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1 Introduction

Divisible good auctions are common in many markets, including government bonds, liquidity

(refinancing operations), electricity, and emission markets. In those auctions, both market power

(price impact) and asymmetries among the participants are important; asymmetries can make

price impact relevant even in large markets. However, theoretical work in this area has been

hampered by the diffi culties of dealing with bidders that are asymmetric, have market power,

and are competing in terms of demand or supply schedules in the presence of private information.

This paper helps to fill that research gap by analyzing uniform-price auctions in which there

are two asymmetric groups of bidders with interdependent values. Our aims are to characterize

the equilibrium, derive novel comparative statics results that highlight the interaction between

payoff and information parameters with asymmetric agents, perform a welfare analysis (from

the standpoint of revenue and deadweight loss), and finally draw implications for policy.

Divisible good auctions are typically populated by heterogeneous participants in a concen-

trated market, and often we can distinguish a core group of bidders together with a fringe.

Bidders from the former have better information, endure lower transaction costs,1 and are more

oligopsonistic (or oligopolistic) than members of the fringe. Treasury auctions are a leading

example of the application of our model. Uniform-price auctions are often used in such auc-

tions. Liquidity auctions and wholesale electricity markets provide other applications of our

modelling. Wholesale electricity markets tend to use uniform-price auctions, are concentrated

with asymmetric sellers exercising significant market power and incomplete information on costs

(e.g. on plant outages) is relevant (Cramton and Stoft 2006, 2007, Holmberg and Wolak 2018).

Treasury auctions have bidders with significant market shares that exercise market power,

and typically participants in these auctions can be divided into two distinct groups, which differ

in terms of transaction costs and quality of information. These features are present in systems

with a primary dealership, where participation is limited to a fixed number of bidders (this

occurs, for example, in 29 out of 39 countries surveyed by Arnone and Iden 2003).2 In particular,

primary dealers enjoy an information advantage because they aggregate the information of

indirect bidders and face lower transaction costs (see Hortaçsu and Kastl 2012 for evidence

1We use the term transaction costs to refer to costs of changing the asset position of a trader which encompass

inventory, adjustment, opportunity or limit to arbitrage costs. See, e.g., Du and Zhu (2017a), Marzena and

Rostek (2015), and Vives (2011).
2In US Treasury auctions, which are uniform-price auctions since 1998, the top five bidders typically purchase

close to half of US Treasury issues (see Malvey and Archibald 1998). Primary dealers underwent a substantial

reduction going from 46 in 1998 to 23 presently. Those account for a very substantial portion of volume (from

69% to 88% of tendered quantities in the sample of Hortaçsu et al. 2018 for the years 2009-2013). Indirect

bidders place their bids through the primary dealers and other direct bidders tender from 6 to 13%.
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from Canadian treasury auctions). There is also evidence that there is bid synchronization

among bidders of a certain group (see Armantier and Sbaï 2006 for French treasury auctions,

Hamao and Jegadeesh 1998 for Japanese treasury auctions, and Kastl 2011 for Czech treasury

auctions).3 Furthermore, according to Hortaçsu et al. (2018), primary dealers systematically bid

lower prices than the other participants in the auction, not because they have a lower valuation

of the securities, but because they exercise market power.

Our paper makes progress within the linear-Gaussian family of models by incorporating

bidders’asymmetries with regard to payoffs and information. We model a uniform-price auction

where asymmetric strategic bidders compete in terms of demand schedules for an inelastic supply

(we can easily accommodate supply schedule competition for an inelastic demand as well as a

double auction). We consider a model in which the equilibrium is privately revealing, that is,

where the signal received by a trader and the price are a suffi cient statistic for the trader. This

allows us to focus the analysis on the ineffi ciencies derived from private information and market

power, with no information externality present. Our modelling allows us to disentangle the price

impact from the inference effects of traders, who have market power and private information,

and that use price-contingent strategies.

Bidders may differ in their valuations, transaction costs, and/or the precision of their private

information. With an empirical basis, we reduce heterogeneity to two groups; within each group,

agents are identical and receive the same signal. This information structure is consistent with

the above-mentioned empirical evidence in Hamao and Jegadeesh (1998) and Cao and Lu (2004),

which tends to suggest the presence of a group with very correlated signals and high precision,

and another with low correlation and poor or uninformative signals. We seek to identify the

conditions under which there exists a linear equilibrium with symmetric treatment of agents in

the same group (i.e., we are looking for equilibria such that demand functions are both linear

and identical among individuals of the same type). After showing that any such equilibrium

must be unique, we derive comparative statics results.

We identify two basic forces that drive the comparative statics of a parameter change: a

basic strategic effect of strategic complementarity in the slopes of demands submitted by traders,

which is present with complete information (e.g., Back and Zender 1993) and a price inference

effect, when there is incomplete information and learning from the price, which tends to reinforce

the first effect. Our contribution is to characterize novel comparative statics across groups and

identify the co-movements of payoff and information parameters (e.g., in a crisis situation) that

3Hamao and Jegadeesh (1998) show bid synchronization among Japanese banks in the Japanese Government

bond primary market. They argue that a plausible explanation for this bidding behavior is the fact that the

Japanese investment banks have similar information or apply similar models to analyze information. Cao and

Lu (2004) also find bid synchronization among large bidders in Canadian treasury auctions.
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magnify the impact of parameter changes.

More specifically, our analysis establishes that the number of group members, the transac-

tion costs, the extent to which bidders’valuations are correlated, and the precision of private

information affect the sensitivity of traders’demands to private information and prices. For

example, we find that when valuations are more correlated, all groups react less to the private

signal and to the price. Furthermore, if the transaction costs or the noise in the signal of a

group increase, then the traders of the other group respond by diminishing their reaction to

private information and submitting steeper demand schedules.4 As discussed later in the pa-

per, this result is consistent with the empirical findings of Cassola et al. (2013) in European

post subprime crisis liquidity auctions. Increases in transaction costs, correlation of values, and

noise in the signals, all descriptive of a crisis situation, result in steepening demand schedules

and illiquidity. We also find that if there is a core group of bidders with more precise private

information, lower transaction costs, and more oligopsonistic, then the members of that group

react more (than the bidders of the other group) to the private signal and to the price, and have

more price impact. This result is consistent with the evidence in Hortaçsu et al. (2018) that

primary dealers exercise market power.

When there is both a small and a large group of bidders, then the former (oligopsonistic)

group has more price impact and yet, even the latter (the large group) does not behave com-

petitively, since it retains some price impact due to incomplete information, whenever there

is learning from prices. However, the equilibrium under imperfect competition converges to a

price-taking equilibrium in the limit as the number of traders of both groups becomes large.

Finally, we provide a welfare analysis. First, we characterize the deadweight loss at the

equilibrium and show how a subsidy scheme may induce an effi cient allocation. We find that if

there is a core group of bidders (as previously defined), then it should garner a higher per capita

subsidy rate; the reason is that traders in the core group will behave more strategically and

so must be compensated more to become competitive. The paper also underscores how bidder

heterogeneity (in terms of information, preferences, or group size documented in previous work)

may increase deadweight losses. In particular, when the core group values the asset at least

as much as the fringe, the deadweight loss increases with the quantity auctioned and also with

the extent of expected valuation asymmetries. We also find that price impact need not move

together with deadweight losses under asymmetry as is usually implicitly assumed in applied

work. Furthermore, we provide conditions under which market integration increases or decreases

welfare. Market integration is always welfare improving if bidders behave competitively or if the

bidder groups are symmetric. However, the result may not hold if bidders have market power,

4A "steeper demand schedule" should be interpreted, as usual in Economics, as a higher slope of inverse

demand.
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the amount auctioned is large, and the groups are asymmetric. In such a case, gains from trade

of integration may be overwhelmed by the ineffi ciency generated by group asymmetries and

price impact.

Our work is related to the literature on divisible good auctions. Results in symmetric pure

common value models have been obtained by Wilson (1979), Back and Zender (1993), and Wang

and Zender (2002), among others. Kastl (2011) extends the Wilson model to consider discrete

bids in an independent values context. This model is extended in Hortaçsu and Kastl (2012)

and Hortaçsu et al. (2018).

Results in interdependent values models with symmetric bidders are obtained by Vives (2011,

2014) and Ausubel et al. (2014), for example. Vives (2011), while focusing on the tractable fam-

ily of linear-Gaussian models, shows how increased correlation in traders’valuations increases

the price impact of those traders. Bergemann et al. (2018) generalize the information structure

in Vives (2011), while retaining the assumption of symmetry. Rostek and Weretka (2012, 2015)

partially relax that assumption and replace it with a weaker “equicommonality” assumption

on the matrix correlation among the agents’values.5 Du and Zhu (2017a) consider a dynamic

auction model with ex post equilibria. For the case of complete information, progress has been

made in divisible good auction models by characterizing linear supply function equilibria (e.g.,

Klemperer and Meyer 1989; Akgün 2004; Anderson and Hu 2008). Kyle (1989) incorporates in-

complete information considering a Gaussian model of a divisible good double auction in which

some bidders are privately informed and others are uninformed. Andreyanov and Sadzik (2020)

study the design of robust exchange mechanisms in a two-type model similar to the one we

present here.

To sum up, the two closest papers to ours are Vives (2011) and Kyle (1989). The novelty

of our paper with respect to Vives (2011) is that in our model we allow asymmetries among

bidders, and with respect to Kyle (1989), that we consider interdependent values instead of a

common value setup with non-optimizing liquidity traders in a double auction.

The rest of our paper is organized as follows. Section 2 outlines the model. Section 3

characterizes the equilibrium, analyzes its existence and uniqueness, and derives comparative

statics results. We develop the welfare analysis in Section 4 and address the case of an oligopsony

with a large fringe in Section 5. Section 6 concludes. Proofs are gathered in the appendix and

the reader can find more results and details of the analysis in our working paper (Manzano and

5This assumption states that the sum of correlations in each column of this matrix (or, equivalently, in each

row) is the same and that the variances of all traders’ values are also the same. Unlike our model, Rostek

and Weretka’s (2012) model maintains the symmetry assumption as regards transaction costs and the precision

of private signals. The equilibrium they derive is therefore still symmetric because all traders use identical

strategies.
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Vives 2019).

2 The model

Traders, of whom there are a finite number, face an inelastic supply for a risky asset. Let Q

denote the aggregate quantity supplied in the market. In this market, there are buyers of two

types: type 1 and type 2. We use i to refer to a generic type of bidders and j for the other

type. Thus, in what follows, i, j = 1, 2 and j 6= i. Suppose that there are ni traders of type i.

In that case, if the asset’s price is p, then the profits of a representative type-i trader who buys

xi units of the asset are given by

πi = (θi − p)xi − λix2
i /2, xi ∈ R.

So, for any trader of type i, the marginal benefit of buying xi units of the asset is θi − λixi,
where θi denotes the valuation of the asset and λi > 0 reflects an adjustment for transaction

costs or opportunity costs (or a proxy for risk aversion). Traders maximize expected profits and

submit demand schedules, after which an auctioneer selects a price that clears the market.6

We assume that θi is normally distributed with mean θi and variance σ2
θ. The random

variables θ1 and θ2 may be correlated, with correlation coeffi cient ρ ∈ [0, 1]. Therefore,

Cov(θ1, θ2) = ρσ2
θ.
7 All type-i traders receive the same noisy signal si = θi + εi, where εi

is normally distributed with null mean and variance σ2
εi
. Error terms in the signals are uncor-

related across groups (Cov(ε1, ε2) = 0) and are also uncorrelated with valuations of the asset

(Cov(εi, θj) = 0 and Cov(εi, θj) = 0). In what follows, let σ̂2
εi
≡ σ2

εi
/σ2

θ.

In our model, two traders of distinct types may differ in several respects:

• different willingness to possess the asset (θ1 6= θ2),

• different transaction costs (λ1 6= λ2), or

• different levels of precision of private information (σ2
ε1
6= σ2

ε2
).

Applications of this model are treasury auctions and liquidity auctions. For treasury auc-

tions, θi is the private value of the securities to a bidder of type i; that value incorporates

6The case of supply schedule competition for an inelastic demand is easily accommodated by considering

negative demands (xi < 0) and a negative inelastic supply (Q < 0). In this case, a producer of type i has a

quadratic production cost −θixi + λix
2
i /2.

7The value of ρ will depend of the type of security. In this sense, Bindseil et al. (2009) argue that the

common value component is less important in a central bank repo auction than in a T-bill auction.
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not only the resale value but also idiosyncratic elements as different liquidity or portfolio im-

munization needs of bidders in the two groups. Financial intermediaries may assign different

values to the treasury instruments according to their use as collateral. In particular, primary

dealers may attach a value to a bond beyond resale value to be used as collateral in operations

with the Fed. For liquidity auctions, θi is the price (or interest rate) that group i commands

in the secondary interbank market (which is over-the-counter). Here λi reflects the structure

of a counterparty’s pool of collateral in a repo auction. A bidder bank prefers to offer illiquid

collateral to the central bank in exchange for funds; as allotments increase, however, the bidder

must offer more liquid types of collateral, which have a higher opportunity cost. This yields a

declining marginal utility (see Ewerhart et al. 2010).

3 Equilibrium

Denote by Xi the strategy of a type-i bidder, which is a mapping from the signal space to

the space of demand functions. Thus, Xi(si, ·) is the demand function of a type-i bidder that
corresponds to a given signal si. Given her signal si, each bidder in a Bayesian equilibrium

chooses a demand function that maximizes her conditional expected profit (while taking as given

the other traders’strategies).8 Our attention will be restricted to anonymous linear Bayesian

equilibria in which strategies are linear and identical among traders of the same type (for short,

equilibria).

Definition. An equilibrium is a linear Bayesian equilibrium such that the demand functions

for traders of type i are identical and equal to

Xi(si, p) = bi + aisi − cip,

where bi, ai, and ci are constants.

The equilibrium is characterized in Subsection 3.1, together with some particular cases, and

the equilibrium comparative statics properties are examined in Subsection 3.2.

