t

)ψ−1
ψ

(B.18)=
[
Ŷt + φfix
1 + φfix

] 1
ψ 1

Ξℵ
o
(
eẐtN̂t

)ψ−1
ψ

(B.19)

In the Cobb-Douglas case in steady state, this simplifies to the well-known

εA,t = 1
Ξℵ . (B.20)

To operationalize the aforementioned, we first need to detrend output with the rate of
labor-augmenting technology growth.

C Data

C.1 Macro data

The data for the VARs is taken from FRED-MD (McCracken and Ng 2016), except for i) our
constructed markup measure, ii) the respective uncertainty measure, iii) the shadow federal
funds rate, which is taken from Wu and Xia (2016), and iv) real new orders, which are taken
from Conference Board as the sum of “Orders: consumer goods” (A1M008) and “Orders:
capital goods” (A1M027) and are deflated using the “PCE Implicit Price Deflator” (PCEPI)
from FRED-MD.

For the particle filtering, we use Government Consumption Expenditures and Gross
Investment (FRED: GCE) as our measure of government spending and Real Gross Domestic
Product (FRED: GDPC1) as our output measure. Both are transformed to per capita values
via division by Civilian non-institutional population (FRED: CNP16OV), smoothed with an
HP-filter with λ = 10,000 to solve the best levels problem (Edge, Gürkaynak, and Kisacikoǧlu
2013). The resulting per capita series are then logged and detrended using a one-sided
HP-filter with λ = 1600.

For TFP, we cumulate the utilization adjusted TFP growth rates of Fernald (2012)
(dtfp_util, transformed from annualized to quarterly growth rates), and detrend using a
one-sided HP-filter with λ = 1600.
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C.2 Uncertainty measures

• The Jurado et al. (2015) macro uncertainty measure and the Ludvigson et al. (forth-
coming) financial uncertainty measure are available at Sydney Ludvigson’s homepage
at https://www.sydneyludvigson.com/data-and-appendixes/. We use the h = 1
measures.

• The Baker et al. (2016) economic policy uncertainty measure is taken from FRED
(USEPUINDXM)

• The VIX index is taken from FRED (VIXCLS) and averaged across months. Before
the VIX becomes available in 1990, we use the realized stock return volatility. For
that purpose, we compute the monthly standard deviation of the daily S&P 500
stock price index returns. The stock price index values are taken from Datastream
(S&PCOMP(PI)). The resulting index of realized volatilities is normalized to have the
same mean and variance as the VIX index when they overlap from 1990 onwards. The
correlation between the two during that period is 0.8776.

C.3 Wage markup

For the wage markup, i.e. the wedge between the marginal rate of substitution and the real
wage, we focus on an encompassing measure of hours. Recall the equation for computing the
wage markup in the baseline case of a Cobb-Douglas utility function

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
− log

(
1− η
η

)
+ log

(1−Nt

Nt

)
. (4.2)

Demeaning yields:

ξwt − ξw =
[
log

(
WtNt

PtYt

)
− log

(
WN

PY

)]
+
[
log

(
Yt
Ct

)
− log

(
Y

C

)]
+
[
log

(1−Nt

Nt

)
− log

(1−N
N

)]
+
[
log

(
1− τnt
1 + τ ct

)
− log

(1− τn
1 + τ c

)]
,

(C.1)

where the first term on the right hand side is the labor share. Expanding the fractions to get
the wedge in terms of the labor share and the consumption to output ratio has the advantage
of avoiding problems with different trends that may be contained in different data sources.57

57For example, the trend in NIPA GDP and Average hourly earnings of production and nonsupervisory
workers in the private sector differs, although theory says they should be the same.
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In case of isoelastic preferences with external habits:

U(Ct, Nt) = (Ct − φcCt−1)1−σ − 1
1− σ − ψN

1+ 1
κ

t

1 + 1
κ

, (C.2)

where κ is the inverse Frisch elasticity, σ the risk aversion, φc the habit persistence parameter,
and ψ the weight of labor in the utility function, we get

ξwt =− log (φ) + log (Yt)− σ log (Ct − φcCt−1)− (1 + κ) log (Nt)

+ log
(

1− τnt
1 + τ ct

)
+ log

(
WtN

PtYt

)
,

(C.3)

which, with σ = 1 and φc = 0, simplifies to

ξwt = log
(

1− τnt
1 + τ ct

)
+ log

(
WtNt

PtYt

)
+ log

(
Yt
Ct

)
+ log(ψ) + (1 + κ) log(Nt) . (C.4)

In case of Cobb-Douglas preferences with external habits of the form

U(Ct, Nt) =

(
(Ct − φcCt−1)η (1−N)1−η

)1−σ
− 1

1− σ (C.5)

we obtain

ξwt = log
(

1− τnt
1 + τ ct

)
+log

(
WtNt

PtYt

)
+log (Yt)−σ log (Ct − φcCt−1)−log

(
1− η
η

)
+log

(1−Nt

Nt

)
,

(C.6)
which nests our baseline specification (4.2) with σ = 1 and φc = 0.