3.1 Equilibrium characterization

Consider a trader of type i. If rivals’strategies are linear and identical among traders of the

same type and if the market clears, that is, if (ni− 1)Xi(si, p) + xi + njXj(sj, p) = Q, then this

8As in Kyle (1989), demands may be considered in the class of upper-hemicontinuous, convex-valued cor-

respondences mapping prices p into non-empty subsets of the interval [−∞,∞]. If there is no market clearing

price, the market shuts down, and if there are multiple clearing prices, the auctioneer chooses the one that

maximizes volume traded.
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trader faces the inverse residual supply p = Ii (si, sj) + dixi, where

Ii (si, sj) = ((ni − 1) (bi + aisi) + nj (bj + ajsj)−Q) / ((ni − 1) ci + njcj) and (1)

di = 1/ ((ni − 1) ci + njcj) . (2)

The expression for the inverse residual supply disentangles the capacity of a bidder to influence

the market price (di) from learning from the price (Ii (si, sj)). Thus, the slope of the inverse

residual supply (di) is an index of the trader’s market power or price impact.9 Indeed, by

putting one more unit in the market, a trader of type i will move the price by di. A competitive

trader would face a flat inverse residual supply (di = 0). The slope di increases, and the inverse

residual supply becomes less elastic, the steeper are the demand functions submitted by the

other traders (i.e., the lower ci and cj are).

From the expression of the inverse residual supply we see that the intercept is random and the

slope is deterministic. As a consequence, this trader’s information set (si, p) is informationally

equivalent to (si, Ii (si, sj)). In addition, using (1) and assuming that aj 6= 0, it is immediate

that (si, Ii (si, sj)) is informationally equivalent to (si, sj).10

The bidder of type i, therefore, chooses xi to maximize

E [πi|si, p] = (E [θi|si, sj]− Ii (si, sj)− dixi)xi − λix2
i /2,

since E [(θi − p)xi|si, p] = (E [θi|si, p]− p)xi. The first-order condition (FOC) is given by

E [θi|si, sj]− Ii (si, sj)− 2dixi − λixi = 0, which implies that

Xi (si, p) = (E [θi|si, p]− p) / (di + λi) . (3)

The second-order condition (SOC) that guarantees a maximum is 2di + λi > 0, which implies

that di + λi > 0. Therefore, a trader of type i has a speculative motive to trade, which is

reflected in the numerator of (3), according to which he buys (sells) the asset when its price is

lower (higher) than his conditional expected valuation. Furthermore, the bidder will trade less

aggressively when he has higher transaction costs (λi) or higher price impact (di).

In our framework

E [θi|si, p] = E [θi|si, sj] . (4)

According to Gaussian distribution theory,

E [θi|si, sj] = θi + Ξi

(
si − θi

)
+ Ψi

(
sj − θj

)
, (5)

9The inverse residual supply for a trader of type i is well-defined provided that (ni − 1)ci + njcj 6= 0. This

inequality is satisfied in equilibrium.
10This would not be the case if there were more than two groups or if the traders in each group were to receive

idiosyncratic signals. In this case, an information externality would appear, inducing additional ineffi ciencies in

the market. The situation would be similar to the case of a noisy equilibrium (e.g., Vives 2017).
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where

Ξi =
1− ρ2 + σ̂2

εj(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

and Ψi =
ρσ̂2

εi(
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

.

We remark that Expression (5) has the following implications.

1. The private signal si is useful for predicting θi (Ξi 6= 0) whenever 1−ρ2 + σ̂2
εj
6= 0, that is,

when either the liquidation values are not perfectly correlated (ρ 6= 1) or type-j traders

are imperfectly informed about θj (σ2
εj
6= 0).

2. The private signal sj is useful for predicting θi (Ψi 6= 0) whenever ρσ̂2
εi
6= 0, that is, when

the private liquidation values are correlated (ρ 6= 0) and type-i traders are imperfectly

informed about θi (σ2
εi
> 0). Note that the weight given to sj in estimating θi, Ψi, increases

with the correlation coeffi cient of valuations (ρ).

From (3) the coeffi cients in the demand function (i.e., bi, ai, and ci) are identified. For

example, let Λi be the coeffi cient of the price in E [θi|si, p], then ci = (1− Λi)/ (di + λi). For

a given Λi, higher transaction costs or price impact will attenuate the response of a trader of

type i to the price (ci).

Our first proposition summarizes the characterization of an anonymous linear equilibrium. It

shows the relationship between ai and ci in equilibrium and also indicates that these coeffi cients

are positive (see Lemma A1 and A2 in Appendix A for more details).

Proposition 1. Let ρ < 1. If equilibrium exists, then it is unique and the demand function

of a type-i trader is given by Xi (si, p) = (E [θi|si, p]− p) / (di + λi). In addition, we have

that signal and price responsiveness (ai and ci) move together, ai = ∆ici > 0, where ∆i =

1
/(

1 + (1 + ρ)−1 σ̂2
εi

)
, with

ci = (1− Λi)/ (di + λi) , (6)

where Λi = Ψi

(
nici
njcj

+ 1
)
/∆j, di = 1/ ((ni − 1) ci + njcj), and the ratio c1/c2 is the unique

positive solution of a cubic polynomial.

Remark 1. Since ai > 0 and ci > 0, it follows that in equilibrium, the higher the value of the

trader’s observed private signal (or the lower the price), the higher the quantity she will demand.

When a type-i bidder is imperfectly informed, σ2
εi
> 0, we have that its signal responsiveness

is less than its price responsiveness, ai < ci, since ∆i < 1 in this case; when she is perfectly

informed, σ2
εi

= 0, we have ∆i = 1 and ai = ci. In the latter case the speculative buying pointer

happens when si−p > 0. Observe that we can write the demand as Xi(si, p) = bi+ci (∆isi − p),
so that a trader responds to ∆isi − p, that is, to the difference between a recalibrated signal
according to ∆i and the price. The signal si is corrected by the term ∆i which increases with

8



the precision in the signal σ̂−2
εi
and with the correlation of the signals ρ. A higher ∆i implies

that the speculative trading pointer ∆isi − p may be positive with a lower realization of the

signal si.

Given that in equilibrium Equation (4) holds, it follows that the equilibrium price is privately

revealing. In other words, the private signal and the price enable a type-i trader to learn about

θi as much as if she had access to all the information available in the market, (si, sj).

How informative is the price for a bidder of type i ? This will depend on how much sj adds to

that bidder in the estimation of θi. A measure of price informativeness for bidder i is therefore
var[θi|si]−var[θi|si,sj ]

var[θi|si] . It is easily seen that this measure equals ρΨi. The more informative is the

price for bidder i, the higher will be the weight of the price Λi in E [θi|si, p] given (ci, cj). It can

also be shown that, provided that ρσ̂2
εi
> 0, Ψi

∆j
increases with ρ and with σ̂2

εi
, and decreases

with σ̂2
εj
. For given (ci, cj) we have that, as expected, in this case Λi increases with ρ and with

σ̂2
εi
, and decreases with σ̂2

εj
.

Let us see how the slope of the demand for a trader of group i (ci) varies (i) with the weight

of the price in E [θi|si, p], Λi, and (ii) with the slope of the demand for bidders of type j, cj.

(i) From Expression (6) we have that the larger Λi, the lower the responsiveness of the

demand to the price (ci). To understand this result note that, from the perspective of a bidder

in group i, a high price conveys the news that the realization of sj is high and, therefore, that the

value θi will tend to be high because of the positive correlation between θi and sj. Consequently,

if the price is more informative about θi, then the reduction in the quantity demanded by a

bidder in group i due to an increase in p is smaller.

(ii) Next, we study how the slope of the demand for a trader of group i (ci) varies due

to a change in the slope in the demand for bidders of type j (cj), with the slope of demands

for other bidders of group i remaining fixed at c̄i. Note that price impact for this trader is

di = 1/ ((ni − 1) c̄i + njcj). Combining (6) and the expression for Λi given in Proposition 1, it

follows that

ci=

(
1− Ψi

∆j

(
(ni − 1)c̄i
njcj

+ 1

))/(
di + λi +

Ψi

∆j

1

njcj

)
. (7)

This expression shows how the slope of the demand of a type-i trader (ci) depends on its price

impact (di) and the slope of the demand functions of bidders of the rival group (cj) as well as

information parameters Ψi and ∆j.

When Ψi = 0 (that is, when either the valuations are uncorrelated, ρ = 0; or the private

signal si is perfectly informative, σ2
εi

= 0), prices are uninformative for this bidder, Λi = 0, and

we have that ci = 1/ (di + λi). In this case, the equilibrium coincides with the full-information

equilibrium (denoted by superscript f). In the full (shared) information setup, traders can access

(s1, s2) and, consequently, the price does not provide any additional information. Given that di

9



is decreasing in cj, as shown in Expression (2), we observe a basic strategic complementarity in

the slopes of the demands submitted by the traders. According to this strategic effect, if the

type-j rivals of a type-i trader bid a demand function with a lower cj, then the slope of the

inverse residual supply di for this trader increases (that is, its price impact increases) and this

trader also has an incentive to bid a demand function with a lower ci.

However, if Ψi > 0 (that is, when the valuations are correlated, ρ > 0, and type-i traders

are imperfectly informed about θi, σ2
εi
> 0), then there is also an inference effect from the

information conveyed by the price. Now, a lower cj increases the terms Ψi
∆j

(
(ni−1)c̄i
njcj

+ 1
)
and

Ψi
∆j

1
njcj

in Expression (7), which will also tend to depress ci, reinforcing the basic strategic

complementarity in the slopes. This is so since a lower cj induces a bidder of type i to take the

price more into consideration when predicting θi. The market clearing condition indicates that

the lower the reaction to the price by group j (the lower cj) is, the higher sj should be to cause

a certain increase in the price of the asset. This inference of the change in sj is more relevant

for a type-i trader when this private signal is more useful when predicting θi (higher Ψi).

Next, we analyze when an equilibrium exists. If an equilibrium does exist, then Proposition

1 implies that it is unique.

Proposition 2. Equilibrium exists iff ci, cj > 0.

In Appendix A (see Proposition A1) we state a necessary and suffi cient condition on para-

meters for ci, cj > 0. As indicated below in Corollary 1, such a condition greatly simplifies when

prices are uninformative. In addition, Corollary 2 specifies instances where the existence of equi-

librium is guaranteed when prices are informative for at least one type of bidders. Basically, it

shows that the number of bidders and the correlation of the valuations are key parameters for

the existence of equilibrium.

Corollary 1. (Uninformative prices) When valuations are uncorrelated (ρ = 0), or when

private signals are perfectly informative (σ2
εi

= σ2
εj

= 0) or uninformative (σ2
εi

= σ2
εj

= ∞),
equilibrium exists iff ni + nj ≥ 3.

Corollary 2. (Informative prices) When the private signal sj is useful for predicting θi
(ρσ2

εi
> 0 and σ2

εj
≥ 0), and valuations are not perfectly correlated (ρ < 1), equilibrium exists

if :

(i) both groups of bidders are large enough (ni and nj are large enough);

(ii) given the number of bidders in group i (ni), the number of bidders in the other group (nj)

is large enough, and the correlation coeffi cient between valuations (ρ) low enough, or

(iii) σ2
εj

= 0 and nj ≥ 2; or nj = 1, ni large enough and ρ low enough.

Remark 2. Equilibrium does not exist for ρ close to 1 and low ni. This is so because in those

10



cases the market power of traders explodes and the demand schedules would become vertical

(with ci → 0, i = 1, 2). As ρ increases, the informational role of the price is more important and

traders submit steeper demand schedules (see Proposition 3 below). Neither does an equilibrium

exist when ρ = 1. If the price reveals a suffi cient statistic for the common valuation, then no

trader has an incentive to place any weight on her signal. But if traders put no weight on

signals, then the price contains no information about the common valuation. This conundrum

is related to the Grossman-Stiglitz (1980) paradox. In fact, ρ < 1 and n1 +n2 ≥ 3 are necessary

conditions for the existence of equilibrium with incomplete information (in line with Kyle 1989

and Vives 2011).11

Let us illustrate the existence of equilibrium result in the particular case of symmetric

groups, i.e., ni = n, λi = λ, and σ2
εi

= σ2
ε, i = 1, 2.12 We find that equilibrium exists iff

n > 1 + ρσ̂2
ε

/(
(1− ρ)

(
1 + ρ+ σ̂2

ε

))
, where recall that σ̂2

ε = σ2
ε/σ

2
θ. Therefore, the equilibrium’s

existence is guaranteed provided either that n is high enough or that ρ or σ̂2
ε is low enough.

In the model of Vives (2011) bidders receive different private signals and the condition that

guarantees existence of an equilibrium is n > 1 + nρσ̂2
ε

/(
(1− ρ)

(
1 + (2n− 1)ρ+ σ̂2

ε

))
. Direct

computation yields that the condition derived in the model of Vives is more stringent than the

condition derived in our setup. The reason is that, in Vives (2011), the degree of asymmetry

in information (and induced market power) is greater because each of the 2n traders receives a

private signal.

3.2 Comparative statics

We start by considering how the model’s underlying parameters affect the equilibrium and,

in particular, price impact (Proposition 3). We then explore how the equilibrium is affected

when there are two distinct groups of traders, that is, a core and a fringe (Corollary 3). Our

theme is to explore the interaction between strategic and inference effects when a payoff or an

information parameter changes. (See our 2019 working paper for additional comparative statics

results).

Proposition 3. Let ρσ2
ε1
σ2
ε2
> 0. Then, the following statements hold.

(i) An increase in transaction costs (λi or λj), a decrease in the precision of private signals

(i.e., an increase in σ2
εi
or σ2

εj
), or an increase in the correlation coeffi cient between valuations

11Du and Zhu (2017b) consider ex post nonlinear equilibria in a bilateral divisible double auction and show

that with more than three symmetric traders there are no nonlinear equilibria in the class of smooth demands

downward sloping in price and upward sloping in signals.
12See our working paper Manzano and Vives (2019) for the cases of a monopsony competing with a fringe

and of an informed group facing an uninformed one as in Grossman and Stiglitz (1980).
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(ρ), makes demand less responsive to private signals and prices (lower ai and ci) and increases

price impact (di).

(ii) If the number of bidders (ni or nj) increases, then di decreases. Furthermore, di is not

affected by the quantity offered in the auction (Q) or the prior mean of the valuations (θi and

θj).