For GHH preferences with

U(Ct, Nt) =

(
Ct − ψN1+κ

t

)1−σ
− 1

1− σ , (C.7)

where σ ≥ 0 determines the intertemporal elasticity of substitution (σ = 1 corresponds to
log utility), ψ > 0 determines weight of the disutility of labor, and κ is the inverse of the
Frisch elasticity, we get

ξwt = − log (ψ (1 + κ))− (1 + κ) log (Nt) + log
(

1− τnt
1 + τ ct

)
+ log

(
WtN

PtYt

)
+ log (Yt) . (C.8)

It should be noted that GHH preferences and isoelastic preferences with σ 6= 1 are not
consistent with a balanced growth path unless additional stationarizing devices are used (as
in e.g. Mertens and Ravn 2011). Including a log-linear trend in our empirical VAR allows us
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to deal with such remaining trends.
In order to compute the wage markup, the right-hand-side variables are mapped to the

data in the following way:

• WtNt
PtYt

: to compute the labor share, we take the share of employees’ compensation
Compensation of Employees, Paid (FRED: COE) in net national income (NNI), where
net national income is compute as National Income (FRED: NICUR) minus net indirect
taxes, computed as the difference between taxes on production and imports (FRED:
GDITAXES) and subsidies (FRED: GDISUBS). To this we add part of the ambiguous
proprietor’s income (FRED: PROPINC). The share of proprietor’s income assigned
to labor is computed as the share of unambiguous labor income in total unambiguous
income resulting in

WN

PY
= COE

NNI − PROPINC
.

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Yt: Gross Domestic Product (FRED: GDP), deflated by the GDP deflator and divided
by population Popt (defined below).

• Ct: real private consumption is computed as the sum of Personal Consumption Expen-
ditures: Nondurable Goods (FRED: PCND) and Personal Consumption Expenditures:
Services (FRED: PCESV), each deflated by the GDP deflator and divided by population
Popt

58

• Nt: We use a quarterly total hours measure following Cociuba et al. (2012), divided
by population Popt. For this purpose, we extend their measure to include more recent
periods.

1. Compute the civilian non-institutional population between 16 and 65 years by
subtracting the (Unadj) Population Level - 65 yrs. & over (BLS: LNU00000097)
from Civilian Noninstitutional Population (BLS: LNU00000000), both averaged
over the respective quarter.

2. To compute the number of military personell, we first download the most recent
vintage from Simona Cociuba’s website at https://sites.google.com/site/
simonacociuba/research and then update Military Personnel- Total Worldwide
using data from https://www.dmdc.osd.mil/appj/dwp/dwp_reports.jsp: Mil-
itary Personnel -> Active Duty Military Personnel by Service by Rank/Grade

58Due to chain-weighting, this separate deflating is required to preserve additivity.
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(Updated Monthly); for the current year, we use the monthly PDFs. There, we
use GRAND TOTAL- Total services. Again we average monthly values to get a
quarterly series.

3. Civilian employment and weekly hours worked before 1976, which are based on
Census and BLS data in printed books, are taken from the most recent vintage
from Simona Cociuba’s website.

4. Civilian employment after 1976 is taken from Number Employed, At Work (BLS:
LNU02005053), while their weekly hours worked are from Average Hours, Total
At Work, All Industries (BLS: LNU02005054).

The series in 2 to 4 are first averaged over the quarter. When doing so for the civilian
series in 3 and 4, we follow Cociuba et al. (2012) and check for outliers on the low
side, i.e. we check whether dt ≡ mean(mi)/min(mi) < 0.95, where mi denotes the
months belonging to a quarter. If dt < 0.95, we use (3×mean(mi)−min(mi))/2 and
mean(mi) otherwise. The civilian quarterly series are then seasonally adjusted using
the X13 routine of Eviews 8. Total quarterly hours are computed as the sum of civilian
and military hours, both computed as the product of employment times weekly hours
worked in the respective category. For military weekly hours, we assume a workweek of
40 hours. To get from weekly to quarterly hours, we assume 4 quarters with 13 weeks.

• Popt: we use the sum of civilian non-institutional population between 16 and 65 and
military personell, based on our update of Cociuba et al. (2012).