Remark 3. (Uninformative prices and price impact) Prices do not convey information
when ρ = 0, with di independent of σ2

εi
and σ2

εj
; and when σ2

εi
= σ2

εj
= 0 or σ2

εi
= σ2

εj
= ∞,

with di and dj independent of ρ. Those cases correspond to a full information equilibrium and

comparative statics of dfi and d
f
j on λi and ni hold as in the previous proposition.

13 That is,

for the information parameters to matter for price impact, it is necessary that prices convey

information. Proposition 3(i) implies that, if ρσ2
ε1
σ2
ε2
> 0, then dfi < di. Thus, asymmetric

information increases the price impact of traders in both groups beyond the full-information

level.

Remark 4. (Symmetric groups) When groups are symmetric, the results hold when λi =

λj, σ2
εi

= σ2
εj
, and ni = nj move together (Vives 2011). Proposition 3 disentangles the impact

of, say, σ2
εi
on equilibrium coeffi cients, keeping σ2

εj
constant.

We discuss next the comparative statics results derived in Proposition 3. We also provide

instances where those predictions are consistent with the empirical literature.

Transaction costs. If the transaction costs for a bidder of type j (λj) increase, then that
bidder sets lower aj and cj. This is so since a higher transaction cost makes bidders of type j

less responsive to the price in their bidding, as pointed out in Section 3.1 and, from Proposition

1, we know that aj and cj move together. Moreover, any increase in a group’s transaction costs

also affects the behavior of traders in the other group. If λj increases, then the decrease in

cj results in an increase of the slope of the inverse residual supply for group i (higher di) as

well as the terms related to the inference of θi from the price (Ψi
∆j

(
(ni−1)c̄i
njcj

+ 1
)
and Ψi

∆j

1
njcj
)

in Expression (7) whenever ρσ̂2
εi
6= 0. As both the strategic and the inference effects work in

the same direction, an increase in λj leads group-i traders to reduce their demand sensitivity to

the price (lower ci). We can therefore see how an increase in the transaction costs for group-j

traders (say, a deterioration of their collateral in liquidity auctions that raises λj) leads not only

to steeper demand schedules for bidders in group j, but also, as a reaction, to steeper demands

for group-i traders.

13Indeed, if ρ = 0, then: (a) both ci and di (as well as cj and aj) are independent of σ2εi ; and (b) ai decreases

with σ2εi . If σ
2
εi = 0 for i = 1, 2, then ci, cj , ai, aj , di, and dj are independent of ρ. Akgün (2004) considers a

linear equilibrium in a certainty common value model and shows (in our notation) that an increase in λi reduces

ci and cj .
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Precision of private signals. If the private signal of type-j bidders is less precise (higher
σ2
εj
), then their demand is less sensitive to private information (lower aj). A private signal of

reduced precision also gives the type-j bidder more incentive to consider prices when predicting

θj (higher Λj). This leads, in turn, to this bidder having a demand function less responsive to

the price, i.e., with lower cj. This is so since a high price conveys the good news that the private

signal received by other group’s traders is high. When valuations are positively correlated, a

bidder infers from the high private signal of the other group that her own valuation is high. The

same can be said for a bidder of type i because of strategic complementarity in the slopes of

demand functions (the decrease in cj due to a rise in σ2
εj
leads to lower ci in turn). This result

(in the supply competition model interpretation) may help explain why, in the Texas balancing

market, small firms use steeper supply functions than predicted by theory (Hortaçsu and Puller

2008). Indeed, smaller firms may receive lower-quality signals owing to economies of scale in

information gathering.

Correlation coeffi cient between valuations. The more highly the valuations are correlated
(higher ρ), the less traders’responsiveness to private signals is (lower ai) and the steeper demand

schedules are (lower ci). As ρ increases, the private signal becomes less relevant for a type-i

bidder to estimate θi, in which case demand is less sensitive to private information, while the

price more relevant. In fact, given (ci, cj), the information-sensitivity weight on the price (Λi) is

higher when ρ is larger, which implies a lower responsiveness of the demand to the price because

of Expression (6).

Quantity offered in the auction and the prior mean of valuations. Lemma A2 in

Appendix A shows that the only equilibrium coeffi cient affected by the quantity offered in the

auction (Q) and by the prior mean of the valuations (θi and θj) is bi. In particular, price impact

(di) is independent of these parameters.

Number of bidders. Proposition 3(ii) formalizes the anticipated result that an increase in
the number of auction participants (higher ni or nj) reduces the price impact of traders in both

groups.14

Our comparative statics results highlight the interaction between the strategic and inference
14Rostek and Weretka (2015) address the question of whether encouraging trader participation enhances

market competitiveness and liquidity also in a linear-Gaussian uniform-price double auction with a finite number

of traders whose valuations are potentially asymmetrically correlated. They assume that each trader’s value is,

on average, correlated with other traders’values in the same way and find that, in general, the price impact is not

monotone in market size. This is so because the arrival of an additional trader may change the informativeness

of the market price so that the market power of all traders increases and the gains to trade are lower. In our

model, since the equilibrium price is privately revealing, the informativeness of the market price does not change

as the number of bidders increases.

13



effects resulting from a parameter change. We have seen how a steepening of demand schedule

by one group leads to the steepening of demand schedule by another group because of a strategic

effect, which is reinforced by an inference effect. The result is strategic complementarity in the

slopes of demands. The presence of private information and learning from prices compounds

the strategic effect that would be present with full information and makes the impact of the

change of a parameter larger.

Our results can shed light on the impact of a crisis in central bank liquidity auctions. Cassola

et al. (2013) analyze the evolution of bidding data from the European Central Bank’s weekly

refinancing operations before and during the early part of the financial crisis in 2007. The

authors find that one third of bidders experienced no change in their costs of short-term funds

from alternative sources; this means that their altered bidding behavior was mainly strategic:

bids were increased as a response to the higher bids of rivals. Distressed bidders after the August

2007 shock suffered a large decline in the valuation of their collateral in the interbank market

(which in terms of our model shows up in an increased λi). Those banks also had an increase

in the valuation for liquidity (which in our model shows up as an increased θi).15 In Cassola

et al. (2013) it is assumed that the private valuations of the traders are independent, since the

common component is known. This means that there are no information effects. However, if

the common value component is not known, as is plausible to believe, and if the signals of the

groups become noisier, in particular for those of the group hit by the shock, and the correlation

of valuations increases, as it happens in a crisis, then all these effects reinforce the steepening

of the demand schedules (as found in Cassola et al. 2013).

Corollary 3. (Core and Fringe) Suppose that group 1 is less informed, has higher transaction
costs, and is more numerous than group 2 (i.e., σ2

ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2), and suppose

that at least one of these inequalities is strict. Then, in equilibrium, bidders from the core (here,

group 2) react more both to private information and to prices (a1 < a2, c1 < c2) and have more

price impact (d1 < d2) than do bidders from the fringe.

Corollary 3 shows that if a group of traders is less informed, has higher transaction costs,

and is more numerous, then it reacts less both to private signals and to prices. Observe in

particular that group-1 traders, having less precise private information, rely more on the price

for information (higher Λ1); as a result, their overall price response (c1 = (1− Λ1) / (d1 + λ1)) is

smaller. Similarly, group-1 traders, for whom n1 is larger, put a higher information-sensitivity

weight on the price (Λ1).16

15The marginal valuation of a bidder of type i is θi − λixi. This is akin to the marginal valuation in Figure
4 in Cassola et al. (2013). There, a decreased collateralized borrowing capacity of a bidder (K) will make the

slope of the marginal valuation steeper.
16This follows since it can be shown that n1c1n2c2

is increasing in n1. The following is an heuristic argument for
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As we will see below, some results will depend on the comparison between the "total trans-

action costs" di+λi of the two groups. While with full information we have that di+λi > dj+λj

whenever λi > λj, in our model we may have di + λi < dj + λj with λi > λj. This, in fact, will

happen whenever ρ is large, since then price impact induced by private information is large (see

our 2019 working paper for the details and proof).

Corollary 3 is consistent with the results in Armantier and Sbaï (2006) who find in French

treasury auctions that the group consisting mostly of smaller financial institutions, characterized

by a higher level of risk aversion and receiving significantly noisier private signals, submit steeper

demand functions than the ones submitted by the core group.

4 Welfare analysis

We identify factors that affect, in equilibrium, quantities, expected price and revenue in the

auction in Subsection 4.1; the equilibrium and effi cient allocations in Subsection 4.2 to be used

as a benchmark; deadweight losses in Subsection 4.3; and market integration in Subsection 4.4.

In these subsections we assume that the quantity auctioned (Q) is large enough (or, equivalently,

the expected valuations of groups are not much different) so that bidders from both groups are

expected to be buyers. Finally, Subsection 4.5 examines the polar case of a double auction

(Q = 0).

4.1 Quantities, prices, and revenue

Let ti = E [θi|s1, s2] be the predicted value with full information (s1, s2) for group i, and t =

(t1, t2). After some algebra, it follows that equilibrium quantity for a bidder of this group as

function of t is given by:

xi (t) =
nj (ti − tj)

ni (dj + λj) + nj (di + λi)
+

dj + λj
ni (dj + λj) + nj (di + λi)

Q. (8)

Observe that, according to this expression, the equilibrium quantities can be decomposed into

two terms: a valuation trading term (the first), which depends on the relative valuations of the

groups, and a clearing trading term (the second), which is related to the absorption of Q by

the traders. With regard to the valuation term, it vanishes when both groups have the same

conditional expected valuation, t1 = t2, and it is positive (resp., negative) for the group with

the result. Consider a symmetric setting to start with and let the number of bidders of group 1 increase. Then

the price will depend more (resp., less) strongly on s1 (resp., s2). As a result, type-1 bidders infer a higher value

of the signal (s2) of the other group due to a given increase in the price than type-2 bidders do about signal s1.

The positive correlation of the valuations implies then that Λ1 > Λ2.
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the higher (resp., lower) value of ti. Higher total transaction costs (di + λi) lower the response

to valuation differences ti − tj. As for the clearing trading term, it is lower (resp., higher) for
the group with higher (resp., lower) di + λi and total clearing demands add up to Q.

Let t̃ = (n1t1 + n2t2) / (n1 + n2). Using the optimal demand of bidders, it follows that

p (t) = ti − (di + λi)xi (t), i = 1, 2. Therefore,

p (t) = t̃− ((d1 + λ1)n1x1 (t) + (d2 + λ2)n2x2 (t)) /(n1 + n2).

From the above expressions, we can derive the following expression for expected price:

E [p (t)] =

(
n1

d1 + λ1

θ1 +
n2

d2 + λ2

θ2 −Q
)/(

n1

d1 + λ1

+
n2

d2 + λ2

)
. (9)

Proposition 4. Let ρσ2
ε1
σ2
ε2
> 0 and suppose that bidders from both groups are expected to be

buyers (i.e., Q large enough or
∣∣θ2 − θ1

∣∣ small enough). In equilibrium, the expected price is
increasing in the number of bidders (ni), but is decreasing in transaction costs (λi), the variances

of error terms in private signals (σ2
εi
), and the correlation coeffi cient between valuations (ρ).

When both groups are expected to be buyers, we confirm that the expected price increases

when the number of bidders increases or when the asset becomes more attractive for the traders

because of a reduction in their transaction costs or an increase in the precision of their private

signals. To understand the negative relationship between the expected price and the correlation

coeffi cient between valuations (ρ), recall that Proposition 3 indicates that an increase in ρ

increases price impact (di), which makes buyers to bid more cautiously (the inverse demand,

p(t) = ti − (λi + di)xi, shifts inwards), and this leads to a reduction in the expected price. In

addition, all the results derived in Proposition 4 also apply to the expected revenue since it is

equal to QE [p (t)].

4.2 Characterizing the equilibrium and effi cient allocations

Recall that t = (t1, t2) denotes the vector of predicted values with full information (s1, s2). The

strategies in the equilibrium induce outcomes as functions of t, given in Expression (8). One can

easily show that the equilibrium outcome solves the following distorted benefit maximization

program:17

max
x1, x2

E
[
n1

(
θ1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
θ2x2 − (d2 + λ2)x2

2/2
)∣∣ t]

s.t. n1x1 + n2x2 = Q,

17See Lemma B1 in Appendix B.
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where d1 and d2 are the equilibrium parameters. The effi cient allocation is obtained if we set

d1 = d2 = 0, which corresponds to a price-taking equilibrium (denoted by superscript o).18 The

effi cient quantity for a bidder of group i as function of t is given by:

xoi (t) =
nj (ti − tj)
niλj + njλi

+
λj

niλj + njλi
Q. (10)

In addition, the equilibrium strategy of a type-i bidder under perfect competition will be of the

form Xo
i (si, p) = boi + aoi s1 − coip, and is derived by maximizing the following program:

max
xi

(E [θi|si, p]− p)xi − λix2
i /2,

while taking prices as given. The FOC of this optimization problem yields

E [θi|si, p]− p− λixi = 0.

After identifying coeffi cients and solving the corresponding system of equations, we find that

there exists a unique equilibrium in this setup that we can characterize in closed-form (see

Proposition B1 in Appendix B).19

Remark 5. (Convergence to a price-taking equilibrium) It can be shown that, with
strategic agents, if n1 and n2 both approach infinity and ni/(n1+n2) converges to µi (0 < µi < 1),

then the demand equilibrium coeffi cients converge to the equilibrium coeffi cients of a continuum

economy setup, which coincide with the equilibrium coeffi cients of the price-taking equilibrium

(see our 2019 working paper). In the continuum economy, there is a mass of bidders along the

interval [0, 1]; a fraction µi (0 < µi < 1) of these bidders are traders of type i, i = 1, 2; and q

represents the aggregate (average) quantity supplied in the market.

Provided ρσ2
ε1
σ2
ε2
> 0, Proposition B1 implies that coi is increasing in the proportion of

bidders of group j; coi is decreasing in the proportion of bidders of group i, transaction costs (λi
or λj), the correlation coeffi cient between valuations (ρ), and the variance of the error term in

the private signal of group i (σ2
εi
); while coi is not affected by the precision of the private signal

of group j (σ2
εj
).

Thus, as outlined at the beginning of this subsection, the auction outcome can be obtained

as the solution to a maximization problem with a more concave objective function than the

18The effi cient allocation maximizes the expected total surplus. Here, the revenue collected is just a transfer

from the bidders to the auctioneer and washes out. If the social objective is just the surplus of the bidders or

the revenue of the auctioneer, the objective function should be modified accordingly.
19When all bidders are expected to be buyers, it holds that market power lowers expected prices from the

price-taking benchmark. This is easily seen since, in this case, E [p] is decreasing in di and dj , and the price-taking

benchmark is obtained when d1 = d2 = 0.
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expected total surplus, which suggests that ineffi ciency may be eliminated by quadratic subsidies

(κix2
i /2, i = 1, 2) that compensate for the distortions. The per capita subsidy rate (κi) to a

trader of type i must be such that it compensates for the distortion di (κi) while accounting

for the subsidy. Since the aim is to induce competitive behavior, the trader should be led

to respond with coi to the price. This means that the exact amount of κi must be di(c
o
1, c

o
2),

since that would be the distortion arising when traders use the competitive linear strategies.

The following proposition shows that, if subsidies are selected properly, then bidders behave

competitively and so the equilibrium allocation is effi cient.

Proposition 5. The effi cient allocation is induced by the quadratic subsidies κix2
i /2, where

κi = di(c
o
i , c

o
j) = 1/

(
(ni − 1) coi + njc

o
j

)
. If ρσ2

ε1
σ2
ε2
> 0, then the per capita subsidy rate for

group i (κi) increase with transaction costs (λi and λj), the variances of error terms in private

signals (σ2
εi
and σ2

εj
), and the correlation coeffi cient between valuations (ρ), but decrease with

the number of bidders (ni and nj). Moreover, we have that κi < κj iff coi < coj .

Proposition 5 implies that the optimal subsidy rates with incomplete information and learn-

ing from prices are higher than with full information: κi > κfi if (a) ρ > 0 and (b) at least one

of σ̂2
ε1
or σ̂2

ε2
is strictly positive.20

The optimal subsidy rates are decreasing in the number of traders because, when there

are many agents, competitive behavior is already being approached in the market without

subsidies. Moreover, the fact that κi = 1/
(
(ni − 1) coi + njc

o
j

)
implies that (i) the remainder

of the comparative statics results stated in Proposition 5 simply follows from the comparative

statics of coi previously outlined, and (ii) sgn {κ1 − κ2} = sgn {co1 − co2}. Hence, κ1 < κ2 iff

co1 < co2, i.e., the bidders who require a higher per capita subsidy rate are the ones whose

demands are more sensitive to price. Moreover, one can conclude that, if there is a group with

more precise private information, with lower transaction costs, and that is less numerous, then it

is the group meriting a higher per capita subsidy rate. The reason is that the strategic behavior

of bidders from the core is more pronounced and so it must receive more compensation in order

to become competitive. These conclusions would have to be revised if other considerations come

into play (e.g., systemic or redistributive).21

Our result has policy implications. It implies, for example, that a central bank seeking

an effi cient distribution of liquidity among banks should relax collateral requirements (i.e.,

20See the proof of Proposition 5 in Appendix B where closed-form expressions for the optimal subsidy rates

are displayed.
21Athey et al. (2013) find with regard to US Forest Service timber auctions that restricting entry increases

small business participation but substantially reduces effi ciency and revenue. In contrast, subsidizing small

bidders directly increases revenue and the profits of small bidders without much cost in effi ciency. See also

Loertscher and Marx (2017) and Pai and Vohra (2012).
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provide a larger subsidy) to the core group. This prescription sounds apparently counterintuitive

because the effi ciency motive may conflict with the central bank’s function as lender of last

resort to preserve systemic stability, which often involves shoring up weak banks (e.g., the

European Central Bank relaxing the collateral requirements for Greek banks to avoid a meltdown

of that country’s banking system). However, the prescription is what is needed solely for

effi ciency purposes in distributing liquidity when there is no bank failure externality. Another

example is that of a wholesale electricity market characterized by a small (oligopsonistic) core

group and a fringe; in this case, a regulator looking to improve productive effi ciency should

set a higher subsidy rate for the oligopsonistic group. This could be accomplished by offering

differential subsidies to renewable energy technologies, for instance, that lower the marginal cost

of production.

It is worth noting that primary dealers in the US Treasury are required to bid at least the

pro-rate share of those dealers present in the auction ("demonstrate substantial presence") and

in exchange enjoy privileges such as exclusive intermediation of OMO, and in the crisis period

access to the QE auction mechanism as well as to the Primary Dealer Credit Facility. This may

be interpreted as a subsidy that lowers the effective transaction cost of the dealers since they

have the obligation to bid a minimum amount. In terms of our model the marginal transaction

cost (with lambda slope) would shift outwards and be no longer linear but affi ne.22

4.3 Deadweight loss

The expected deadweight loss, E [DWL], at an anonymous allocation (x1 (t) , x2 (t)) is the dif-

ference between expected total surplus at the effi cient allocation, E [TSo], and at the baseline

allocation, denoted by E [TS]. Lemma B2 in Appendix B shows that

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] . (11)

Using (8) and (10), it follows that

E [DWL] = φ((n2d1 + n1d2)2 E
[
(t1 − t2)2] (12)

+2 (n2d1 + n1d2) (λ1d2 − λ2d1)
(
θ2 − θ1

)
Q+ (λ1d2 − λ2d1)2Q2),

22A simplified representation of transaction costs would be as follows:{
λi(xi − x)2/2, if xi > x,

k + λi(xi − x)2/2, if xi ≤ x,

where k is a constant suffi ciently high such that bidders decide to bid at least the minimum amount, denoted by

x. One can show that the unique equilibrium coeffi cient of the demand function for a bidder of group i affected

by this modification of the model is bi.
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where φ = n1n2/
(
2 (n2λ1 + n1λ2) (n1 (d2 + λ2) + n2 (d1 + λ1))2), and

E
[
(t1 − t2)2] =

(
θ1 − θ2

)2
+ (1− ρ)2 σ2

θ

2 (1 + ρ) + σ̂2
ε1

+ σ̂2
ε2(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

. (13)

Differences between the optimal allocation and the equilibrium allocation can come from

differences in the valuation trading terms or in the clearing trading terms. To highlight the role

of asymmetries let us start analyzing E [DWL] with symmetric groups.

Symmetric groups. When groups are symmetric (n2 = n1 = n, λ1 = λ2 = λ, and σ2
ε1

=

σ2
ε2

= σ2
ε), d1 = d2 = d and λ2d1 − λ1d2 = 0 or, equivalently, d1/d2 = λ1/λ2. This condition

means that the ratio of the price impacts of the two types of bidders is aligned with the ratio of

the slopes of their respective marginal transaction costs. In this case, differences between the

equilibrium allocation and the optimal allocation only come from the valuation trading terms,

which are independent of Q. Indeed, Expressions (8) and (10) indicate that the clearing trading

terms corresponding to the equilibrium with imperfect competition and the ones corresponding

to the competitive equilibrium are equal. Moreover, if group i values more (interim) the asset,

i.e., ti > tj, then the valuation trading term for group i is positive and is lower under imperfect

competition. Hence, the group with the higher value of the asset will obtain a lower quantity

with imperfect competition in relation to the optimal allocation. Therefore, strategic behavior

generates distributive ineffi ciency. Note that distributive effi ciency would be ensured provided

that θ1 = θ2 and ρ→ 1 and, given that supply is fixed, this would coincide with overall effi ciency.

While price impact (di) and the conditional expected deadweight loss (E [DWL|t]) move
together for changes in information parameters, this need not be the case with d and the

(ex-ante) expected deadweight loss (E [DWL]). This point is relevant since in the empirical

literature, price impact is typically a measure of deadweight loss, because there is an implicit

assumption that price impact and E [DWL] move together. But this need not hold. When

groups are symmetric, Expression (12) becomes

E [DWL] =
nd2

4 (d+ λ)2 λ
E
[
(t1 − t2)2] ,

where nd2

4(d+λ)2λ
increases in d, which in turn increases in ρ and in σ2

ε, and the difference in

predicted values, E
[
(t1 − t2)2], decreases when values are more correlated (higher ρ), or signals

are noisier (higher σ2
ε).

23 Hence, it follows that E [DWL] may increase or decrease in ρ and σ2
ε.

In particular, under full information (i.e., σ2
ε = 0), di is independent of ρ and then E [DWL]

decreases with ρ. By continuity, when σ2
ε is small enough, price impact slightly increases when

23E
[
(t1 − t2)2

]
vanishes when ρ approaches 1 or when there is no uncertainty (σ2θ = 0), provided θ1 = θ2.
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ρ increases, while E [DWL] decreases. Consequently, in this case, price impacts and E [DWL]

move in opposite directions when ρ changes.

Asymmetric groups. Suppose now that Q is large enough and λ2d1 6= λ1d2. Then, the

differences between the equilibrium and effi cient quantities mainly arise in the clearing trading

terms. For example, suppose group 2 is the core and group 1 the fringe, with λ1 > λ2, n1 > n2,

and σ2
ε1
> σ2

ε2
, then d1/d2 < λ1/λ2 (and, therefore, λ1d2 − λ2d1 > 0). In this case, Expressions

(8) and (10) imply that group 1 gets more in the equilibrium than in the effi cient allocation,

x1 (t) > xo1 (t) (and group 2 less, x2 (t) < xo2 (t)). Suppose furthermore that group strength and

preference strength are aligned (i.e., θ1 ≤ θ2). This is so with primary dealers in a treasury

auction who may value the bonds more than other direct bidders because they have more clout

in reselling them. In Hortaçsu et al. (2018) it is found that the willingness of primary dealers

to pay is no lower than that of other direct bidders (as well as of indirect bidders). In this

case (λ1d2 − λ2d1)
(
θ2 − θ1

)
> 0. Thus, the differences between the valuation trading terms

(in expected terms) and the clearing trading terms go in the same direction and ineffi ciency

tends to increase (the second term in Expression (12) is positive). Moreover, Expressions (12)

and (13) imply that in this case E [DWL] increases with expected valuation asymmetry (i.e.,∣∣θ2 − θ1

∣∣) and with the quantity offered in the auction (Q).
Finally, the impact of a small amount of asymmetry may be large. Suppose, for example,

that the initial situation is symmetric for the groups and that the variance of valuations (σ2
θ)

is low. Then, E [DWL] is close to zero since we have that d1/d2 = λ1/λ2. However, if λ2 is

lowered, then we can check that d1/d2 decreases and, therefore, d1/d2 < λ1/λ2, in which case

E [DWL] may be substantial if Q is large enough since E [DWL] is increasing quadratically in

Q. This is consistent with the results in Hortaçsu et al. (2018), who document a significant

amount of effi ciency losses due to heterogeneity at long maturities in US Treasury auctions.

4.4 Market integration

Our analysis can also shed light on the effects of integrating separated markets. Suppose that

groups 1 and 2 operate in separate markets (auctions), that is, in market i all the buyers (ni)

are of type i and supply is niQ/(n1 + n2). In this framework, given that all the individuals are

identical in market i, the market clearing condition implies that the equilibrium quantities are

given by Q/(n1 + n2). Hence, the expected total surplus in market i, denoted by E [TS]Market i,

satisfies

E [TS]Market i =
niθi

n1 + n2

Q− λini

(n1 + n2)2

Q2

2
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and, consequently, the global expected total surplus is given by

E [TS]Market 1 + E [TS]Market 2 =
n1θ1 + n2θ2

n1 + n2

Q− n1λ1 + n2λ2

(n1 + n2)2

Q2

2
.

Note that the previous expression is equal to the expected total surplus at the equally distributed

allocation in the integrated market.24 As the allocation of the perfect competitive equilibrium

maximizes E [TS] in this setup, then market integration increases expected total surplus, E [TS],

if bidders behave as price-takers, strictly except if θi = θj, σ2
εi

= σ2
εj

=∞, and λi = λj. In the

latter case payoffs are symmetric among bidders of the two groups and there is no information

on values. Therefore, there are no gains from trade among the groups.

The expression of expected deadweight loss given in (11) allows us to analyze the effect

of integrating separated markets under imperfect competition. This expression implies that if

the optimal allocation is expected to be closer to the equilibrium allocation than the equally

distributed allocation, then the expected deadweight loss at the equilibrium allocation will be

lower than at the equally distributed allocation. This leads us to conclude that E [TS] is higher

when the market is integrated. This is the case with symmetric bidders (θ1 = θ2, σ2
ε1

= σ2
ε2
,

λ1 = λ2 = λ, and n1 = n2 = n). The optimal allocation, the equilibrium allocation and the

equally distributed (EQ) allocation are respectively given by:

xoi (t) =
ti − tj

2λ
+
Q

2n
, xi (t) =

ti − tj
2 (d+ λ)

+
Q

2n
, and xEQi =

Q

2n
.

Notice that xoi (t) > xi (t) > xEQi and xoj (t) < xj (t) < xEQj , whenever ti > tj, resulting in a

positive effect of market integration on the expected total surplus.

On the basis of the above, market integration may only decrease E [TS] if bidders behave

strategically and are asymmetric (apart from the potential asymmetry in expected valuations).

An illustrative example is the following. Suppose that θ1 = θ2, σ2
ε1

= σ2
ε2

= ∞, λ1 = λ2 = λ,

and n1 > n2. In this case,

xoi (t) = xEQi =
Q

n1 + n2

, and xi (t) =
(dj − di)Qnj

(ni (dj + λ) + nj (di + λ)) (n1 + n2)
+

Q

n1 + n2

.

Hence, x1 (t) > xEQ1 = xo1 (t) and x2 (t) < xEQ2 = xo2 (t), i.e., the optimal allocation coincides

with the equally distributed allocation and differs from the equilibrium allocation. In this

24Wittwer (2020) compares ‘connected’with ‘disconnected’financial markets in which agents trade two per-

fectly divisible assets. In a connected market traders can make their demand for one security contingent on the

price of the other. By contrast, interlinking demands across assets is not possible when each asset is traded in

a separate disconnected market. This paper shows under which conditions both market structures generate the

same allocation.
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case, we conclude that integrating separated markets reduces the expected total surplus. With

asymmetric precision of private signals (σ2
ε1
6= σ2

ε2
) and informative prices (ρ > 0) but otherwise

symmetric groups, integration may be also welfare decreasing for large Q. Note that this would

not happen with uninformative prices, ρ = 0.