• Leisure 1−Nt: Following Karabarbounis (2014), who in turn is motivated by Aguiar,
Hurst, and Karabarbounis (2013), we normalize the discretionary time endowment
available to 92 hours per week per person and compute leisure as the difference between
this endowment and Nt. Again, the measure is transformed to per capita values by
dividing by Popt.

• Labor tax rate τnt : The average labor income tax rate is computed as the sum of taxes
on labor income, τLI , plus the “tax rate” on social insurance contributions, τSI ,

τn = τLI + τSI .

We closely follow Mendoza, Razin, and Tesar (1994), Jones (2002), and Leeper, Plante,
and Traum (2010) and compute the tax rate from the national accounts by dividing the
tax revenue by the respective tax base. For labor income tax rates, we need to compute
the portion of personal income tax revenue that can be assigned to labor income. We
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first compute the average personal income tax rate

τ p = IT

W + PRI/2 + CI
,

where IT is personal current tax revenues computed as the sum of Federal government
current tax receipts: Personal current taxes and State and local government current
tax receipts: Personal current taxes (Table 3.1 line 3, FRED: A074RC1Q027SBEA +
W071RC1Q027SBEA), W is Compensation of Employees: Wages and Salary Accruals
(Table 1.12 line 3, FRED: WASCUR), PRI is Proprietors’ Income with Inventory
Valuation Adjustment(IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12
line 9, FRED: PROPINC), and CI is capital income. It is computed as

CI ≡ PRI/2 +RI + CP +NI ,

where RI is Rental Income of Persons with Capital Consumption Adjustment (CCAdj)
(Table 1.12 line 12, FRED: RENTIN), CP is Corporate Profits with Inventory Valuation
Adjustment (IVA) and Capital Consumption Adjustment (CCAdj) (Table 1.12 line
13, FRED: CPROFIT), and NI denotes Net interest and miscellaneous payments on
assets (Table 1.12 line 18, FRED: W255RC1Q027SBEA). In doing so, the ambiguous
proprietor’s income is assigned in equal parts to capital and labor income. The labor
income tax can then be computed as

τLI = τ p(W + PRI/2)
EC + PRI/2 ,

where EC is National Income: Compensation of Employees, Paid (Table 1.12 line 2,
FRED: COE), which, in addition to wages, includes contributions to social insurance
and untaxed benefits. The social insurance “tax rate” is given by

τSI = CSI

EC + PRI/2 ,

where CSI denotes Government current receipts: Contributions for government social
insurance (Table 3.1 line 7, FRED: W782RC1Q027SBEA).

• Consumption tax rate τ ct : The tax revenue from consumption taxes, CT , requires
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apportioning the indirect tax revenue to investment and consumption.59 We do this as:

CT = PC

PC + I
INDT ,

where PC is Personal Consumption Expenditures (FRED: PCE), I is Gross Private
Domestic Investment (FRED: GPDI), and INDT is net indirect taxes, computed as
the difference between Gross Domestic Income: Taxes on Production and Imports
(FRED: GDITAXES) and Gross Domestic Income: Subsidies (FRED: GDISUBS).60

The consumption tax rate is then computed as

τ c = CT

PC − CT
.

C.4 Price markup

For the price markup, i.e. the wedge between the real wage and the marginal product of labor,
we focus on the private business sector. Recall the equation for computing the price markup:

ξpt = log
(

(1− α) (Y norm)
ψ−1
ψ

)
+ ψ − 1

ψ
Zt + 1

ψ
log

(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
. (4.3)

Demeaning this expression yields:

ξpt − ξp =ψ − 1
ψ

log
(
eZt
)

+ 1
ψ

[
log

(
Yt + Φ
Nt −N o

)
− log

(
Y + Φ
N −N o

)]

−
[
log

(
Wt

Pt

)
− log

(
W

P

)] (C.9)

where

eZt = 1
εA,t

log TFPt (C.10)

εA,t =
[
Ŷt + φfix
1 + φfix

] 1
ψ 1

Ξℵ
o
(
eẐtN̂t

)ψ−1
ψ (B.19)

We can then compute the price markup by using the following sources:

• Wt: following the approach in Nekarda and Ramey (2013), we use the Average
hourly earnings of production and nonsupervisory workers in the private sector (BLS:

59We opt to not attribute sales tax revenues to government purchases due to the different tax-exemption
status of local, state, and federal purchases in different states. For example, government entities are sales
tax-exempt in New York, but are tax-liable in California.

60The use of net indirect taxes follows Karabarbounis (2014) and differs from e.g. Mendoza et al. (1994)
who use gross indirect taxes.
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CES0500000008).61

• Pt: Gross Domestic Product: Implicit Price Deflator (FRED: GDPDEF).