In summary, under symmetry or under perfect competition, market integration increases the

expected total surplus. To find that market integration decreases the expected total surplus,

we have to restrict our attention to a setup with strategic behavior and asymmetric groups

with bidders of both groups expected to be buyers when markets are unified. In such a case,

gains from trade of integration may be overwhelmed by the ineffi ciency generated by group

asymmetries and price impact.25

4.5 The double auction case

Until now, welfare analysis has been performed assuming that bidders from both groups are

expected to be buyers. Some of our results do not hold if bidders of one group are expected

to be sellers. To illustrate this point let us consider a double auction (Q = 0). As shown in

Expression (8), in this case the clearing trading terms of the equilibrium quantities vanish and

bidders from the group that values less the asset are expected to be sellers, while bidders of the

other group are expected to be buyers. Concerning the expected price, note that, when Q = 0,

Expression (9) implies that E [p] is a convex combination of θ1 and θ2, and comparative statics

results given in Proposition 4 might not hold. Concretely, when bidders of one group turn into

sellers instead of buyers of the asset, then decreasing their transaction costs, increasing the

precision of their private signal or increasing their number can lead to an increase in supply

and, hence, a lower price is expected.

Another result that should be nuanced is related to the relationship between market inte-

gration and welfare. In this case market integration always increases the expected total surplus,

although bidders behave strategically and are asymmetric. We have that in the integrated mar-

ket, the bidders of the group who values the asset less become sellers, while in separated markets

there is no trade. Thus, in the integrated market, the group that values the asset more keeps

a higher quantity of the asset than in separated markets. Consequently, in this case market

25The results derived in this section are in line with Malamud and Rostek (2017). In a model with independent

private information, these authors show that if traders are symmetric, then an integrated market maximizes

welfare. By contrast, if traders have different risk preferences, then fragmented markets can allocate risk more

effi ciently, thus realizing gains from trade that cannot be reproduced in an integrated market. Babus and Kondor

(2018) examine the effect of trade decentralization, comparing a centralized market as described in Vives (2011)

and a decentralized market in which dealers can engage in bilateral transactions with other dealers. The paper

shows that the effect of trade decentralization on welfare and liquidity is in general ambiguous.
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integration increases welfare.

5 Oligopsony with a large fringe

We have claimed in Remark 5 that the equilibrium under imperfect competition converges to

a price-taking equilibrium in the limit as the number of traders of both groups becomes large.

We examine here what happens when only one group (group 1) is large. Let q denote the fixed

per capita supply, that is, Q = (n1 + n2)q.

Proposition 6. Let ρσ2
ε1
> 0. Suppose that n1 →∞ and n2 <∞. Then:

(i) An equilibrium exists iff n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where n̄2 is increasing in ρ and σ̂

2
ε1
and where

n̄2 is decreasing in σ̂
2
ε2
whenever (2ρ− 1) σ̂2

ε1
< 1− ρ2.26

(ii) An agent in the large group absorbs the inelastic per capita supply in the limit ( lim
n1→∞

b1 = q,

lim
n1→∞

a1 = lim
n1→∞

c1 = 0) and retains some price impact ( lim
n1→∞

d1 > 0), while an agent in the small

group commands higher impact ( lim
n1→∞

d2 > lim
n1→∞

d1).27

(iii) In the limit, the price depends only on the valuations and price impact of agents in the large

fringe: lim
n1→∞

p = E [θ1|s1, s2]−
(

lim
n1→∞

d1 + λ1

)
q.

Equation (50) in Appendix B shows that, when n2 = n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, the demand functions

for bidders in group 2 would be completely inelastic
(

lim
n1→∞

c2 = 0

)
. This explains why the

inequality n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
is required for the existence of equilibrium since otherwise we

would have lim
n1→∞

ci = 0, 1 = 1, 2.

Part (iii) of Proposition 6 highlights the fact that in the limit, the reduced number of type-2

bidders in relation to the large fringe makes the price independent of the predicted value of the

asset for group 2 and its price impact. Thus, we have that in the limit the equilibrium price

reflects only the element of information that is common to a large number of traders. In fact,

this is the ex-post valuation of the fringe. Indeed, the price in the limit is a linear function of

E [θ1|s1, s2] and, therefore, a suffi cient statistic for θ1 with the information (s1, s2).

We see that an agent in the large group just absorbs the inelastic per capita supply, behaving

like a "Cournot quantity setter", and keeping some price impact ( lim
n1→∞

d1 > 0), while bidders

26In the particular case where n2 = 1, the existence condition boils down to (2ρ− 1) σ̂2ε1 < 1− ρ2.
27The limit expected quantity of a bidder of group 2 is given by

lim
n1→∞

E [x2 (t)] =

(
θ2 − θ1 +

(
lim

n1→∞
d1 + λ1

)
q

)
/

(
lim

n1→∞
d2 + λ2

)
.
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in the small group command relatively more market power ( lim
n1→∞

d2 > lim
n1→∞

d1). The result

for the small group is in line with Baisa and Burkett (2018). These authors obtain that in a

uniform-price auction with independent private values, a single large bidder (with multi-unit

demand) retains market power when he competes against many small bidders, each with single-

unit demands. However, in our case, with both groups competing in demand schedules and

correlated values, the fringe also retains market power when this group learns from the price

(i.e., with ρσ2
ε1
> 0).

The intuition for the result is that when the fringe learns from the price it reacts less to

the price as a high price provides good news about the valuation of the asset, and it reacts

less and less to the price as n1 → ∞, not reacting at all in the limit. Indeed, recall that
price impact for an agent of group 1 is given by d1 = ((n1 − 1) c1 + n2c2)−1, which is the

slope of the residual supply that the agent faces. Thus, lim
n1→∞

d1 > 0 is due to the fact that

when group 1 learns from the price, the inverse residual supply that this agent faces does

not become flat as n1 → ∞. This is so since the aggregate demand of this group does not
become flat, lim

n1→∞
n1c1 < ∞. Note that, as n1 → ∞, the weight of the price in E [θ1|s1, p], Λ1,

tends to 1 (at the rate of 1/n1) since in the limit the price is a suffi cient statistic for θ1 with

the information (s1, s2). Since c1 = (1− Λ1)/ (d1 + λ1), we have that price responsiveness of

group 1 (c1) converges to zero, c1 → 0 at the rate of 1/n1, leading to lim
n1→∞

d1 > 0. However,

if the large group does not learn from the price (ρσ2
ε1

= 0), then the weight of the price in

E [θ1|s1, p] is null (Λ1 = 0) and, consequently, c1 does not tend to 0 as n1 → ∞, which implies
that lim

n1→∞
n1c1 = ∞. In the limit the aggregate demand of group 1 is flat, then, taking into

account that d2 = (n1c1 + (n2 − 1) c2)−1, it is easy to see that in this case there is no price

impact in the limit to any group: lim
n1→∞

d1 = lim
n1→∞

d2 = 0. It is worth noting that if the large

group does not have price impact, then the small group cannot have it either, the reason being

that in this case both face flat inverse residual supply curves.

Example: If the small group is fully informed (σ2
ε2

= 0) and the large group is entirely

uninformed (σ2
ε1
→∞), then: n̄2 = 2ρ; an equilibrium always exists for n2 > 2; and the equilib-

rium coeffi cients for group 2 are lim
n1→∞

b2 = 0, and lim
n1→∞

a2 = lim
n1→∞

c2 = (n2 − 2ρ) / ((n2 − ρ)λ2).

In this case, the groups’relative price impact is given by lim
n1→∞

(d2/d1) = 1 + ρ/ (n2 − ρ). As ρ

increases, the relative price impact of group 2 also increases. This is so since a higher ρ makes

the price more informative for group 1 and in consequence this group tends to react less to the

price.
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6 Concluding remarks

The comparative statics results obtained provide testable predictions. For example, an increase

in transaction costs or noise in the signals in any group, or an increase in correlation of values

across groups, should increase the price impact of traders in both groups. Furthermore, co-

movements in those parameters magnify the impact. The core group (because it has more

precise private information, faces lower transaction costs, and is more oligopsonistic) has more

price impact. This result is consistent with the evidence of US Treasury auctions (Hortaçsu

et al. 2018), where primary dealers exercise market power and earn significant surplus, on top

of having privileges in exchange for bidding minimum amounts in the auctions. The expected

deadweight loss increases with the quantity auctioned and with the degree of expected valuation

asymmetry, provided the core values the asset no less than does the fringe. A small amount of

asymmetry may generate large deadweight losses. The link between heterogeneity and effi ciency

losses is corroborated empirically for treasury auctions by Hortaçsu et al. (2018).

Our findings have policy implications. Consider a regulator who wants to reduce ineffi ciency

in an industry with two groups of firms (e.g., a small oligopsonistic group and a large fringe).

This regulator must bear in mind that any intervention directed toward one group will also affect

the other’s behavior. In addition, for the regulator to induce competitive behavior it should set

a higher subsidy rate for the group that has better information, is more oligopsonistic, and has

lower transaction costs. The framework developed here can be adapted to study competition

policy, analyzing the effects of mergers and industry capacity redistribution.

Several extensions could be considered. A first one is to see how the results would be

modified in a discriminatory auction.28 A second one is to allow for traders in each group to

receive different signals. The latter is not a minor departure since, in general, the equilibrium

would be no longer privately revealing.

Appendix

Proofs of results in Section 3, 4, and 5 are displayed, respectively, in sections S1, S2 and S3 in

this appendix.

28Ausubel et al. (2014) find that, in symmetric auctions with decreasing linear marginal utility, the seller’s

revenue is greater in a discriminatory auction than in a uniform-price auction. Pycia and Woodward (2017)

demonstrate that a discriminatory pay-as-bid auction is revenue-equivalent to the uniform-price auction provided

that supply and reserve prices are set optimally.
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S1. Proofs of results in Section 3

Proposition 1 follows from Lemmata A1 and A2.

Lemma A1. Let ρ < 1. In equilibrium, the demand function for a trader of type i is given by

Xi (si, p) = (E [θi|si, p]− p) / (di + λi), with di + λi > 0. The equilibrium coeffi cients satisfy the

following system of equations:

bi =

(
(1− Ξi) θi −Ψiθj −

Ψi (nibi + njbj −Q)

njaj

)/
(di + λi) , (14)

ai =

(
Ξi −

niai
njaj

Ψi

)/
(di + λi) , and (15)

ci =

(
1− Ψi (nici + njcj)

njaj

)/
(di + λi) , (16)

with i, j = 1, 2, j 6= i. Moreover, in equilibrium, ai > 0.

Proof: Consider a trader of type i. Recall that at the beginning of Subsection 3.1 we derive

Expressions (3) and (4). Since we are looking for strategies of the formXi (si, p) = bi+aisi−cip,
from the market clearing condition, we get

sj =
(nici + njcj) p+Q− ni (bi + aisi)− njbj

njaj
.

Thus, from (5), it follows that

E [θi|si, p] = (1− Ξi) θi−Ψiθj+Ψi

(
Q− nibi − njbj

njaj

)
+

(
Ξi −

niai
njaj

Ψi

)
si+Ψi

(
nici + njcj

njaj

)
p.

Substituting the foregoing expression in (3), and then identifying coeffi cients, we obtain the

expressions for the demand coeffi cients given in (14)-(16).

Finally, we show the positiveness of the coeffi cients ai. From Expression (15), we get

ai = Ξi/ (di + λi + niΨi/ (njaj)) and aj = Ξj/ (dj + λj + njΨj/ (niai)). Combining the pre-

vious expressions, we have

ai =
nj (ΞiΞj −ΨiΨj)

niΨi (dj + λj) + Ξjnj (di + λi)
. (17)

Direct computation yields ΞiΞj − ΨiΨj = (1− ρ2)
/((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
> 0 , whenever

ρ < 1. Moreover, using the positiveness of di + λi, dj + λj, Ξj, and Ψi, we conclude that, in

equilibrium, the coeffi cient ai is strictly positive.
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Lemma A2. In equilibrium,

bi =
Ψi

ninj

niΞj
ai
aj
− njΨj

ΞiΞj −ΨiΨj

Q+ ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)
, (18)

ai = ∆ici, (19)

c1 =

(
Ξ1∆−1

1 −
n1

n2

(
1− Ξ1∆−1

1

)
z − z

(n1 − 1) z + n2

)/
λ1, and (20)

c2 =

(
Ξ2∆−1

2 −
n2

n1

(
1− Ξ2∆−1

2

) 1

z
− 1

n1z + n2 − 1

)/
λ2, (21)

where ∆i = 1
/(

1 + (1 + ρ)−1 σ̂2
εi

)
. Moreover, z ≡ c1/c2 is the unique positive solution to the

cubic polynomial G(ζ) = g3ζ
3 + g2ζ

2 + g1ζ + g0, with

g3 = n2
1 (n1 − 1)

(
n2Ξ2∆−1

2 λ1 + n1

(
1− Ξ1∆−1

1

)
λ2

)
,

g2 = n1

(
(3n2n1 − n1 − 2n2 + 1)

(
n2Ξ2∆−1

2 λ1 − n1Ξ1∆−1
1 λ2

)
+

+λ2n1 (2n2n1 − n1 + 1)− (n1 − 1) (n2 + 1)n2λ1) ,

g1 = n2

(
(3n2n1 − 2n1 − n2 + 1)

(
n2Ξ2∆−1

2 λ1 − n1Ξ1∆−1
1 λ2

)
+

+λ2n1 (n2 − 1) (n1 + 1)− (2n2n1 − n2 + 1)n2λ1) , and

g0 = −n2
2 (n2 − 1)

(
n2

(
1− Ξ2∆−1

2

)
λ1 + n1Ξ1∆−1

1 λ2

)
.

Proof: In relation to the expression for bi, notice that (15) implies

di + λi =

(
Ξi −

niai
njaj

Ψi

)/
ai. (22)

Substituting this expression in (14), it follows that

bi = ai
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

Ξi − niai
njaj

Ψi

. (23)

Thus,

nibi + njbj = niai
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

Ξi − niai
njaj

Ψi

+ njaj
(1− Ξj) θj −Ψjθi − Ψj(nibi+njbj−Q)

niai

Ξj − njaj
niai

Ψj

,

Isolating nibi + njbj in the previous formula and substituting the resulting expression in (23),

(18) is obtained.

Concerning the expression for ai, substituting (22) in (16), it follows that

ci = ai

(
1− Ψi (nici + njcj)

njaj

)/(
Ξi −

niai
njaj

Ψi

)
. (24)
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Hence, nici + njcj = niai
njaj−Ψi(nici+njcj)

njajΞi−niaiΨi + njaj
niai−Ψj(nici+njcj)

niaiΞj−njajΨj . Isolating nici + njcj in the

previous formula and substituting the resulting expression in (24), we obtain a formula which

is equivalent to (19). Using (19) in (16), we get the expression for ci given in the statement of

Proposition 1.

In relation to c1 and c2, using (2) and (19), (22) implies that

λi =

(
Ξi

∆i

− niΨici
nj∆jcj

)
c−1
i − ((ni − 1) ci + njcj)

−1 , i, j = 1, 2, and j 6= i,

or, since Ψi∆
−1
j = 1− Ξi∆

−1
i ,

λi =

(
Ξi∆

−1
i −

ni
nj

(
1− Ξi∆

−1
i

) ci
cj

)
c−1
i − ((ni − 1) ci + njcj)

−1 , i, j = 1, 2, and j 6= i,

which imply (20) and (21) since z = c1/c2. Moreover, dividing the previous expressions for λ1

and λ2, it follows that

λ1

λ2

=
Ξ1∆−1

1 − n1
n2

(
1− Ξ1∆−1

1

)
z − z ((n1 − 1) z + n2)−1

Ξ2∆−1
2 z − n2

n1

(
1− Ξ2∆−1

2

)
− z (n1z + n2 − 1)−1 . (25)

After some algebra, (25) is equivalent to G(z) = 0, where G(ζ) is the polynomial given in the

statement of this lemma. Notice that G(0) < 0 and lim
ζ→∞

G(ζ) = ∞. Consequently, there exists
a positive root of G(ζ). Furthermore, we have that g2/n1 > g1/n2. The combination of this

inequality with the fact that g3 > 0 and g0 < 0 allows us to conclude that there is only one sign

change of the coeffi cients of G(ζ). To show that, we distinguish 3 cases:

(1) 0 ≥ g2
n1
> g1

n2
. This implies that 0 ≥ g2 and 0 > g1. As g3 > 0 and g0 < 0, it follows that

there is only one sign change of the coeffi cients of G(ζ).

(2) g2
n1
> 0 ≥ g1

n2
. This implies that g2 > 0 ≥ g1. As g3 > 0 and g0 < 0, it follows that there is

only one sign change of the coeffi cients of G(ζ).

(3) g2
n1
> g1

n2
> 0. This implies that g2 > 0 and g1 > 0. As g3 > 0 and g0 < 0, it follows that

there is only one sign change of the coeffi cients of G(ζ).

Applying the Descartes’rule, we conclude that there exists a unique positive root of G(ζ).

Proposition A1. Let ρ < 1.

(a) There exists an equilibrium if and only if c1, c2 > 0, where

c1 =
HN (z)

((n1 − 1) z + n2)n2λ1

and c2 =
HD (z)

(n1z + n2 − 1)n1zλ2

, (26)

where z = c1/c2 and the expressions of HN (ζ) and HD (ζ) are given by

HN (ζ) = n2
2Ξ1∆−1

1 + n2

(
Ξ1∆−1

1 (2n1 − 1)− (n1 + 1)
)
ζ − (n1 − 1)

(
1− Ξ1∆−1

1

)
n1ζ

2 and

HD (ζ) = −n2 (n2 − 1)
(
1− Ξ2∆−1

2

)
+ n1

(
Ξ2∆−1

2 (2n2 − 1)− (n2 + 1)
)
ζ + n2

1Ξ2∆−1
2 ζ2.
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(b) Uninformative prices. When ρ = 0, σ2
εi

= σ2
εj

= 0, or σ2
εi

= σ2
εj

= ∞, equilibrium exists iff

n1 + n2 ≥ 3.

(c) Informative prices.

(c.1) Let ρσ2
ε1
σ2
ε2
> 0. Then, c1, c2 > 0 if and only if zN > zD, where zN and zD denote the

highest root of HN (ζ) and HD (ζ), respectively.

(c.2) Let ρσ2
εi
> 0 and σ2

εj
= 0. Then, c1, c2 > 0 if nj ≥ 2, or if nj = 1, ni large enough and ρ

low enough.

Remark 6. For an equilibrium to exist we must have ci, cj > 0 and these inequalities hold

if and only if zD < z < zN . If n1 = 1 and n2 = 1, then zN = 1/
(
2∆1Ξ−1

1 − 1
)
and zD =

2∆2Ξ−1
2 − 1. Since ∆1Ξ−1

1 ,∆2Ξ−1
2 ≥ 1, and ∆1Ξ−1

1 = ∆2Ξ−1
2 = 1 do not hold, we can use direct

computation to obtain zN < zD. Applying Proposition A1, we conclude that no equilibrium

exists in this case. Therefore, n1 + n2 ≥ 3 is a necessary condition for the existence of an

equilibrium.

Remark 7. In c.1, we obtain that lim
λ1→0

z = zN and lim
λ2→0

z = zD.

Remark 8. In c.2, when σ2
ε2

= 0, zD = 1/n1 if n2 = 1, whereas zD = 0 if n2 ≥ 2.

Proof: (a) (Necessity). From Proposition 1 we know that ai, aj > 0, whenever ρ < 1. Combining

this property with expressions given in (19), we have that, in equilibrium, the coeffi cients ci and

cj are strictly positive. Moreover, (20) and (21) can be rewritten as the expressions given in

(26).

(Suffi ciency). Suppose that the candidates equilibrium coeffi cients c1 and c2 are positive

and satisfy (26). Then, the ratio z = c1/c2 > 0 and satisfies (25). Then, we conclude that

an equilibrium exists and it is unique since we know that (25) has a unique positive solution.

Finally, substituting this value of z in the expressions stated in Lemma A2, we obtain the

equilibrium coeffi cients of the demand functions.

(b) When ρ = 0 or σ2
εi

= σ2
εj

= 0, the demand function for a trader of type i is given by

Xi (si, p) = (E [θi|si]− p) / (di + λi) ,

while when σ2
εi

= σ2
εj

=∞, the demand function for a trader of type i holds

Xi (si, p) =
(
θi − p

)
/ (di + λi) .

Moreover, recall that the SOCs imply di+λi > 0.Moreover, in all these cases we can express the

coeffi cients of the demand functions in terms of di and dj. In particular, ci = 1/ (di + λi) > 0,

i = 1, 2. From (2), we characterize d1 and d2 as the positive solutions of the following system of

equations:

di =

(
ni − 1

di + λi
+

nj
dj + λj

)−1

, i, j = 1, 2 and j 6= i.
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After some algebra, we conclude that this system has positive solutions if and only if n1+n2 ≥ 3.

(c.1) (Necessity). Let zN and zD denote the highest root of HN (ζ) and HD (ζ), respectively.

Notice that the positiveness of ci and cj is equivalent to zN > z > zD. Therefore, zN > zD.

(Suffi ciency). Suppose that zN > zD. Recall that Lemma A2 shows that there exists a unique

positive value of z that solves (25), which can be rewritten as

λ1

λ2

=
n1 (n2 − 1 + n1z)HN (z)

(n2 + (n1 − 1) z)n2HD (z)
. (27)

This implies that zN > z > zD. Notice that these inequalities guarantee the positiveness of

ci and cj.

(c.2) Suppose that ρσ2
ε1
> 0 and σ2

ε2
= 0. In this case Ξ2∆−1

2 = 1 and, hence, HD (ζ) =

ζn1 (n2 + ζn1 − 2). On the one hand, if n2 = 1, then zD = 1/n1. As in c.1) the condition that

guarantees the existence of equilibrium is zN > zD, which is equivalent to n1

(
2Ξ1∆−1

1 − 1
)
>

Ξ1∆−1
1 , i.e., Ξ1∆−1

1 > 1/2 and n1 > Ξ1∆−1
1 /

(
2Ξ1∆−1

1 − 1
)
or, using the expressions of Ξ1 and

∆1, 1− ρ2 + (1− 2ρ) σ̂2
ε1
> 0 and n1 > 1 + σ̂2

ε1
ρ/(1− ρ2 + (1− 2ρ) σ̂2

ε1
), which implies when ρ

is low enough and n1 is large enough.

On the other hand, if n2 ≥ 2, HD (ζ) > 0 for all ζ > 0 and, therefore, we have that c2 > 0 is

satisfied. The positiveness of c1 requires that zN > z. But, this inequality holds since z solves

Equation (27). To sum up, when σ2
ε2

= 0, an equilibrium exists if n2 = 1, n1 large enough and

ρ low enough, or if n2 ≥ 2.

Now, suppose that ρσ2
ε2
> 0 and σ2

ε1
= 0. In this case Ξ1∆−1

1 = 1 and, hence, HN (ζ) =

n2
2 + n2 (n1 − 2) ζ. On the one hand, if n1 = 1, then zN = n2. As in c.1) the condition that

guarantees the existence of equilibrium is zN > zD, which is equivalent to n2

(
2Ξ2∆−1

2 − 1
)
>

Ξ2∆−1
2 , i.e., Ξ2∆−1

2 > 1/2 and n2 > Ξ2∆−1
2 /

(
2Ξ2∆−1

2 − 1
)
or, using the expressions of Ξ2 and

∆2, 1− ρ2 + (1− 2ρ) σ̂2
ε2
> 0 and n2 > 1 + σ̂2

ε2
ρ/(1− ρ2 + (1− 2ρ) σ̂2

ε2
), which implies when ρ

is low enough and n2 is large enough.

On the other hand, if n1 ≥ 2, HN (ζ) > 0 for all ζ > 0 and, therefore, we have that c1 > 0

is satisfied. The positiveness of c2 requires that z > zD. But, this inequality holds since the

equilibrium value, z, solves Equation (27). To sum up, when σ2
ε1

= 0, an equilibrium exists if

n1 = 1, n2 large enough and ρ low enough, or if n1 ≥ 2.

Lemma A3. The condition zN > zD given in the statement of Proposition A1 is satisfied in

the following cases:

(i) if ρ < 1 and n1, n2 are large enough;

(ii) given ni, nj is large enough and ρ low enough.

Proof: We distinguish two cases: n1 > 1 and n1 = 1.
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Case 1: n1 > 1. In this case

zN =

n2

(
(n1 − 1)

(
2Ξ1∆−1

1 − 1
)
−
(
2− Ξ1∆−1

1

)
+
√(

2− Ξ1∆−1
1

)2
+ (n1 − 1)

(
n1 + 3− 6Ξ1∆−1

1

))
2n1 (n1 − 1)

(
1− Ξ1∆−1

1

)
(28)

and

zD =
n2 + 1− Ξ2∆−1

2 (2n2 − 1) +
√(

2− Ξ2∆−1
2

)2
+ (n2 − 1)

(
n2 + 3− 6Ξ2∆−1

2

)
2Ξ2∆−1

2 n1

. (29)

Proposition A1 indicates that an equilibrium exists if and only if zN > zD, or equivalently,

n1zN/n2 > n1zD/n2. Using the expressions of zN and zD, we have that n1zN/n2 is increasing

in n1 and n1zD/n2 is decreasing in n2. Taking limits, it follows that

lim
n1→∞

n1zN/n2 = Ξ1∆−1
1 /

(
1− Ξ1∆−1

1

)
and lim

n2→∞
n1zD/n2 =

(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
.

Moreover, using the expressions of Ξi and ∆i, we have that

Ξ1∆−1
1

1− Ξ1∆−1
1

− 1− Ξ2∆−1
2

Ξ2∆−1
2

=
(1− ρ2)

(
1 + ρ+ σ̂2

ε1

) ((
1 + σ̂2

ε1

) (
1 + σ̂2

ε2

)
− ρ2

)
ρσ̂2

ε1

(
1 + ρ+ σ̂2

ε2

) (
1− ρ2 + σ̂2

ε1

) > 0.

Hence, we get that, as ρ < 1, lim
n1→∞

n1zN/n2 > lim
n2→∞

n1zD/n2. This implies that whenever ρ < 1

and n1 and n2 large enough, the existence of the equilibrium is guaranteed.

Consider now a fixed positive integer n1, such that n1 > 1. Using the fact that zN is the

positive root of HN (Z), it follows that n1zN/n2 > Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
. Moreover,

Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
, (30)

whenever ρ is low enough. Therefore,

n1zN/n2 > Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
= lim

n2→∞
n1zD/n2.

Hence, we conclude that if n2 is large enough, as n1zD/n2 is decreasing in n2, the previous

inequalities imply that n1zN/n2 > n1zD/n2 or, equivalently, zN > zD. Applying Proposition

A1, it follows that in this case there exists an equilibrium provided that n2 is high enough and

ρ low enough.

Consider now a fixed positive integer n2, such that n2 ≥ 1, and assume again that ρ < 1. Us-

ing the fact that zD is the positive root ofHD (ζ), it follows that n1zD/n2 ≤
(
2− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
.

In addition, when ρ is low enough, then we have that(
2− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
< Ξ1∆−1

1 /
(
1− Ξ1∆−1

1

)
= lim

n1→∞
n1zN/n2.
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Thus, we have that n1zD/n2 < lim
n1→∞

n1zN/n2. Using the fact that n1zN/n2 increases with n1,

we have that, when n1 is high enough, n1zD/n2 < n1zN/n2 or, equivalently, zD < zN , which

guarantees the existence of equilibrium. To sum up, we have that given n2, there exists an

equilibrium provided that n1 is high enough and ρ low enough.

Case 2: n1 = 1. In this case, we have that zN = n2Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
and

zD =
n2 + 1− Ξ2∆−1

2 (2n2 − 1) +
√(

2− Ξ2∆−1
2

)2
+ (n2 − 1)

(
n2 + 3− 6Ξ2∆−1

2

)
2Ξ2∆−1

2

.

Furthermore, whenever ρ is low enough, (30) holds. Therefore, it follows that

zN/n2 = Ξ1∆−1
1 /

(
2− Ξ1∆−1

1

)
>
(
1− Ξ2∆−1

2

)
/
(
Ξ2∆−1

2

)
= lim

n2→∞
zD/n2.