• Nt −N o: Average weekly hours of production and nonsupervisory employees, private
business (BLS: CES0500000006) multiplied by Production and nonsupervisory employ-
ees, private business (CES: CES0500000006), divided by Civilian non-institutional
population.

• Yt: Current dollar output, private business (BLS: PRS84006053), deflated using the
GDP deflator and divided by Civilian non-institutional population, detrended by an
exponential trend.

• Φ: Consistent with our model, we assume additional fixed costs of 2.96% of steady-state
output per capita, which we approximate using the average detrended log output per
capita.

• Population: Civilian non-institutional population (FRED: CNP16OV), smoothed with
an HP-filter with λ = 10,000 to solve the best levels problem (Edge et al. 2013).

• TFPt: cumulated sum of the utilization adjusted or non-utilization adjusted TFP
growth rates of Fernald (2012) (dtfp_util or dtfp, starting value initialized to 1,
transformed from annualized to quarterly growth rates), detrended by an exponential
trend.

• ℵo: The labor share not accounting for overhead labor, ℵ is computed as 1 minus
Capital’s share of income from Fernald (2012),62 which is “[B]ased primarily on NIPA
data for the corporate sector”. To derive the share of non-overhead labor ℵo, we use
equation

ℵo ≡
W
P

(N −N o)
Y

=
W
P
N

Y

N −N o

N
= ℵ (1− φo) (B.17)

with φo = 0.11 as discussed in the calibration section.

In the Cobb-Douglas case, the price markup simplifies to

ξpt = log
(
Yt + Φ
Nt −N o

)
− log

(
Wt

Pt

)
, (C.11)

61This implicitly assumes that all nonproduction and supervisory workers are overhead labor, which
probably is an upper bound (see Ramey 1991).

62This series substitutes for Business Sector: Labor Share (FRED: PRS84006173), which is unfortunately
only available in index form.
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which, in the absence of fixed costs, reduces to the inverse labor share. In the robustness
checks, we use three different measures:

• The labor share based on total compensation in the nonfinancial business sector is
computed as Net value added of nonfinancial corporate business: Compensation of
employees (FRED: A460RC1Q027SBEA), divided by Gross value added of nonfinancial
corporate business (FRED: A455RC1Q027SBEA) minus Net value added of nonfi-
nancial corporate business: Taxes on production and imports less subsidies (FRED:
W325RC1Q027SBEA).

• The labor share in the private business sector is based on Business Sector: Labor Share
(FRED: PRS84006173).

• The labor share based on total compensation in the private business sector is computed
as the product of Production and Nonsupervisory Employees: Total Private (FRED:
CES0500000006), Average Weekly Hours of Production and Nonsupervisory Employees:
Total private (FRED: AWHNONAG) and Average Hourly Earnings of Production
and Nonsupervisory Employees: Total Private (FRED: AHETPI) divided by Business
Sector: Current Dollar Output (FRED: PRS84006053).

C.5 Industry-level markups

The majority of our data needed to construct industry-level price markups comes from the
NBER-CES manufacturing industry database, which covers the SIC2 industries 20 to 39 at a
four-digit granularity for the years 1958–2011.

We compute industry-level price markups using equations B.19, C.9, and C.10. As we
have no information on fixed costs, we assume the absence of fixed costs such that

ξpi,t = ψ − 1
ψ

log
(
eZi,t

)
+ 1
ψ

log
(

Yt
Ni,t −N o

i

)
− log

(
Wi,t

Pi,t

)
, (C.9’)

where

eZi,t = 1
εA,i

log TFPi,t . (C.12)

Here, we use the steady-state elasticity εA,i given by

εA,i = Ξ−1
i ℵoi , (B.19’)

where ℵoi is the labor share and Ξ−1
i is the gross markup.
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The NBER-CES database only contains information on wages paid. But what matters
for the labor margin is the total compensation of employees. For that reason we follow
the approach of Chang and Hong (2006) and Nekarda and Ramey (2011) and multiply the
wage bill in the CES database by the ratio of the total compensation (NIPA Table 6.2,
Compensation of Employees by Industry) to wages (NIPA Table 6.3 Wages and Salaries by
Industry) at the two-digit industry level. The respective mapping is displayed in Tables C.3
and C.4. When the SIC classifications in the NIPA tables change, we splice the respective
adjustment factor series by giving precedence to the 1987 SIC series (NIPA Table B) when
there is overlap and multiplying the earlier/later series by the ratio of the two series in the
first/last period of overlap to ensure smooth pasting. Similarly, the database only contains
hours of production workers (NBER-CES code: prodh). To compute total hours (toth), we
compute the number of production workers as the difference between total employment (emp)
and production workers (prode). We then assume that non-production workers are salaried
and work 1960 hours per year as in Nekarda and Ramey (2011):

toth = prodh+ (emp− prode)× 1960 . (C.13)

The database contains information about real shipments which is not equal to output
due to inventories. To compute real output accounting for inventories we follow Nekarda
and Ramey (2011). A problem is that only the total value of inventories Inomi,t (invent) is
reported, which also includes inventories of materials that need to be subtracted. The first
step is to compute the change in nominal finished-goods and work-in-process inventories
∆If,nomi,t , which is equal to nominal value added V nom

i,t (vadd) minus the value of shipments
Snomi,t (vship) plus nominal material costs Mnom

i,t (matcost):

∆If,nomi,t = V nom
i,t − Snomi,t +Mnom

i,t . (C.14)

The change in materials inventories ∆Im,nomi,t can then be computed as the difference between
total inventory changes and changes in nominal finished-goods and work-in-process inventories:

∆Im,nomi,t = ∆Inomi,t −∆If,nomi,t . (C.15)

Real output Yi,t can then be computed as63

Yi,t ≈
Snomi,t

Pi,t
+
[
Inomi,t

Pi,t
−
Inomi,t−1

Pi,t−1

]
−

∆Im,nomi,t

Pi,t
. (C.16)

63See the Technical Appendix (A.5) of Nekarda and Ramey (2011) and their discussion of the approximation
error involved.
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To implement the above formulas, we need a sectoral TFP estimate and the elasticity of
labor productivity with respect to labor-augmenting technology εA,i.

Elasticity of labor productivity with respect to labor-augmenting technology

To compute the elasticity, we need to know both the average markup and the labor share. In
the absence of fixed costs, the average markup can be directly computed from the average
profit share, as one minus the profit share is then equal to the inverse steady-state gross
industry markup. The profit share in industry i, Πps

i,t is computed as

Πps
i,t = (Y nom

i,t −W comp,nom
i,t − (0.05 + δ̄)Ki,tP

inv
i,t −Mnom

i,t )/Y nom
i,t , (C.17)

where Y nom
i,t is nominal output defined as real output Yi,t times the shipment deflator (’pship’),

W comp,nom
i,t it total compensation of employees, Mnom

i,t is nominal materials costs (matcost),
and (0.05 + δ̄)Ki,tP

inv
i,t is the imputed nominal cost of capital, where we assume an interest

rate of 5% per year. We compute the average depreciation rate from

δi,t = 1− (Ki,t − Ii,t)/Ki,t−1 , (C.18)

where real investment is obtained by dividing nominal investment (’invest’) by the investment
deflator P inv

i,t (’piinv’) and Ki,t is the real capital stock (’cap’). When computing the average
depreciation rate δ̄ over the sample, we discard observations that show negative depreciation
rates and depreciation rates larger than 50%.

The elasticity of labor productivity with respect to labor-augmenting technology is then
given by the mean labor share, 1/T ∑T

t=1 W
comp,nom
i,t /Y nom

i,t , times the inverse markup.64

Industry-level TFP

To get a measure of productivity, we follow Nekarda and Ramey (2013) and run a Galí
(1999)-type VAR with labor productivity and hours in first differences. We compute labor
productivity by dividing real output Yi,t by either total hours (toth) or hours of production
workers (prodh). Technology shocks are identified as the only shocks that moves productivity
in the long-run. An estimated TFP series is then computed by cumulating the productivity
growth rates resulting from simulating the long-run VAR with only the identified technology
innovations.65

64The labor share is computed by dividing an appropriate measure of worker compensation by a output
measure. Depending on the concept used, the worker compensation is either the one for production or
production and supervisory workers. As the output measure we use either total value added or total value
added minus material costs. The latter provides a labor share after abstracting from materials.

65Note this assumes the equality between labor productivity movements caused by techn. shocks and TFP.
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Table C.3: Mapping between SIC two digit codes and NIPA Table 6 lines: Total Compensation

SIC code line 60200B Ann Code line 60200C Ann Code line 60200D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60200D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in
SIC 1987 it was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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Table C.4: Mapping between SIC two digit codes and NIPA Table 6 lines: Wages