Using the fact that zD/n2 decreases with n2, the previous inequality implies that zN/n2 > zD/n2

whenever n2 is high enough, i.e., zN > zD, which guarantees the existence of equilibrium. To

sum up, we have that when n1 = 1, there exists an equilibrium provided that n2 is high enough

and ρ low enough.

Proofs of Proposition 2 , Corollary 1 , and Corollary 2 : These proofs directly follow from Propo-

sition A1 and Lemma A3.

Remark 9. (Symmetric groups) Let ni = nj = n, λi = λj = λ, and σ2
εi

= σ2
εj

= σ2
ε. Here

z = 1 in equilibrium. From Proposition 2A we know that, if an equilibrium exists, then the value

of z is in the interval (zD, zN). It follows that zN > 1 > zD or, equivalently, that HN (1) > 0

and HD (1) > 0. After performing some algebra, we find that the foregoing inequalities are

satisfied iff n > 1 + ρσ̂2
ε

/(
(1− ρ)

(
1 + ρ+ σ̂2

ε

))
, where σ̂2

ε = σ2
ε/σ

2
θ.

Proof of Proposition 3: Let ρσ2
ε1
σ2
ε2
> 0. In what follows we prove the following comparative

statics results:

(a) ∂ai/∂λi < 0 and ∂ci/∂λi < 0,

(b) ∂ai/∂λj < 0 and ∂ci/∂λj < 0,

(c) ∂ai/∂ρ < 0 and ∂ci/∂ρ < 0,

(d) ∂ai/∂σ2
εi
< 0 and ∂ci/∂σ2

εi
< 0,

(e) ∂ai/∂σ2
εj
< 0 and ∂ci/∂σ2

εj
< 0,

(f) ∂di/∂Q = 0,

(g) ∂di/∂θi = 0 and ∂di/∂θj = 0, and

(h) ∂di/∂ni < 0 and ∂dj/∂ni < 0.
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In what follows, without any loss of generality, let i = 1. First, we prove that ∂z/∂λ1 < 0.

From Lemma A2, we know that z is the unique positive solution that satisfies:

λ1

λ2

− N(z)

D(z)
= 0, (31)

where

N(z) = Ξ1∆−1
1 − n1

(
1− Ξ1∆−1

1

)
z/n2 − z ((n1 − 1) z + n2)−1 and

D(z) = Ξ2∆−1
2 z − n2

(
1− Ξ2∆−1

2

)
/n1 − z (n1z + n2 − 1)−1 ,

with Ξi∆
−1
i =

(
1− ρ2 + σ̂2

εj

) (
1 + ρ+ σ̂2

εi

) (((
1 + σ̂2

εi

) (
1 + σ̂2

εj

)
− ρ2

)
(1 + ρ)

)−1

. Applying

the Implicit Function Theorem, we get

∂z

∂λi
= −∂ (λ1/λ2 −N(z)/D(z)) /∂λi

∂ (λ1/λ2 −N(z)/D(z)) /∂z
.

As ∂ (λ1/λ2 −N(z)/D(z)) /∂λ1 > 0, ∂ (λ1/λ2 −N(z)/D(z)) /∂λ2 < 0, and ∂ (λ1/λ2 −N(z)/D(z)) /∂z >

0 because of z ∈ (zD, zN), we conclude that ∂z/∂λ1 < 0 and ∂z/∂λ2 > 0.

Next, we study the relationship between c′s and λ1. Differentiating (21), we have

∂c2

∂λ1

=
∂c2

∂z

∂z

∂λ1

=
1

λ2

(
n2

(
1− Ξ2∆−1

2

)
n1z2

+
n1

(n1z + n2 − 1)2

)
∂z

∂λ1

< 0,

since ∂z/∂λ1 < 0. Moreover, as c1 = zc2, it follows that ∂c1/∂λ1 = (∂z/∂λ1) c2 + z (∂c2/∂λ1) <

0, because of the positiveness of c2 and z, and the negativeness of ∂z/∂λ1 and ∂c2/∂λ1. In

relation to a1 and a2, from (19), direct computation yields ∂a1/∂λ1 < 0 and ∂a2/∂λ1 < 0, since

∂c1/∂λ1 < 0 and ∂c2/∂λ1 < 0.

Now, we study how the correlation coeffi cient ρ affects a1. Let y = a1/a2. As a1 = ∆1c1 and

a2 = ∆2c2, then z = ∆2y/∆1. Substituting this expression in (25), and after some algebra, we

have that
λ1

λ2

y =
Ñ(y, ρ)

D̃(y, ρ)
, (32)

where Ñ(y, ρ) =
1−ρ2+σ̂2ε2−

n1
n2
σ̂2ε1ρy

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2
−
(

(n1 − 1)
1+ρ+σ̂2ε1

1+ρ
+ n2

1+ρ+σ̂2ε2
1+ρ

1
y

)−1

and

D̃(y, ρ) =
1− ρ2 + σ̂2

ε1
− n2

n1
σ̂2
ε2
ρ 1
y(

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

−
(
n1

1 + ρ+ σ̂2
ε1

1 + ρ
y + (n2 − 1)

1 + ρ+ σ̂2
ε2

1 + ρ

)−1

.

Moreover, a1 = Ñ(y, ρ)/λ1 and a2 = D̃(y, ρ)/λ2. Hence,

∂a1

∂ρ
=

(
∂Ñ(y, ρ)/∂y

)
(∂y/∂ρ) + ∂Ñ(y, ρ)/∂ρ

λ1

.
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Thus, in order to show ∂a1/∂ρ < 0, it suffi ces to prove that

∂Ñ(y, ρ)

∂y

∂y

∂ρ
+
∂Ñ(y, ρ)

∂ρ
< 0. (33)

Direct computation yields ∂Ñ(y, ρ)/∂y < 0. Then, (33) is equivalent to

∂y

∂ρ
> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
. (34)

Moreover, recall that y in equilibrium is the unique positive value that satisfies (32). Thus,

applying the Implicit Function Theorem, it follows that

∂y

∂ρ
= −

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂ρ

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y
.

Then, (34) can be rewritten as

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂ρ

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y

> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
,

or using the fact that in equilibrium ∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)/
∂y > 0, (34) is satisfied iff

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

> −
(
∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y

)
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂y

. (35)

Notice that

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

= −

(
∂Ñ(y, ρ)/∂ρ

)
D̃(y, ρ)− Ñ(y, ρ)

(
∂D̃(y, ρ)/∂ρ

)
D̃2(y, ρ)

,

or using (31),

−
∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂ρ

= −
∂Ñ(y, ρ)/∂ρ− λ1y

(
∂D̃(y, ρ)/∂ρ

)/
λ2

D̃(y, ρ)
.

Analogously,

∂
(
λ1y/λ2 − Ñ(y, ρ)/D̃(y, ρ)

)
∂y

=
λ1

λ2

−
∂Ñ(y, ρ)/∂y − λ1y

(
∂D̃(y, ρ)/∂y

)/
λ2

D̃(y, ρ)
.

35



Therefore, (35) is equivalent to

∂Ñ(y, ρ)/∂ρ− λ1y
(
∂D̃(y, ρ)/∂ρ

)/
λ2

D̃(y, ρ)
> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y
×λ1

λ2

−
∂Ñ(y, ρ)/∂y − λ1y

(
∂D̃(y, ρ)/∂y

)/
λ2

D̃(y, ρ)

 ,
or,

−
y
(
∂D̃(y, ρ)/∂ρ

)
D̃(y, ρ)

> −∂Ñ(y, ρ)/∂ρ

∂Ñ(y, ρ)/∂y

1 +
y
(
∂D̃(y, ρ)/∂y

)
D̃(y, ρ)

 . (36)

Moreover, recall that a2 = D̃(y, ρ)/λ2. The positiveness of a2 tells us that D̃(y, ρ) > 0. After

some algebra, we have that ∂D̃(y, ρ)/∂ρ < 0, ∂Ñ(y, ρ)/∂ρ < 0 and ∂D̃(y, ρ)/∂y > 0. Hence, we

conclude that the left-hand side (LHS) of (36) is positive, whereas the right-hand side (RHS)

of (36) is negative since ∂Ñ(y, ρ)/∂y < 0. Consequently, the fact that (36) is satisfied allows us

to conclude that ∂a1/∂ρ < 0.

Concerning the effect of ρ on c1, recall that c1 = a1/∆1 =
(
1 + ρ+ σ̂2

ε1

)
a1/ (1 + ρ). This

expression tells us that c1 is the product of two decreasing positive functions in ρ. Therefore,

∂c1/∂ρ < 0.

Next, we study how a1 and c1 vary with a change in σ2
εi
and σ2

εj
. In order to do that first we

analyze the effect of σ2
εi
on d1 and d2. From Proposition 1, we know that ai = ∆ici > 0, i = 1, 2.

Therefore, Expression (2) implies that di =
(
(ni − 1) ∆−1

i ai + nj∆
−1
j aj

)−1
. Substituting the

expressions of (17) and the expression for ∆i given in Lemma A2, it follows that

di =

(
(ni − 1)nj

Ωi

+
njni
Ωj

)−1

,

where Ωi = njΥi (di + λi)+ni (Υi − 1) (dj + λj) and Ωj = niΥj (dj + λj)+nj (Υj − 1) (di + λi),

with Υi = Ξj/ (Ξj −Ψi) =
(
1− ρ2 + σ̂2

εi

)
/
(
(1− ρ)

(
1 + ρ+ σ̂2

εi

))
> 1. Therefore, we derive

the following equations that are satisfied in equilibrium: Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
= 0, i = 1, 2, where

Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
=

(ni − 1)njdi
Ωi

+
ninjdi

Ωj

− 1.

Let DFd1,d2
(
σ2
ε1
, σ2

ε2
, d1, d2

)
denote the following matrix:

(
∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d1 ∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d2

∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d1 ∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂d2

)
.
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After some tedious algebra, it can be shown that the determinant of DFd1,d2
(
σ2
ε1
, σ2

ε2
, d1, d2

)
is

strictly positive. In particular, it is not null and, therefore, this matrix is invertible. Hence, we

can apply the Implicit Function Theorem, we have(
∂d1/∂σ

2
ε1

∂d1/∂σ
2
ε2

∂d2/∂σ
2
ε1

∂d2/∂σ
2
ε1

)
=

−
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1

(
∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε1
∂F1

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε2

∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε1
∂F2

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

ε2

)
.

(37)

It is easy to see that all the elements of
(
DFd1,d2

(
σ2
ε1
, σ2

ε2
, d1, d2

))−1
are positive. Moreover,

∂Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

εi
< 0 and ∂Fi

(
σ2
ε1
, σ2

ε2
, d1, d2

)
/∂σ2

εj
< 0. Hence, (37) implies that

∂di/∂σ
2
εi
> 0 and ∂di/∂σ2

εj
> 0.

Next, we study the comparative statics of c1 and c2 with respect to σ2
ε1
. Recall that ci =

nj/Ωi. Using the fact that Υ1, d1, and d2 are increasing in σ2
ε1
and that Υ2 is independent of

σ2
ε1
, we have that Ω1 and Ω2 are increasing in σ2

ε1
, which allows us to conclude that c1 and c2

are decreasing in σ2
ε1
. Combining these results with the fact that ∆1 is decreasing in σ2

ε1
and

∆2 is independent of σ2
ε1
, it follows that a1 and a2 are decreasing in σ2

ε1
, since a1 = ∆1c1 and

a2 = ∆2c2.

In relation to (f) and (g), note that Lemma A2 shows that the only equilibrium coeffi cient

affected by the quantity offered in the auction (Q) and by the prior mean of the valuations (θi
and θj) is bi. Using Expression (2), we get that di is independent of these parameters.

Finally, concerning (h), notice that doing a similar reasoning as before we derive the fol-

lowing equations that are satisfied in equilibrium: Fi (n1, n2, d1, d2) = 0, i = 1, 2, where

Fi (n1, n2, d1, d2) = Fi
(
σ2
ε1
, σ2

ε2
, d1, d2

)
. Hence,(

∂d1/∂n1 ∂d1/∂n2

∂d2/∂n1 ∂d2/∂n2

)
=

− (DFd1,d2 (n1, n2, d1, d2))−1

(
∂F1 (n1, n2, d1, d2) /∂n1 ∂F1 (n1, n2, d1, d2) /∂n2

∂F2 (n1, n2, d1, d2) /∂n1 ∂F2 (n1, n2, d1, d2) /∂n2

)
.

Taking into account that all the elements of the previous two matrices are positive, we conclude

that ∂di/∂ni < 0 and ∂di/∂nj < 0.

Proof of Corollary 3 : Suppose that σ2
ε1
≥ σ2

ε2
, λ1 ≥ λ2, and n1 ≥ n2. Using the expressions of

Ξi and ∆i, it is easy to see that in this case Ξ2∆−1
2 > Ξ1∆−1

1 . Next, we distinguish two cases:

Case 1: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) ≥ 1 − Ξ2∆−1
2 . Evaluating the polynomial

G(ζ), stated in the proof of Lemma A2, at ζ = 1, we have that in this case G(1) ≥ 0. This
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implies that z ≤ 1, and therefore, c1 ≤ c2. In addition, using the expressions of d1 and d2, we get

sgn {d1 − d2} = sgn {c1 − c2}, which implies d1 ≤ d2. Finally, notice that ∆1 ≤ ∆2 whenever

σ2
ε1
≥ σ2

ε2
. Hence, a1/a2 = z∆1/∆2 ≤ 1.

Case 2: (n1 + n2 − 2)n1/ ((n1 + n2) (n1 + n2 − 1)) < 1− Ξ2∆−1
2 . Notice that

(n1 + n2 − 2)n2

(n1 + n2) (n1 + n2 − 1)
−
(
1− Ξ1∆−1

1

)
≤ (n1 + n2 − 2)n1

(n1 + n2) (n1 + n2 − 1)
−
(
1− Ξ2∆−1

2

)
,

since Ξ2∆−1
2 > Ξ1∆−1

1 and n1 ≥ n2. Thus, in this case we have that HN (1) < 0 and HD (1) < 0.

Taking into account the shape of these polynomials, the previous two inequalities imply that

zD > 1 > zN . However, Proposition A1 indicates that in this case there is no equilibrium.