SIC code line 60300B Ann Code line 60300C Ann Code line 60300D Ann Code
24 15 Lumber and wood products J4115C0 15 Lumber and wood products B4115C0 15 Wood products N4115C0
25 16 Furniture and fixtures J4116C0 16 Furniture and fixtures B4116C0 24 Furniture and related products N4124C0
32 17 Stone, clay, and glass products J4117C0 17 Stone, clay, and glass products B4117C0 16 Nonmetallic mineral products N4116C0
33 18 Primary metal industries J4118C0 18 Primary metal industries B4118C0 17 Primary metals N4117C0
34 19 Fabricated metal products J4119C0 19 Fabricated metal products B4119C0 18 Fabricated metal products N4118C0
35 20 Machinery, except electrical J4120C0 20 Industrial machinery and equipment B4120C0 19 Machinery N4119C0
36 21 Electric and electronic equipment J4121C0 21 Electronic and other electric equipment B4121C0 21 Electrical equipment, appliances, and components N4121C0
371 22 Motor vehicles and equipment J4122C0 22 Motor vehicles and equipment B4122C0 22 Motor vehicles, bodies and trailers, and parts N4122C0
37 23 Other transportation equipment J4123C0 23 Other transportation equipment B4123C0 23 Other transportation equipment N4123C0
38 24 Instruments and related products J4124C0 24 Instruments and related products B4124C0 19 Machinery N4119C0
39 25 Miscellaneous manufacturing industries J4125C0 25 Miscellaneous manufacturing industries B4125C0 25 Miscellaneous manufacturing N4125C0
20 27 Food and kindred products J4127C0 27 Food and kindred products B4127C0 27 Food and beverage and tobacco products N4127C0
21 28 Tobacco manufactures Q4128BC0 28 Tobacco products Q4128C0 27 Food and beverage and tobacco products N4127C0
22 29 Textile mill products J4129C0 29 Textile mill products B4129C0 28 Textile mills and textile product mills N4129C0
23 30 Apparel and other textile products J4130C0 30 Apparel and other textile products B4130C0 29 Apparel and leather and allied products N4130C0
26 31 Paper and allied products J4131C0 31 Paper and allied products Q4131C0 30 Paper products N4132C0
27 32 Printing and publishing Q4132BC0 32 Printing and publishing Q4132C0 31 Printing and related support activities N4133C0
28 33 Chemicals and allied products J4133C0 33 Chemicals and allied products B4133C0 33 Chemical products N4135C0
29 34 Petroleum and coal products J4134C0 34 Petroleum and coal products B4134C0 32 Petroleum and coal products N4134C0
30 35 Rubber and miscellaneous plastics products J4135C0 35 Rubber and miscellaneous plastics products B4135C0 34 Plastics and rubber products N4136C0
31 36 Leather and leather products J4136C0 36 Leather and leather products B4136C0 29 Apparel and leather and allied products N4130C0

Notes: In Table “60300D Ann.” we do not assign NIPA line 20 “Computer and electronic products” (N4020C0) to any two-digit industry, because in
SIC 1987 it was part “Industrial machinery and equipment” and later became a separate category, introducing a structural break.
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D Mixed-frequency VARs

D.1 Priors

We use a shrinking prior of the Independent Normal-Wishart type (Kadiyala and Karls-
son 1997), where the mean and precision are derived from from a Minnesota-type prior
(Litterman 1986; Doan et al. 1984). Denote the vector of stacked coefficients with β =
vec([µ α A1, . . . , Ap]′). It is assumed to follow a normal prior

β ∼ N(β, V ) . (D.1)

For the prior mean β, we assume the variables to follow a univariate AR(1)-model with
mean of 0.9 for levels and mean 0 for growth rates, while all other coefficients are 0. The
prior precision V is assumed to be a diagonal matrix with the highest precision for the first
lag and exponential decay for the other lags. The weighting of cross-terms is conducted
according to the relative size of the error terms in the respective equations, while a rather
diffuse prior is used for deterministic terms. The diagonal element corresponding to the jth
variable in equation i, V i,jj is:

V i,jj =



a1
r2 , for coefficients on own lag r ∈ {1, . . . , p} ,
a2s

2
i

r2s2
j
, for coefficients on lag r ∈ {1, . . . , p} of variable j 6= i ,

a3s
2
i , for coefficients on exogenous variables .

(D.2)

where s2
i is the OLS estimate of the error variance of an AR(p) model with constant and

trend estimated for the ith variable (see Litterman 1986).66 We follow Koop and Korobilis
(2010) and set a1 = 0.2, a2 = 0.5 and a3 = 104. The prior error covariance is assumed to
follow

Σ ∼ IW (S, ν) (D.3)

with ν = 60 “pseudo-observations”, corresponding to ≈ 10% of the observations, and S being
the OLS covariance matrix.

As a practical matter, we use z-scored the data (including the trend) to avoid numerical
problems arising from under-/overflow during the posterior computations that involve sum of
squares. We also impose a stability condition on our VAR by drawing from the conditional
distribution for β until all eigenvalues of the companion form matrix are smaller than 1.

66In case of the quarterly variable, we estimate the AR(p) model on linearly interpolated data.
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D.2 11+1 variable VAR

The Jurado et al. (2015) 11+1-variable VAR is given by (FRED-MD Acronyms in brackets,
see Appendix C for details on other variables)



log(real IP (INDPRO))
log(employment (PAYEMS))

log(real consumption (DPCERA3M086SBEA))
log(PCE Deflator (PCEPI))

log(real new orders)
log(real wage (CES3000000008))

hours (AWHMAN)
shadow federal funds rate

log(S&P 500 Index (S&P 500))
growth rate of M2 (M2SL)

uncertainty proxy
log(markup)



(D.4)
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Figure D.6: IRFs to JLN-based two-standard deviation uncertainty shock in the 11+1
variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The
macroeconomic uncertainty index is measured in arbitrary units and has a
mean of 0.65.
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Figure D.7: IRFs to JLN-based two-standard deviation uncertainty shock in the 11+1
variable mixed-frequency VAR including the total markup. Notes: Bands
are pointwise 90% HPDIs. The total markup is computed as the sum of the
price and wage markup. The macroeconomic uncertainty index is measured in
arbitrary units and has a mean of 0.65.

Table D.5: Unconditional forecast error variance explained by uncertainty shock

Y Emp. C P Orders W/P N R S&P ∆M2 Uncert. Markup
Price Markup VAR

12.97 12.85 11.31 6.55 15.02 7.57 11.20 6.95 10.16 4.79 23.53 7.73

Wage Markup VAR
12.86 12.71 11.56 6.48 13.82 8.46 11.28 6.80 11.89 4.64 23.41 14.88

Total Markup VAR
12.39 11.85 11.15 6.06 13.39 7.86 11.44 6.72 11.14 4.58 22.93 10.64

Notes: Mean posterior forecast error variance share explained by the uncertainty shock in the 11+1 variable
mixed-frequency VAR with the Jurado, Ludvigson, and Ng (2015) uncertainty measure ordered second-to-last.
Based on 1000 posterior draws. First row: VAR with price markup measure; second row: VAR with wage
markup measure; third row: VAR with total markup measure.
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D.3 8+1 variable VAR

The Bloom (2009) 8+1 variable VAR is given by


log(S&P 500 Index (S&P 500))
uncertainty proxy

shadow federal funds rate
log(real wage (CES3000000008))

log(CPI (CPIAUCSL))
hours (AWHMAN)

log(manufacturing employment (MANEMP))
log(real manufacturing production (IPMANSICS))

log(markup)



(D.5)
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Figure D.8: IRFs to VIX-based two-standard deviation uncertainty shock in the 8+1 variable
mixed-frequency VAR where uncertainty is ordered second. Notes: Bands are
pointwise 90% HPDIs. The VIX is measured as the annualized volatility in
percentage points.
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D.4 Additional MF-VAR figures
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Figure D.9: IRFs to JLN-based two-standard deviation uncertainty shock in the 8+1
variable mixed-frequency VAR where uncertainty is ordered second. Notes:
Bands are pointwise 90% HPDIs. The macroeconomic uncertainty index is
measured in arbitrary units and has a mean of 0.65.
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Figure D.10: IRFs to Ludvigson, Ma, and Ng (forthcoming) two-standard deviation financial
uncertainty shock in the 11+1 variable mixed-frequency VAR. Notes: Bands
are pointwise 90% HPDIs. The financial uncertainty index is measured in
arbitrary units and has a mean of 0.91.
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Figure D.11: IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation macro
uncertainty shock in the 11+1 variable mixed-frequency VAR. Notes: Bands
are pointwise 90% HPDIs. The macro uncertainty series is measured in
arbitrary units and has a mean of 1.0.
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Figure D.12: IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation macro
uncertainty shock in the 8+1 variable mixed-frequency VAR. Notes: Bands
are pointwise 90% HPDIs. The macro uncertainty series is measured in
arbitrary units and has a mean of 1.0.

CCM Financial uncertainty

0 10 20 30

months

0

0.1

0.2

0.3

0.4

u
n
it
s

Price markup

0 10 20 30

months

-0.5

0

0.5

p
e
rc

e
n
t

Real industrial prod.

0 10 20 30

months

-1

-0.5

0

0.5

1

p
e
rc

e
n
t

(a) Price Markup

CCM Financial uncertainty

0 10 20 30

months

0

0.1

0.2

0.3

0.4

u
n
it
s

Wage markup

0 10 20 30

months

-0.5

0

0.5

1

p
e
rc

e
n
t

Real industrial prod.