S2. Proofs of results in Section 4

Proof of Proposition 4: Without any loss of generality suppose that θi ≥ θj. Using the expression

of the optimal demand function, bidders of type j are expected to be buyers when θj > E [p] .

From the expression of E [p], the previous inequality is satisfied provided that

ni
(
θi − θj

)
di + λi

< Q. (38)

Next, we study the relationship between E [p] and ni. Note that rewriting the expression of the

expected equilibrium price, it follows that

E [p] = θj +
ni (dj + λj)

(
θi − θj

)
ni (dj + λj) + nj (di + λi)

− Q
ni

di+λi
+

nj
dj+λj

.

Differentiating this expression with respect to ni, we have

∂

∂ni
E [p] =

∂

∂ni

(
ni (dj + λj)

ni (dj + λj) + nj (di + λi)

)(
θi − θj

)
− ∂

∂ni

(
1

ni
di+λi

+
nj

dj+λj

)
Q

Using Proposition 3(ii), it follows that ∂
∂ni

(
1

ni
di+λi

+
nj

dj+λj

)
< 0. Hence, from (38), if follows that

∂

∂ni
E [p] >

∂

∂ni

(
ni (dj + λj)

ni (dj + λj) + nj (di + λi)

)(
θi − θj

)
− ∂

∂ni

(
1

ni
di+λi

+
nj

dj+λj

)
ni
(
θi − θj

)
di + λi

and, from direct computations,

∂

∂ni
E [p] >

(
dj + λj −

ni (dj + λj)
∂
∂ni
di

di + λi

)
θi − θj

ni (dj + λj) + nj (di + λi)
.
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From Proposition 3(ii), we know that ∂
∂ni
di < 0. Hence, we can conclude that E [p] increases

with ni. Given that the proofs of how the other underlying parameters affect the expected

equilibrium price are similar to the previous one, they are omitted.

Now, suppose that
∣∣θi − θj∣∣ is high enough or Q = 0. The results we have just de-

rived may not hold. For example, let us focus on the relationship between the expected

price and n1 when
∣∣θi − θj∣∣ is high enough. To study this relationship, we first show that

n2 (d1 + λ1) /(n1 (d2 + λ2)) decreases with n1. Recall that d2 = ((n2 − 1)n1/Ω2 + n1n2/Ω1)−1.

Using the expressions of Ωi, we have

1 =

(
n2 − 1

Υ2 + (Υ2 − 1) n2(d1+λ1)
n1(d2+λ2)

+
n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+ Υ1 − 1

)−1

+
λ2

d2 + λ2

.

The fact that d2 decreases with n1 implies that λ2/ (d2 + λ2) increases with n1. Then, the

previous inequality tells us that n2−1

Υ2+(Υ2−1)
n2(d1+λ1)
n1(d2+λ2)

+ n2

Υ1
n2(d1+λ1)
n1(d2+λ2)

+Υ1−1
increases with n1. For this

to be possible, n2(d1+λ1)
n1(d2+λ2)

needs to be decreasing in n1. Given that the expected price satisfies

E [p] =

(
1 +

n2 (d1 + λ1)

n1 (d2 + λ2)

)−1

θ1 +

(
1−

(
1 +

n2 (d1 + λ1)

n1 (d2 + λ2)

)−1
)
θ2−

(
n1

d1 + λ1

+
n2

d2 + λ2

)−1

Q,

we have that the relationship between the expected price and n1 is ambiguous. For instance, if

θ2 is low enough, then the fact that d1, d2, and n2 (d1 + λ1) / (n1 (d2 + λ2)) are decreasing in n1

allows us to conclude that the expected price increases with n1. However, if θ2 is large and θ1

and Q are low enough, then the expected price decreases with n1.

Lemma B1. The equilibrium quantities solve the following distorted benefit maximization

program:

max
x1,x2

E
[
n1

(
θ1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
θ2x2 − (d2 + λ2)x2

2/2
)∣∣ t]

s.t. n1x1 + n2x2 = Q,

taking as given the equilibrium parameters d1 and d2.

Proof: The Lagrangian function of the maximization program is given by

L (x1, x2, µ) = n1

(
t1x1 − (d1 + λ1)x2

1/2
)

+ n2

(
t2x2 − (d2 + λ2)x2

2/2
)
− µ (n1x1 + n2x2 −Q) ,

where µ denotes the Lagrange multiplier. Differentiating, we obtain the following FOCs:

n1 (t1 − (d1 + λ1)x1)− µn1 = 0, (39)

n2 (t2 − (d2 + λ2)x2)− µn2 = 0, and (40)

n1x1 + n2x2 = Q. (41)
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From (39) and (40), it follows that xi = (ti − µ) / (di + λi), i = 1, 2. Substituting these ex-

pressions in (41) and operating, we have µ =
(

n1t1
d1+λ1

+ n2t2
d2+λ2

−Q
)(

n1
d1+λ1

+ n2
d2+λ2

)−1

. Then,

plugging this expression into (39) and (40), we get the expressions of the equilibrium quantities

given in (8). In addition, since the objective function is concave and the constraint is a linear

equation, we conclude that the critical point is a global maximum. Hence, the equilibrium

quantities are the solutions of the optimization problem stated in Lemma B1.

Proposition B1. Let Q = (n1 + n2)q and let µi = ni/(n1 + n2). Then, there exists a unique

price-taking equilibrium, and the equilibrium coeffi cients of the demand function for a type-i

bidder are given by

boi =
σ̂2
εi

(
µj
(
θi − ρθj

)
+ ρλjq

)
µiρσ̂

2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
, aoi =

µj (1− ρ2)

µiρσ̂
2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
, and

coi =
µj (1− ρ)

(
1 + ρ+ σ̂2

εi

)
µiρσ̂

2
εi
λj + µj

(
1− ρ2 + σ̂2

εi

)
λi
.

Proof: In the competitive setup, the FOC of the optimization problem for a type-i bidder is

given by E [θi|si, p] − p − λixi = 0. Doing similar computations as in the proof of Lemma A1,

we derive the following system of equations:29

bi =

(
(1− Ξi) θi −Ψiθj + Ψi

(
q − µibi − µjbj

µjaj

))/
λi, (42)

ai =

(
Ξi −

µi
µj

ai
aj

Ψi

)/
λi, and (43)

ci =

(
1−Ψi

(
µici + µjcj

µjaj

))/
λi, i, j = 1, 2, j 6= i. (44)

Note that ai/aj =
((

Ξi − µi
µj

ai
aj

Ψi

)/
λi

)/((
Ξj −

µj
µi

aj
ai

Ψj

)/
λj

)
. Hence,

ai/aj = µj
(
Ψjλiµj + Ξiλjµi

)
/
(
µi
(
Ψiλjµi + λiΞjµj

))
.

Then, plugging the previous expression into (43), we get

ai =
µj (ΞiΞj −ΨiΨj)

µjΞjλi + µiΨiλj
. (45)

Furthermore, using (42), and after some algebra, we have

µibi + µjbj =

µi
λi

(
(1− Ξi) θi −Ψiθj + Ψi

µjaj
q
)

+
µj
λj

(
(1− Ξj) θj −Ψjθi +

Ψj
µiai

q
)

Ψi
λi

µi
µjaj

+
Ψj
λj

µj
µiai

+ 1
.

29To ease the notation the superscript o is omitted in this proof.
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Substituting (45) and the last expression into (42), it follows that

bi = ai

(
Ξjθi −Ψiθj
ΞiΞj −ΨiΨj

− θi
)

+
λjΨi

µjΞjλi + µiΨiλj
q. (46)

In addition, from (44), and after some algebra, we get

µici + cjµj =

(
µi
λi

+
µj
λj

)/(
Ψi

λi

µi
µjaj

+
Ψj

λj

µj
µiai

+ 1

)
.

Using (45) and the last expression in (44), we have

ci =
µj (Ξj −Ψi)

µjΞjλi + µiΨiλj
. (47)

Finally, substituting the expressions for Ξi, Ξj, Ψi, and Ψj in (45)-(47) we obtain the formulas

stated in the statement of this proposition.

Proof of Proposition 5: Performing similar computations as in the proof of Lemma A1, we

obtain that the equilibrium coeffi cients with subsidies κi = di(c
o
1, c

o
2) satisfy

bi =
(1− Ξi) θi −Ψiθj − Ψi(nibi+njbj−Q)

njaj

di + λi − di(co1, co2)
, ai =

Ξi − niai
njaj

Ψi

di + λi − di(co1, co2)
> 0, and

ci =
1− Ψi(nici+njcj)

njaj

di + λi − di(co1, co2)
, i, j = 1, 2, j 6= i.

Comparing this system of equations and the one derived in the proof of Proposition B1, using

Q = (n1 + n2)q and µi = ni/(n1 + n2), we obtain that the equilibrium coeffi cients of the price-

taking equilibrium solves this system. Therefore, we conclude that the quadratic subsidies,

κix
2
i /2 with κi = di(c

o
1, c

o
2), induce an effi cient allocation. The closed-form expressions for the

optimal subsidy rates are:

κi =
1

nj (1− ρ)

 (ni − 1)
(
1 + σ̂2

εi
+ ρ
)

niλjρσ̂
2
εi

+ njλi
(
1− ρ2 + σ̂2

εi

) +
ni

(
1 + σ̂2

εj
+ ρ
)

niλj

(
1− ρ2 + σ̂2

εj

)
+ njλiρσ̂

2
εj

−1

.

If ρ = 0 (or, with full information, if σ2
εi

= 0, i = 1, 2), then κfi = 1/
(
(ni − 1)λ−1

i + njλ
−1
j

)
.

Lemma B2. The expected deadweight loss at an anonymous allocation (x1 (t) , x2 (t)) satisfies

E [DWL] =
1

2
λ1n1E

[
(x1 (t)− xo1 (t))2]+

1

2
λ2n2E

[
(x2 (t)− xo2 (t))2] . (48)

Proof: Notice that E [TS] = E [E [TS|t]], where

E [TS|t] = E
[
n1

(
θ1x1 (t)− λ1 (x1 (t))2 /2

)
+ n2

(
θ2x2 (t)− λ2 (x2 (t))2 /2

)∣∣ t] =

n1

(
t1x1 (t)− λ1 (x1 (t))2 /2

)
+ n2

(
t2x2 (t)− λ2 (x2 (t))2 /2

)
.
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A Taylor series expansion of E [TS|t] around the price-taking equilibrium (xo1 (t) , xo2 (t)), stop-

ping at the second term due to the fact that E [TS|t] is quadratic, yields

E [TS|t] (x (t)) = E [TS|t] (xo (t)) +∇E [TS|t] (xo (t))(x (t)− xo (t)) +

+
1

2
(x (t)− xo (t))

′
D2E [TS|t] (xo (t))(x (t)− xo (t)),

where ∇E [TS|t] (xo (t)) and D2E [TS|t] (xo (t)) are, respectively, the gradient and the Hessian

matrix of E [TS|t] evaluated at xo (t). Because of optimality of xo (t),

∇E [TS|t] (xo (t)) = (0, 0).

In addition, D2E [TS|t] (xo (t)) =

(
−λ1n1 0

0 −λ2n2

)
. Hence,

E [TS|t] (x (t))− E [TS|t] (xo (t)) = −1

2
λ1n1 (x1 (t)− xo1 (t))2 − 1

2
λ2n2 (x2 (t)− xo2 (t))2

and, therefore, (48) is satisfied.

6.1 S3. Proofs of results in Section 5

Proof of Proposition 6: Using (28) and (29), it follows that lim
n1→∞

zN = lim
n1→∞

zD = 0. Further-

more, after some algebra, we have that the necessary and suffi cient condition for the existence

of an equilibrium (i.e., lim
n1→∞

zN/zD > 1) is equivalent to n2 > n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
, where

n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
=

ρ
(
(2− ρ) σ̂2

ε2
+ 2 (1− ρ2)

)
σ̂2
ε1

(1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) .
Moreover, taking the limit in (25), it follows that lim

n1→∞
z = 0 and

lim
n1→∞

n1z = n2Ξ1∆−1
1

/ (
1− Ξ1∆−1

1

)
. (49)

Using the expressions included in the statement of Lemma A2, and after some tedious algebra,

we get lim
n1→∞

b1 = q, lim
n1→∞

a1 = 0, lim
n1→∞

c1 = 0, lim
n1→∞

a2 = ∆2 lim
n1→∞

c2,

lim
n1→∞

b2 =

σ̂2
ε2

(
(n2−1)(1−ρ2)
(1−ρ2+σ̂2ε2)

+
(1−ρ2+σ̂2ε1 (1−2ρ))

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2

)(
θ2 − ρθ1 + qρλ1

)
(1− ρ)λ2

(
n2 (1 + ρ)− ρσ̂2ε1(1+ρ+σ̂2ε2)

(1+σ̂2ε1)(1+σ̂2ε2)−ρ
2

) +

+q
ρ2σ̂2

ε2
σ̂2
ε1

n2 (1− ρ2)
((

1 + σ̂2
ε1

) (
1 + σ̂2

ε2

)
− ρ2

) , and
lim
n1→∞

c2 =
n2 − n̄2

(
ρ, σ̂2

ε1
, σ̂2

ε2

)
λ2

1−ρ2+σ̂2ε2
1−ρ

(
n2

(1+ρ+σ̂2ε2)
− ρσ̂2ε1

(1+ρ)((1+σ̂2ε1)(1+σ̂2ε2)−ρ
2)

) . (50)
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Next, in relation to the expressions for d1 and d2, we have that

lim
n1→∞

d1 = lim
n1→∞

((n1 − 1) c1 + n2c2)−1 =

(
lim
n1→∞

(
(n1 − 1)

n1

n1z + n2

)
lim
n1→∞

c2

)−1

> 0.

The fact that n1z and c2 converge to a positive finite number, as shown in (49) and (50), implies

that d1 does not converge to zero (provided that ρσ̂
2
ε1
> 0; if ρσ̂2

ε1
= 0, then it is easy to see

that lim
n1→∞

n1z =∞). A similar result is obtained with the limit of d2. In particular,

lim
n1→∞

d2 =

((
lim
n1→∞

n1z + n2 − 1

)
lim
n1→∞

c2

)−1

> lim
n1→∞

d1 > 0.
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