0 10 20 30

months

-1

-0.5

0

0.5

1

p
e
rc

e
n
t

(b) Wage Markup

Figure D.13: IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation finan-
cial uncertainty shock in the 11+1 variable mixed-frequency VAR. Notes:
Bands are pointwise 90% HPDIs. The financial uncertainty series is measured
in arbitrary units and has a mean of 1.06.
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Figure D.14: IRFs to Carriero, Clark, and Marcellino (2018) two-standard deviation fi-
nancial uncertainty shock in the 8+1 variable mixed-frequency VAR. Notes:
Bands are pointwise 90% HPDIs. The financial uncertainty series is measured
in arbitrary units and has a mean of 1.06.
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Figure D.15: IRFs to EPU-based two-standard deviation uncertainty shock in the 11+1
variable mixed-frequency VAR. Notes: Bands are pointwise 90% HPDIs. The
EPU is measured in arbitrary units and has a mean of 100.
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E Proof of precautionary pricing in stylized example

Denote marginal costs with γ and the optimal relative price chosen by the firm with p. Due
to uncertainty about the aggregate price level, this relative price is due to a mean preserving
spread. The spread is parameterized by 0 ≤ ε < 1. The demand elasticity is given by θ > 0

The firm faces the problem

max
p

EΠ = max[(1 + ε)p− γ][(1 + ε)p]−θ + [(1− ε)p− γ][(1− ε)p]−θ

The FOC is given by:

∂EΠ
∂p

= (1−θ)p−θ(1 + ε)1−θ+θγ(1 + ε)−θp−θ−1+(1−θ)p−θ(1− ε)1−θ+θγ(1− ε)−θp−θ−1 != 0

which simplifies to

(1− θ)p∗(1 + ε)1−θ + (1− θ)p∗(1− ε)1−θ = −θγ[(1 + ε)−θ + (1− ε)−θ]

and thus
p∗ = −θγ[(1 + ε)−θ + (1− ε)−θ]

(1− θ)[(1 + ε)1−θ + (1− ε)1−θ]
.

Now check whether the optimal price increases in the spread ε

∂p∗
∂ε

= −θγ
(1− θ)

 [−θ(1 + ε)−θ−1 − θ(1− ε)−θ−1(−1)][(1 + ε)1−θ + (1− ε)1−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2

− [(1 + ε)−θ + (1− ε)−θ][(1− θ)(1 + ε)−θ + (1− θ)(1− ε)−θ(−1)]
[(1 + ε)1−θ + (1− ε)1−θ]2


simplify

= −θγ
(1− θ)

 [−θ(1 + ε)−θ−1 + θ(1− ε)−θ−1][(1 + ε)1−θ + (1− ε)1−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2

− (1− θ) [(1 + ε)−θ + (1− ε)−θ][(1 + ε)−θ − (1− ε)−θ]
[(1 + ε)1−θ + (1− ε)1−θ]2


Now split in two terms, factor out (−θ) in the first term and use the binomial formula on
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the second term

= −θγ
(1− θ)

−θ(1 + ε)−2θ − θ(1 + ε)−θ−1(1− ε)1−θ + θ(1− ε)−θ−1(1 + ε)1−θ + θ(1− ε)−2θ

[(1 + ε)1−θ + (1− ε)1−θ]2

−(1− θ)

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


= −θγ

(1− θ)

(−θ) (1 + ε)−2θ + (1 + ε)−θ−1(1− ε)1−θ − (1− ε)−θ−1(1 + ε)1−θ − (1− ε)−2θ

[(1 + ε)1−θ + (1− ε)1−θ]2

−(1− θ)

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


Now cancel the −θ (1 + ε)−2θ and −θ (1− ε)−2θ terms present in both terms of the curly

brackets to get

= −θγ
(1− θ)

(−θ) (1 + ε)−θ−1(1− ε)1−θ − (1− ε)−θ−1(1 + ε)1−θ

[(1 + ε)1−θ + (1− ε)1−θ]2
−

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2


Finally, factor out (1 + ε)−θ(1− ε)−θ in the first term after the big curly bracket:

= −θγ
(1− θ)︸ ︷︷ ︸

>0

{(−θ)︸ ︷︷ ︸
<0

(1 + ε)−θ(1− ε)−θ
(

1−ε
1+ε −

1+ε
1−ε

)
[
(1 + ε)1−θ + (1− ε)1−θ

]2
︸ ︷︷ ︸

<0

−

[(
(1 + ε)−θ

)2
−
(
(1− ε)−θ

)2
]

[(1 + ε)1−θ + (1− ε)1−θ]2︸ ︷︷ ︸
<0

}

Thus, both parts are positive, establishing that the optimal price increases in response to a
mean preserving spread. As marginal costs were constant, the markup increases.

85


